| /* |
| * Register map access API |
| * |
| * Copyright 2011 Wolfson Microelectronics plc |
| * |
| * Author: Mark Brown <broonie@opensource.wolfsonmicro.com> |
| * |
| * This program is free software; you can redistribute it and/or modify |
| * it under the terms of the GNU General Public License version 2 as |
| * published by the Free Software Foundation. |
| */ |
| |
| #include <linux/device.h> |
| #include <linux/slab.h> |
| #include <linux/export.h> |
| #include <linux/mutex.h> |
| #include <linux/err.h> |
| #include <linux/of.h> |
| #include <linux/rbtree.h> |
| #include <linux/sched.h> |
| |
| #define CREATE_TRACE_POINTS |
| #include "trace.h" |
| |
| #include "internal.h" |
| |
| /* |
| * Sometimes for failures during very early init the trace |
| * infrastructure isn't available early enough to be used. For this |
| * sort of problem defining LOG_DEVICE will add printks for basic |
| * register I/O on a specific device. |
| */ |
| #undef LOG_DEVICE |
| |
| static int _regmap_update_bits(struct regmap *map, unsigned int reg, |
| unsigned int mask, unsigned int val, |
| bool *change); |
| |
| static int _regmap_bus_reg_read(void *context, unsigned int reg, |
| unsigned int *val); |
| static int _regmap_bus_read(void *context, unsigned int reg, |
| unsigned int *val); |
| static int _regmap_bus_formatted_write(void *context, unsigned int reg, |
| unsigned int val); |
| static int _regmap_bus_reg_write(void *context, unsigned int reg, |
| unsigned int val); |
| static int _regmap_bus_raw_write(void *context, unsigned int reg, |
| unsigned int val); |
| |
| bool regmap_reg_in_ranges(unsigned int reg, |
| const struct regmap_range *ranges, |
| unsigned int nranges) |
| { |
| const struct regmap_range *r; |
| int i; |
| |
| for (i = 0, r = ranges; i < nranges; i++, r++) |
| if (regmap_reg_in_range(reg, r)) |
| return true; |
| return false; |
| } |
| EXPORT_SYMBOL_GPL(regmap_reg_in_ranges); |
| |
| bool regmap_check_range_table(struct regmap *map, unsigned int reg, |
| const struct regmap_access_table *table) |
| { |
| /* Check "no ranges" first */ |
| if (regmap_reg_in_ranges(reg, table->no_ranges, table->n_no_ranges)) |
| return false; |
| |
| /* In case zero "yes ranges" are supplied, any reg is OK */ |
| if (!table->n_yes_ranges) |
| return true; |
| |
| return regmap_reg_in_ranges(reg, table->yes_ranges, |
| table->n_yes_ranges); |
| } |
| EXPORT_SYMBOL_GPL(regmap_check_range_table); |
| |
| bool regmap_writeable(struct regmap *map, unsigned int reg) |
| { |
| if (map->max_register && reg > map->max_register) |
| return false; |
| |
| if (map->writeable_reg) |
| return map->writeable_reg(map->dev, reg); |
| |
| if (map->wr_table) |
| return regmap_check_range_table(map, reg, map->wr_table); |
| |
| return true; |
| } |
| |
| bool regmap_readable(struct regmap *map, unsigned int reg) |
| { |
| if (map->max_register && reg > map->max_register) |
| return false; |
| |
| if (map->format.format_write) |
| return false; |
| |
| if (map->readable_reg) |
| return map->readable_reg(map->dev, reg); |
| |
| if (map->rd_table) |
| return regmap_check_range_table(map, reg, map->rd_table); |
| |
| return true; |
| } |
| |
| bool regmap_volatile(struct regmap *map, unsigned int reg) |
| { |
| if (!map->format.format_write && !regmap_readable(map, reg)) |
| return false; |
| |
| if (map->volatile_reg) |
| return map->volatile_reg(map->dev, reg); |
| |
| if (map->volatile_table) |
| return regmap_check_range_table(map, reg, map->volatile_table); |
| |
| if (map->cache_ops) |
| return false; |
| else |
| return true; |
| } |
| |
| bool regmap_precious(struct regmap *map, unsigned int reg) |
| { |
| if (!regmap_readable(map, reg)) |
| return false; |
| |
| if (map->precious_reg) |
| return map->precious_reg(map->dev, reg); |
| |
| if (map->precious_table) |
| return regmap_check_range_table(map, reg, map->precious_table); |
| |
| return false; |
| } |
| |
| static bool regmap_volatile_range(struct regmap *map, unsigned int reg, |
| size_t num) |
| { |
| unsigned int i; |
| |
| for (i = 0; i < num; i++) |
| if (!regmap_volatile(map, reg + i)) |
| return false; |
| |
| return true; |
| } |
| |
| static void regmap_format_2_6_write(struct regmap *map, |
| unsigned int reg, unsigned int val) |
| { |
| u8 *out = map->work_buf; |
| |
| *out = (reg << 6) | val; |
| } |
| |
| static void regmap_format_4_12_write(struct regmap *map, |
| unsigned int reg, unsigned int val) |
| { |
| __be16 *out = map->work_buf; |
| *out = cpu_to_be16((reg << 12) | val); |
| } |
| |
| static void regmap_format_7_9_write(struct regmap *map, |
| unsigned int reg, unsigned int val) |
| { |
| __be16 *out = map->work_buf; |
| *out = cpu_to_be16((reg << 9) | val); |
| } |
| |
| static void regmap_format_10_14_write(struct regmap *map, |
| unsigned int reg, unsigned int val) |
| { |
| u8 *out = map->work_buf; |
| |
| out[2] = val; |
| out[1] = (val >> 8) | (reg << 6); |
| out[0] = reg >> 2; |
| } |
| |
| static void regmap_format_8(void *buf, unsigned int val, unsigned int shift) |
| { |
| u8 *b = buf; |
| |
| b[0] = val << shift; |
| } |
| |
| static void regmap_format_16_be(void *buf, unsigned int val, unsigned int shift) |
| { |
| __be16 *b = buf; |
| |
| b[0] = cpu_to_be16(val << shift); |
| } |
| |
| static void regmap_format_16_le(void *buf, unsigned int val, unsigned int shift) |
| { |
| __le16 *b = buf; |
| |
| b[0] = cpu_to_le16(val << shift); |
| } |
| |
| static void regmap_format_16_native(void *buf, unsigned int val, |
| unsigned int shift) |
| { |
| *(u16 *)buf = val << shift; |
| } |
| |
| static void regmap_format_24(void *buf, unsigned int val, unsigned int shift) |
| { |
| u8 *b = buf; |
| |
| val <<= shift; |
| |
| b[0] = val >> 16; |
| b[1] = val >> 8; |
| b[2] = val; |
| } |
| |
| static void regmap_format_32_be(void *buf, unsigned int val, unsigned int shift) |
| { |
| __be32 *b = buf; |
| |
| b[0] = cpu_to_be32(val << shift); |
| } |
| |
| static void regmap_format_32_le(void *buf, unsigned int val, unsigned int shift) |
| { |
| __le32 *b = buf; |
| |
| b[0] = cpu_to_le32(val << shift); |
| } |
| |
| static void regmap_format_32_native(void *buf, unsigned int val, |
| unsigned int shift) |
| { |
| *(u32 *)buf = val << shift; |
| } |
| |
| static void regmap_parse_inplace_noop(void *buf) |
| { |
| } |
| |
| static unsigned int regmap_parse_8(const void *buf) |
| { |
| const u8 *b = buf; |
| |
| return b[0]; |
| } |
| |
| static unsigned int regmap_parse_16_be(const void *buf) |
| { |
| const __be16 *b = buf; |
| |
| return be16_to_cpu(b[0]); |
| } |
| |
| static unsigned int regmap_parse_16_le(const void *buf) |
| { |
| const __le16 *b = buf; |
| |
| return le16_to_cpu(b[0]); |
| } |
| |
| static void regmap_parse_16_be_inplace(void *buf) |
| { |
| __be16 *b = buf; |
| |
| b[0] = be16_to_cpu(b[0]); |
| } |
| |
| static void regmap_parse_16_le_inplace(void *buf) |
| { |
| __le16 *b = buf; |
| |
| b[0] = le16_to_cpu(b[0]); |
| } |
| |
| static unsigned int regmap_parse_16_native(const void *buf) |
| { |
| return *(u16 *)buf; |
| } |
| |
| static unsigned int regmap_parse_24(const void *buf) |
| { |
| const u8 *b = buf; |
| unsigned int ret = b[2]; |
| ret |= ((unsigned int)b[1]) << 8; |
| ret |= ((unsigned int)b[0]) << 16; |
| |
| return ret; |
| } |
| |
| static unsigned int regmap_parse_32_be(const void *buf) |
| { |
| const __be32 *b = buf; |
| |
| return be32_to_cpu(b[0]); |
| } |
| |
| static unsigned int regmap_parse_32_le(const void *buf) |
| { |
| const __le32 *b = buf; |
| |
| return le32_to_cpu(b[0]); |
| } |
| |
| static void regmap_parse_32_be_inplace(void *buf) |
| { |
| __be32 *b = buf; |
| |
| b[0] = be32_to_cpu(b[0]); |
| } |
| |
| static void regmap_parse_32_le_inplace(void *buf) |
| { |
| __le32 *b = buf; |
| |
| b[0] = le32_to_cpu(b[0]); |
| } |
| |
| static unsigned int regmap_parse_32_native(const void *buf) |
| { |
| return *(u32 *)buf; |
| } |
| |
| static void regmap_lock_mutex(void *__map) |
| { |
| struct regmap *map = __map; |
| mutex_lock(&map->mutex); |
| } |
| |
| static void regmap_unlock_mutex(void *__map) |
| { |
| struct regmap *map = __map; |
| mutex_unlock(&map->mutex); |
| } |
| |
| static void regmap_lock_spinlock(void *__map) |
| __acquires(&map->spinlock) |
| { |
| struct regmap *map = __map; |
| unsigned long flags; |
| |
| spin_lock_irqsave(&map->spinlock, flags); |
| map->spinlock_flags = flags; |
| } |
| |
| static void regmap_unlock_spinlock(void *__map) |
| __releases(&map->spinlock) |
| { |
| struct regmap *map = __map; |
| spin_unlock_irqrestore(&map->spinlock, map->spinlock_flags); |
| } |
| |
| static void dev_get_regmap_release(struct device *dev, void *res) |
| { |
| /* |
| * We don't actually have anything to do here; the goal here |
| * is not to manage the regmap but to provide a simple way to |
| * get the regmap back given a struct device. |
| */ |
| } |
| |
| static bool _regmap_range_add(struct regmap *map, |
| struct regmap_range_node *data) |
| { |
