| /******************************************************************************* |
| |
| Intel(R) Gigabit Ethernet Linux driver |
| Copyright(c) 2007 Intel Corporation. |
| |
| This program is free software; you can redistribute it and/or modify it |
| under the terms and conditions of the GNU General Public License, |
| version 2, as published by the Free Software Foundation. |
| |
| This program is distributed in the hope it will be useful, but WITHOUT |
| ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or |
| FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for |
| more details. |
| |
| You should have received a copy of the GNU General Public License along with |
| this program; if not, write to the Free Software Foundation, Inc., |
| 51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA. |
| |
| The full GNU General Public License is included in this distribution in |
| the file called "COPYING". |
| |
| Contact Information: |
| e1000-devel Mailing List <e1000-devel@lists.sourceforge.net> |
| Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497 |
| |
| *******************************************************************************/ |
| |
| /* ethtool support for igb */ |
| |
| #include <linux/vmalloc.h> |
| #include <linux/netdevice.h> |
| #include <linux/pci.h> |
| #include <linux/delay.h> |
| #include <linux/interrupt.h> |
| #include <linux/if_ether.h> |
| #include <linux/ethtool.h> |
| |
| #include "igb.h" |
| |
| struct igb_stats { |
| char stat_string[ETH_GSTRING_LEN]; |
| int sizeof_stat; |
| int stat_offset; |
| }; |
| |
| #define IGB_STAT(m) FIELD_SIZEOF(struct igb_adapter, m), \ |
| offsetof(struct igb_adapter, m) |
| static const struct igb_stats igb_gstrings_stats[] = { |
| { "rx_packets", IGB_STAT(stats.gprc) }, |
| { "tx_packets", IGB_STAT(stats.gptc) }, |
| { "rx_bytes", IGB_STAT(stats.gorc) }, |
| { "tx_bytes", IGB_STAT(stats.gotc) }, |
| { "rx_broadcast", IGB_STAT(stats.bprc) }, |
| { "tx_broadcast", IGB_STAT(stats.bptc) }, |
| { "rx_multicast", IGB_STAT(stats.mprc) }, |
| { "tx_multicast", IGB_STAT(stats.mptc) }, |
| { "rx_errors", IGB_STAT(net_stats.rx_errors) }, |
| { "tx_errors", IGB_STAT(net_stats.tx_errors) }, |
| { "tx_dropped", IGB_STAT(net_stats.tx_dropped) }, |
| { "multicast", IGB_STAT(stats.mprc) }, |
| { "collisions", IGB_STAT(stats.colc) }, |
| { "rx_length_errors", IGB_STAT(net_stats.rx_length_errors) }, |
| { "rx_over_errors", IGB_STAT(net_stats.rx_over_errors) }, |
| { "rx_crc_errors", IGB_STAT(stats.crcerrs) }, |
| { "rx_frame_errors", IGB_STAT(net_stats.rx_frame_errors) }, |
| { "rx_no_buffer_count", IGB_STAT(stats.rnbc) }, |
| { "rx_missed_errors", IGB_STAT(stats.mpc) }, |
| { "tx_aborted_errors", IGB_STAT(stats.ecol) }, |
| { "tx_carrier_errors", IGB_STAT(stats.tncrs) }, |
| { "tx_fifo_errors", IGB_STAT(net_stats.tx_fifo_errors) }, |
| { "tx_heartbeat_errors", IGB_STAT(net_stats.tx_heartbeat_errors) }, |
| { "tx_window_errors", IGB_STAT(stats.latecol) }, |
| { "tx_abort_late_coll", IGB_STAT(stats.latecol) }, |
| { "tx_deferred_ok", IGB_STAT(stats.dc) }, |
| { "tx_single_coll_ok", IGB_STAT(stats.scc) }, |
| { "tx_multi_coll_ok", IGB_STAT(stats.mcc) }, |
| { "tx_timeout_count", IGB_STAT(tx_timeout_count) }, |
| { "tx_restart_queue", IGB_STAT(restart_queue) }, |
| { "rx_long_length_errors", IGB_STAT(stats.roc) }, |
| { "rx_short_length_errors", IGB_STAT(stats.ruc) }, |
| { "rx_align_errors", IGB_STAT(stats.algnerrc) }, |
| { "tx_tcp_seg_good", IGB_STAT(stats.tsctc) }, |
| { "tx_tcp_seg_failed", IGB_STAT(stats.tsctfc) }, |
| { "rx_flow_control_xon", IGB_STAT(stats.xonrxc) }, |
| { "rx_flow_control_xoff", IGB_STAT(stats.xoffrxc) }, |
| { "tx_flow_control_xon", IGB_STAT(stats.xontxc) }, |
| { "tx_flow_control_xoff", IGB_STAT(stats.xofftxc) }, |
| { "rx_long_byte_count", IGB_STAT(stats.gorc) }, |
| { "rx_csum_offload_good", IGB_STAT(hw_csum_good) }, |
| { "rx_csum_offload_errors", IGB_STAT(hw_csum_err) }, |
| { "rx_header_split", IGB_STAT(rx_hdr_split) }, |
| { "alloc_rx_buff_failed", IGB_STAT(alloc_rx_buff_failed) }, |
| { "tx_smbus", IGB_STAT(stats.mgptc) }, |
| { "rx_smbus", IGB_STAT(stats.mgprc) }, |
| { "dropped_smbus", IGB_STAT(stats.mgpdc) }, |
| }; |
| |
| #define IGB_QUEUE_STATS_LEN \ |
| ((((struct igb_adapter *)netdev->priv)->num_rx_queues + \ |
| ((struct igb_adapter *)netdev->priv)->num_tx_queues) * \ |
| (sizeof(struct igb_queue_stats) / sizeof(u64))) |
| #define IGB_GLOBAL_STATS_LEN \ |
| sizeof(igb_gstrings_stats) / sizeof(struct igb_stats) |
| #define IGB_STATS_LEN (IGB_GLOBAL_STATS_LEN + IGB_QUEUE_STATS_LEN) |
| static const char igb_gstrings_test[][ETH_GSTRING_LEN] = { |
| "Register test (offline)", "Eeprom test (offline)", |
| "Interrupt test (offline)", "Loopback test (offline)", |
| "Link test (on/offline)" |
| }; |
| #define IGB_TEST_LEN sizeof(igb_gstrings_test) / ETH_GSTRING_LEN |
| |
| static int igb_get_settings(struct net_device *netdev, struct ethtool_cmd *ecmd) |
| { |
| struct igb_adapter *adapter = netdev_priv(netdev); |
| struct e1000_hw *hw = &adapter->hw; |
| |
| if (hw->phy.media_type == e1000_media_type_copper) { |
| |
| ecmd->supported = (SUPPORTED_10baseT_Half | |
| SUPPORTED_10baseT_Full | |
| SUPPORTED_100baseT_Half | |
| SUPPORTED_100baseT_Full | |
| SUPPORTED_1000baseT_Full| |
| SUPPORTED_Autoneg | |
| SUPPORTED_TP); |
| ecmd->advertising = ADVERTISED_TP; |
| |
| if (hw->mac.autoneg == 1) { |
| ecmd->advertising |= ADVERTISED_Autoneg; |
| /* the e1000 autoneg seems to match ethtool nicely */ |
| ecmd->advertising |= hw->phy.autoneg_advertised; |
| } |
| |
| ecmd->port = PORT_TP; |
| ecmd->phy_address = hw->phy.addr; |
| } else { |
| ecmd->supported = (SUPPORTED_1000baseT_Full | |
| SUPPORTED_FIBRE | |
| SUPPORTED_Autoneg); |
| |
| ecmd->advertising = (ADVERTISED_1000baseT_Full | |
| ADVERTISED_FIBRE | |
| ADVERTISED_Autoneg); |
| |
| ecmd->port = PORT_FIBRE; |
| } |
| |
| ecmd->transceiver = XCVR_INTERNAL; |
| |
| if (rd32(E1000_STATUS) & E1000_STATUS_LU) { |
| |
| adapter->hw.mac.ops.get_speed_and_duplex(hw, |
| &adapter->link_speed, |
| &adapter->link_duplex); |
| ecmd->speed = adapter->link_speed; |
| |
| /* unfortunately FULL_DUPLEX != DUPLEX_FULL |
| * and HALF_DUPLEX != DUPLEX_HALF */ |
| |
| if (adapter->link_duplex == FULL_DUPLEX) |
| ecmd->duplex = DUPLEX_FULL; |
| else |
| ecmd->duplex = DUPLEX_HALF; |
| } else { |
| ecmd->speed = -1; |
| ecmd->duplex = -1; |
| } |
| |
| ecmd->autoneg = ((hw->phy.media_type == e1000_media_type_fiber) || |
| hw->mac.autoneg) ? AUTONEG_ENABLE : AUTONEG_DISABLE; |
| return 0; |
| } |
| |
| static int igb_set_settings(struct net_device *netdev, struct ethtool_cmd *ecmd) |
| { |
| struct igb_adapter *adapter = netdev_priv(netdev); |
| struct e1000_hw *hw = &adapter->hw; |
| |
| /* When SoL/IDER sessions are active, autoneg/speed/duplex |
| * cannot be changed */ |
| if (igb_check_reset_block(hw)) { |
| dev_err(&adapter->pdev->dev, "Cannot change link " |
| "characteristics when SoL/IDER is active.\n"); |
| return -EINVAL; |
| } |
| |
| while (test_and_set_bit(__IGB_RESETTING, &adapter->state)) |
| msleep(1); |
| |
| if (ecmd->autoneg == AUTONEG_ENABLE) { |
| hw->mac.autoneg = 1; |
| if (hw->phy.media_type == e1000_media_type_fiber) |
| hw->phy.autoneg_advertised = ADVERTISED_1000baseT_Full | |
| ADVERTISED_FIBRE | |
| ADVERTISED_Autoneg; |
| else |
| hw->phy.autoneg_advertised = ecmd->advertising | |
| ADVERTISED_TP | |
| ADVERTISED_Autoneg; |
| ecmd->advertising = hw->phy.autoneg_advertised; |
| } else |
| if (igb_set_spd_dplx(adapter, ecmd->speed + ecmd->duplex)) { |
| clear_bit(__IGB_RESETTING, &adapter->state); |
| return -EINVAL; |
| } |
| |
| /* reset the link */ |
| |
| if (netif_running(adapter->netdev)) { |
| igb_down(adapter); |
| igb_up(adapter); |
| } else |
| igb_reset(adapter); |
| |
| clear_bit(__IGB_RESETTING, &adapter->state); |
| return 0; |
| } |
| |
