| #include <linux/gfp.h> |
| #include <linux/initrd.h> |
| #include <linux/ioport.h> |
| #include <linux/swap.h> |
| #include <linux/memblock.h> |
| #include <linux/swapfile.h> |
| #include <linux/swapops.h> |
| #include <linux/kmemleak.h> |
| |
| #include <asm/set_memory.h> |
| #include <asm/e820/api.h> |
| #include <asm/init.h> |
| #include <asm/page.h> |
| #include <asm/page_types.h> |
| #include <asm/sections.h> |
| #include <asm/setup.h> |
| #include <asm/tlbflush.h> |
| #include <asm/tlb.h> |
| #include <asm/proto.h> |
| #include <asm/dma.h> /* for MAX_DMA_PFN */ |
| #include <asm/microcode.h> |
| #include <asm/kaslr.h> |
| #include <asm/hypervisor.h> |
| #include <asm/cpufeature.h> |
| #include <asm/pti.h> |
| |
| /* |
| * We need to define the tracepoints somewhere, and tlb.c |
| * is only compied when SMP=y. |
| */ |
| #define CREATE_TRACE_POINTS |
| #include <trace/events/tlb.h> |
| |
| #include "mm_internal.h" |
| |
| /* |
| * Tables translating between page_cache_type_t and pte encoding. |
| * |
| * The default values are defined statically as minimal supported mode; |
| * WC and WT fall back to UC-. pat_init() updates these values to support |
| * more cache modes, WC and WT, when it is safe to do so. See pat_init() |
| * for the details. Note, __early_ioremap() used during early boot-time |
| * takes pgprot_t (pte encoding) and does not use these tables. |
| * |
| * Index into __cachemode2pte_tbl[] is the cachemode. |
| * |
| * Index into __pte2cachemode_tbl[] are the caching attribute bits of the pte |
| * (_PAGE_PWT, _PAGE_PCD, _PAGE_PAT) at index bit positions 0, 1, 2. |
| */ |
| uint16_t __cachemode2pte_tbl[_PAGE_CACHE_MODE_NUM] = { |
| [_PAGE_CACHE_MODE_WB ] = 0 | 0 , |
| [_PAGE_CACHE_MODE_WC ] = 0 | _PAGE_PCD, |
| [_PAGE_CACHE_MODE_UC_MINUS] = 0 | _PAGE_PCD, |
| [_PAGE_CACHE_MODE_UC ] = _PAGE_PWT | _PAGE_PCD, |
| [_PAGE_CACHE_MODE_WT ] = 0 | _PAGE_PCD, |
| [_PAGE_CACHE_MODE_WP ] = 0 | _PAGE_PCD, |
| }; |
| EXPORT_SYMBOL(__cachemode2pte_tbl); |
| |
| uint8_t __pte2cachemode_tbl[8] = { |
| [__pte2cm_idx( 0 | 0 | 0 )] = _PAGE_CACHE_MODE_WB, |
| [__pte2cm_idx(_PAGE_PWT | 0 | 0 )] = _PAGE_CACHE_MODE_UC_MINUS, |
| [__pte2cm_idx( 0 | _PAGE_PCD | 0 )] = _PAGE_CACHE_MODE_UC_MINUS, |
| [__pte2cm_idx(_PAGE_PWT | _PAGE_PCD | 0 )] = _PAGE_CACHE_MODE_UC, |
| [__pte2cm_idx( 0 | 0 | _PAGE_PAT)] = _PAGE_CACHE_MODE_WB, |
| [__pte2cm_idx(_PAGE_PWT | 0 | _PAGE_PAT)] = _PAGE_CACHE_MODE_UC_MINUS, |
| [__pte2cm_idx(0 | _PAGE_PCD | _PAGE_PAT)] = _PAGE_CACHE_MODE_UC_MINUS, |
| [__pte2cm_idx(_PAGE_PWT | _PAGE_PCD | _PAGE_PAT)] = _PAGE_CACHE_MODE_UC, |
| }; |
| EXPORT_SYMBOL(__pte2cachemode_tbl); |
| |
| static unsigned long __initdata pgt_buf_start; |
| static unsigned long __initdata pgt_buf_end; |
| static unsigned long __initdata pgt_buf_top; |
| |
| static unsigned long min_pfn_mapped; |
| |
| static bool __initdata can_use_brk_pgt = true; |
| |
| /* |
| * Pages returned are already directly mapped. |
| * |
| * Changing that is likely to break Xen, see commit: |
| * |
| * 279b706 x86,xen: introduce x86_init.mapping.pagetable_reserve |
| * |
| * for detailed information. |
| */ |
| __ref void *alloc_low_pages(unsigned int num) |
| { |
| unsigned long pfn; |
| int i; |
| |
| if (after_bootmem) { |
| unsigned int order; |
| |
| order = get_order((unsigned long)num << PAGE_SHIFT); |
| return (void *)__get_free_pages(GFP_ATOMIC | __GFP_ZERO, order); |
| } |
| |
| if ((pgt_buf_end + num) > pgt_buf_top || !can_use_brk_pgt) { |
| unsigned long ret = 0; |
| |
| if (min_pfn_mapped < max_pfn_mapped) { |
| ret = memblock_find_in_range( |
| min_pfn_mapped << PAGE_SHIFT, |
| max_pfn_mapped << PAGE_SHIFT, |
| PAGE_SIZE * num , PAGE_SIZE); |
| } |
| if (ret) |
| memblock_reserve(ret, PAGE_SIZE * num); |
| else if (can_use_brk_pgt) |