| struct rb_root *root = &map->range_tree; |
| struct rb_node **new = &(root->rb_node), *parent = NULL; |
| |
| while (*new) { |
| struct regmap_range_node *this = |
| container_of(*new, struct regmap_range_node, node); |
| |
| parent = *new; |
| if (data->range_max < this->range_min) |
| new = &((*new)->rb_left); |
| else if (data->range_min > this->range_max) |
| new = &((*new)->rb_right); |
| else |
| return false; |
| } |
| |
| rb_link_node(&data->node, parent, new); |
| rb_insert_color(&data->node, root); |
| |
| return true; |
| } |
| |
| static struct regmap_range_node *_regmap_range_lookup(struct regmap *map, |
| unsigned int reg) |
| { |
| struct rb_node *node = map->range_tree.rb_node; |
| |
| while (node) { |
| struct regmap_range_node *this = |
| container_of(node, struct regmap_range_node, node); |
| |
| if (reg < this->range_min) |
| node = node->rb_left; |
| else if (reg > this->range_max) |
| node = node->rb_right; |
| else |
| return this; |
| } |
| |
| return NULL; |
| } |
| |
| static void regmap_range_exit(struct regmap *map) |
| { |
| struct rb_node *next; |
| struct regmap_range_node *range_node; |
| |
| next = rb_first(&map->range_tree); |
| while (next) { |
| range_node = rb_entry(next, struct regmap_range_node, node); |
| next = rb_next(&range_node->node); |
| rb_erase(&range_node->node, &map->range_tree); |
| kfree(range_node); |
| } |
| |
| kfree(map->selector_work_buf); |
| } |
| |
| int regmap_attach_dev(struct device *dev, struct regmap *map, |
| const struct regmap_config *config) |
| { |
| struct regmap **m; |
| |
| map->dev = dev; |
| |
| regmap_debugfs_init(map, config->name); |
| |
| /* Add a devres resource for dev_get_regmap() */ |
| m = devres_alloc(dev_get_regmap_release, sizeof(*m), GFP_KERNEL); |
| if (!m) { |
| regmap_debugfs_exit(map); |
| return -ENOMEM; |
| } |
| *m = map; |
| devres_add(dev, m); |
| |
| return 0; |
| } |
| EXPORT_SYMBOL_GPL(regmap_attach_dev); |
| |
| static enum regmap_endian regmap_get_reg_endian(const struct regmap_bus *bus, |
| const struct regmap_config *config) |
| { |
| enum regmap_endian endian; |
| |
| /* Retrieve the endianness specification from the regmap config */ |
| endian = config->reg_format_endian; |
| |
| /* If the regmap config specified a non-default value, use that */ |
| if (endian != REGMAP_ENDIAN_DEFAULT) |
| return endian; |
| |
| /* Retrieve the endianness specification from the bus config */ |
| if (bus && bus->reg_format_endian_default) |
| endian = bus->reg_format_endian_default; |
| |
| /* If the bus specified a non-default value, use that */ |
| if (endian != REGMAP_ENDIAN_DEFAULT) |
| return endian; |
| |
| /* Use this if no other value was found */ |
| return REGMAP_ENDIAN_BIG; |
| } |
| |
| enum regmap_endian regmap_get_val_endian(struct device *dev, |
| const struct regmap_bus *bus, |
| const struct regmap_config *config) |
| { |
| struct device_node *np; |
| enum regmap_endian endian; |
| |
| /* Retrieve the endianness specification from the regmap config */ |
| endian = config->val_format_endian; |
| |
| /* If the regmap config specified a non-default value, use that */ |
| if (endian != REGMAP_ENDIAN_DEFAULT) |
| return endian; |
| |
| /* If the dev and dev->of_node exist try to get endianness from DT */ |
| if (dev && dev->of_node) { |
| np = dev->of_node; |
| |
| /* Parse the device's DT node for an endianness specification */ |
| if (of_property_read_bool(np, "big-endian")) |
| endian = REGMAP_ENDIAN_BIG; |
| else if (of_property_read_bool(np, "little-endian")) |
| endian = REGMAP_ENDIAN_LITTLE; |
| |
| /* If the endianness was specified in DT, use that */ |
| if (endian != REGMAP_ENDIAN_DEFAULT) |
| return endian; |
| } |
| |
| /* Retrieve the endianness specification from the bus config */ |
| if (bus && bus->val_format_endian_default) |
| endian = bus->val_format_endian_default; |
| |
| /* If the bus specified a non-default value, use that */ |
| if (endian != REGMAP_ENDIAN_DEFAULT) |
| return endian; |
| |
| /* Use this if no other value was found */ |
| return REGMAP_ENDIAN_BIG; |
| } |
| EXPORT_SYMBOL_GPL(regmap_get_val_endian); |
| |
| /** |
| * regmap_init(): Initialise register map |
| * |
| * @dev: Device that will be interacted with |
| * @bus: Bus-specific callbacks to use with device |
| * @bus_context: Data passed to bus-specific callbacks |
| * @config: Configuration for register map |
| * |
| * The return value will be an ERR_PTR() on error or a valid pointer to |
| * a struct regmap. This function should generally not be called |
| * directly, it should be called by bus-specific init functions. |
| */ |
| struct regmap *regmap_init(struct device *dev, |
| const struct regmap_bus *bus, |
| void *bus_context, |
| const struct regmap_config *config) |
| { |
| struct regmap *map; |
| int ret = -EINVAL; |
| enum regmap_endian reg_endian, val_endian; |
| int i, j; |
| |
| if (!config) |
| goto err; |
| |
| map = kzalloc(sizeof(*map), GFP_KERNEL); |
| if (map == NULL) { |
| ret = -ENOMEM; |
| goto err; |
| } |
| |
| if (config->lock && config->unlock) { |
| map->lock = config->lock; |
| map->unlock = config->unlock; |
| map->lock_arg = config->lock_arg; |
| } else { |
| if ((bus && bus->fast_io) || |
| config->fast_io) { |
| spin_lock_init(&map->spinlock); |
| map->lock = regmap_lock_spinlock; |
| map->unlock = regmap_unlock_spinlock; |
| } else { |
| mutex_init(&map->mutex); |
| map->lock = regmap_lock_mutex; |
| map->unlock = regmap_unlock_mutex; |
| } |
| map->lock_arg = map; |
| } |
| map->format.reg_bytes = DIV_ROUND_UP(config->reg_bits, 8); |
| map->format.pad_bytes = config->pad_bits / 8; |
| map->format.val_bytes = DIV_ROUND_UP(config->val_bits, 8); |
| map->format.buf_size = DIV_ROUND_UP(config->reg_bits + |
| config->val_bits + config->pad_bits, 8); |
| map->reg_shift = config->pad_bits % 8; |
| if (config->reg_stride) |
| map->reg_stride = config->reg_stride; |
| else |
| map->reg_stride = 1; |
| map->use_single_rw = config->use_single_rw; |
| map->can_multi_write = config->can_multi_write; |
| map->dev = dev; |
| map->bus = bus; |
| map->bus_context = bus_context; |
| map->max_register = config->max_register; |
| map->wr_table = config->wr_table; |
| map->rd_table = config->rd_table; |
| map->volatile_table = config->volatile_table; |
| map->precious_table = config->precious_table; |
| map->writeable_reg = config->writeable_reg; |
| map->readable_reg = config->readable_reg; |
| map->volatile_reg = config->volatile_reg; |
| map->precious_reg = config->precious_reg; |
| map->cache_type = config->cache_type; |
| map->name = config->name; |
| |
| spin_lock_init(&map->async_lock); |
| INIT_LIST_HEAD(&map->async_list); |
| INIT_LIST_HEAD(&map->async_free); |
| init_waitqueue_head(&map->async_waitq); |
| |
| if (config->read_flag_mask || config->write_flag_mask) { |
| map->read_flag_mask = config->read_flag_mask; |
| map->write_flag_mask = config->write_flag_mask; |
| } else if (bus) { |
| map->read_flag_mask = bus->read_flag_mask; |
| } |
| |
| if (!bus) { |
| map->reg_read = config->reg_read; |
| map->reg_write = config->reg_write; |
| |
| map->defer_caching = false; |
| goto skip_format_initialization; |
| } else if (!bus->read || !bus->write) { |
| map->reg_read = _regmap_bus_reg_read; |
| map->reg_write = _regmap_bus_reg_write; |
| |
| map->defer_caching = false; |
| goto skip_format_initialization; |
| } else { |
| map->reg_read = _regmap_bus_read; |
| } |
| |
| reg_endian = regmap_get_reg_endian(bus, config); |
| val_endian = regmap_get_val_endian(dev, bus, config); |
| |
| switch (config->reg_bits + map->reg_shift) { |
| case 2: |
| switch (config->val_bits) { |
| case 6: |
| map->format.format_write = regmap_format_2_6_write; |
| break; |
| default: |
| goto err_map; |
| } |
| break; |
| |
| case 4: |
| switch (config->val_bits) { |
| case 12: |
| map->format.format_write = regmap_format_4_12_write; |
| break; |
| default: |
| goto err_map; |
| } |
| break; |
| |
| case 7: |
| switch (config->val_bits) { |
| case 9: |
| map->format.format_write = regmap_format_7_9_write; |
| break; |
| default: |
| goto err_map; |
| } |
| break; |
| |
| case 10: |
| switch (config->val_bits) { |
| case 14: |
| map->format.format_write = regmap_format_10_14_write; |
| break; |
| default: |
| goto err_map; |
| } |
| break; |
| |
| case 8: |
| map->format.format_reg = regmap_format_8; |
| break; |
| |
| case 16: |
| switch (reg_endian) { |
| case REGMAP_ENDIAN_BIG: |
| map->format.format_reg = regmap_format_16_be; |
| break; |
| case REGMAP_ENDIAN_NATIVE: |
| map->format.format_reg = regmap_format_16_native; |
| break; |
| default: |
| goto err_map; |
| } |
| break; |
| |
| case 24: |
| if (reg_endian != REGMAP_ENDIAN_BIG) |
| goto err_map; |
| map->format.format_reg = regmap_format_24; |
| break; |
| |
| case 32: |
| switch (reg_endian) { |
| case REGMAP_ENDIAN_BIG: |
| map->format.format_reg = regmap_format_32_be; |
| break; |
| case REGMAP_ENDIAN_NATIVE: |