| static void igb_get_pauseparam(struct net_device *netdev, |
| struct ethtool_pauseparam *pause) |
| { |
| struct igb_adapter *adapter = netdev_priv(netdev); |
| struct e1000_hw *hw = &adapter->hw; |
| |
| pause->autoneg = |
| (adapter->fc_autoneg ? AUTONEG_ENABLE : AUTONEG_DISABLE); |
| |
| if (hw->fc.type == e1000_fc_rx_pause) |
| pause->rx_pause = 1; |
| else if (hw->fc.type == e1000_fc_tx_pause) |
| pause->tx_pause = 1; |
| else if (hw->fc.type == e1000_fc_full) { |
| pause->rx_pause = 1; |
| pause->tx_pause = 1; |
| } |
| } |
| |
| static int igb_set_pauseparam(struct net_device *netdev, |
| struct ethtool_pauseparam *pause) |
| { |
| struct igb_adapter *adapter = netdev_priv(netdev); |
| struct e1000_hw *hw = &adapter->hw; |
| int retval = 0; |
| |
| adapter->fc_autoneg = pause->autoneg; |
| |
| while (test_and_set_bit(__IGB_RESETTING, &adapter->state)) |
| msleep(1); |
| |
| if (pause->rx_pause && pause->tx_pause) |
| hw->fc.type = e1000_fc_full; |
| else if (pause->rx_pause && !pause->tx_pause) |
| hw->fc.type = e1000_fc_rx_pause; |
| else if (!pause->rx_pause && pause->tx_pause) |
| hw->fc.type = e1000_fc_tx_pause; |
| else if (!pause->rx_pause && !pause->tx_pause) |
| hw->fc.type = e1000_fc_none; |
| |
| hw->fc.original_type = hw->fc.type; |
| |
| if (adapter->fc_autoneg == AUTONEG_ENABLE) { |
| if (netif_running(adapter->netdev)) { |
| igb_down(adapter); |
| igb_up(adapter); |
| } else |
| igb_reset(adapter); |
| } else |
| retval = ((hw->phy.media_type == e1000_media_type_fiber) ? |
| igb_setup_link(hw) : igb_force_mac_fc(hw)); |
| |
| clear_bit(__IGB_RESETTING, &adapter->state); |
| return retval; |
| } |
| |
| static u32 igb_get_rx_csum(struct net_device *netdev) |
| { |
| struct igb_adapter *adapter = netdev_priv(netdev); |
| return adapter->rx_csum; |
| } |
| |
| static int igb_set_rx_csum(struct net_device *netdev, u32 data) |
| { |
| struct igb_adapter *adapter = netdev_priv(netdev); |
| adapter->rx_csum = data; |
| |
| return 0; |
| } |
| |
| static u32 igb_get_tx_csum(struct net_device *netdev) |
| { |
| return (netdev->features & NETIF_F_HW_CSUM) != 0; |
| } |
| |
| static int igb_set_tx_csum(struct net_device *netdev, u32 data) |
| { |
| if (data) |
| netdev->features |= NETIF_F_HW_CSUM; |
| else |
| netdev->features &= ~NETIF_F_HW_CSUM; |
| |
| return 0; |
| } |
| |
| static int igb_set_tso(struct net_device *netdev, u32 data) |
| { |
| struct igb_adapter *adapter = netdev_priv(netdev); |
| |
| if (data) |
| netdev->features |= NETIF_F_TSO; |
| else |
| netdev->features &= ~NETIF_F_TSO; |
| |
| if (data) |
| netdev->features |= NETIF_F_TSO6; |
| else |
| netdev->features &= ~NETIF_F_TSO6; |
| |
| dev_info(&adapter->pdev->dev, "TSO is %s\n", |
| data ? "Enabled" : "Disabled"); |
| return 0; |
| } |
| |
| static u32 igb_get_msglevel(struct net_device *netdev) |
| { |
| struct igb_adapter *adapter = netdev_priv(netdev); |
| return adapter->msg_enable; |
| } |
| |
| static void igb_set_msglevel(struct net_device *netdev, u32 data) |
| { |
| struct igb_adapter *adapter = netdev_priv(netdev); |
| adapter->msg_enable = data; |
| } |
| |
| static int igb_get_regs_len(struct net_device *netdev) |
| { |
| #define IGB_REGS_LEN 551 |
| return IGB_REGS_LEN * sizeof(u32); |
| } |
| |
| static void igb_get_regs(struct net_device *netdev, |
| struct ethtool_regs *regs, void *p) |
| { |
| struct igb_adapter *adapter = netdev_priv(netdev); |
| struct e1000_hw *hw = &adapter->hw; |
| u32 *regs_buff = p; |
| u8 i; |
| |
| memset(p, 0, IGB_REGS_LEN * sizeof(u32)); |
| |
| regs->version = (1 << 24) | (hw->revision_id << 16) | hw->device_id; |
| |
| /* General Registers */ |
| regs_buff[0] = rd32(E1000_CTRL); |
| regs_buff[1] = rd32(E1000_STATUS); |
| regs_buff[2] = rd32(E1000_CTRL_EXT); |
| regs_buff[3] = rd32(E1000_MDIC); |
| regs_buff[4] = rd32(E1000_SCTL); |
| regs_buff[5] = rd32(E1000_CONNSW); |
| regs_buff[6] = rd32(E1000_VET); |
| regs_buff[7] = rd32(E1000_LEDCTL); |
| regs_buff[8] = rd32(E1000_PBA); |
| regs_buff[9] = rd32(E1000_PBS); |
| regs_buff[10] = rd32(E1000_FRTIMER); |
| regs_buff[11] = rd32(E1000_TCPTIMER); |
| |
| /* NVM Register */ |
| regs_buff[12] = rd32(E1000_EECD); |
| |
| /* Interrupt */ |
| regs_buff[13] = rd32(E1000_EICR); |
| regs_buff[14] = rd32(E1000_EICS); |
| regs_buff[15] = rd32(E1000_EIMS); |
| regs_buff[16] = rd32(E1000_EIMC); |
| regs_buff[17] = rd32(E1000_EIAC); |
| regs_buff[18] = rd32(E1000_EIAM); |
| regs_buff[19] = rd32(E1000_ICR); |
| regs_buff[20] = rd32(E1000_ICS); |
| regs_buff[21] = rd32(E1000_IMS); |
| regs_buff[22] = rd32(E1000_IMC); |
| regs_buff[23] = rd32(E1000_IAC); |
| regs_buff[24] = rd32(E1000_IAM); |
| regs_buff[25] = rd32(E1000_IMIRVP); |
| |
| /* Flow Control */ |
| regs_buff[26] = rd32(E1000_FCAL); |
| regs_buff[27] = rd32(E1000_FCAH); |
| regs_buff[28] = rd32(E1000_FCTTV); |
| regs_buff[29] = rd32(E1000_FCRTL); |
| regs_buff[30] = rd32(E1000_FCRTH); |
| regs_buff[31] = rd32(E1000_FCRTV); |
| |
| /* Receive */ |
| regs_buff[32] = rd32(E1000_RCTL); |
| regs_buff[33] = rd32(E1000_RXCSUM); |
| regs_buff[34] = rd32(E1000_RLPML); |
| regs_buff[35] = rd32(E1000_RFCTL); |
| regs_buff[36] = rd32(E1000_MRQC); |
| regs_buff[37] = rd32(E1000_VMD_CTL); |
| |
| /* Transmit */ |
| regs_buff[38] = rd32(E1000_TCTL); |
| regs_buff[39] = rd32(E1000_TCTL_EXT); |
| regs_buff[40] = rd32(E1000_TIPG); |
| regs_buff[41] = rd32(E1000_DTXCTL); |
| |
| /* Wake Up */ |
| regs_buff[42] = rd32(E1000_WUC); |
| regs_buff[43] = rd32(E1000_WUFC); |
| regs_buff[44] = rd32(E1000_WUS); |
| regs_buff[45] = rd32(E1000_IPAV); |
| regs_buff[46] = rd32(E1000_WUPL); |
| |
| /* MAC */ |
| regs_buff[47] = rd32(E1000_PCS_CFG0); |
| regs_buff[48] = rd32(E1000_PCS_LCTL); |
| regs_buff[49] = rd32(E1000_PCS_LSTAT); |
| regs_buff[50] = rd32(E1000_PCS_ANADV); |
| regs_buff[51] = rd32(E1000_PCS_LPAB); |
| regs_buff[52] = rd32(E1000_PCS_NPTX); |
| regs_buff[53] = rd32(E1000_PCS_LPABNP); |
| |
| /* Statistics */ |
| regs_buff[54] = adapter->stats.crcerrs; |
| regs_buff[55] = adapter->stats.algnerrc; |
| regs_buff[56] = adapter->stats.symerrs; |
| regs_buff[57] = adapter->stats.rxerrc; |
| regs_buff[58] = adapter->stats.mpc; |
| regs_buff[59] = adapter->stats.scc; |
| regs_buff[60] = adapter->stats.ecol; |
| regs_buff[61] = adapter->stats.mcc; |
| regs_buff[62] = adapter->stats.latecol; |
| regs_buff[63] = adapter->stats.colc; |
| regs_buff[64] = adapter->stats.dc; |
| regs_buff[65] = adapter->stats.tncrs; |
| regs_buff[66] = adapter->stats.sec; |
| regs_buff[67] = adapter->stats.htdpmc; |
| regs_buff[68] = adapter->stats.rlec; |
| regs_buff[69] = adapter->stats.xonrxc; |
| regs_buff[70] = adapter->stats.xontxc; |
| regs_buff[71] = adapter->stats.xoffrxc; |
| regs_buff[72] = adapter->stats.xofftxc; |
| regs_buff[73] = adapter->stats.fcruc; |
| regs_buff[74] = adapter->stats.prc64; |
| regs_buff[75] = adapter->stats.prc127; |
| regs_buff[76] = adapter->stats.prc255; |
| regs_buff[77] = adapter->stats.prc511; |
| regs_buff[78] = adapter->stats.prc1023; |
| regs_buff[79] = adapter->stats.prc1522; |
| regs_buff[80] = adapter->stats.gprc; |
| regs_buff[81] = adapter->stats.bprc; |
| regs_buff[82] = adapter->stats.mprc; |
| regs_buff[83] = adapter->stats.gptc; |
| regs_buff[84] = adapter->stats.gorc; |
| regs_buff[86] = adapter->stats.gotc; |
| regs_buff[88] = adapter->stats.rnbc; |
| regs_buff[89] = adapter->stats.ruc; |
| regs_buff[90] = adapter->stats.rfc; |
| regs_buff[91] = adapter->stats.roc; |
| regs_buff[92] = adapter->stats.rjc; |
| regs_buff[93] = adapter->stats.mgprc; |
| regs_buff[94] = adapter->stats.mgpdc; |
| regs_buff[95] = adapter->stats.mgptc; |
| regs_buff[96] = adapter->stats.tor; |
| regs_buff[98] = adapter->stats.tot; |
| regs_buff[100] = adapter->stats.tpr; |
| regs_buff[101] = adapter->stats.tpt; |
| regs_buff[102] = adapter->stats.ptc64; |
| regs_buff[103] = adapter->stats.ptc127; |
| regs_buff[104] = adapter->stats.ptc255; |