| ret = __pa(extend_brk(PAGE_SIZE * num, PAGE_SIZE)); |
| |
| if (!ret) |
| panic("alloc_low_pages: can not alloc memory"); |
| |
| pfn = ret >> PAGE_SHIFT; |
| } else { |
| pfn = pgt_buf_end; |
| pgt_buf_end += num; |
| printk(KERN_DEBUG "BRK [%#010lx, %#010lx] PGTABLE\n", |
| pfn << PAGE_SHIFT, (pgt_buf_end << PAGE_SHIFT) - 1); |
| } |
| |
| for (i = 0; i < num; i++) { |
| void *adr; |
| |
| adr = __va((pfn + i) << PAGE_SHIFT); |
| clear_page(adr); |
| } |
| |
| return __va(pfn << PAGE_SHIFT); |
| } |
| |
| /* |
| * By default need 3 4k for initial PMD_SIZE, 3 4k for 0-ISA_END_ADDRESS. |
| * With KASLR memory randomization, depending on the machine e820 memory |
| * and the PUD alignment. We may need twice more pages when KASLR memory |
| * randomization is enabled. |
| */ |
| #ifndef CONFIG_RANDOMIZE_MEMORY |
| #define INIT_PGD_PAGE_COUNT 6 |
| #else |
| #define INIT_PGD_PAGE_COUNT 12 |
| #endif |
| #define INIT_PGT_BUF_SIZE (INIT_PGD_PAGE_COUNT * PAGE_SIZE) |
| RESERVE_BRK(early_pgt_alloc, INIT_PGT_BUF_SIZE); |
| void __init early_alloc_pgt_buf(void) |
| { |
| unsigned long tables = INIT_PGT_BUF_SIZE; |
| phys_addr_t base; |
| |
| base = __pa(extend_brk(tables, PAGE_SIZE)); |
| |
| pgt_buf_start = base >> PAGE_SHIFT; |
| pgt_buf_end = pgt_buf_start; |
| pgt_buf_top = pgt_buf_start + (tables >> PAGE_SHIFT); |
| } |
| |
| int after_bootmem; |
| |
| early_param_on_off("gbpages", "nogbpages", direct_gbpages, CONFIG_X86_DIRECT_GBPAGES); |
| |
| struct map_range { |
| unsigned long start; |
| unsigned long end; |
| unsigned page_size_mask; |
| }; |
| |
| static int page_size_mask; |
| |
| static void __init probe_page_size_mask(void) |
| { |
| /* |
| * For pagealloc debugging, identity mapping will use small pages. |
| * This will simplify cpa(), which otherwise needs to support splitting |
| * large pages into small in interrupt context, etc. |
| */ |
| if (boot_cpu_has(X86_FEATURE_PSE) && !debug_pagealloc_enabled()) |
| page_size_mask |= 1 << PG_LEVEL_2M; |
| else |
| direct_gbpages = 0; |
| |
| /* Enable PSE if available */ |
| if (boot_cpu_has(X86_FEATURE_PSE)) |
| cr4_set_bits_and_update_boot(X86_CR4_PSE); |
| |
| /* Enable PGE if available */ |
| __supported_pte_mask &= ~_PAGE_GLOBAL; |
| if (boot_cpu_has(X86_FEATURE_PGE)) { |
| cr4_set_bits_and_update_boot(X86_CR4_PGE); |
| __supported_pte_mask |= _PAGE_GLOBAL; |
| } |
| |
| /* By the default is everything supported: */ |
| __default_kernel_pte_mask = __supported_pte_mask; |
| /* Except when with PTI where the kernel is mostly non-Global: */ |
| if (cpu_feature_enabled(X86_FEATURE_PTI)) |
| __default_kernel_pte_mask &= ~_PAGE_GLOBAL; |
| |
| /* Enable 1 GB linear kernel mappings if available: */ |
| if (direct_gbpages && boot_cpu_has(X86_FEATURE_GBPAGES)) { |
| printk(KERN_INFO "Using GB pages for direct mapping\n"); |
| page_size_mask |= 1 << PG_LEVEL_1G; |
| } else { |
| direct_gbpages = 0; |
| } |
| } |
| |
| static void setup_pcid(void) |
| { |
| if (!IS_ENABLED(CONFIG_X86_64)) |
| return; |
| |
| if (!boot_cpu_has(X86_FEATURE_PCID)) |
| return; |
| |
| if (boot_cpu_has(X86_FEATURE_PGE)) { |
| /* |
| * This can't be cr4_set_bits_and_update_boot() -- the |
| * trampoline code can't handle CR4.PCIDE and it wouldn't |
| * do any good anyway. Despite the name, |
| * cr4_set_bits_and_update_boot() doesn't actually cause |
| * the bits in question to remain set all the way through |
| * the secondary boot asm. |
| * |
| * Instead, we brute-force it and set CR4.PCIDE manually in |
| * start_secondary(). |
| */ |
| cr4_set_bits(X86_CR4_PCIDE); |
| |
| /* |
| * INVPCID's single-context modes (2/3) only work if we set |
| * X86_CR4_PCIDE, *and* we INVPCID support. It's unusable |
| * on systems that have X86_CR4_PCIDE clear, or that have |
| * no INVPCID support at all. |
| */ |
| if (boot_cpu_has(X86_FEATURE_INVPCID)) |