| map->format.format_reg = regmap_format_32_native; |
| break; |
| default: |
| goto err_map; |
| } |
| break; |
| |
| default: |
| goto err_map; |
| } |
| |
| if (val_endian == REGMAP_ENDIAN_NATIVE) |
| map->format.parse_inplace = regmap_parse_inplace_noop; |
| |
| switch (config->val_bits) { |
| case 8: |
| map->format.format_val = regmap_format_8; |
| map->format.parse_val = regmap_parse_8; |
| map->format.parse_inplace = regmap_parse_inplace_noop; |
| break; |
| case 16: |
| switch (val_endian) { |
| case REGMAP_ENDIAN_BIG: |
| map->format.format_val = regmap_format_16_be; |
| map->format.parse_val = regmap_parse_16_be; |
| map->format.parse_inplace = regmap_parse_16_be_inplace; |
| break; |
| case REGMAP_ENDIAN_LITTLE: |
| map->format.format_val = regmap_format_16_le; |
| map->format.parse_val = regmap_parse_16_le; |
| map->format.parse_inplace = regmap_parse_16_le_inplace; |
| break; |
| case REGMAP_ENDIAN_NATIVE: |
| map->format.format_val = regmap_format_16_native; |
| map->format.parse_val = regmap_parse_16_native; |
| break; |
| default: |
| goto err_map; |
| } |
| break; |
| case 24: |
| if (val_endian != REGMAP_ENDIAN_BIG) |
| goto err_map; |
| map->format.format_val = regmap_format_24; |
| map->format.parse_val = regmap_parse_24; |
| break; |
| case 32: |
| switch (val_endian) { |
| case REGMAP_ENDIAN_BIG: |
| map->format.format_val = regmap_format_32_be; |
| map->format.parse_val = regmap_parse_32_be; |
| map->format.parse_inplace = regmap_parse_32_be_inplace; |
| break; |
| case REGMAP_ENDIAN_LITTLE: |
| map->format.format_val = regmap_format_32_le; |
| map->format.parse_val = regmap_parse_32_le; |
| map->format.parse_inplace = regmap_parse_32_le_inplace; |
| break; |
| case REGMAP_ENDIAN_NATIVE: |
| map->format.format_val = regmap_format_32_native; |
| map->format.parse_val = regmap_parse_32_native; |
| break; |
| default: |
| goto err_map; |
| } |
| break; |
| } |
| |
| if (map->format.format_write) { |
| if ((reg_endian != REGMAP_ENDIAN_BIG) || |
| (val_endian != REGMAP_ENDIAN_BIG)) |
| goto err_map; |
| map->use_single_rw = true; |
| } |
| |
| if (!map->format.format_write && |
| !(map->format.format_reg && map->format.format_val)) |
| goto err_map; |
| |
| map->work_buf = kzalloc(map->format.buf_size, GFP_KERNEL); |
| if (map->work_buf == NULL) { |
| ret = -ENOMEM; |
| goto err_map; |
| } |
| |
| if (map->format.format_write) { |
| map->defer_caching = false; |
| map->reg_write = _regmap_bus_formatted_write; |
| } else if (map->format.format_val) { |
| map->defer_caching = true; |
| map->reg_write = _regmap_bus_raw_write; |
| } |
| |
| skip_format_initialization: |
| |
| map->range_tree = RB_ROOT; |
| for (i = 0; i < config->num_ranges; i++) { |
| const struct regmap_range_cfg *range_cfg = &config->ranges[i]; |
| struct regmap_range_node *new; |
| |
| /* Sanity check */ |
| if (range_cfg->range_max < range_cfg->range_min) { |
| dev_err(map->dev, "Invalid range %d: %d < %d\n", i, |
| range_cfg->range_max, range_cfg->range_min); |
| goto err_range; |
| } |
| |
| if (range_cfg->range_max > map->max_register) { |
| dev_err(map->dev, "Invalid range %d: %d > %d\n", i, |
| range_cfg->range_max, map->max_register); |
| goto err_range; |
| } |
| |
| if (range_cfg->selector_reg > map->max_register) { |
| dev_err(map->dev, |
| "Invalid range %d: selector out of map\n", i); |
| goto err_range; |
| } |
| |
| if (range_cfg->window_len == 0) { |
| dev_err(map->dev, "Invalid range %d: window_len 0\n", |
| i); |
| goto err_range; |
| } |
| |
| /* Make sure, that this register range has no selector |
| or data window within its boundary */ |
| for (j = 0; j < config->num_ranges; j++) { |
| unsigned sel_reg = config->ranges[j].selector_reg; |
| unsigned win_min = config->ranges[j].window_start; |
| unsigned win_max = win_min + |
| config->ranges[j].window_len - 1; |
| |
| /* Allow data window inside its own virtual range */ |
| if (j == i) |
| continue; |
| |
| if (range_cfg->range_min <= sel_reg && |
| sel_reg <= range_cfg->range_max) { |
| dev_err(map->dev, |
| "Range %d: selector for %d in window\n", |
| i, j); |
| goto err_range; |
| } |
| |
| if (!(win_max < range_cfg->range_min || |
| win_min > range_cfg->range_max)) { |
| dev_err(map->dev, |
| "Range %d: window for %d in window\n", |
| i, j); |
| goto err_range; |
| } |
| } |
| |
| new = kzalloc(sizeof(*new), GFP_KERNEL); |
| if (new == NULL) { |
| ret = -ENOMEM; |
| goto err_range; |
| } |
| |
| new->map = map; |
| new->name = range_cfg->name; |
| new->range_min = range_cfg->range_min; |
| new->range_max = range_cfg->range_max; |
| new->selector_reg = range_cfg->selector_reg; |
| new->selector_mask = range_cfg->selector_mask; |
| new->selector_shift = range_cfg->selector_shift; |
| new->window_start = range_cfg->window_start; |
| new->window_len = range_cfg->window_len; |
| |
| if (!_regmap_range_add(map, new)) { |
| dev_err(map->dev, "Failed to add range %d\n", i); |
| kfree(new); |
| goto err_range; |
| } |
| |
| if (map->selector_work_buf == NULL) { |
| map->selector_work_buf = |
| kzalloc(map->format.buf_size, GFP_KERNEL); |
| if (map->selector_work_buf == NULL) { |
| ret = -ENOMEM; |
| goto err_range; |
| } |
| } |
| } |
| |
| ret = regcache_init(map, config); |
| if (ret != 0) |
| goto err_range; |
| |
| if (dev) { |
| ret = regmap_attach_dev(dev, map, config); |
| if (ret != 0) |
| goto err_regcache; |
| } |
| |
| return map; |
| |
| err_regcache: |
| regcache_exit(map); |
| err_range: |
| regmap_range_exit(map); |
| kfree(map->work_buf); |
| err_map: |
| kfree(map); |
| err: |
| return ERR_PTR(ret); |
| } |
| EXPORT_SYMBOL_GPL(regmap_init); |
| |
| static void devm_regmap_release(struct device *dev, void *res) |
| { |
| regmap_exit(*(struct regmap **)res); |
| } |
| |
| /** |
| * devm_regmap_init(): Initialise managed register map |
| * |
| * @dev: Device that will be interacted with |
| * @bus: Bus-specific callbacks to use with device |
| * @bus_context: Data passed to bus-specific callbacks |
| * @config: Configuration for register map |
| * |
| * The return value will be an ERR_PTR() on error or a valid pointer |
| * to a struct regmap. This function should generally not be called |
| * directly, it should be called by bus-specific init functions. The |
| * map will be automatically freed by the device management code. |
| */ |
| struct regmap *devm_regmap_init(struct device *dev, |
| const struct regmap_bus *bus, |
| void *bus_context, |
| const struct regmap_config *config) |
| { |
| struct regmap **ptr, *regmap; |
| |
| ptr = devres_alloc(devm_regmap_release, sizeof(*ptr), GFP_KERNEL); |
| if (!ptr) |
| return ERR_PTR(-ENOMEM); |
| |
| regmap = regmap_init(dev, bus, bus_context, config); |
| if (!IS_ERR(regmap)) { |
| *ptr = regmap; |
| devres_add(dev, ptr); |
| } else { |
| devres_free(ptr); |
| } |
| |
| return regmap; |
| } |
| EXPORT_SYMBOL_GPL(devm_regmap_init); |
| |
| static void regmap_field_init(struct regmap_field *rm_field, |
| struct regmap *regmap, struct reg_field reg_field) |
| { |
| rm_field->regmap = regmap; |
| rm_field->reg = reg_field.reg; |
| rm_field->shift = reg_field.lsb; |
| rm_field->mask = GENMASK(reg_field.msb, reg_field.lsb); |
| rm_field->id_size = reg_field.id_size; |
| rm_field->id_offset = reg_field.id_offset; |
| } |
| |
| /** |
| * devm_regmap_field_alloc(): Allocate and initialise a register field |
| * in a register map. |
| * |
| * @dev: Device that will be interacted with |
| * @regmap: regmap bank in which this register field is located. |
| * @reg_field: Register field with in the bank. |
| * |
| * The return value will be an ERR_PTR() on error or a valid pointer |
| * to a struct regmap_field. The regmap_field will be automatically freed |
| * by the device management code. |
| */ |
| struct regmap_field *devm_regmap_field_alloc(struct device *dev, |
| struct regmap *regmap, struct reg_field reg_field) |
| { |
| struct regmap_field *rm_field = devm_kzalloc(dev, |
| sizeof(*rm_field), GFP_KERNEL); |
| if (!rm_field) |
| return ERR_PTR(-ENOMEM); |
| |
| regmap_field_init(rm_field, regmap, reg_field); |
| |
| return rm_field; |
| |
| } |
| EXPORT_SYMBOL_GPL(devm_regmap_field_alloc); |
| |
| /** |
| * devm_regmap_field_free(): Free register field allocated using |
| * devm_regmap_field_alloc. Usally drivers need not call this function, |
| * as the memory allocated via devm will be freed as per device-driver |
| * life-cyle. |
| * |
| * @dev: Device that will be interacted with |
| * @field: regmap field which should be freed. |
| */ |
| void devm_regmap_field_free(struct device *dev, |
| struct regmap_field *field) |
| { |
| devm_kfree(dev, field); |
| } |
| EXPORT_SYMBOL_GPL(devm_regmap_field_free); |
| |
| /** |
| * regmap_field_alloc(): Allocate and initialise a register field |
| * in a register map. |
| * |
| * @regmap: regmap bank in which this register field is located. |
| * @reg_field: Register field with in the bank. |
| * |
| * The return value will be an ERR_PTR() on error or a valid pointer |