| regs_buff[105] = adapter->stats.ptc511; |
| regs_buff[106] = adapter->stats.ptc1023; |
| regs_buff[107] = adapter->stats.ptc1522; |
| regs_buff[108] = adapter->stats.mptc; |
| regs_buff[109] = adapter->stats.bptc; |
| regs_buff[110] = adapter->stats.tsctc; |
| regs_buff[111] = adapter->stats.iac; |
| regs_buff[112] = adapter->stats.rpthc; |
| regs_buff[113] = adapter->stats.hgptc; |
| regs_buff[114] = adapter->stats.hgorc; |
| regs_buff[116] = adapter->stats.hgotc; |
| regs_buff[118] = adapter->stats.lenerrs; |
| regs_buff[119] = adapter->stats.scvpc; |
| regs_buff[120] = adapter->stats.hrmpc; |
| |
| /* These should probably be added to e1000_regs.h instead */ |
| #define E1000_PSRTYPE_REG(_i) (0x05480 + ((_i) * 4)) |
| #define E1000_RAL(_i) (0x05400 + ((_i) * 8)) |
| #define E1000_RAH(_i) (0x05404 + ((_i) * 8)) |
| #define E1000_IP4AT_REG(_i) (0x05840 + ((_i) * 8)) |
| #define E1000_IP6AT_REG(_i) (0x05880 + ((_i) * 4)) |
| #define E1000_WUPM_REG(_i) (0x05A00 + ((_i) * 4)) |
| #define E1000_FFMT_REG(_i) (0x09000 + ((_i) * 8)) |
| #define E1000_FFVT_REG(_i) (0x09800 + ((_i) * 8)) |
| #define E1000_FFLT_REG(_i) (0x05F00 + ((_i) * 8)) |
| |
| for (i = 0; i < 4; i++) |
| regs_buff[121 + i] = rd32(E1000_SRRCTL(i)); |
| for (i = 0; i < 4; i++) |
| regs_buff[125 + i] = rd32(E1000_PSRTYPE_REG(i)); |
| for (i = 0; i < 4; i++) |
| regs_buff[129 + i] = rd32(E1000_RDBAL(i)); |
| for (i = 0; i < 4; i++) |
| regs_buff[133 + i] = rd32(E1000_RDBAH(i)); |
| for (i = 0; i < 4; i++) |
| regs_buff[137 + i] = rd32(E1000_RDLEN(i)); |
| for (i = 0; i < 4; i++) |
| regs_buff[141 + i] = rd32(E1000_RDH(i)); |
| for (i = 0; i < 4; i++) |
| regs_buff[145 + i] = rd32(E1000_RDT(i)); |
| for (i = 0; i < 4; i++) |
| regs_buff[149 + i] = rd32(E1000_RXDCTL(i)); |
| |
| for (i = 0; i < 10; i++) |
| regs_buff[153 + i] = rd32(E1000_EITR(i)); |
| for (i = 0; i < 8; i++) |
| regs_buff[163 + i] = rd32(E1000_IMIR(i)); |
| for (i = 0; i < 8; i++) |
| regs_buff[171 + i] = rd32(E1000_IMIREXT(i)); |
| for (i = 0; i < 16; i++) |
| regs_buff[179 + i] = rd32(E1000_RAL(i)); |
| for (i = 0; i < 16; i++) |
| regs_buff[195 + i] = rd32(E1000_RAH(i)); |
| |
| for (i = 0; i < 4; i++) |
| regs_buff[211 + i] = rd32(E1000_TDBAL(i)); |
| for (i = 0; i < 4; i++) |
| regs_buff[215 + i] = rd32(E1000_TDBAH(i)); |
| for (i = 0; i < 4; i++) |
| regs_buff[219 + i] = rd32(E1000_TDLEN(i)); |
| for (i = 0; i < 4; i++) |
| regs_buff[223 + i] = rd32(E1000_TDH(i)); |
| for (i = 0; i < 4; i++) |
| regs_buff[227 + i] = rd32(E1000_TDT(i)); |
| for (i = 0; i < 4; i++) |
| regs_buff[231 + i] = rd32(E1000_TXDCTL(i)); |
| for (i = 0; i < 4; i++) |
| regs_buff[235 + i] = rd32(E1000_TDWBAL(i)); |
| for (i = 0; i < 4; i++) |
| regs_buff[239 + i] = rd32(E1000_TDWBAH(i)); |
| for (i = 0; i < 4; i++) |
| regs_buff[243 + i] = rd32(E1000_DCA_TXCTRL(i)); |
| |
| for (i = 0; i < 4; i++) |
| regs_buff[247 + i] = rd32(E1000_IP4AT_REG(i)); |
| for (i = 0; i < 4; i++) |
| regs_buff[251 + i] = rd32(E1000_IP6AT_REG(i)); |
| for (i = 0; i < 32; i++) |
| regs_buff[255 + i] = rd32(E1000_WUPM_REG(i)); |
| for (i = 0; i < 128; i++) |
| regs_buff[287 + i] = rd32(E1000_FFMT_REG(i)); |
| for (i = 0; i < 128; i++) |
| regs_buff[415 + i] = rd32(E1000_FFVT_REG(i)); |
| for (i = 0; i < 4; i++) |
| regs_buff[543 + i] = rd32(E1000_FFLT_REG(i)); |
| |
| regs_buff[547] = rd32(E1000_TDFH); |
| regs_buff[548] = rd32(E1000_TDFT); |
| regs_buff[549] = rd32(E1000_TDFHS); |
| regs_buff[550] = rd32(E1000_TDFPC); |
| |
| } |
| |
| static int igb_get_eeprom_len(struct net_device *netdev) |
| { |
| struct igb_adapter *adapter = netdev_priv(netdev); |
| return adapter->hw.nvm.word_size * 2; |
| } |
| |
| static int igb_get_eeprom(struct net_device *netdev, |
| struct ethtool_eeprom *eeprom, u8 *bytes) |
| { |
| struct igb_adapter *adapter = netdev_priv(netdev); |
| struct e1000_hw *hw = &adapter->hw; |
| u16 *eeprom_buff; |
| int first_word, last_word; |
| int ret_val = 0; |
| u16 i; |
| |
| if (eeprom->len == 0) |
| return -EINVAL; |
| |
| eeprom->magic = hw->vendor_id | (hw->device_id << 16); |
| |
| first_word = eeprom->offset >> 1; |
| last_word = (eeprom->offset + eeprom->len - 1) >> 1; |
| |
| eeprom_buff = kmalloc(sizeof(u16) * |
| (last_word - first_word + 1), GFP_KERNEL); |
| if (!eeprom_buff) |
| return -ENOMEM; |
| |
| if (hw->nvm.type == e1000_nvm_eeprom_spi) |
| ret_val = hw->nvm.ops.read_nvm(hw, first_word, |
| last_word - first_word + 1, |
| eeprom_buff); |
| else { |
| for (i = 0; i < last_word - first_word + 1; i++) { |
| ret_val = hw->nvm.ops.read_nvm(hw, first_word + i, 1, |
| &eeprom_buff[i]); |
| if (ret_val) |
| break; |
| } |
| } |
| |
| /* Device's eeprom is always little-endian, word addressable */ |
| for (i = 0; i < last_word - first_word + 1; i++) |
| le16_to_cpus(&eeprom_buff[i]); |
| |
| memcpy(bytes, (u8 *)eeprom_buff + (eeprom->offset & 1), |
| eeprom->len); |
| kfree(eeprom_buff); |
| |
| return ret_val; |
| } |
| |
| static int igb_set_eeprom(struct net_device *netdev, |
| struct ethtool_eeprom *eeprom, u8 *bytes) |
| { |
| struct igb_adapter *adapter = netdev_priv(netdev); |
| struct e1000_hw *hw = &adapter->hw; |
| u16 *eeprom_buff; |
| void *ptr; |
| int max_len, first_word, last_word, ret_val = 0; |
| u16 i; |
| |
| if (eeprom->len == 0) |
| return -EOPNOTSUPP; |
| |
| if (eeprom->magic != (hw->vendor_id | (hw->device_id << 16))) |
| return -EFAULT; |
| |
| max_len = hw->nvm.word_size * 2; |
| |
| first_word = eeprom->offset >> 1; |
| last_word = (eeprom->offset + eeprom->len - 1) >> 1; |
| eeprom_buff = kmalloc(max_len, GFP_KERNEL); |
| if (!eeprom_buff) |
| return -ENOMEM; |
| |
| ptr = (void *)eeprom_buff; |
| |
| if (eeprom->offset & 1) { |
| /* need read/modify/write of first changed EEPROM word */ |
| /* only the second byte of the word is being modified */ |
| ret_val = hw->nvm.ops.read_nvm(hw, first_word, 1, |
| &eeprom_buff[0]); |
| ptr++; |
| } |
| if (((eeprom->offset + eeprom->len) & 1) && (ret_val == 0)) { |
| /* need read/modify/write of last changed EEPROM word */ |
| /* only the first byte of the word is being modified */ |
| ret_val = hw->nvm.ops.read_nvm(hw, last_word, 1, |
| &eeprom_buff[last_word - first_word]); |
| } |
| |
| /* Device's eeprom is always little-endian, word addressable */ |
| for (i = 0; i < last_word - first_word + 1; i++) |
| le16_to_cpus(&eeprom_buff[i]); |
| |
| memcpy(ptr, bytes, eeprom->len); |
| |
| for (i = 0; i < last_word - first_word + 1; i++) |
| eeprom_buff[i] = cpu_to_le16(eeprom_buff[i]); |
| |
| ret_val = hw->nvm.ops.write_nvm(hw, first_word, |
| last_word - first_word + 1, eeprom_buff); |
| |
| /* Update the checksum over the first part of the EEPROM if needed |
| * and flush shadow RAM for 82573 controllers */ |
| if ((ret_val == 0) && ((first_word <= NVM_CHECKSUM_REG))) |
| igb_update_nvm_checksum(hw); |
| |
| kfree(eeprom_buff); |
| return ret_val; |
| } |
| |
| static void igb_get_drvinfo(struct net_device *netdev, |
| struct ethtool_drvinfo *drvinfo) |
| { |
| struct igb_adapter *adapter = netdev_priv(netdev); |
| char firmware_version[32]; |
| u16 eeprom_data; |
| |
| strncpy(drvinfo->driver, igb_driver_name, 32); |
| strncpy(drvinfo->version, igb_driver_version, 32); |
| |
| /* EEPROM image version # is reported as firmware version # for |
| * 82575 controllers */ |
| adapter->hw.nvm.ops.read_nvm(&adapter->hw, 5, 1, &eeprom_data); |
| sprintf(firmware_version, "%d.%d-%d", |
| (eeprom_data & 0xF000) >> 12, |
| (eeprom_data & 0x0FF0) >> 4, |
| eeprom_data & 0x000F); |
| |
| strncpy(drvinfo->fw_version, firmware_version, 32); |
| strncpy(drvinfo->bus_info, pci_name(adapter->pdev), 32); |
| drvinfo->n_stats = IGB_STATS_LEN; |
| drvinfo->testinfo_len = IGB_TEST_LEN; |
| drvinfo->regdump_len = igb_get_regs_len(netdev); |
| drvinfo->eedump_len = igb_get_eeprom_len(netdev); |
| } |
| |
| static void igb_get_ringparam(struct net_device *netdev, |