| setup_force_cpu_cap(X86_FEATURE_INVPCID_SINGLE); |
| } else { |
| /* |
| * flush_tlb_all(), as currently implemented, won't work if |
| * PCID is on but PGE is not. Since that combination |
| * doesn't exist on real hardware, there's no reason to try |
| * to fully support it, but it's polite to avoid corrupting |
| * data if we're on an improperly configured VM. |
| */ |
| setup_clear_cpu_cap(X86_FEATURE_PCID); |
| } |
| } |
| |
| #ifdef CONFIG_X86_32 |
| #define NR_RANGE_MR 3 |
| #else /* CONFIG_X86_64 */ |
| #define NR_RANGE_MR 5 |
| #endif |
| |
| static int __meminit save_mr(struct map_range *mr, int nr_range, |
| unsigned long start_pfn, unsigned long end_pfn, |
| unsigned long page_size_mask) |
| { |
| if (start_pfn < end_pfn) { |
| if (nr_range >= NR_RANGE_MR) |
| panic("run out of range for init_memory_mapping\n"); |
| mr[nr_range].start = start_pfn<<PAGE_SHIFT; |
| mr[nr_range].end = end_pfn<<PAGE_SHIFT; |
| mr[nr_range].page_size_mask = page_size_mask; |
| nr_range++; |
| } |
| |
| return nr_range; |
| } |
| |
| /* |
| * adjust the page_size_mask for small range to go with |
| * big page size instead small one if nearby are ram too. |
| */ |
| static void __ref adjust_range_page_size_mask(struct map_range *mr, |
| int nr_range) |
| { |
| int i; |
| |
| for (i = 0; i < nr_range; i++) { |
| if ((page_size_mask & (1<<PG_LEVEL_2M)) && |
| !(mr[i].page_size_mask & (1<<PG_LEVEL_2M))) { |
| unsigned long start = round_down(mr[i].start, PMD_SIZE); |
| unsigned long end = round_up(mr[i].end, PMD_SIZE); |
| |
| #ifdef CONFIG_X86_32 |
| if ((end >> PAGE_SHIFT) > max_low_pfn) |
| continue; |
| #endif |
| |
| if (memblock_is_region_memory(start, end - start)) |
| mr[i].page_size_mask |= 1<<PG_LEVEL_2M; |
| } |
| if ((page_size_mask & (1<<PG_LEVEL_1G)) && |
| !(mr[i].page_size_mask & (1<<PG_LEVEL_1G))) { |
| unsigned long start = round_down(mr[i].start, PUD_SIZE); |
| unsigned long end = round_up(mr[i].end, PUD_SIZE); |
| |
| if (memblock_is_region_memory(start, end - start)) |
| mr[i].page_size_mask |= 1<<PG_LEVEL_1G; |
| } |
| } |
| } |
| |
| static const char *page_size_string(struct map_range *mr) |
| { |
| static const char str_1g[] = "1G"; |
| static const char str_2m[] = "2M"; |
| static const char str_4m[] = "4M"; |
| static const char str_4k[] = "4k"; |
| |
| if (mr->page_size_mask & (1<<PG_LEVEL_1G)) |
| return str_1g; |
| /* |
| * 32-bit without PAE has a 4M large page size. |
| * PG_LEVEL_2M is misnamed, but we can at least |
| * print out the right size in the string. |
| */ |
| if (IS_ENABLED(CONFIG_X86_32) && |
| !IS_ENABLED(CONFIG_X86_PAE) && |
| mr->page_size_mask & (1<<PG_LEVEL_2M)) |
| return str_4m; |
| |
| if (mr->page_size_mask & (1<<PG_LEVEL_2M)) |
| return str_2m; |
| |
| return str_4k; |
| } |
| |
| static int __meminit split_mem_range(struct map_range *mr, int nr_range, |
| unsigned long start, |
| unsigned long end) |
| { |
| unsigned long start_pfn, end_pfn, limit_pfn; |
| unsigned long pfn; |
| int i; |
| |
| limit_pfn = PFN_DOWN(end); |
| |
| /* head if not big page alignment ? */ |
| pfn = start_pfn = PFN_DOWN(start); |
| #ifdef CONFIG_X86_32 |
| /* |
| * Don't use a large page for the first 2/4MB of memory |
| * because there are often fixed size MTRRs in there |
| * and overlapping MTRRs into large pages can cause |
| * slowdowns. |
| */ |
| if (pfn == 0) |
| end_pfn = PFN_DOWN(PMD_SIZE); |
| else |
| end_pfn = round_up(pfn, PFN_DOWN(PMD_SIZE)); |
| #else /* CONFIG_X86_64 */ |
| end_pfn = round_up(pfn, PFN_DOWN(PMD_SIZE)); |
| #endif |
| if (end_pfn > limit_pfn) |
| end_pfn = limit_pfn; |
| if (start_pfn < end_pfn) { |
| nr_range = save_mr(mr, nr_range, start_pfn, end_pfn, 0); |
| pfn = end_pfn; |
| } |
| |
| /* big page (2M) range */ |
| start_pfn = round_up(pfn, PFN_DOWN(PMD_SIZE)); |