| * to a struct regmap_field. The regmap_field should be freed by the |
| * user once its finished working with it using regmap_field_free(). |
| */ |
| struct regmap_field *regmap_field_alloc(struct regmap *regmap, |
| struct reg_field reg_field) |
| { |
| struct regmap_field *rm_field = kzalloc(sizeof(*rm_field), GFP_KERNEL); |
| |
| if (!rm_field) |
| return ERR_PTR(-ENOMEM); |
| |
| regmap_field_init(rm_field, regmap, reg_field); |
| |
| return rm_field; |
| } |
| EXPORT_SYMBOL_GPL(regmap_field_alloc); |
| |
| /** |
| * regmap_field_free(): Free register field allocated using regmap_field_alloc |
| * |
| * @field: regmap field which should be freed. |
| */ |
| void regmap_field_free(struct regmap_field *field) |
| { |
| kfree(field); |
| } |
| EXPORT_SYMBOL_GPL(regmap_field_free); |
| |
| /** |
| * regmap_reinit_cache(): Reinitialise the current register cache |
| * |
| * @map: Register map to operate on. |
| * @config: New configuration. Only the cache data will be used. |
| * |
| * Discard any existing register cache for the map and initialize a |
| * new cache. This can be used to restore the cache to defaults or to |
| * update the cache configuration to reflect runtime discovery of the |
| * hardware. |
| * |
| * No explicit locking is done here, the user needs to ensure that |
| * this function will not race with other calls to regmap. |
| */ |
| int regmap_reinit_cache(struct regmap *map, const struct regmap_config *config) |
| { |
| regcache_exit(map); |
| regmap_debugfs_exit(map); |
| |
| map->max_register = config->max_register; |
| map->writeable_reg = config->writeable_reg; |
| map->readable_reg = config->readable_reg; |
| map->volatile_reg = config->volatile_reg; |
| map->precious_reg = config->precious_reg; |
| map->cache_type = config->cache_type; |
| |
| regmap_debugfs_init(map, config->name); |
| |
| map->cache_bypass = false; |
| map->cache_only = false; |
| |
| return regcache_init(map, config); |
| } |
| EXPORT_SYMBOL_GPL(regmap_reinit_cache); |
| |
| /** |
| * regmap_exit(): Free a previously allocated register map |
| */ |
| void regmap_exit(struct regmap *map) |
| { |
| struct regmap_async *async; |
| |
| regcache_exit(map); |
| regmap_debugfs_exit(map); |
| regmap_range_exit(map); |
| if (map->bus && map->bus->free_context) |
| map->bus->free_context(map->bus_context); |
| kfree(map->work_buf); |
| while (!list_empty(&map->async_free)) { |
| async = list_first_entry_or_null(&map->async_free, |
| struct regmap_async, |
| list); |
| list_del(&async->list); |
| kfree(async->work_buf); |
| kfree(async); |
| } |
| kfree(map); |
| } |
| EXPORT_SYMBOL_GPL(regmap_exit); |
| |
| static int dev_get_regmap_match(struct device *dev, void *res, void *data) |
| { |
| struct regmap **r = res; |
| if (!r || !*r) { |
| WARN_ON(!r || !*r); |
| return 0; |
| } |
| |
| /* If the user didn't specify a name match any */ |
| if (data) |
| return (*r)->name == data; |
| else |
| return 1; |
| } |
| |
| /** |
| * dev_get_regmap(): Obtain the regmap (if any) for a device |
| * |
| * @dev: Device to retrieve the map for |
| * @name: Optional name for the register map, usually NULL. |
| * |
| * Returns the regmap for the device if one is present, or NULL. If |
| * name is specified then it must match the name specified when |
| * registering the device, if it is NULL then the first regmap found |
| * will be used. Devices with multiple register maps are very rare, |
| * generic code should normally not need to specify a name. |
| */ |
| struct regmap *dev_get_regmap(struct device *dev, const char *name) |
| { |
| struct regmap **r = devres_find(dev, dev_get_regmap_release, |
| dev_get_regmap_match, (void *)name); |
| |
| if (!r) |
| return NULL; |
| return *r; |
| } |
| EXPORT_SYMBOL_GPL(dev_get_regmap); |
| |
| /** |
| * regmap_get_device(): Obtain the device from a regmap |
| * |
| * @map: Register map to operate on. |
| * |
| * Returns the underlying device that the regmap has been created for. |
| */ |
| struct device *regmap_get_device(struct regmap *map) |
| { |
| return map->dev; |
| } |
| EXPORT_SYMBOL_GPL(regmap_get_device); |
| |
| static int _regmap_select_page(struct regmap *map, unsigned int *reg, |
| struct regmap_range_node *range, |
| unsigned int val_num) |
| { |
| void *orig_work_buf; |
| unsigned int win_offset; |
| unsigned int win_page; |
| bool page_chg; |
| int ret; |
| |
| win_offset = (*reg - range->range_min) % range->window_len; |
| win_page = (*reg - range->range_min) / range->window_len; |
| |
| if (val_num > 1) { |
| /* Bulk write shouldn't cross range boundary */ |
| if (*reg + val_num - 1 > range->range_max) |
| return -EINVAL; |
| |
| /* ... or single page boundary */ |
| if (val_num > range->window_len - win_offset) |
| return -EINVAL; |
| } |
| |
| /* It is possible to have selector register inside data window. |
| In that case, selector register is located on every page and |
| it needs no page switching, when accessed alone. */ |
| if (val_num > 1 || |
| range->window_start + win_offset != range->selector_reg) { |
| /* Use separate work_buf during page switching */ |
| orig_work_buf = map->work_buf; |
| map->work_buf = map->selector_work_buf; |
| |
| ret = _regmap_update_bits(map, range->selector_reg, |
| range->selector_mask, |
| win_page << range->selector_shift, |
| &page_chg); |
| |
| map->work_buf = orig_work_buf; |
| |
| if (ret != 0) |
| return ret; |
| } |
| |
| *reg = range->window_start + win_offset; |
| |
| return 0; |
| } |
| |
| int _regmap_raw_write(struct regmap *map, unsigned int reg, |
| const void *val, size_t val_len) |
| { |
| struct regmap_range_node *range; |
| unsigned long flags; |
| u8 *u8 = map->work_buf; |
| void *work_val = map->work_buf + map->format.reg_bytes + |
| map->format.pad_bytes; |
| void *buf; |
| int ret = -ENOTSUPP; |
| size_t len; |
| int i; |
| |
| WARN_ON(!map->bus); |
| |
| /* Check for unwritable registers before we start */ |
| if (map->writeable_reg) |
| for (i = 0; i < val_len / map->format.val_bytes; i++) |
| if (!map->writeable_reg(map->dev, |
| reg + (i * map->reg_stride))) |
| return -EINVAL; |
| |
| if (!map->cache_bypass && map->format.parse_val) { |
| unsigned int ival; |
| int val_bytes = map->format.val_bytes; |
| for (i = 0; i < val_len / val_bytes; i++) { |
| ival = map->format.parse_val(val + (i * val_bytes)); |
| ret = regcache_write(map, reg + (i * map->reg_stride), |
| ival); |
| if (ret) { |
| dev_err(map->dev, |
| "Error in caching of register: %x ret: %d\n", |
| reg + i, ret); |
| return ret; |
| } |
| } |
| if (map->cache_only) { |
| map->cache_dirty = true; |
| return 0; |
| } |
| } |
| |
| range = _regmap_range_lookup(map, reg); |
| if (range) { |
| int val_num = val_len / map->format.val_bytes; |
| int win_offset = (reg - range->range_min) % range->window_len; |
| int win_residue = range->window_len - win_offset; |
| |
| /* If the write goes beyond the end of the window split it */ |
| while (val_num > win_residue) { |
| dev_dbg(map->dev, "Writing window %d/%zu\n", |
| win_residue, val_len / map->format.val_bytes); |
| ret = _regmap_raw_write(map, reg, val, win_residue * |
| map->format.val_bytes); |
| if (ret != 0) |
| return ret; |
| |
| reg += win_residue; |
| val_num -= win_residue; |
| val += win_residue * map->format.val_bytes; |
| val_len -= win_residue * map->format.val_bytes; |
| |
| win_offset = (reg - range->range_min) % |
| range->window_len; |
| win_residue = range->window_len - win_offset; |
| } |
| |
| ret = _regmap_select_page(map, ®, range, val_num); |
| if (ret != 0) |
| return ret; |
| } |
| |
| map->format.format_reg(map->work_buf, reg, map->reg_shift); |
| |
| u8[0] |= map->write_flag_mask; |
| |
| /* |
| * Essentially all I/O mechanisms will be faster with a single |
| * buffer to write. Since register syncs often generate raw |
| * writes of single registers optimise that case. |
| */ |
| if (val != work_val && val_len == map->format.val_bytes) { |
| memcpy(work_val, val, map->format.val_bytes); |
| val = work_val; |
| } |
| |
| if (map->async && map->bus->async_write) { |
| struct regmap_async *async; |
| |
| trace_regmap_async_write_start(map, reg, val_len); |
| |
| spin_lock_irqsave(&map->async_lock, flags); |
| async = list_first_entry_or_null(&map->async_free, |
| struct regmap_async, |
| list); |
| if (async) |
| list_del(&async->list); |
| spin_unlock_irqrestore(&map->async_lock, flags); |
| |
| if (!async) { |
| async = map->bus->async_alloc(); |
| if (!async) |
| return -ENOMEM; |
| |
| async->work_buf = kzalloc(map->format.buf_size, |
| GFP_KERNEL | GFP_DMA); |
| if (!async->work_buf) { |
| kfree(async); |
| return -ENOMEM; |
| } |
| } |
| |
| async->map = map; |
| |
| /* If the caller supplied the value we can use it safely. */ |
| memcpy(async->work_buf, map->work_buf, map->format.pad_bytes + |
| map->format.reg_bytes + map->format.val_bytes); |
| |
| spin_lock_irqsave(&map->async_lock, flags); |
| list_add_tail(&async->list, &map->async_list); |