| struct ethtool_ringparam *ring) |
| { |
| struct igb_adapter *adapter = netdev_priv(netdev); |
| struct igb_ring *tx_ring = adapter->tx_ring; |
| struct igb_ring *rx_ring = adapter->rx_ring; |
| |
| ring->rx_max_pending = IGB_MAX_RXD; |
| ring->tx_max_pending = IGB_MAX_TXD; |
| ring->rx_mini_max_pending = 0; |
| ring->rx_jumbo_max_pending = 0; |
| ring->rx_pending = rx_ring->count; |
| ring->tx_pending = tx_ring->count; |
| ring->rx_mini_pending = 0; |
| ring->rx_jumbo_pending = 0; |
| } |
| |
| static int igb_set_ringparam(struct net_device *netdev, |
| struct ethtool_ringparam *ring) |
| { |
| struct igb_adapter *adapter = netdev_priv(netdev); |
| struct igb_buffer *old_buf; |
| struct igb_buffer *old_rx_buf; |
| void *old_desc; |
| int i, err; |
| u32 new_rx_count, new_tx_count, old_size; |
| dma_addr_t old_dma; |
| |
| if ((ring->rx_mini_pending) || (ring->rx_jumbo_pending)) |
| return -EINVAL; |
| |
| new_rx_count = max(ring->rx_pending, (u32)IGB_MIN_RXD); |
| new_rx_count = min(new_rx_count, (u32)IGB_MAX_RXD); |
| new_rx_count = ALIGN(new_rx_count, REQ_RX_DESCRIPTOR_MULTIPLE); |
| |
| new_tx_count = max(ring->tx_pending, (u32)IGB_MIN_TXD); |
| new_tx_count = min(new_tx_count, (u32)IGB_MAX_TXD); |
| new_tx_count = ALIGN(new_tx_count, REQ_TX_DESCRIPTOR_MULTIPLE); |
| |
| if ((new_tx_count == adapter->tx_ring->count) && |
| (new_rx_count == adapter->rx_ring->count)) { |
| /* nothing to do */ |
| return 0; |
| } |
| |
| while (test_and_set_bit(__IGB_RESETTING, &adapter->state)) |
| msleep(1); |
| |
| if (netif_running(adapter->netdev)) |
| igb_down(adapter); |
| |
| /* |
| * We can't just free everything and then setup again, |
| * because the ISRs in MSI-X mode get passed pointers |
| * to the tx and rx ring structs. |
| */ |
| if (new_tx_count != adapter->tx_ring->count) { |
| for (i = 0; i < adapter->num_tx_queues; i++) { |
| /* Save existing descriptor ring */ |
| old_buf = adapter->tx_ring[i].buffer_info; |
| old_desc = adapter->tx_ring[i].desc; |
| old_size = adapter->tx_ring[i].size; |
| old_dma = adapter->tx_ring[i].dma; |
| /* Try to allocate a new one */ |
| adapter->tx_ring[i].buffer_info = NULL; |
| adapter->tx_ring[i].desc = NULL; |
| adapter->tx_ring[i].count = new_tx_count; |
| err = igb_setup_tx_resources(adapter, |
| &adapter->tx_ring[i]); |
| if (err) { |
| /* Restore the old one so at least |
| the adapter still works, even if |
| we failed the request */ |
| adapter->tx_ring[i].buffer_info = old_buf; |
| adapter->tx_ring[i].desc = old_desc; |
| adapter->tx_ring[i].size = old_size; |
| adapter->tx_ring[i].dma = old_dma; |
| goto err_setup; |
| } |
| /* Free the old buffer manually */ |
| vfree(old_buf); |
| pci_free_consistent(adapter->pdev, old_size, |
| old_desc, old_dma); |
| } |
| } |
| |
| if (new_rx_count != adapter->rx_ring->count) { |
| for (i = 0; i < adapter->num_rx_queues; i++) { |
| |
| old_rx_buf = adapter->rx_ring[i].buffer_info; |
| old_desc = adapter->rx_ring[i].desc; |
| old_size = adapter->rx_ring[i].size; |
| old_dma = adapter->rx_ring[i].dma; |
| |
| adapter->rx_ring[i].buffer_info = NULL; |
| adapter->rx_ring[i].desc = NULL; |
| adapter->rx_ring[i].dma = 0; |
| adapter->rx_ring[i].count = new_rx_count; |
| err = igb_setup_rx_resources(adapter, |
| &adapter->rx_ring[i]); |
| if (err) { |
| adapter->rx_ring[i].buffer_info = old_rx_buf; |
| adapter->rx_ring[i].desc = old_desc; |
| adapter->rx_ring[i].size = old_size; |
| adapter->rx_ring[i].dma = old_dma; |
| goto err_setup; |
| } |
| |
| vfree(old_rx_buf); |
| pci_free_consistent(adapter->pdev, old_size, old_desc, |
| old_dma); |
| } |
| } |
| |
| err = 0; |
| err_setup: |
| if (netif_running(adapter->netdev)) |
| igb_up(adapter); |
| |
| clear_bit(__IGB_RESETTING, &adapter->state); |
| return err; |
| } |
| |
| /* ethtool register test data */ |
| struct igb_reg_test { |
| u16 reg; |
| u16 reg_offset; |
| u16 array_len; |
| u16 test_type; |
| u32 mask; |
| u32 write; |
| }; |
| |
| /* In the hardware, registers are laid out either singly, in arrays |
| * spaced 0x100 bytes apart, or in contiguous tables. We assume |
| * most tests take place on arrays or single registers (handled |
| * as a single-element array) and special-case the tables. |
| * Table tests are always pattern tests. |
| * |
| * We also make provision for some required setup steps by specifying |
| * registers to be written without any read-back testing. |
| */ |
| |
| #define PATTERN_TEST 1 |
| #define SET_READ_TEST 2 |
| #define WRITE_NO_TEST 3 |
| #define TABLE32_TEST 4 |
| #define TABLE64_TEST_LO 5 |
| #define TABLE64_TEST_HI 6 |
| |
| /* 82576 reg test */ |
| static struct igb_reg_test reg_test_82576[] = { |
| { E1000_FCAL, 0x100, 1, PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF }, |
| { E1000_FCAH, 0x100, 1, PATTERN_TEST, 0x0000FFFF, 0xFFFFFFFF }, |
| { E1000_FCT, 0x100, 1, PATTERN_TEST, 0x0000FFFF, 0xFFFFFFFF }, |
| { E1000_VET, 0x100, 1, PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF }, |
| { E1000_RDBAL(0), 0x100, 4, PATTERN_TEST, 0xFFFFFF80, 0xFFFFFFFF }, |
| { E1000_RDBAH(0), 0x100, 4, PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF }, |
| { E1000_RDLEN(0), 0x100, 4, PATTERN_TEST, 0x000FFFF0, 0x000FFFFF }, |
| { E1000_RDBAL(4), 0x40, 8, PATTERN_TEST, 0xFFFFFF80, 0xFFFFFFFF }, |
| { E1000_RDBAH(4), 0x40, 8, PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF }, |
| { E1000_RDLEN(4), 0x40, 8, PATTERN_TEST, 0x000FFFF0, 0x000FFFFF }, |
| /* Enable all four RX queues before testing. */ |
| { E1000_RXDCTL(0), 0x100, 1, WRITE_NO_TEST, 0, E1000_RXDCTL_QUEUE_ENABLE }, |
| /* RDH is read-only for 82576, only test RDT. */ |
| { E1000_RDT(0), 0x100, 4, PATTERN_TEST, 0x0000FFFF, 0x0000FFFF }, |
| { E1000_RXDCTL(0), 0x100, 4, WRITE_NO_TEST, 0, 0 }, |
| { E1000_FCRTH, 0x100, 1, PATTERN_TEST, 0x0000FFF0, 0x0000FFF0 }, |
| { E1000_FCTTV, 0x100, 1, PATTERN_TEST, 0x0000FFFF, 0x0000FFFF }, |
| { E1000_TIPG, 0x100, 1, PATTERN_TEST, 0x3FFFFFFF, 0x3FFFFFFF }, |
| { E1000_TDBAL(0), 0x100, 4, PATTERN_TEST, 0xFFFFFF80, 0xFFFFFFFF }, |
| { E1000_TDBAH(0), 0x100, 4, PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF }, |
| { E1000_TDLEN(0), 0x100, 4, PATTERN_TEST, 0x000FFFF0, 0x000FFFFF }, |
| { E1000_TDBAL(4), 0x40, 8, PATTERN_TEST, 0xFFFFFF80, 0xFFFFFFFF }, |
| { E1000_TDBAH(4), 0x40, 8, PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF }, |
| { E1000_TDLEN(4), 0x40, 8, PATTERN_TEST, 0x000FFFF0, 0x000FFFFF }, |
| { E1000_RCTL, 0x100, 1, SET_READ_TEST, 0xFFFFFFFF, 0x00000000 }, |
| { E1000_RCTL, 0x100, 1, SET_READ_TEST, 0x04CFB0FE, 0x003FFFFB }, |
| { E1000_RCTL, 0x100, 1, SET_READ_TEST, 0x04CFB0FE, 0xFFFFFFFF }, |
| { E1000_TCTL, 0x100, 1, SET_READ_TEST, 0xFFFFFFFF, 0x00000000 }, |
| { E1000_RA, 0, 16, TABLE64_TEST_LO, 0xFFFFFFFF, 0xFFFFFFFF }, |
| { E1000_RA, 0, 16, TABLE64_TEST_HI, 0x83FFFFFF, 0xFFFFFFFF }, |
| { E1000_RA2, 0, 8, TABLE64_TEST_LO, 0xFFFFFFFF, 0xFFFFFFFF }, |
| { E1000_RA2, 0, 8, TABLE64_TEST_HI, 0x83FFFFFF, 0xFFFFFFFF }, |
| { E1000_MTA, 0, 128,TABLE32_TEST, 0xFFFFFFFF, 0xFFFFFFFF }, |
| { 0, 0, 0, 0 } |
| }; |
| |
| /* 82575 register test */ |
| static struct igb_reg_test reg_test_82575[] = { |
| { E1000_FCAL, 0x100, 1, PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF }, |
| { E1000_FCAH, 0x100, 1, PATTERN_TEST, 0x0000FFFF, 0xFFFFFFFF }, |
| { E1000_FCT, 0x100, 1, PATTERN_TEST, 0x0000FFFF, 0xFFFFFFFF }, |
| { E1000_VET, 0x100, 1, PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF }, |
| { E1000_RDBAL(0), 0x100, 4, PATTERN_TEST, 0xFFFFFF80, 0xFFFFFFFF }, |
| { E1000_RDBAH(0), 0x100, 4, PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF }, |
| { E1000_RDLEN(0), 0x100, 4, PATTERN_TEST, 0x000FFF80, 0x000FFFFF }, |
| /* Enable all four RX queues before testing. */ |
| { E1000_RXDCTL(0), 0x100, 4, WRITE_NO_TEST, 0, E1000_RXDCTL_QUEUE_ENABLE }, |
| /* RDH is read-only for 82575, only test RDT. */ |