| #ifdef CONFIG_X86_32 |
| end_pfn = round_down(limit_pfn, PFN_DOWN(PMD_SIZE)); |
| #else /* CONFIG_X86_64 */ |
| end_pfn = round_up(pfn, PFN_DOWN(PUD_SIZE)); |
| if (end_pfn > round_down(limit_pfn, PFN_DOWN(PMD_SIZE))) |
| end_pfn = round_down(limit_pfn, PFN_DOWN(PMD_SIZE)); |
| #endif |
| |
| if (start_pfn < end_pfn) { |
| nr_range = save_mr(mr, nr_range, start_pfn, end_pfn, |
| page_size_mask & (1<<PG_LEVEL_2M)); |
| pfn = end_pfn; |
| } |
| |
| #ifdef CONFIG_X86_64 |
| /* big page (1G) range */ |
| start_pfn = round_up(pfn, PFN_DOWN(PUD_SIZE)); |
| end_pfn = round_down(limit_pfn, PFN_DOWN(PUD_SIZE)); |
| if (start_pfn < end_pfn) { |
| nr_range = save_mr(mr, nr_range, start_pfn, end_pfn, |
| page_size_mask & |
| ((1<<PG_LEVEL_2M)|(1<<PG_LEVEL_1G))); |
| pfn = end_pfn; |
| } |
| |
| /* tail is not big page (1G) alignment */ |
| start_pfn = round_up(pfn, PFN_DOWN(PMD_SIZE)); |
| end_pfn = round_down(limit_pfn, PFN_DOWN(PMD_SIZE)); |
| if (start_pfn < end_pfn) { |
| nr_range = save_mr(mr, nr_range, start_pfn, end_pfn, |
| page_size_mask & (1<<PG_LEVEL_2M)); |
| pfn = end_pfn; |
| } |
| #endif |
| |
| /* tail is not big page (2M) alignment */ |
| start_pfn = pfn; |
| end_pfn = limit_pfn; |
| nr_range = save_mr(mr, nr_range, start_pfn, end_pfn, 0); |
| |
| if (!after_bootmem) |
| adjust_range_page_size_mask(mr, nr_range); |
| |
| /* try to merge same page size and continuous */ |
| for (i = 0; nr_range > 1 && i < nr_range - 1; i++) { |
| unsigned long old_start; |
| if (mr[i].end != mr[i+1].start || |
| mr[i].page_size_mask != mr[i+1].page_size_mask) |
| continue; |
| /* move it */ |
| old_start = mr[i].start; |
| memmove(&mr[i], &mr[i+1], |
| (nr_range - 1 - i) * sizeof(struct map_range)); |
| mr[i--].start = old_start; |
| nr_range--; |
| } |
| |
| for (i = 0; i < nr_range; i++) |
| pr_debug(" [mem %#010lx-%#010lx] page %s\n", |
| mr[i].start, mr[i].end - 1, |
| page_size_string(&mr[i])); |
| |
| return nr_range; |
| } |
| |
| struct range pfn_mapped[E820_MAX_ENTRIES]; |
| int nr_pfn_mapped; |
| |
| static void add_pfn_range_mapped(unsigned long start_pfn, unsigned long end_pfn) |
| { |
| nr_pfn_mapped = add_range_with_merge(pfn_mapped, E820_MAX_ENTRIES, |
| nr_pfn_mapped, start_pfn, end_pfn); |
| nr_pfn_mapped = clean_sort_range(pfn_mapped, E820_MAX_ENTRIES); |
| |
| max_pfn_mapped = max(max_pfn_mapped, end_pfn); |
| |
| if (start_pfn < (1UL<<(32-PAGE_SHIFT))) |
| max_low_pfn_mapped = max(max_low_pfn_mapped, |
| min(end_pfn, 1UL<<(32-PAGE_SHIFT))); |
| } |
| |
| bool pfn_range_is_mapped(unsigned long start_pfn, unsigned long end_pfn) |
| { |
| int i; |
| |
| for (i = 0; i < nr_pfn_mapped; i++) |
| if ((start_pfn >= pfn_mapped[i].start) && |
| (end_pfn <= pfn_mapped[i].end)) |
| return true; |
| |
| return false; |
| } |
| |
| /* |
| * Setup the direct mapping of the physical memory at PAGE_OFFSET. |
| * This runs before bootmem is initialized and gets pages directly from |
| * the physical memory. To access them they are temporarily mapped. |
| */ |
| unsigned long __ref init_memory_mapping(unsigned long start, |
| unsigned long end) |
| { |
| struct map_range mr[NR_RANGE_MR]; |
| unsigned long ret = 0; |
| int nr_range, i; |
| |
| pr_debug("init_memory_mapping: [mem %#010lx-%#010lx]\n", |
| start, end - 1); |
| |
| memset(mr, 0, sizeof(mr)); |
| nr_range = split_mem_range(mr, 0, start, end); |
| |
| for (i = 0; i < nr_range; i++) |
| ret = kernel_physical_mapping_init(mr[i].start, mr[i].end, |
| mr[i].page_size_mask); |
| |
| add_pfn_range_mapped(start >> PAGE_SHIFT, ret >> PAGE_SHIFT); |
| |
| return ret >> PAGE_SHIFT; |
| } |
| |
| /* |
| * We need to iterate through the E820 memory map and create direct mappings |
| * for only E820_TYPE_RAM and E820_KERN_RESERVED regions. We cannot simply |
| * create direct mappings for all pfns from [0 to max_low_pfn) and |