| spin_unlock_irqrestore(&map->async_lock, flags); |
| |
| if (val != work_val) |
| ret = map->bus->async_write(map->bus_context, |
| async->work_buf, |
| map->format.reg_bytes + |
| map->format.pad_bytes, |
| val, val_len, async); |
| else |
| ret = map->bus->async_write(map->bus_context, |
| async->work_buf, |
| map->format.reg_bytes + |
| map->format.pad_bytes + |
| val_len, NULL, 0, async); |
| |
| if (ret != 0) { |
| dev_err(map->dev, "Failed to schedule write: %d\n", |
| ret); |
| |
| spin_lock_irqsave(&map->async_lock, flags); |
| list_move(&async->list, &map->async_free); |
| spin_unlock_irqrestore(&map->async_lock, flags); |
| } |
| |
| return ret; |
| } |
| |
| trace_regmap_hw_write_start(map, reg, val_len / map->format.val_bytes); |
| |
| /* If we're doing a single register write we can probably just |
| * send the work_buf directly, otherwise try to do a gather |
| * write. |
| */ |
| if (val == work_val) |
| ret = map->bus->write(map->bus_context, map->work_buf, |
| map->format.reg_bytes + |
| map->format.pad_bytes + |
| val_len); |
| else if (map->bus->gather_write) |
| ret = map->bus->gather_write(map->bus_context, map->work_buf, |
| map->format.reg_bytes + |
| map->format.pad_bytes, |
| val, val_len); |
| |
| /* If that didn't work fall back on linearising by hand. */ |
| if (ret == -ENOTSUPP) { |
| len = map->format.reg_bytes + map->format.pad_bytes + val_len; |
| buf = kzalloc(len, GFP_KERNEL); |
| if (!buf) |
| return -ENOMEM; |
| |
| memcpy(buf, map->work_buf, map->format.reg_bytes); |
| memcpy(buf + map->format.reg_bytes + map->format.pad_bytes, |
| val, val_len); |
| ret = map->bus->write(map->bus_context, buf, len); |
| |
| kfree(buf); |
| } |
| |
| trace_regmap_hw_write_done(map, reg, val_len / map->format.val_bytes); |
| |
| return ret; |
| } |
| |
| /** |
| * regmap_can_raw_write - Test if regmap_raw_write() is supported |
| * |
| * @map: Map to check. |
| */ |
| bool regmap_can_raw_write(struct regmap *map) |
| { |
| return map->bus && map->format.format_val && map->format.format_reg; |
| } |
| EXPORT_SYMBOL_GPL(regmap_can_raw_write); |
| |
| static int _regmap_bus_formatted_write(void *context, unsigned int reg, |
| unsigned int val) |
| { |
| int ret; |
| struct regmap_range_node *range; |
| struct regmap *map = context; |
| |
| WARN_ON(!map->bus || !map->format.format_write); |
| |
| range = _regmap_range_lookup(map, reg); |
| if (range) { |
| ret = _regmap_select_page(map, ®, range, 1); |
| if (ret != 0) |
| return ret; |
| } |
| |
| map->format.format_write(map, reg, val); |
| |
| trace_regmap_hw_write_start(map, reg, 1); |
| |
| ret = map->bus->write(map->bus_context, map->work_buf, |
| map->format.buf_size); |
| |
| trace_regmap_hw_write_done(map, reg, 1); |
| |
| return ret; |
| } |
| |
| static int _regmap_bus_reg_write(void *context, unsigned int reg, |
| unsigned int val) |
| { |
| struct regmap *map = context; |
| |
| return map->bus->reg_write(map->bus_context, reg, val); |
| } |
| |
| static int _regmap_bus_raw_write(void *context, unsigned int reg, |
| unsigned int val) |
| { |
| struct regmap *map = context; |
| |
| WARN_ON(!map->bus || !map->format.format_val); |
| |
| map->format.format_val(map->work_buf + map->format.reg_bytes |
| + map->format.pad_bytes, val, 0); |
| return _regmap_raw_write(map, reg, |
| map->work_buf + |
| map->format.reg_bytes + |
| map->format.pad_bytes, |
| map->format.val_bytes); |
| } |
| |
| static inline void *_regmap_map_get_context(struct regmap *map) |
| { |
| return (map->bus) ? map : map->bus_context; |
| } |
| |
| int _regmap_write(struct regmap *map, unsigned int reg, |
| unsigned int val) |
| { |
| int ret; |
| void *context = _regmap_map_get_context(map); |
| |
| if (!regmap_writeable(map, reg)) |
| return -EIO; |
| |
| if (!map->cache_bypass && !map->defer_caching) { |
| ret = regcache_write(map, reg, val); |
| if (ret != 0) |
| return ret; |
| if (map->cache_only) { |
| map->cache_dirty = true; |
| return 0; |
| } |
| } |
| |
| #ifdef LOG_DEVICE |
| if (map->dev && strcmp(dev_name(map->dev), LOG_DEVICE) == 0) |
| dev_info(map->dev, "%x <= %x\n", reg, val); |
| #endif |
| |
| trace_regmap_reg_write(map, reg, val); |
| |
| return map->reg_write(context, reg, val); |
| } |
| |
| /** |
| * regmap_write(): Write a value to a single register |
| * |
| * @map: Register map to write to |
| * @reg: Register to write to |
| * @val: Value to be written |
| * |
| * A value of zero will be returned on success, a negative errno will |
| * be returned in error cases. |
| */ |
| int regmap_write(struct regmap *map, unsigned int reg, unsigned int val) |
| { |
| int ret; |
| |
| if (reg % map->reg_stride) |
| return -EINVAL; |
| |
| map->lock(map->lock_arg); |
| |
| ret = _regmap_write(map, reg, val); |
| |
| map->unlock(map->lock_arg); |
| |
| return ret; |
| } |
| EXPORT_SYMBOL_GPL(regmap_write); |
| |
| /** |
| * regmap_write_async(): Write a value to a single register asynchronously |
| * |
| * @map: Register map to write to |
| * @reg: Register to write to |
| * @val: Value to be written |
| * |
| * A value of zero will be returned on success, a negative errno will |
| * be returned in error cases. |
| */ |
| int regmap_write_async(struct regmap *map, unsigned int reg, unsigned int val) |
| { |
| int ret; |
| |
| if (reg % map->reg_stride) |
| return -EINVAL; |
| |
| map->lock(map->lock_arg); |
| |
| map->async = true; |
| |
| ret = _regmap_write(map, reg, val); |
| |
| map->async = false; |
| |
| map->unlock(map->lock_arg); |
| |
| return ret; |
| } |
| EXPORT_SYMBOL_GPL(regmap_write_async); |
| |
| /** |
| * regmap_raw_write(): Write raw values to one or more registers |
| * |
| * @map: Register map to write to |
| * @reg: Initial register to write to |
| * @val: Block of data to be written, laid out for direct transmission to the |
| * device |
| * @val_len: Length of data pointed to by val. |
| * |
| * This function is intended to be used for things like firmware |
| * download where a large block of data needs to be transferred to the |
| * device. No formatting will be done on the data provided. |
| * |
| * A value of zero will be returned on success, a negative errno will |
| * be returned in error cases. |
| */ |
| int regmap_raw_write(struct regmap *map, unsigned int reg, |
| const void *val, size_t val_len) |
| { |
| int ret; |
| |
| if (!regmap_can_raw_write(map)) |
| return -EINVAL; |
| if (val_len % map->format.val_bytes) |
| return -EINVAL; |
| |
| map->lock(map->lock_arg); |
| |
| ret = _regmap_raw_write(map, reg, val, val_len); |
| |
| map->unlock(map->lock_arg); |
| |
| return ret; |
| } |
| EXPORT_SYMBOL_GPL(regmap_raw_write); |
| |
| /** |
| * regmap_field_write(): Write a value to a single register field |
| * |
| * @field: Register field to write to |
| * @val: Value to be written |
| * |
| * A value of zero will be returned on success, a negative errno will |
| * be returned in error cases. |
| */ |
| int regmap_field_write(struct regmap_field *field, unsigned int val) |
| { |
| return regmap_update_bits(field->regmap, field->reg, |
| field->mask, val << field->shift); |
| } |
| EXPORT_SYMBOL_GPL(regmap_field_write); |
| |
| /** |
| * regmap_field_update_bits(): Perform a read/modify/write cycle |
| * on the register field |
| * |
| * @field: Register field to write to |
| * @mask: Bitmask to change |
| * @val: Value to be written |
| * |
| * A value of zero will be returned on success, a negative errno will |
| * be returned in error cases. |
| */ |
| int regmap_field_update_bits(struct regmap_field *field, unsigned int mask, unsigned int val) |
| { |
| mask = (mask << field->shift) & field->mask; |
| |
| return regmap_update_bits(field->regmap, field->reg, |
| mask, val << field->shift); |
| } |
| EXPORT_SYMBOL_GPL(regmap_field_update_bits); |
| |
| /** |
| * regmap_fields_write(): Write a value to a single register field with port ID |
| * |
| * @field: Register field to write to |
| * @id: port ID |
| * @val: Value to be written |
| * |
| * A value of zero will be returned on success, a negative errno will |
| * be returned in error cases. |
| */ |
| int regmap_fields_write(struct regmap_field *field, unsigned int id, |
| unsigned int val) |
| { |
| if (id >= field->id_size) |
| return -EINVAL; |
| |
| return regmap_update_bits(field->regmap, |
| field->reg + (field->id_offset * id), |
| field->mask, val << field->shift); |
| } |
| EXPORT_SYMBOL_GPL(regmap_fields_write); |
| |
| /** |
| * regmap_fields_update_bits(): Perform a read/modify/write cycle |
| * on the register field |
| * |
| * @field: Register field to write to |
| * @id: port ID |
| * @mask: Bitmask to change |
| * @val: Value to be written |
| * |
| * A value of zero will be returned on success, a negative errno will |
| * be returned in error cases. |
| */ |
| int regmap_fields_update_bits(struct regmap_field *field, unsigned int id, |
| unsigned int mask, unsigned int val) |
| { |
| if (id >= field->id_size) |
| return -EINVAL; |