| { E1000_RDT(0), 0x100, 4, PATTERN_TEST, 0x0000FFFF, 0x0000FFFF }, |
| { E1000_RXDCTL(0), 0x100, 4, WRITE_NO_TEST, 0, 0 }, |
| { E1000_FCRTH, 0x100, 1, PATTERN_TEST, 0x0000FFF0, 0x0000FFF0 }, |
| { E1000_FCTTV, 0x100, 1, PATTERN_TEST, 0x0000FFFF, 0x0000FFFF }, |
| { E1000_TIPG, 0x100, 1, PATTERN_TEST, 0x3FFFFFFF, 0x3FFFFFFF }, |
| { E1000_TDBAL(0), 0x100, 4, PATTERN_TEST, 0xFFFFFF80, 0xFFFFFFFF }, |
| { E1000_TDBAH(0), 0x100, 4, PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF }, |
| { E1000_TDLEN(0), 0x100, 4, PATTERN_TEST, 0x000FFF80, 0x000FFFFF }, |
| { E1000_RCTL, 0x100, 1, SET_READ_TEST, 0xFFFFFFFF, 0x00000000 }, |
| { E1000_RCTL, 0x100, 1, SET_READ_TEST, 0x04CFB3FE, 0x003FFFFB }, |
| { E1000_RCTL, 0x100, 1, SET_READ_TEST, 0x04CFB3FE, 0xFFFFFFFF }, |
| { E1000_TCTL, 0x100, 1, SET_READ_TEST, 0xFFFFFFFF, 0x00000000 }, |
| { E1000_TXCW, 0x100, 1, PATTERN_TEST, 0xC000FFFF, 0x0000FFFF }, |
| { E1000_RA, 0, 16, TABLE64_TEST_LO, 0xFFFFFFFF, 0xFFFFFFFF }, |
| { E1000_RA, 0, 16, TABLE64_TEST_HI, 0x800FFFFF, 0xFFFFFFFF }, |
| { E1000_MTA, 0, 128, TABLE32_TEST, 0xFFFFFFFF, 0xFFFFFFFF }, |
| { 0, 0, 0, 0 } |
| }; |
| |
| static bool reg_pattern_test(struct igb_adapter *adapter, u64 *data, |
| int reg, u32 mask, u32 write) |
| { |
| u32 pat, val; |
| u32 _test[] = |
| {0x5A5A5A5A, 0xA5A5A5A5, 0x00000000, 0xFFFFFFFF}; |
| for (pat = 0; pat < ARRAY_SIZE(_test); pat++) { |
| writel((_test[pat] & write), (adapter->hw.hw_addr + reg)); |
| val = readl(adapter->hw.hw_addr + reg); |
| if (val != (_test[pat] & write & mask)) { |
| dev_err(&adapter->pdev->dev, "pattern test reg %04X " |
| "failed: got 0x%08X expected 0x%08X\n", |
| reg, val, (_test[pat] & write & mask)); |
| *data = reg; |
| return 1; |
| } |
| } |
| return 0; |
| } |
| |
| static bool reg_set_and_check(struct igb_adapter *adapter, u64 *data, |
| int reg, u32 mask, u32 write) |
| { |
| u32 val; |
| writel((write & mask), (adapter->hw.hw_addr + reg)); |
| val = readl(adapter->hw.hw_addr + reg); |
| if ((write & mask) != (val & mask)) { |
| dev_err(&adapter->pdev->dev, "set/check reg %04X test failed:" |
| " got 0x%08X expected 0x%08X\n", reg, |
| (val & mask), (write & mask)); |
| *data = reg; |
| return 1; |
| } |
| return 0; |
| } |
| |
| #define REG_PATTERN_TEST(reg, mask, write) \ |
| do { \ |
| if (reg_pattern_test(adapter, data, reg, mask, write)) \ |
| return 1; \ |
| } while (0) |
| |
| #define REG_SET_AND_CHECK(reg, mask, write) \ |
| do { \ |
| if (reg_set_and_check(adapter, data, reg, mask, write)) \ |
| return 1; \ |
| } while (0) |
| |
| static int igb_reg_test(struct igb_adapter *adapter, u64 *data) |
| { |
| struct e1000_hw *hw = &adapter->hw; |
| struct igb_reg_test *test; |
| u32 value, before, after; |
| u32 i, toggle; |
| |
| toggle = 0x7FFFF3FF; |
| |
| switch (adapter->hw.mac.type) { |
| case e1000_82576: |
| test = reg_test_82576; |
| break; |
| default: |
| test = reg_test_82575; |
| break; |
| } |
| |
| /* Because the status register is such a special case, |
| * we handle it separately from the rest of the register |
| * tests. Some bits are read-only, some toggle, and some |
| * are writable on newer MACs. |
| */ |
| before = rd32(E1000_STATUS); |
| value = (rd32(E1000_STATUS) & toggle); |
| wr32(E1000_STATUS, toggle); |
| after = rd32(E1000_STATUS) & toggle; |
| if (value != after) { |
| dev_err(&adapter->pdev->dev, "failed STATUS register test " |
| "got: 0x%08X expected: 0x%08X\n", after, value); |
| *data = 1; |
| return 1; |
| } |
| /* restore previous status */ |
| wr32(E1000_STATUS, before); |
| |
| /* Perform the remainder of the register test, looping through |
| * the test table until we either fail or reach the null entry. |
| */ |
| while (test->reg) { |
| for (i = 0; i < test->array_len; i++) { |
| switch (test->test_type) { |
| case PATTERN_TEST: |
| REG_PATTERN_TEST(test->reg + (i * test->reg_offset), |
| test->mask, |
| test->write); |
| break; |
| case SET_READ_TEST: |
| REG_SET_AND_CHECK(test->reg + (i * test->reg_offset), |
| test->mask, |
| test->write); |
| break; |
| case WRITE_NO_TEST: |
| writel(test->write, |
| (adapter->hw.hw_addr + test->reg) |
| + (i * test->reg_offset)); |
| break; |
| case TABLE32_TEST: |
| REG_PATTERN_TEST(test->reg + (i * 4), |
| test->mask, |
| test->write); |
| break; |
| case TABLE64_TEST_LO: |
| REG_PATTERN_TEST(test->reg + (i * 8), |
| test->mask, |
| test->write); |
| break; |
| case TABLE64_TEST_HI: |
| REG_PATTERN_TEST((test->reg + 4) + (i * 8), |
| test->mask, |
| test->write); |
| break; |
| } |
| } |
| test++; |
| } |
| |
| *data = 0; |
| return 0; |
| } |
| |
| static int igb_eeprom_test(struct igb_adapter *adapter, u64 *data) |
| { |
| u16 temp; |
| u16 checksum = 0; |
| u16 i; |
| |
| *data = 0; |
| /* Read and add up the contents of the EEPROM */ |
| for (i = 0; i < (NVM_CHECKSUM_REG + 1); i++) { |
| if ((adapter->hw.nvm.ops.read_nvm(&adapter->hw, i, 1, &temp)) |
| < 0) { |
| *data = 1; |
| break; |
| } |
| checksum += temp; |
| } |
| |
| /* If Checksum is not Correct return error else test passed */ |
| if ((checksum != (u16) NVM_SUM) && !(*data)) |
| *data = 2; |
| |
| return *data; |
| } |
| |
| static irqreturn_t igb_test_intr(int irq, void *data) |
| { |
| struct net_device *netdev = (struct net_device *) data; |
| struct igb_adapter *adapter = netdev_priv(netdev); |
| struct e1000_hw *hw = &adapter->hw; |
| |
| adapter->test_icr |= rd32(E1000_ICR); |
| |
| return IRQ_HANDLED; |
| } |
| |
| static int igb_intr_test(struct igb_adapter *adapter, u64 *data) |
| { |
| struct e1000_hw *hw = &adapter->hw; |
| struct net_device *netdev = adapter->netdev; |
| u32 mask, i = 0, shared_int = true; |
| u32 irq = adapter->pdev->irq; |
| |
| *data = 0; |
| |
| /* Hook up test interrupt handler just for this test */ |
| if (adapter->msix_entries) { |
| /* NOTE: we don't test MSI-X interrupts here, yet */ |
| return 0; |
| } else if (adapter->flags & IGB_FLAG_HAS_MSI) { |
| shared_int = false; |
| if (request_irq(irq, &igb_test_intr, 0, netdev->name, netdev)) { |
| *data = 1; |
| return -1; |
| } |
| } else if (!request_irq(irq, &igb_test_intr, IRQF_PROBE_SHARED, |
| netdev->name, netdev)) { |
| shared_int = false; |
| } else if (request_irq(irq, &igb_test_intr, IRQF_SHARED, |
| netdev->name, netdev)) { |
| *data = 1; |
| return -1; |
| } |
| dev_info(&adapter->pdev->dev, "testing %s interrupt\n", |
| (shared_int ? "shared" : "unshared")); |
| |
| /* Disable all the interrupts */ |
| wr32(E1000_IMC, 0xFFFFFFFF); |
| msleep(10); |
| |
| /* Test each interrupt */ |
| for (; i < 10; i++) { |
| /* Interrupt to test */ |
| mask = 1 << i; |
| |
| if (!shared_int) { |
| /* Disable the interrupt to be reported in |
| * the cause register and then force the same |
| * interrupt and see if one gets posted. If |
| * an interrupt was posted to the bus, the |
| * test failed. |
| */ |
| adapter->test_icr = 0; |
| wr32(E1000_IMC, ~mask & 0x00007FFF); |
| wr32(E1000_ICS, ~mask & 0x00007FFF); |
| msleep(10); |
| |
| if (adapter->test_icr & mask) { |
| *data = 3; |
| break; |
| } |
| } |
| |
| /* Enable the interrupt to be reported in |
| * the cause register and then force the same |
| * interrupt and see if one gets posted. If |
| * an interrupt was not posted to the bus, the |
| * test failed. |
| */ |
| adapter->test_icr = 0; |
| wr32(E1000_IMS, mask); |
| wr32(E1000_ICS, mask); |
| msleep(10); |
| |
| if (!(adapter->test_icr & mask)) { |
| *data = 4; |
| break; |
| } |
| |
| if (!shared_int) { |
| /* Disable the other interrupts to be reported in |
| * the cause register and then force the other |
| * interrupts and see if any get posted. If |
| * an interrupt was posted to the bus, the |
| * test failed. |
| */ |
| adapter->test_icr = 0; |
| wr32(E1000_IMC, ~mask & 0x00007FFF); |
| wr32(E1000_ICS, ~mask & 0x00007FFF); |
| msleep(10); |
| |
| if (adapter->test_icr) { |
| *data = 5; |
| break; |
| } |
| } |
| } |
| |
| /* Disable all the interrupts */ |