| * [4GB to max_pfn) because of possible memory holes in high addresses |
| * that cannot be marked as UC by fixed/variable range MTRRs. |
| * Depending on the alignment of E820 ranges, this may possibly result |
| * in using smaller size (i.e. 4K instead of 2M or 1G) page tables. |
| * |
| * init_mem_mapping() calls init_range_memory_mapping() with big range. |
| * That range would have hole in the middle or ends, and only ram parts |
| * will be mapped in init_range_memory_mapping(). |
| */ |
| static unsigned long __init init_range_memory_mapping( |
| unsigned long r_start, |
| unsigned long r_end) |
| { |
| unsigned long start_pfn, end_pfn; |
| unsigned long mapped_ram_size = 0; |
| int i; |
| |
| for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, NULL) { |
| u64 start = clamp_val(PFN_PHYS(start_pfn), r_start, r_end); |
| u64 end = clamp_val(PFN_PHYS(end_pfn), r_start, r_end); |
| if (start >= end) |
| continue; |
| |
| /* |
| * if it is overlapping with brk pgt, we need to |
| * alloc pgt buf from memblock instead. |
| */ |
| can_use_brk_pgt = max(start, (u64)pgt_buf_end<<PAGE_SHIFT) >= |
| min(end, (u64)pgt_buf_top<<PAGE_SHIFT); |
| init_memory_mapping(start, end); |
| mapped_ram_size += end - start; |
| can_use_brk_pgt = true; |
| } |
| |
| return mapped_ram_size; |
| } |
| |
| static unsigned long __init get_new_step_size(unsigned long step_size) |
| { |
| /* |
| * Initial mapped size is PMD_SIZE (2M). |
| * We can not set step_size to be PUD_SIZE (1G) yet. |
| * In worse case, when we cross the 1G boundary, and |
| * PG_LEVEL_2M is not set, we will need 1+1+512 pages (2M + 8k) |
| * to map 1G range with PTE. Hence we use one less than the |
| * difference of page table level shifts. |
| * |
| * Don't need to worry about overflow in the top-down case, on 32bit, |
| * when step_size is 0, round_down() returns 0 for start, and that |
| * turns it into 0x100000000ULL. |
| * In the bottom-up case, round_up(x, 0) returns 0 though too, which |
| * needs to be taken into consideration by the code below. |
| */ |
| return step_size << (PMD_SHIFT - PAGE_SHIFT - 1); |
| } |
| |
| /** |
| * memory_map_top_down - Map [map_start, map_end) top down |
| * @map_start: start address of the target memory range |
| * @map_end: end address of the target memory range |
| * |
| * This function will setup direct mapping for memory range |
| * [map_start, map_end) in top-down. That said, the page tables |
| * will be allocated at the end of the memory, and we map the |
| * memory in top-down. |
| */ |
| static void __init memory_map_top_down(unsigned long map_start, |
| unsigned long map_end) |
| { |
| unsigned long real_end, start, last_start; |
| unsigned long step_size; |
| unsigned long addr; |
| unsigned long mapped_ram_size = 0; |
| |
| /* xen has big range in reserved near end of ram, skip it at first.*/ |
| addr = memblock_find_in_range(map_start, map_end, PMD_SIZE, PMD_SIZE); |
| real_end = addr + PMD_SIZE; |
| |
| /* step_size need to be small so pgt_buf from BRK could cover it */ |
| step_size = PMD_SIZE; |
| max_pfn_mapped = 0; /* will get exact value next */ |
| min_pfn_mapped = real_end >> PAGE_SHIFT; |
| last_start = start = real_end; |
| |
| /* |
| * We start from the top (end of memory) and go to the bottom. |
| * The memblock_find_in_range() gets us a block of RAM from the |
| * end of RAM in [min_pfn_mapped, max_pfn_mapped) used as new pages |
| * for page table. |
| */ |
| while (last_start > map_start) { |
| if (last_start > step_size) { |
| start = round_down(last_start - 1, step_size); |
| if (start < map_start) |
| start = map_start; |
| } else |
| start = map_start; |
| mapped_ram_size += init_range_memory_mapping(start, |
| last_start); |
| last_start = start; |
| min_pfn_mapped = last_start >> PAGE_SHIFT; |