| |
| mask = (mask << field->shift) & field->mask; |
| |
| return regmap_update_bits(field->regmap, |
| field->reg + (field->id_offset * id), |
| mask, val << field->shift); |
| } |
| EXPORT_SYMBOL_GPL(regmap_fields_update_bits); |
| |
| /* |
| * regmap_bulk_write(): Write multiple registers to the device |
| * |
| * @map: Register map to write to |
| * @reg: First register to be write from |
| * @val: Block of data to be written, in native register size for device |
| * @val_count: Number of registers to write |
| * |
| * This function is intended to be used for writing a large block of |
| * data to the device either in single transfer or multiple transfer. |
| * |
| * A value of zero will be returned on success, a negative errno will |
| * be returned in error cases. |
| */ |
| int regmap_bulk_write(struct regmap *map, unsigned int reg, const void *val, |
| size_t val_count) |
| { |
| int ret = 0, i; |
| size_t val_bytes = map->format.val_bytes; |
| |
| if (map->bus && !map->format.parse_inplace) |
| return -EINVAL; |
| if (reg % map->reg_stride) |
| return -EINVAL; |
| |
| /* |
| * Some devices don't support bulk write, for |
| * them we have a series of single write operations. |
| */ |
| if (!map->bus || map->use_single_rw) { |
| map->lock(map->lock_arg); |
| for (i = 0; i < val_count; i++) { |
| unsigned int ival; |
| |
| switch (val_bytes) { |
| case 1: |
| ival = *(u8 *)(val + (i * val_bytes)); |
| break; |
| case 2: |
| ival = *(u16 *)(val + (i * val_bytes)); |
| break; |
| case 4: |
| ival = *(u32 *)(val + (i * val_bytes)); |
| break; |
| #ifdef CONFIG_64BIT |
| case 8: |
| ival = *(u64 *)(val + (i * val_bytes)); |
| break; |
| #endif |
| default: |
| ret = -EINVAL; |
| goto out; |
| } |
| |
| ret = _regmap_write(map, reg + (i * map->reg_stride), |
| ival); |
| if (ret != 0) |
| goto out; |
| } |
| out: |
| map->unlock(map->lock_arg); |
| } else { |
| void *wval; |
| |
| if (!val_count) |
| return -EINVAL; |
| |
| wval = kmemdup(val, val_count * val_bytes, GFP_KERNEL); |
| if (!wval) { |
| dev_err(map->dev, "Error in memory allocation\n"); |
| return -ENOMEM; |
| } |
| for (i = 0; i < val_count * val_bytes; i += val_bytes) |
| map->format.parse_inplace(wval + i); |
| |
| map->lock(map->lock_arg); |
| ret = _regmap_raw_write(map, reg, wval, val_bytes * val_count); |
| map->unlock(map->lock_arg); |
| |
| kfree(wval); |
| } |
| return ret; |
| } |
| EXPORT_SYMBOL_GPL(regmap_bulk_write); |
| |
| /* |
| * _regmap_raw_multi_reg_write() |
| * |
| * the (register,newvalue) pairs in regs have not been formatted, but |
| * they are all in the same page and have been changed to being page |
| * relative. The page register has been written if that was neccessary. |
| */ |
| static int _regmap_raw_multi_reg_write(struct regmap *map, |
| const struct reg_sequence *regs, |
| size_t num_regs) |
| { |
| int ret; |
| void *buf; |
| int i; |
| u8 *u8; |
| size_t val_bytes = map->format.val_bytes; |
| size_t reg_bytes = map->format.reg_bytes; |
| size_t pad_bytes = map->format.pad_bytes; |
| size_t pair_size = reg_bytes + pad_bytes + val_bytes; |
| size_t len = pair_size * num_regs; |
| |
| if (!len) |
| return -EINVAL; |
| |
| buf = kzalloc(len, GFP_KERNEL); |
| if (!buf) |
| return -ENOMEM; |
| |
| /* We have to linearise by hand. */ |
| |
| u8 = buf; |
| |
| for (i = 0; i < num_regs; i++) { |
| int reg = regs[i].reg; |
| int val = regs[i].def; |
| trace_regmap_hw_write_start(map, reg, 1); |
| map->format.format_reg(u8, reg, map->reg_shift); |
| u8 += reg_bytes + pad_bytes; |
| map->format.format_val(u8, val, 0); |
| u8 += val_bytes; |
| } |
| u8 = buf; |
| *u8 |= map->write_flag_mask; |
| |
| ret = map->bus->write(map->bus_context, buf, len); |
| |
| kfree(buf); |
| |
| for (i = 0; i < num_regs; i++) { |
| int reg = regs[i].reg; |
| trace_regmap_hw_write_done(map, reg, 1); |
| } |
| return ret; |
| } |
| |
| static unsigned int _regmap_register_page(struct regmap *map, |
| unsigned int reg, |
| struct regmap_range_node *range) |
| { |
| unsigned int win_page = (reg - range->range_min) / range->window_len; |
| |
| return win_page; |
| } |
| |
| static int _regmap_range_multi_paged_reg_write(struct regmap *map, |
| struct reg_sequence *regs, |
| size_t num_regs) |
| { |
| int ret; |
| int i, n; |
| struct reg_sequence *base; |
| unsigned int this_page = 0; |
| /* |
| * the set of registers are not neccessarily in order, but |
| * since the order of write must be preserved this algorithm |
| * chops the set each time the page changes |
| */ |
| base = regs; |
| for (i = 0, n = 0; i < num_regs; i++, n++) { |
| unsigned int reg = regs[i].reg; |
| struct regmap_range_node *range; |
| |
| range = _regmap_range_lookup(map, reg); |
| if (range) { |
| unsigned int win_page = _regmap_register_page(map, reg, |
| range); |
| |
| if (i == 0) |
| this_page = win_page; |
| if (win_page != this_page) { |
| this_page = win_page; |
| ret = _regmap_raw_multi_reg_write(map, base, n); |
| if (ret != 0) |
| return ret; |
| base += n; |
| n = 0; |
| } |
| ret = _regmap_select_page(map, &base[n].reg, range, 1); |
| if (ret != 0) |
| return ret; |
| } |
| } |
| if (n > 0) |
| return _regmap_raw_multi_reg_write(map, base, n); |
| return 0; |
| } |
| |
| static int _regmap_multi_reg_write(struct regmap *map, |
| const struct reg_sequence *regs, |
| size_t num_regs) |
| { |
| int i; |
| int ret; |
| |
| if (!map->can_multi_write) { |
| for (i = 0; i < num_regs; i++) { |
| ret = _regmap_write(map, regs[i].reg, regs[i].def); |
| if (ret != 0) |
| return ret; |
| } |
| return 0; |
| } |
| |
| if (!map->format.parse_inplace) |
| return -EINVAL; |
| |
| if (map->writeable_reg) |
| for (i = 0; i < num_regs; i++) { |
| int reg = regs[i].reg; |
| if (!map->writeable_reg(map->dev, reg)) |
| return -EINVAL; |
| if (reg % map->reg_stride) |
| return -EINVAL; |
| } |
| |
| if (!map->cache_bypass) { |
| for (i = 0; i < num_regs; i++) { |
| unsigned int val = regs[i].def; |
| unsigned int reg = regs[i].reg; |
| ret = regcache_write(map, reg, val); |
| if (ret) { |
| dev_err(map->dev, |
| "Error in caching of register: %x ret: %d\n", |
| reg, ret); |
| return ret; |
| } |
| } |
| if (map->cache_only) { |
| map->cache_dirty = true; |
| return 0; |
| } |
| } |
| |
| WARN_ON(!map->bus); |
| |
| for (i = 0; i < num_regs; i++) { |
| unsigned int reg = regs[i].reg; |
| struct regmap_range_node *range; |
| range = _regmap_range_lookup(map, reg); |
| if (range) { |
| size_t len = sizeof(struct reg_sequence)*num_regs; |
| struct reg_sequence *base = kmemdup(regs, len, |
| GFP_KERNEL); |
| if (!base) |
| return -ENOMEM; |
| ret = _regmap_range_multi_paged_reg_write(map, base, |
| num_regs); |
| kfree(base); |
| |
| return ret; |
| } |
| } |
| return _regmap_raw_multi_reg_write(map, regs, num_regs); |
| } |
| |
| /* |
| * regmap_multi_reg_write(): Write multiple registers to the device |
| * |
| * where the set of register,value pairs are supplied in any order, |
| * possibly not all in a single range. |
| * |
| * @map: Register map to write to |
| * @regs: Array of structures containing register,value to be written |
| * @num_regs: Number of registers to write |
| * |
| * The 'normal' block write mode will send ultimately send data on the |
| * target bus as R,V1,V2,V3,..,Vn where successively higer registers are |
| * addressed. However, this alternative block multi write mode will send |
| * the data as R1,V1,R2,V2,..,Rn,Vn on the target bus. The target device |
| * must of course support the mode. |
| * |
| * A value of zero will be returned on success, a negative errno will be |
| * returned in error cases. |
| */ |
| int regmap_multi_reg_write(struct regmap *map, const struct reg_sequence *regs, |
| int num_regs) |
| { |
| int ret; |
| |
| map->lock(map->lock_arg); |
| |
| ret = _regmap_multi_reg_write(map, regs, num_regs); |
| |
| map->unlock(map->lock_arg); |
| |
| return ret; |
| } |
| EXPORT_SYMBOL_GPL(regmap_multi_reg_write); |
| |
| /* |
| * regmap_multi_reg_write_bypassed(): Write multiple registers to the |
| * device but not the cache |
| * |
| * where the set of register are supplied in any order |
| * |
| * @map: Register map to write to |
| * @regs: Array of structures containing register,value to be written |
| * @num_regs: Number of registers to write |
| * |
| * This function is intended to be used for writing a large block of data |
| * atomically to the device in single transfer for those I2C client devices |
| * that implement this alternative block write mode. |
| * |
| * A value of zero will be returned on success, a negative errno will |
| * be returned in error cases. |
| */ |
| int regmap_multi_reg_write_bypassed(struct regmap *map, |
| const struct reg_sequence *regs, |
| int num_regs) |
| { |
| int ret; |
| bool bypass; |
| |
| map->lock(map->lock_arg); |
| |
| bypass = map->cache_bypass; |
| map->cache_bypass = true; |
| |
| ret = _regmap_multi_reg_write(map, regs, num_regs); |
| |
| map->cache_bypass = bypass; |