| wr32(E1000_IMC, 0xFFFFFFFF); |
| msleep(10); |
| |
| /* Unhook test interrupt handler */ |
| free_irq(irq, netdev); |
| |
| return *data; |
| } |
| |
| static void igb_free_desc_rings(struct igb_adapter *adapter) |
| { |
| struct igb_ring *tx_ring = &adapter->test_tx_ring; |
| struct igb_ring *rx_ring = &adapter->test_rx_ring; |
| struct pci_dev *pdev = adapter->pdev; |
| int i; |
| |
| if (tx_ring->desc && tx_ring->buffer_info) { |
| for (i = 0; i < tx_ring->count; i++) { |
| struct igb_buffer *buf = &(tx_ring->buffer_info[i]); |
| if (buf->dma) |
| pci_unmap_single(pdev, buf->dma, buf->length, |
| PCI_DMA_TODEVICE); |
| if (buf->skb) |
| dev_kfree_skb(buf->skb); |
| } |
| } |
| |
| if (rx_ring->desc && rx_ring->buffer_info) { |
| for (i = 0; i < rx_ring->count; i++) { |
| struct igb_buffer *buf = &(rx_ring->buffer_info[i]); |
| if (buf->dma) |
| pci_unmap_single(pdev, buf->dma, |
| IGB_RXBUFFER_2048, |
| PCI_DMA_FROMDEVICE); |
| if (buf->skb) |
| dev_kfree_skb(buf->skb); |
| } |
| } |
| |
| if (tx_ring->desc) { |
| pci_free_consistent(pdev, tx_ring->size, tx_ring->desc, |
| tx_ring->dma); |
| tx_ring->desc = NULL; |
| } |
| if (rx_ring->desc) { |
| pci_free_consistent(pdev, rx_ring->size, rx_ring->desc, |
| rx_ring->dma); |
| rx_ring->desc = NULL; |
| } |
| |
| kfree(tx_ring->buffer_info); |
| tx_ring->buffer_info = NULL; |
| kfree(rx_ring->buffer_info); |
| rx_ring->buffer_info = NULL; |
| |
| return; |
| } |
| |
| static int igb_setup_desc_rings(struct igb_adapter *adapter) |
| { |
| struct e1000_hw *hw = &adapter->hw; |
| struct igb_ring *tx_ring = &adapter->test_tx_ring; |
| struct igb_ring *rx_ring = &adapter->test_rx_ring; |
| struct pci_dev *pdev = adapter->pdev; |
| u32 rctl; |
| int i, ret_val; |
| |
| /* Setup Tx descriptor ring and Tx buffers */ |
| |
| if (!tx_ring->count) |
| tx_ring->count = IGB_DEFAULT_TXD; |
| |
| tx_ring->buffer_info = kcalloc(tx_ring->count, |
| sizeof(struct igb_buffer), |
| GFP_KERNEL); |
| if (!tx_ring->buffer_info) { |
| ret_val = 1; |
| goto err_nomem; |
| } |
| |
| tx_ring->size = tx_ring->count * sizeof(struct e1000_tx_desc); |
| tx_ring->size = ALIGN(tx_ring->size, 4096); |
| tx_ring->desc = pci_alloc_consistent(pdev, tx_ring->size, |
| &tx_ring->dma); |
| if (!tx_ring->desc) { |
| ret_val = 2; |
| goto err_nomem; |
| } |
| tx_ring->next_to_use = tx_ring->next_to_clean = 0; |
| |
| wr32(E1000_TDBAL(0), |
| ((u64) tx_ring->dma & 0x00000000FFFFFFFF)); |
| wr32(E1000_TDBAH(0), ((u64) tx_ring->dma >> 32)); |
| wr32(E1000_TDLEN(0), |
| tx_ring->count * sizeof(struct e1000_tx_desc)); |
| wr32(E1000_TDH(0), 0); |
| wr32(E1000_TDT(0), 0); |
| wr32(E1000_TCTL, |
| E1000_TCTL_PSP | E1000_TCTL_EN | |
| E1000_COLLISION_THRESHOLD << E1000_CT_SHIFT | |
| E1000_COLLISION_DISTANCE << E1000_COLD_SHIFT); |
| |
| for (i = 0; i < tx_ring->count; i++) { |
| struct e1000_tx_desc *tx_desc = E1000_TX_DESC(*tx_ring, i); |
| struct sk_buff *skb; |
| unsigned int size = 1024; |
| |
| skb = alloc_skb(size, GFP_KERNEL); |
| if (!skb) { |
| ret_val = 3; |
| goto err_nomem; |
| } |
| skb_put(skb, size); |
| tx_ring->buffer_info[i].skb = skb; |
| tx_ring->buffer_info[i].length = skb->len; |
| tx_ring->buffer_info[i].dma = |
| pci_map_single(pdev, skb->data, skb->len, |
| PCI_DMA_TODEVICE); |
| tx_desc->buffer_addr = cpu_to_le64(tx_ring->buffer_info[i].dma); |
| tx_desc->lower.data = cpu_to_le32(skb->len); |
| tx_desc->lower.data |= cpu_to_le32(E1000_TXD_CMD_EOP | |
| E1000_TXD_CMD_IFCS | |
| E1000_TXD_CMD_RS); |
| tx_desc->upper.data = 0; |
| } |
| |
| /* Setup Rx descriptor ring and Rx buffers */ |
| |
| if (!rx_ring->count) |
| rx_ring->count = IGB_DEFAULT_RXD; |
| |
| rx_ring->buffer_info = kcalloc(rx_ring->count, |
| sizeof(struct igb_buffer), |
| GFP_KERNEL); |
| if (!rx_ring->buffer_info) { |
| ret_val = 4; |
| goto err_nomem; |
| } |
| |
| rx_ring->size = rx_ring->count * sizeof(struct e1000_rx_desc); |
| rx_ring->desc = pci_alloc_consistent(pdev, rx_ring->size, |
| &rx_ring->dma); |
| if (!rx_ring->desc) { |
| ret_val = 5; |
| goto err_nomem; |
| } |
| rx_ring->next_to_use = rx_ring->next_to_clean = 0; |
| |
| rctl = rd32(E1000_RCTL); |
| wr32(E1000_RCTL, rctl & ~E1000_RCTL_EN); |
| wr32(E1000_RDBAL(0), |
| ((u64) rx_ring->dma & 0xFFFFFFFF)); |
| wr32(E1000_RDBAH(0), |
| ((u64) rx_ring->dma >> 32)); |
| wr32(E1000_RDLEN(0), rx_ring->size); |
| wr32(E1000_RDH(0), 0); |
| wr32(E1000_RDT(0), 0); |
| rctl = E1000_RCTL_EN | E1000_RCTL_BAM | E1000_RCTL_SZ_2048 | |
| E1000_RCTL_LBM_NO | E1000_RCTL_RDMTS_HALF | |
| (adapter->hw.mac.mc_filter_type << E1000_RCTL_MO_SHIFT); |
| wr32(E1000_RCTL, rctl); |
| wr32(E1000_SRRCTL(0), 0); |
| |
| for (i = 0; i < rx_ring->count; i++) { |
| struct e1000_rx_desc *rx_desc = E1000_RX_DESC(*rx_ring, i); |
| struct sk_buff *skb; |
| |
| skb = alloc_skb(IGB_RXBUFFER_2048 + NET_IP_ALIGN, |
| GFP_KERNEL); |
| if (!skb) { |
| ret_val = 6; |
| goto err_nomem; |
| } |
| skb_reserve(skb, NET_IP_ALIGN); |
| rx_ring->buffer_info[i].skb = skb; |
| rx_ring->buffer_info[i].dma = |
| pci_map_single(pdev, skb->data, IGB_RXBUFFER_2048, |
| PCI_DMA_FROMDEVICE); |
| rx_desc->buffer_addr = cpu_to_le64(rx_ring->buffer_info[i].dma); |
| memset(skb->data, 0x00, skb->len); |
| } |
| |
| return 0; |
| |
| err_nomem: |
| igb_free_desc_rings(adapter); |
| return ret_val; |
| } |
| |
| static void igb_phy_disable_receiver(struct igb_adapter *adapter) |
| { |
| struct e1000_hw *hw = &adapter->hw; |
| |
| /* Write out to PHY registers 29 and 30 to disable the Receiver. */ |
| hw->phy.ops.write_phy_reg(hw, 29, 0x001F); |
| hw->phy.ops.write_phy_reg(hw, 30, 0x8FFC); |
| hw->phy.ops.write_phy_reg(hw, 29, 0x001A); |
| hw->phy.ops.write_phy_reg(hw, 30, 0x8FF0); |
| } |
| |
| static int igb_integrated_phy_loopback(struct igb_adapter *adapter) |
| { |
| struct e1000_hw *hw = &adapter->hw; |
| u32 ctrl_reg = 0; |
| u32 stat_reg = 0; |
| |
| hw->mac.autoneg = false; |
| |
| if (hw->phy.type == e1000_phy_m88) { |
| /* Auto-MDI/MDIX Off */ |
| hw->phy.ops.write_phy_reg(hw, M88E1000_PHY_SPEC_CTRL, 0x0808); |
| /* reset to update Auto-MDI/MDIX */ |
| hw->phy.ops.write_phy_reg(hw, PHY_CONTROL, 0x9140); |
| /* autoneg off */ |
| hw->phy.ops.write_phy_reg(hw, PHY_CONTROL, 0x8140); |
| } |
| |
| ctrl_reg = rd32(E1000_CTRL); |
| |
| /* force 1000, set loopback */ |
| hw->phy.ops.write_phy_reg(hw, PHY_CONTROL, 0x4140); |
| |
| /* Now set up the MAC to the same speed/duplex as the PHY. */ |
| ctrl_reg = rd32(E1000_CTRL); |
| ctrl_reg &= ~E1000_CTRL_SPD_SEL; /* Clear the speed sel bits */ |
| ctrl_reg |= (E1000_CTRL_FRCSPD | /* Set the Force Speed Bit */ |
| E1000_CTRL_FRCDPX | /* Set the Force Duplex Bit */ |
| E1000_CTRL_SPD_1000 |/* Force Speed to 1000 */ |
| E1000_CTRL_FD); /* Force Duplex to FULL */ |
| |
| if (hw->phy.media_type == e1000_media_type_copper && |
| hw->phy.type == e1000_phy_m88) |
| ctrl_reg |= E1000_CTRL_ILOS; /* Invert Loss of Signal */ |
| else { |
| /* Set the ILOS bit on the fiber Nic if half duplex link is |
| * detected. */ |
| stat_reg = rd32(E1000_STATUS); |
| if ((stat_reg & E1000_STATUS_FD) == 0) |
| ctrl_reg |= (E1000_CTRL_ILOS | E1000_CTRL_SLU); |
| } |
| |
| wr32(E1000_CTRL, ctrl_reg); |
| |
| /* Disable the receiver on the PHY so when a cable is plugged in, the |
| * PHY does not begin to autoneg when a cable is reconnected to the NIC. |
| */ |
| if (hw->phy.type == e1000_phy_m88) |
| igb_phy_disable_receiver(adapter); |
| |
| udelay(500); |
| |
| return 0; |
| } |
| |
| static int igb_set_phy_loopback(struct igb_adapter *adapter) |
| { |
| return igb_integrated_phy_loopback(adapter); |
| } |
| |
| static int igb_setup_loopback_test(struct igb_adapter *adapter) |
| { |
| struct e1000_hw *hw = &adapter->hw; |
| u32 reg; |
| |
| if (hw->phy.media_type == e1000_media_type_fiber || |
| hw->phy.media_type == e1000_media_type_internal_serdes) { |
| reg = rd32(E1000_RCTL); |