| if (mapped_ram_size >= step_size) |
| step_size = get_new_step_size(step_size); |
| } |
| |
| if (real_end < map_end) |
| init_range_memory_mapping(real_end, map_end); |
| } |
| |
| /** |
| * memory_map_bottom_up - Map [map_start, map_end) bottom up |
| * @map_start: start address of the target memory range |
| * @map_end: end address of the target memory range |
| * |
| * This function will setup direct mapping for memory range |
| * [map_start, map_end) in bottom-up. Since we have limited the |
| * bottom-up allocation above the kernel, the page tables will |
| * be allocated just above the kernel and we map the memory |
| * in [map_start, map_end) in bottom-up. |
| */ |
| static void __init memory_map_bottom_up(unsigned long map_start, |
| unsigned long map_end) |
| { |
| unsigned long next, start; |
| unsigned long mapped_ram_size = 0; |
| /* step_size need to be small so pgt_buf from BRK could cover it */ |
| unsigned long step_size = PMD_SIZE; |
| |
| start = map_start; |
| min_pfn_mapped = start >> PAGE_SHIFT; |
| |
| /* |
| * We start from the bottom (@map_start) and go to the top (@map_end). |
| * The memblock_find_in_range() gets us a block of RAM from the |
| * end of RAM in [min_pfn_mapped, max_pfn_mapped) used as new pages |
| * for page table. |
| */ |
| while (start < map_end) { |
| if (step_size && map_end - start > step_size) { |
| next = round_up(start + 1, step_size); |
| if (next > map_end) |
| next = map_end; |
| } else { |
| next = map_end; |
| } |
| |
| mapped_ram_size += init_range_memory_mapping(start, next); |
| start = next; |
| |
| if (mapped_ram_size >= step_size) |
| step_size = get_new_step_size(step_size); |
| } |
| } |
| |
| void __init init_mem_mapping(void) |
| { |
| unsigned long end; |
| |
| pti_check_boottime_disable(); |
| probe_page_size_mask(); |
| setup_pcid(); |
| |
| #ifdef CONFIG_X86_64 |
| end = max_pfn << PAGE_SHIFT; |
| #else |
| end = max_low_pfn << PAGE_SHIFT; |
| #endif |
| |
| /* the ISA range is always mapped regardless of memory holes */ |
| init_memory_mapping(0, ISA_END_ADDRESS); |
| |
| /* Init the trampoline, possibly with KASLR memory offset */ |
| init_trampoline(); |
| |
| /* |
| * If the allocation is in bottom-up direction, we setup direct mapping |
| * in bottom-up, otherwise we setup direct mapping in top-down. |
| */ |
| if (memblock_bottom_up()) { |
| unsigned long kernel_end = __pa_symbol(_end); |
| |
| /* |
| * we need two separate calls here. This is because we want to |
| * allocate page tables above the kernel. So we first map |
| * [kernel_end, end) to make memory above the kernel be mapped |
| * as soon as possible. And then use page tables allocated above |
| * the kernel to map [ISA_END_ADDRESS, kernel_end). |
| */ |
| memory_map_bottom_up(kernel_end, end); |
| memory_map_bottom_up(ISA_END_ADDRESS, kernel_end); |
| } else { |
| memory_map_top_down(ISA_END_ADDRESS, end); |
| } |
| |
| #ifdef CONFIG_X86_64 |
| if (max_pfn > max_low_pfn) { |
| /* can we preseve max_low_pfn ?*/ |
| max_low_pfn = max_pfn; |
| } |
| #else |
| early_ioremap_page_table_range_init(); |
| #endif |
| |
| load_cr3(swapper_pg_dir); |
| __flush_tlb_all(); |
| |
| x86_init.hyper.init_mem_mapping(); |
| |
| early_memtest(0, max_pfn_mapped << PAGE_SHIFT); |
| } |
| |
| /* |
| * devmem_is_allowed() checks to see if /dev/mem access to a certain address |
| * is valid. The argument is a physical page number. |
| * |
| * On x86, access has to be given to the first megabyte of RAM because that |
| * area traditionally contains BIOS code and data regions used by X, dosemu, |
| * and similar apps. Since they map the entire memory range, the whole range |
| * must be allowed (for mapping), but any areas that would otherwise be |
| * disallowed are flagged as being "zero filled" instead of rejected. |