| |
| map->unlock(map->lock_arg); |
| |
| return ret; |
| } |
| EXPORT_SYMBOL_GPL(regmap_multi_reg_write_bypassed); |
| |
| /** |
| * regmap_raw_write_async(): Write raw values to one or more registers |
| * asynchronously |
| * |
| * @map: Register map to write to |
| * @reg: Initial register to write to |
| * @val: Block of data to be written, laid out for direct transmission to the |
| * device. Must be valid until regmap_async_complete() is called. |
| * @val_len: Length of data pointed to by val. |
| * |
| * This function is intended to be used for things like firmware |
| * download where a large block of data needs to be transferred to the |
| * device. No formatting will be done on the data provided. |
| * |
| * If supported by the underlying bus the write will be scheduled |
| * asynchronously, helping maximise I/O speed on higher speed buses |
| * like SPI. regmap_async_complete() can be called to ensure that all |
| * asynchrnous writes have been completed. |
| * |
| * A value of zero will be returned on success, a negative errno will |
| * be returned in error cases. |
| */ |
| int regmap_raw_write_async(struct regmap *map, unsigned int reg, |
| const void *val, size_t val_len) |
| { |
| int ret; |
| |
| if (val_len % map->format.val_bytes) |
| return -EINVAL; |
| if (reg % map->reg_stride) |
| return -EINVAL; |
| |
| map->lock(map->lock_arg); |
| |
| map->async = true; |
| |
| ret = _regmap_raw_write(map, reg, val, val_len); |
| |
| map->async = false; |
| |
| map->unlock(map->lock_arg); |
| |
| return ret; |
| } |
| EXPORT_SYMBOL_GPL(regmap_raw_write_async); |
| |
| static int _regmap_raw_read(struct regmap *map, unsigned int reg, void *val, |
| unsigned int val_len) |
| { |
| struct regmap_range_node *range; |
| u8 *u8 = map->work_buf; |
| int ret; |
| |
| WARN_ON(!map->bus); |
| |
| range = _regmap_range_lookup(map, reg); |
| if (range) { |
| ret = _regmap_select_page(map, ®, range, |
| val_len / map->format.val_bytes); |
| if (ret != 0) |
| return ret; |
| } |
| |
| map->format.format_reg(map->work_buf, reg, map->reg_shift); |
| |
| /* |
| * Some buses or devices flag reads by setting the high bits in the |
| * register addresss; since it's always the high bits for all |
| * current formats we can do this here rather than in |
| * formatting. This may break if we get interesting formats. |
| */ |
| u8[0] |= map->read_flag_mask; |
| |
| trace_regmap_hw_read_start(map, reg, val_len / map->format.val_bytes); |
| |
| ret = map->bus->read(map->bus_context, map->work_buf, |
| map->format.reg_bytes + map->format.pad_bytes, |
| val, val_len); |
| |
| trace_regmap_hw_read_done(map, reg, val_len / map->format.val_bytes); |
| |
| return ret; |
| } |
| |
| static int _regmap_bus_reg_read(void *context, unsigned int reg, |
| unsigned int *val) |
| { |
| struct regmap *map = context; |
| |
| return map->bus->reg_read(map->bus_context, reg, val); |
| } |
| |
| static int _regmap_bus_read(void *context, unsigned int reg, |
| unsigned int *val) |
| { |
| int ret; |
| struct regmap *map = context; |
| |
| if (!map->format.parse_val) |
| return -EINVAL; |
| |
| ret = _regmap_raw_read(map, reg, map->work_buf, map->format.val_bytes); |
| if (ret == 0) |
| *val = map->format.parse_val(map->work_buf); |
| |
| return ret; |
| } |
| |
| static int _regmap_read(struct regmap *map, unsigned int reg, |
| unsigned int *val) |
| { |
| int ret; |
| void *context = _regmap_map_get_context(map); |
| |
| WARN_ON(!map->reg_read); |
| |
| if (!map->cache_bypass) { |
| ret = regcache_read(map, reg, val); |
| if (ret == 0) |
| return 0; |
| } |
| |
| if (map->cache_only) |
| return -EBUSY; |
| |
| if (!regmap_readable(map, reg)) |
| return -EIO; |
| |
| ret = map->reg_read(context, reg, val); |
| if (ret == 0) { |
| #ifdef LOG_DEVICE |
| if (map->dev && strcmp(dev_name(map->dev), LOG_DEVICE) == 0) |
| dev_info(map->dev, "%x => %x\n", reg, *val); |
| #endif |
| |
| trace_regmap_reg_read(map, reg, *val); |
| |
| if (!map->cache_bypass) |
| regcache_write(map, reg, *val); |
| } |
| |
| return ret; |
| } |
| |
| /** |
| * regmap_read(): Read a value from a single register |
| * |
| * @map: Register map to read from |
| * @reg: Register to be read from |
| * @val: Pointer to store read value |
| * |
| * A value of zero will be returned on success, a negative errno will |
| * be returned in error cases. |
| */ |
| int regmap_read(struct regmap *map, unsigned int reg, unsigned int *val) |
| { |
| int ret; |
| |
| if (reg % map->reg_stride) |
| return -EINVAL; |
| |
| map->lock(map->lock_arg); |
| |
| ret = _regmap_read(map, reg, val); |
| |
| map->unlock(map->lock_arg); |
| |
| return ret; |
| } |
| EXPORT_SYMBOL_GPL(regmap_read); |
| |
| /** |
| * regmap_raw_read(): Read raw data from the device |
| * |
| * @map: Register map to read from |
| * @reg: First register to be read from |
| * @val: Pointer to store read value |
| * @val_len: Size of data to read |
| * |
| * A value of zero will be returned on success, a negative errno will |
| * be returned in error cases. |
| */ |
| int regmap_raw_read(struct regmap *map, unsigned int reg, void *val, |
| size_t val_len) |
| { |
| size_t val_bytes = map->format.val_bytes; |
| size_t val_count = val_len / val_bytes; |
| unsigned int v; |
| int ret, i; |
| |
| if (!map->bus) |
| return -EINVAL; |
| if (val_len % map->format.val_bytes) |
| return -EINVAL; |
| if (reg % map->reg_stride) |
| return -EINVAL; |
| |
| map->lock(map->lock_arg); |
| |
| if (regmap_volatile_range(map, reg, val_count) || map->cache_bypass || |
| map->cache_type == REGCACHE_NONE) { |
| /* Physical block read if there's no cache involved */ |
| ret = _regmap_raw_read(map, reg, val, val_len); |
| |
| } else { |
| /* Otherwise go word by word for the cache; should be low |
| * cost as we expect to hit the cache. |
| */ |
| for (i = 0; i < val_count; i++) { |
| ret = _regmap_read(map, reg + (i * map->reg_stride), |
| &v); |
| if (ret != 0) |
| goto out; |
| |
| map->format.format_val(val + (i * val_bytes), v, 0); |
| } |
| } |
| |
| out: |
| map->unlock(map->lock_arg); |
| |
| return ret; |
| } |
| EXPORT_SYMBOL_GPL(regmap_raw_read); |
| |
| /** |
| * regmap_field_read(): Read a value to a single register field |
| * |
| * @field: Register field to read from |
| * @val: Pointer to store read value |
| * |
| * A value of zero will be returned on success, a negative errno will |
| * be returned in error cases. |
| */ |
| int regmap_field_read(struct regmap_field *field, unsigned int *val) |
| { |
| int ret; |
| unsigned int reg_val; |
| ret = regmap_read(field->regmap, field->reg, ®_val); |
| if (ret != 0) |
| return ret; |
| |
| reg_val &= field->mask; |
| reg_val >>= field->shift; |
| *val = reg_val; |
| |
| return ret; |
| } |
| EXPORT_SYMBOL_GPL(regmap_field_read); |
| |
| /** |
| * regmap_fields_read(): Read a value to a single register field with port ID |
| * |
| * @field: Register field to read from |
| * @id: port ID |
| * @val: Pointer to store read value |
| * |
| * A value of zero will be returned on success, a negative errno will |
| * be returned in error cases. |
| */ |
| int regmap_fields_read(struct regmap_field *field, unsigned int id, |
| unsigned int *val) |
| { |
| int ret; |
| unsigned int reg_val; |
| |
| if (id >= field->id_size) |
| return -EINVAL; |
| |
| ret = regmap_read(field->regmap, |
| field->reg + (field->id_offset * id), |
| ®_val); |
| if (ret != 0) |
| return ret; |
| |
| reg_val &= field->mask; |
| reg_val >>= field->shift; |
| *val = reg_val; |
| |
| return ret; |
| } |
| EXPORT_SYMBOL_GPL(regmap_fields_read); |
| |
| /** |
| * regmap_bulk_read(): Read multiple registers from the device |
| * |
| * @map: Register map to read from |
| * @reg: First register to be read from |
| * @val: Pointer to store read value, in native register size for device |
| * @val_count: Number of registers to read |
| * |
| * A value of zero will be returned on success, a negative errno will |
| * be returned in error cases. |
| */ |
| int regmap_bulk_read(struct regmap *map, unsigned int reg, void *val, |
| size_t val_count) |
| { |
| int ret, i; |
| size_t val_bytes = map->format.val_bytes; |
| bool vol = regmap_volatile_range(map, reg, val_count); |
| |
| if (reg % map->reg_stride) |
| return -EINVAL; |
| |
| if (map->bus && map->format.parse_inplace && (vol || map->cache_type == REGCACHE_NONE)) { |
| /* |
| * Some devices does not support bulk read, for |
| * them we have a series of single read operations. |
| */ |
| if (map->use_single_rw) { |
| for (i = 0; i < val_count; i++) { |
| ret = regmap_raw_read(map, |
| reg + (i * map->reg_stride), |
| val + (i * val_bytes), |
| val_bytes); |
| if (ret != 0) |
| return ret; |
| } |
| } else { |
| ret = regmap_raw_read(map, reg, val, |
| val_bytes * val_count); |
| if (ret != 0) |
| return ret; |
| } |
| |
| for (i = 0; i < val_count * val_bytes; i += val_bytes) |
| map->format.parse_inplace(val + i); |
| } else { |
| for (i = 0; i < val_count; i++) { |