| reg |= E1000_RCTL_LBM_TCVR; |
| wr32(E1000_RCTL, reg); |
| |
| wr32(E1000_SCTL, E1000_ENABLE_SERDES_LOOPBACK); |
| |
| reg = rd32(E1000_CTRL); |
| reg &= ~(E1000_CTRL_RFCE | |
| E1000_CTRL_TFCE | |
| E1000_CTRL_LRST); |
| reg |= E1000_CTRL_SLU | |
| E1000_CTRL_FD; |
| wr32(E1000_CTRL, reg); |
| |
| /* Unset switch control to serdes energy detect */ |
| reg = rd32(E1000_CONNSW); |
| reg &= ~E1000_CONNSW_ENRGSRC; |
| wr32(E1000_CONNSW, reg); |
| |
| /* Set PCS register for forced speed */ |
| reg = rd32(E1000_PCS_LCTL); |
| reg &= ~E1000_PCS_LCTL_AN_ENABLE; /* Disable Autoneg*/ |
| reg |= E1000_PCS_LCTL_FLV_LINK_UP | /* Force link up */ |
| E1000_PCS_LCTL_FSV_1000 | /* Force 1000 */ |
| E1000_PCS_LCTL_FDV_FULL | /* SerDes Full duplex */ |
| E1000_PCS_LCTL_FSD | /* Force Speed */ |
| E1000_PCS_LCTL_FORCE_LINK; /* Force Link */ |
| wr32(E1000_PCS_LCTL, reg); |
| |
| return 0; |
| } else if (hw->phy.media_type == e1000_media_type_copper) { |
| return igb_set_phy_loopback(adapter); |
| } |
| |
| return 7; |
| } |
| |
| static void igb_loopback_cleanup(struct igb_adapter *adapter) |
| { |
| struct e1000_hw *hw = &adapter->hw; |
| u32 rctl; |
| u16 phy_reg; |
| |
| rctl = rd32(E1000_RCTL); |
| rctl &= ~(E1000_RCTL_LBM_TCVR | E1000_RCTL_LBM_MAC); |
| wr32(E1000_RCTL, rctl); |
| |
| hw->mac.autoneg = true; |
| hw->phy.ops.read_phy_reg(hw, PHY_CONTROL, &phy_reg); |
| if (phy_reg & MII_CR_LOOPBACK) { |
| phy_reg &= ~MII_CR_LOOPBACK; |
| hw->phy.ops.write_phy_reg(hw, PHY_CONTROL, phy_reg); |
| igb_phy_sw_reset(hw); |
| } |
| } |
| |
| static void igb_create_lbtest_frame(struct sk_buff *skb, |
| unsigned int frame_size) |
| { |
| memset(skb->data, 0xFF, frame_size); |
| frame_size &= ~1; |
| memset(&skb->data[frame_size / 2], 0xAA, frame_size / 2 - 1); |
| memset(&skb->data[frame_size / 2 + 10], 0xBE, 1); |
| memset(&skb->data[frame_size / 2 + 12], 0xAF, 1); |
| } |
| |
| static int igb_check_lbtest_frame(struct sk_buff *skb, unsigned int frame_size) |
| { |
| frame_size &= ~1; |
| if (*(skb->data + 3) == 0xFF) |
| if ((*(skb->data + frame_size / 2 + 10) == 0xBE) && |
| (*(skb->data + frame_size / 2 + 12) == 0xAF)) |
| return 0; |
| return 13; |
| } |
| |
| static int igb_run_loopback_test(struct igb_adapter *adapter) |
| { |
| struct e1000_hw *hw = &adapter->hw; |
| struct igb_ring *tx_ring = &adapter->test_tx_ring; |
| struct igb_ring *rx_ring = &adapter->test_rx_ring; |
| struct pci_dev *pdev = adapter->pdev; |
| int i, j, k, l, lc, good_cnt; |
| int ret_val = 0; |
| unsigned long time; |
| |
| wr32(E1000_RDT(0), rx_ring->count - 1); |
| |
| /* Calculate the loop count based on the largest descriptor ring |
| * The idea is to wrap the largest ring a number of times using 64 |
| * send/receive pairs during each loop |
| */ |
| |
| if (rx_ring->count <= tx_ring->count) |
| lc = ((tx_ring->count / 64) * 2) + 1; |
| else |
| lc = ((rx_ring->count / 64) * 2) + 1; |
| |
| k = l = 0; |
| for (j = 0; j <= lc; j++) { /* loop count loop */ |
| for (i = 0; i < 64; i++) { /* send the packets */ |
| igb_create_lbtest_frame(tx_ring->buffer_info[k].skb, |
| 1024); |
| pci_dma_sync_single_for_device(pdev, |
| tx_ring->buffer_info[k].dma, |
| tx_ring->buffer_info[k].length, |
| PCI_DMA_TODEVICE); |
| k++; |
| if (k == tx_ring->count) |
| k = 0; |
| } |
| wr32(E1000_TDT(0), k); |
| msleep(200); |
| time = jiffies; /* set the start time for the receive */ |
| good_cnt = 0; |
| do { /* receive the sent packets */ |
| pci_dma_sync_single_for_cpu(pdev, |
| rx_ring->buffer_info[l].dma, |
| IGB_RXBUFFER_2048, |
| PCI_DMA_FROMDEVICE); |
| |
| ret_val = igb_check_lbtest_frame( |
| rx_ring->buffer_info[l].skb, 1024); |
| if (!ret_val) |
| good_cnt++; |
| l++; |
| if (l == rx_ring->count) |
| l = 0; |
| /* time + 20 msecs (200 msecs on 2.4) is more than |
| * enough time to complete the receives, if it's |
| * exceeded, break and error off |
| */ |
| } while (good_cnt < 64 && jiffies < (time + 20)); |
| if (good_cnt != 64) { |
| ret_val = 13; /* ret_val is the same as mis-compare */ |
| break; |
| } |
| if (jiffies >= (time + 20)) { |
| ret_val = 14; /* error code for time out error */ |
| break; |
| } |
| } /* end loop count loop */ |
| return ret_val; |
| } |
| |
| static int igb_loopback_test(struct igb_adapter *adapter, u64 *data) |
| { |
| /* PHY loopback cannot be performed if SoL/IDER |
| * sessions are active */ |
| if (igb_check_reset_block(&adapter->hw)) { |
| dev_err(&adapter->pdev->dev, |
| "Cannot do PHY loopback test " |
| "when SoL/IDER is active.\n"); |
| *data = 0; |
| goto out; |
| } |
| *data = igb_setup_desc_rings(adapter); |
| if (*data) |
| goto out; |
| *data = igb_setup_loopback_test(adapter); |
| if (*data) |
| goto err_loopback; |
| *data = igb_run_loopback_test(adapter); |
| igb_loopback_cleanup(adapter); |
| |
| err_loopback: |
| igb_free_desc_rings(adapter); |
| out: |
| return *data; |
| } |
| |
| static int igb_link_test(struct igb_adapter *adapter, u64 *data) |
| { |
| struct e1000_hw *hw = &adapter->hw; |
| *data = 0; |
| if (hw->phy.media_type == e1000_media_type_internal_serdes) { |
| int i = 0; |
| hw->mac.serdes_has_link = false; |
| |
| /* On some blade server designs, link establishment |
| * could take as long as 2-3 minutes */ |
| do { |
| hw->mac.ops.check_for_link(&adapter->hw); |
| if (hw->mac.serdes_has_link) |
| return *data; |
| msleep(20); |
| } while (i++ < 3750); |
| |
| *data = 1; |
| } else { |
| hw->mac.ops.check_for_link(&adapter->hw); |
| if (hw->mac.autoneg) |
| msleep(4000); |
| |
| if (!(rd32(E1000_STATUS) & |
| E1000_STATUS_LU)) |
| *data = 1; |
| } |
| return *data; |
| } |
| |
| static void igb_diag_test(struct net_device *netdev, |
| struct ethtool_test *eth_test, u64 *data) |
| { |
| struct igb_adapter *adapter = netdev_priv(netdev); |
| u16 autoneg_advertised; |
| u8 forced_speed_duplex, autoneg; |
| bool if_running = netif_running(netdev); |
| |
| set_bit(__IGB_TESTING, &adapter->state); |
| if (eth_test->flags == ETH_TEST_FL_OFFLINE) { |
| /* Offline tests */ |
| |
| /* save speed, duplex, autoneg settings */ |
| autoneg_advertised = adapter->hw.phy.autoneg_advertised; |
| forced_speed_duplex = adapter->hw.mac.forced_speed_duplex; |
| autoneg = adapter->hw.mac.autoneg; |
| |
| dev_info(&adapter->pdev->dev, "offline testing starting\n"); |
| |
| /* Link test performed before hardware reset so autoneg doesn't |
| * interfere with test result */ |
| if (igb_link_test(adapter, &data[4])) |
| eth_test->flags |= ETH_TEST_FL_FAILED; |
| |
| if (if_running) |
| /* indicate we're in test mode */ |
| dev_close(netdev); |
| else |
| igb_reset(adapter); |
| |
| if (igb_reg_test(adapter, &data[0])) |
| eth_test->flags |= ETH_TEST_FL_FAILED; |
| |
| igb_reset(adapter); |
| if (igb_eeprom_test(adapter, &data[1])) |
| eth_test->flags |= ETH_TEST_FL_FAILED; |
| |
| igb_reset(adapter); |
| if (igb_intr_test(adapter, &data[2])) |
| eth_test->flags |= ETH_TEST_FL_FAILED; |
| |
| igb_reset(adapter); |
| if (igb_loopback_test(adapter, &data[3])) |
| eth_test->flags |= ETH_TEST_FL_FAILED; |
| |
| /* restore speed, duplex, autoneg settings */ |
| adapter->hw.phy.autoneg_advertised = autoneg_advertised; |
| adapter->hw.mac.forced_speed_duplex = forced_speed_duplex; |
| adapter->hw.mac.autoneg = autoneg; |
| |
| /* force this routine to wait until autoneg complete/timeout */ |
| adapter->hw.phy.autoneg_wait_to_complete = true; |
| igb_reset(adapter); |
| adapter->hw.phy.autoneg_wait_to_complete = false; |
| |
| clear_bit(__IGB_TESTING, &adapter->state); |
| if (if_running) |
| dev_open(netdev); |
| } else { |
| dev_info(&adapter->pdev->dev, "online testing starting\n"); |
| /* Online tests */ |
| if (igb_link_test(adapter, &data[4])) |
| eth_test->flags |= ETH_TEST_FL_FAILED; |
| |
| /* Online tests aren't run; pass by default */ |
| data[0] = 0; |
| data[1] = 0; |
| data[2] = 0; |
| data[3] = 0; |
| |
| clear_bit(__IGB_TESTING, &adapter->state); |