| * Access has to be given to non-kernel-ram areas as well, these contain the |
| * PCI mmio resources as well as potential bios/acpi data regions. |
| */ |
| int devmem_is_allowed(unsigned long pagenr) |
| { |
| if (region_intersects(PFN_PHYS(pagenr), PAGE_SIZE, |
| IORESOURCE_SYSTEM_RAM, IORES_DESC_NONE) |
| != REGION_DISJOINT) { |
| /* |
| * For disallowed memory regions in the low 1MB range, |
| * request that the page be shown as all zeros. |
| */ |
| if (pagenr < 256) |
| return 2; |
| |
| return 0; |
| } |
| |
| /* |
| * This must follow RAM test, since System RAM is considered a |
| * restricted resource under CONFIG_STRICT_IOMEM. |
| */ |
| if (iomem_is_exclusive(pagenr << PAGE_SHIFT)) { |
| /* Low 1MB bypasses iomem restrictions. */ |
| if (pagenr < 256) |
| return 1; |
| |
| return 0; |
| } |
| |
| return 1; |
| } |
| |
| void free_init_pages(const char *what, unsigned long begin, unsigned long end) |
| { |
| unsigned long begin_aligned, end_aligned; |
| |
| /* Make sure boundaries are page aligned */ |
| begin_aligned = PAGE_ALIGN(begin); |
| end_aligned = end & PAGE_MASK; |
| |
| if (WARN_ON(begin_aligned != begin || end_aligned != end)) { |
| begin = begin_aligned; |
| end = end_aligned; |
| } |
| |
| if (begin >= end) |
| return; |
| |
| /* |
| * If debugging page accesses then do not free this memory but |
| * mark them not present - any buggy init-section access will |
| * create a kernel page fault: |
| */ |
| if (debug_pagealloc_enabled()) { |
| pr_info("debug: unmapping init [mem %#010lx-%#010lx]\n", |
| begin, end - 1); |
| /* |
| * Inform kmemleak about the hole in the memory since the |
| * corresponding pages will be unmapped. |
| */ |
| kmemleak_free_part((void *)begin, end - begin); |
| set_memory_np(begin, (end - begin) >> PAGE_SHIFT); |
| } else { |
| /* |
| * We just marked the kernel text read only above, now that |
| * we are going to free part of that, we need to make that |
| * writeable and non-executable first. |
| */ |
| set_memory_nx(begin, (end - begin) >> PAGE_SHIFT); |
| set_memory_rw(begin, (end - begin) >> PAGE_SHIFT); |
| |
| free_reserved_area((void *)begin, (void *)end, |
| POISON_FREE_INITMEM, what); |
| } |
| } |
| |
| /* |
| * begin/end can be in the direct map or the "high kernel mapping" |
| * used for the kernel image only. free_init_pages() will do the |
| * right thing for either kind of address. |
| */ |
| void free_kernel_image_pages(void *begin, void *end) |
| { |
| unsigned long begin_ul = (unsigned long)begin; |
| unsigned long end_ul = (unsigned long)end; |
| unsigned long len_pages = (end_ul - begin_ul) >> PAGE_SHIFT; |
| |
| |
| free_init_pages("unused kernel image", begin_ul, end_ul); |
| |
| /* |
| * PTI maps some of the kernel into userspace. For performance, |
| * this includes some kernel areas that do not contain secrets. |
| * Those areas might be adjacent to the parts of the kernel image |
| * being freed, which may contain secrets. Remove the "high kernel |
| * image mapping" for these freed areas, ensuring they are not even |
| * potentially vulnerable to Meltdown regardless of the specific |
| * optimizations PTI is currently using. |
| * |
| * The "noalias" prevents unmapping the direct map alias which is |
| * needed to access the freed pages. |
| * |
| * This is only valid for 64bit kernels. 32bit has only one mapping |
| * which can't be treated in this way for obvious reasons. |
| */ |
| if (IS_ENABLED(CONFIG_X86_64) && cpu_feature_enabled(X86_FEATURE_PTI)) |
| set_memory_np_noalias(begin_ul, len_pages); |
| } |
| |
| void __weak mem_encrypt_free_decrypted_mem(void) { } |
| |
| void __ref free_initmem(void) |
| { |
| e820__reallocate_tables(); |
| |
| mem_encrypt_free_decrypted_mem(); |
| |
| free_kernel_image_pages(&__init_begin, &__init_end); |
| } |
| |