| unsigned int ival; |
| ret = regmap_read(map, reg + (i * map->reg_stride), |
| &ival); |
| if (ret != 0) |
| return ret; |
| map->format.format_val(val + (i * val_bytes), ival, 0); |
| } |
| } |
| |
| return 0; |
| } |
| EXPORT_SYMBOL_GPL(regmap_bulk_read); |
| |
| static int _regmap_update_bits(struct regmap *map, unsigned int reg, |
| unsigned int mask, unsigned int val, |
| bool *change) |
| { |
| int ret; |
| unsigned int tmp, orig; |
| |
| ret = _regmap_read(map, reg, &orig); |
| if (ret != 0) |
| return ret; |
| |
| tmp = orig & ~mask; |
| tmp |= val & mask; |
| |
| if (tmp != orig) { |
| ret = _regmap_write(map, reg, tmp); |
| if (change) |
| *change = true; |
| } else { |
| if (change) |
| *change = false; |
| } |
| |
| return ret; |
| } |
| |
| /** |
| * regmap_update_bits: Perform a read/modify/write cycle on the register map |
| * |
| * @map: Register map to update |
| * @reg: Register to update |
| * @mask: Bitmask to change |
| * @val: New value for bitmask |
| * |
| * Returns zero for success, a negative number on error. |
| */ |
| int regmap_update_bits(struct regmap *map, unsigned int reg, |
| unsigned int mask, unsigned int val) |
| { |
| int ret; |
| |
| map->lock(map->lock_arg); |
| ret = _regmap_update_bits(map, reg, mask, val, NULL); |
| map->unlock(map->lock_arg); |
| |
| return ret; |
| } |
| EXPORT_SYMBOL_GPL(regmap_update_bits); |
| |
| /** |
| * regmap_update_bits_async: Perform a read/modify/write cycle on the register |
| * map asynchronously |
| * |
| * @map: Register map to update |
| * @reg: Register to update |
| * @mask: Bitmask to change |
| * @val: New value for bitmask |
| * |
| * With most buses the read must be done synchronously so this is most |
| * useful for devices with a cache which do not need to interact with |
| * the hardware to determine the current register value. |
| * |
| * Returns zero for success, a negative number on error. |
| */ |
| int regmap_update_bits_async(struct regmap *map, unsigned int reg, |
| unsigned int mask, unsigned int val) |
| { |
| int ret; |
| |
| map->lock(map->lock_arg); |
| |
| map->async = true; |
| |
| ret = _regmap_update_bits(map, reg, mask, val, NULL); |
| |
| map->async = false; |
| |
| map->unlock(map->lock_arg); |
| |
| return ret; |
| } |
| EXPORT_SYMBOL_GPL(regmap_update_bits_async); |
| |
| /** |
| * regmap_update_bits_check: Perform a read/modify/write cycle on the |
| * register map and report if updated |
| * |
| * @map: Register map to update |
| * @reg: Register to update |
| * @mask: Bitmask to change |
| * @val: New value for bitmask |
| * @change: Boolean indicating if a write was done |
| * |
| * Returns zero for success, a negative number on error. |
| */ |
| int regmap_update_bits_check(struct regmap *map, unsigned int reg, |
| unsigned int mask, unsigned int val, |
| bool *change) |
| { |
| int ret; |
| |
| map->lock(map->lock_arg); |
| ret = _regmap_update_bits(map, reg, mask, val, change); |
| map->unlock(map->lock_arg); |
| return ret; |
| } |
| EXPORT_SYMBOL_GPL(regmap_update_bits_check); |
| |
| /** |
| * regmap_update_bits_check_async: Perform a read/modify/write cycle on the |
| * register map asynchronously and report if |
| * updated |
| * |
| * @map: Register map to update |
| * @reg: Register to update |
| * @mask: Bitmask to change |
| * @val: New value for bitmask |
| * @change: Boolean indicating if a write was done |
| * |
| * With most buses the read must be done synchronously so this is most |
| * useful for devices with a cache which do not need to interact with |
| * the hardware to determine the current register value. |
| * |
| * Returns zero for success, a negative number on error. |
| */ |
| int regmap_update_bits_check_async(struct regmap *map, unsigned int reg, |
| unsigned int mask, unsigned int val, |
| bool *change) |
| { |
| int ret; |
| |
| map->lock(map->lock_arg); |
| |
| map->async = true; |
| |
| ret = _regmap_update_bits(map, reg, mask, val, change); |
| |
| map->async = false; |
| |
| map->unlock(map->lock_arg); |
| |
| return ret; |
| } |
| EXPORT_SYMBOL_GPL(regmap_update_bits_check_async); |
| |
| void regmap_async_complete_cb(struct regmap_async *async, int ret) |
| { |
| struct regmap *map = async->map; |
| bool wake; |
| |
| trace_regmap_async_io_complete(map); |
| |
| spin_lock(&map->async_lock); |
| list_move(&async->list, &map->async_free); |
| wake = list_empty(&map->async_list); |
| |
| if (ret != 0) |
| map->async_ret = ret; |
| |
| spin_unlock(&map->async_lock); |
| |
| if (wake) |
| wake_up(&map->async_waitq); |
| } |
| EXPORT_SYMBOL_GPL(regmap_async_complete_cb); |
| |
| static int regmap_async_is_done(struct regmap *map) |
| { |
| unsigned long flags; |
| int ret; |
| |
| spin_lock_irqsave(&map->async_lock, flags); |
| ret = list_empty(&map->async_list); |
| spin_unlock_irqrestore(&map->async_lock, flags); |
| |
| return ret; |
| } |
| |
| /** |
| * regmap_async_complete: Ensure all asynchronous I/O has completed. |
| * |
| * @map: Map to operate on. |
| * |
| * Blocks until any pending asynchronous I/O has completed. Returns |
| * an error code for any failed I/O operations. |
| */ |
| int regmap_async_complete(struct regmap *map) |
| { |
| unsigned long flags; |
| int ret; |
| |
| /* Nothing to do with no async support */ |
| if (!map->bus || !map->bus->async_write) |
| return 0; |
| |
| trace_regmap_async_complete_start(map); |
| |
| wait_event(map->async_waitq, regmap_async_is_done(map)); |
| |
| spin_lock_irqsave(&map->async_lock, flags); |
| ret = map->async_ret; |
| map->async_ret = 0; |
| spin_unlock_irqrestore(&map->async_lock, flags); |
| |
| trace_regmap_async_complete_done(map); |
| |
| return ret; |
| } |
| EXPORT_SYMBOL_GPL(regmap_async_complete); |
| |
| /** |
| * regmap_register_patch: Register and apply register updates to be applied |
| * on device initialistion |
| * |
| * @map: Register map to apply updates to. |
| * @regs: Values to update. |
| * @num_regs: Number of entries in regs. |
| * |
| * Register a set of register updates to be applied to the device |
| * whenever the device registers are synchronised with the cache and |
| * apply them immediately. Typically this is used to apply |
| * corrections to be applied to the device defaults on startup, such |
| * as the updates some vendors provide to undocumented registers. |
| * |
| * The caller must ensure that this function cannot be called |
| * concurrently with either itself or regcache_sync(). |
| */ |
| int regmap_register_patch(struct regmap *map, const struct reg_sequence *regs, |
| int num_regs) |
| { |
| struct reg_sequence *p; |
| int ret; |
| bool bypass; |
| |
| if (WARN_ONCE(num_regs <= 0, "invalid registers number (%d)\n", |
| num_regs)) |
| return 0; |
| |
| p = krealloc(map->patch, |
| sizeof(struct reg_sequence) * (map->patch_regs + num_regs), |
| GFP_KERNEL); |
| if (p) { |
| memcpy(p + map->patch_regs, regs, num_regs * sizeof(*regs)); |
| map->patch = p; |
| map->patch_regs += num_regs; |
| } else { |
| return -ENOMEM; |
| } |
| |
| map->lock(map->lock_arg); |
| |
| bypass = map->cache_bypass; |
| |
| map->cache_bypass = true; |
| map->async = true; |
| |
| ret = _regmap_multi_reg_write(map, regs, num_regs); |
| |
| map->async = false; |
| map->cache_bypass = bypass; |
| |
| map->unlock(map->lock_arg); |
| |
| regmap_async_complete(map); |
| |
| return ret; |
| } |
| EXPORT_SYMBOL_GPL(regmap_register_patch); |
| |
| /* |
| * regmap_get_val_bytes(): Report the size of a register value |
| * |
| * Report the size of a register value, mainly intended to for use by |
| * generic infrastructure built on top of regmap. |
| */ |
| int regmap_get_val_bytes(struct regmap *map) |
| { |
| if (map->format.format_write) |
| return -EINVAL; |
| |
| return map->format.val_bytes; |
| } |
| EXPORT_SYMBOL_GPL(regmap_get_val_bytes); |
| |
| /** |
| * regmap_get_max_register(): Report the max register value |
| * |
| * Report the max register value, mainly intended to for use by |
| * generic infrastructure built on top of regmap. |
| */ |
| int regmap_get_max_register(struct regmap *map) |
| { |
| return map->max_register ? map->max_register : -EINVAL; |
| } |
| EXPORT_SYMBOL_GPL(regmap_get_max_register); |
| |
| /** |
| * regmap_get_reg_stride(): Report the register address stride |
| * |
| * Report the register address stride, mainly intended to for use by |
| * generic infrastructure built on top of regmap. |
| */ |
| int regmap_get_reg_stride(struct regmap *map) |
| { |
| return map->reg_stride; |
| } |
| EXPORT_SYMBOL_GPL(regmap_get_reg_stride); |
| |
| int regmap_parse_val(struct regmap *map, const void *buf, |
| unsigned int *val) |
| { |
| if (!map->format.parse_val) |
| return -EINVAL; |
| |
| *val = map->format.parse_val(buf); |
| |
| return 0; |
| } |
| EXPORT_SYMBOL_GPL(regmap_parse_val); |
| |
| static int __init regmap_initcall(void) |
| { |
| regmap_debugfs_initcall(); |
| |
| return 0; |
| } |
| postcore_initcall(regmap_initcall); |