| #ifdef CONFIG_BLK_DEV_INITRD |
| void __init free_initrd_mem(unsigned long start, unsigned long end) |
| { |
| /* |
| * end could be not aligned, and We can not align that, |
| * decompresser could be confused by aligned initrd_end |
| * We already reserve the end partial page before in |
| * - i386_start_kernel() |
| * - x86_64_start_kernel() |
| * - relocate_initrd() |
| * So here We can do PAGE_ALIGN() safely to get partial page to be freed |
| */ |
| free_init_pages("initrd", start, PAGE_ALIGN(end)); |
| } |
| #endif |
| |
| /* |
| * Calculate the precise size of the DMA zone (first 16 MB of RAM), |
| * and pass it to the MM layer - to help it set zone watermarks more |
| * accurately. |
| * |
| * Done on 64-bit systems only for the time being, although 32-bit systems |
| * might benefit from this as well. |
| */ |
| void __init memblock_find_dma_reserve(void) |
| { |
| #ifdef CONFIG_X86_64 |
| u64 nr_pages = 0, nr_free_pages = 0; |
| unsigned long start_pfn, end_pfn; |
| phys_addr_t start_addr, end_addr; |
| int i; |
| u64 u; |
| |
| /* |
| * Iterate over all memory ranges (free and reserved ones alike), |
| * to calculate the total number of pages in the first 16 MB of RAM: |
| */ |
| nr_pages = 0; |
| for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, NULL) { |
| start_pfn = min(start_pfn, MAX_DMA_PFN); |
| end_pfn = min(end_pfn, MAX_DMA_PFN); |
| |
| nr_pages += end_pfn - start_pfn; |
| } |
| |
| /* |
| * Iterate over free memory ranges to calculate the number of free |
| * pages in the DMA zone, while not counting potential partial |
| * pages at the beginning or the end of the range: |
| */ |
| nr_free_pages = 0; |
| for_each_free_mem_range(u, NUMA_NO_NODE, MEMBLOCK_NONE, &start_addr, &end_addr, NULL) { |
| start_pfn = min_t(unsigned long, PFN_UP(start_addr), MAX_DMA_PFN); |
| end_pfn = min_t(unsigned long, PFN_DOWN(end_addr), MAX_DMA_PFN); |
| |
| if (start_pfn < end_pfn) |
| nr_free_pages += end_pfn - start_pfn; |
| } |
| |
| set_dma_reserve(nr_pages - nr_free_pages); |
| #endif |
| } |
| |
| void __init zone_sizes_init(void) |
| { |
| unsigned long max_zone_pfns[MAX_NR_ZONES]; |
| |
| memset(max_zone_pfns, 0, sizeof(max_zone_pfns)); |
| |
| #ifdef CONFIG_ZONE_DMA |
| max_zone_pfns[ZONE_DMA] = min(MAX_DMA_PFN, max_low_pfn); |
| #endif |
| #ifdef CONFIG_ZONE_DMA32 |
| max_zone_pfns[ZONE_DMA32] = min(MAX_DMA32_PFN, max_low_pfn); |
| #endif |
| max_zone_pfns[ZONE_NORMAL] = max_low_pfn; |
| #ifdef CONFIG_HIGHMEM |
| max_zone_pfns[ZONE_HIGHMEM] = max_pfn; |
| #endif |
| |
| free_area_init_nodes(max_zone_pfns); |
| } |
| |
| __visible DEFINE_PER_CPU_SHARED_ALIGNED(struct tlb_state, cpu_tlbstate) = { |
| .loaded_mm = &init_mm, |
| .next_asid = 1, |
| .cr4 = ~0UL, /* fail hard if we screw up cr4 shadow initialization */ |
| }; |
| EXPORT_PER_CPU_SYMBOL(cpu_tlbstate); |
| |
| void update_cache_mode_entry(unsigned entry, enum page_cache_mode cache) |
| { |
| /* entry 0 MUST be WB (hardwired to speed up translations) */ |
| BUG_ON(!entry && cache != _PAGE_CACHE_MODE_WB); |
| |
| __cachemode2pte_tbl[cache] = __cm_idx2pte(entry); |
| __pte2cachemode_tbl[entry] = cache; |
| } |
| |
| #ifdef CONFIG_SWAP |
| unsigned long max_swapfile_size(void) |
| { |
| unsigned long pages; |
| |
| pages = generic_max_swapfile_size(); |
| |
| if (boot_cpu_has_bug(X86_BUG_L1TF) && l1tf_mitigation != L1TF_MITIGATION_OFF) { |
| /* Limit the swap file size to MAX_PA/2 for L1TF workaround */ |
| unsigned long long l1tf_limit = l1tf_pfn_limit(); |
| /* |
| * We encode swap offsets also with 3 bits below those for pfn |
| * which makes the usable limit higher. |
| */ |
| #if CONFIG_PGTABLE_LEVELS > 2 |
| l1tf_limit <<= PAGE_SHIFT - SWP_OFFSET_FIRST_BIT; |
| #endif |
| pages = min_t(unsigned long long, l1tf_limit, pages); |
| } |
| return pages; |
| } |
| #endif |