| } |
| msleep_interruptible(4 * 1000); |
| } |
| |
| static int igb_wol_exclusion(struct igb_adapter *adapter, |
| struct ethtool_wolinfo *wol) |
| { |
| struct e1000_hw *hw = &adapter->hw; |
| int retval = 1; /* fail by default */ |
| |
| switch (hw->device_id) { |
| case E1000_DEV_ID_82575GB_QUAD_COPPER: |
| /* WoL not supported */ |
| wol->supported = 0; |
| break; |
| case E1000_DEV_ID_82575EB_FIBER_SERDES: |
| case E1000_DEV_ID_82576_FIBER: |
| case E1000_DEV_ID_82576_SERDES: |
| /* Wake events not supported on port B */ |
| if (rd32(E1000_STATUS) & E1000_STATUS_FUNC_1) { |
| wol->supported = 0; |
| break; |
| } |
| /* return success for non excluded adapter ports */ |
| retval = 0; |
| break; |
| case E1000_DEV_ID_82576_QUAD_COPPER: |
| /* quad port adapters only support WoL on port A */ |
| if (!(adapter->flags & IGB_FLAG_QUAD_PORT_A)) { |
| wol->supported = 0; |
| break; |
| } |
| /* return success for non excluded adapter ports */ |
| retval = 0; |
| break; |
| default: |
| /* dual port cards only support WoL on port A from now on |
| * unless it was enabled in the eeprom for port B |
| * so exclude FUNC_1 ports from having WoL enabled */ |
| if (rd32(E1000_STATUS) & E1000_STATUS_FUNC_1 && |
| !adapter->eeprom_wol) { |
| wol->supported = 0; |
| break; |
| } |
| |
| retval = 0; |
| } |
| |
| return retval; |
| } |
| |
| static void igb_get_wol(struct net_device *netdev, struct ethtool_wolinfo *wol) |
| { |
| struct igb_adapter *adapter = netdev_priv(netdev); |
| |
| wol->supported = WAKE_UCAST | WAKE_MCAST | |
| WAKE_BCAST | WAKE_MAGIC; |
| wol->wolopts = 0; |
| |
| /* this function will set ->supported = 0 and return 1 if wol is not |
| * supported by this hardware */ |
| if (igb_wol_exclusion(adapter, wol)) |
| return; |
| |
| /* apply any specific unsupported masks here */ |
| switch (adapter->hw.device_id) { |
| default: |
| break; |
| } |
| |
| if (adapter->wol & E1000_WUFC_EX) |
| wol->wolopts |= WAKE_UCAST; |
| if (adapter->wol & E1000_WUFC_MC) |
| wol->wolopts |= WAKE_MCAST; |
| if (adapter->wol & E1000_WUFC_BC) |
| wol->wolopts |= WAKE_BCAST; |
| if (adapter->wol & E1000_WUFC_MAG) |
| wol->wolopts |= WAKE_MAGIC; |
| |
| return; |
| } |
| |
| static int igb_set_wol(struct net_device *netdev, struct ethtool_wolinfo *wol) |
| { |
| struct igb_adapter *adapter = netdev_priv(netdev); |
| struct e1000_hw *hw = &adapter->hw; |
| |
| if (wol->wolopts & (WAKE_PHY | WAKE_ARP | WAKE_MAGICSECURE)) |
| return -EOPNOTSUPP; |
| |
| if (igb_wol_exclusion(adapter, wol)) |
| return wol->wolopts ? -EOPNOTSUPP : 0; |
| |
| switch (hw->device_id) { |
| default: |
| break; |
| } |
| |
| /* these settings will always override what we currently have */ |
| adapter->wol = 0; |
| |
| if (wol->wolopts & WAKE_UCAST) |
| adapter->wol |= E1000_WUFC_EX; |
| if (wol->wolopts & WAKE_MCAST) |
| adapter->wol |= E1000_WUFC_MC; |
| if (wol->wolopts & WAKE_BCAST) |
| adapter->wol |= E1000_WUFC_BC; |
| if (wol->wolopts & WAKE_MAGIC) |
| adapter->wol |= E1000_WUFC_MAG; |
| |
| return 0; |
| } |
| |
| /* toggle LED 4 times per second = 2 "blinks" per second */ |
| #define IGB_ID_INTERVAL (HZ/4) |
| |
| /* bit defines for adapter->led_status */ |
| #define IGB_LED_ON 0 |
| |
| static int igb_phys_id(struct net_device *netdev, u32 data) |
| { |
| struct igb_adapter *adapter = netdev_priv(netdev); |
| struct e1000_hw *hw = &adapter->hw; |
| |
| if (!data || data > (u32)(MAX_SCHEDULE_TIMEOUT / HZ)) |
| data = (u32)(MAX_SCHEDULE_TIMEOUT / HZ); |
| |
| igb_blink_led(hw); |
| msleep_interruptible(data * 1000); |
| |
| igb_led_off(hw); |
| clear_bit(IGB_LED_ON, &adapter->led_status); |
| igb_cleanup_led(hw); |
| |
| return 0; |
| } |
| |
| static int igb_set_coalesce(struct net_device *netdev, |
| struct ethtool_coalesce *ec) |
| { |
| struct igb_adapter *adapter = netdev_priv(netdev); |
| |
| if ((ec->rx_coalesce_usecs > IGB_MAX_ITR_USECS) || |
| ((ec->rx_coalesce_usecs > 3) && |
| (ec->rx_coalesce_usecs < IGB_MIN_ITR_USECS)) || |
| (ec->rx_coalesce_usecs == 2)) |
| return -EINVAL; |
| |
| /* convert to rate of irq's per second */ |
| if (ec->rx_coalesce_usecs <= 3) |
| adapter->itr_setting = ec->rx_coalesce_usecs; |
| else |
| adapter->itr_setting = (1000000 / ec->rx_coalesce_usecs); |
| |
| if (netif_running(netdev)) |
| igb_reinit_locked(adapter); |
| |
| return 0; |
| } |
| |
| static int igb_get_coalesce(struct net_device *netdev, |
| struct ethtool_coalesce *ec) |
| { |
| struct igb_adapter *adapter = netdev_priv(netdev); |
| |
| if (adapter->itr_setting <= 3) |
| ec->rx_coalesce_usecs = adapter->itr_setting; |
| else |
| ec->rx_coalesce_usecs = 1000000 / adapter->itr_setting; |
| |
| return 0; |
| } |
| |
| |
| static int igb_nway_reset(struct net_device *netdev) |
| { |
| struct igb_adapter *adapter = netdev_priv(netdev); |
| if (netif_running(netdev)) |
| igb_reinit_locked(adapter); |
| return 0; |
| } |
| |
| static int igb_get_sset_count(struct net_device *netdev, int sset) |
| { |
| switch (sset) { |
| case ETH_SS_STATS: |
| return IGB_STATS_LEN; |
| case ETH_SS_TEST: |
| return IGB_TEST_LEN; |
| default: |
| return -ENOTSUPP; |
| } |
| } |
| |
| static void igb_get_ethtool_stats(struct net_device *netdev, |
| struct ethtool_stats *stats, u64 *data) |
| { |
| struct igb_adapter *adapter = netdev_priv(netdev); |
| u64 *queue_stat; |
| int stat_count = sizeof(struct igb_queue_stats) / sizeof(u64); |
| int j; |
| int i; |
| |
| igb_update_stats(adapter); |
| for (i = 0; i < IGB_GLOBAL_STATS_LEN; i++) { |
| char *p = (char *)adapter+igb_gstrings_stats[i].stat_offset; |
| data[i] = (igb_gstrings_stats[i].sizeof_stat == |
| sizeof(u64)) ? *(u64 *)p : *(u32 *)p; |
| } |
| for (j = 0; j < adapter->num_tx_queues; j++) { |
| int k; |
| queue_stat = (u64 *)&adapter->tx_ring[j].tx_stats; |
| for (k = 0; k < stat_count; k++) |
| data[i + k] = queue_stat[k]; |
| i += k; |
| } |
| for (j = 0; j < adapter->num_rx_queues; j++) { |
| int k; |
| queue_stat = (u64 *)&adapter->rx_ring[j].rx_stats; |
| for (k = 0; k < stat_count; k++) |
| data[i + k] = queue_stat[k]; |
| i += k; |
| } |
| } |
| |
| static void igb_get_strings(struct net_device *netdev, u32 stringset, u8 *data) |
| { |
| struct igb_adapter *adapter = netdev_priv(netdev); |
| u8 *p = data; |
| int i; |
| |
| switch (stringset) { |
| case ETH_SS_TEST: |
| memcpy(data, *igb_gstrings_test, |
| IGB_TEST_LEN*ETH_GSTRING_LEN); |
| break; |
| case ETH_SS_STATS: |
| for (i = 0; i < IGB_GLOBAL_STATS_LEN; i++) { |
| memcpy(p, igb_gstrings_stats[i].stat_string, |
| ETH_GSTRING_LEN); |
| p += ETH_GSTRING_LEN; |
| } |
| for (i = 0; i < adapter->num_tx_queues; i++) { |
| sprintf(p, "tx_queue_%u_packets", i); |
| p += ETH_GSTRING_LEN; |
| sprintf(p, "tx_queue_%u_bytes", i); |
| p += ETH_GSTRING_LEN; |
| } |
| for (i = 0; i < adapter->num_rx_queues; i++) { |
| sprintf(p, "rx_queue_%u_packets", i); |
| p += ETH_GSTRING_LEN; |
| sprintf(p, "rx_queue_%u_bytes", i); |
| p += ETH_GSTRING_LEN; |
| } |
| /* BUG_ON(p - data != IGB_STATS_LEN * ETH_GSTRING_LEN); */ |
| break; |
| } |
| } |
| |
| static struct ethtool_ops igb_ethtool_ops = { |
| .get_settings = igb_get_settings, |
| .set_settings = igb_set_settings, |
| .get_drvinfo = igb_get_drvinfo, |
| .get_regs_len = igb_get_regs_len, |
| .get_regs = igb_get_regs, |
| .get_wol = igb_get_wol, |
| .set_wol = igb_set_wol, |
| .get_msglevel = igb_get_msglevel, |
| .set_msglevel = igb_set_msglevel, |
| .nway_reset = igb_nway_reset, |
| .get_link = ethtool_op_get_link, |
| .get_eeprom_len = igb_get_eeprom_len, |
| .get_eeprom = igb_get_eeprom, |
| .set_eeprom = igb_set_eeprom, |
| .get_ringparam = igb_get_ringparam, |
| .set_ringparam = igb_set_ringparam, |
| .get_pauseparam = igb_get_pauseparam, |
| .set_pauseparam = igb_set_pauseparam, |
| .get_rx_csum = igb_get_rx_csum, |
| .set_rx_csum = igb_set_rx_csum, |
| .get_tx_csum = igb_get_tx_csum, |
| .set_tx_csum = igb_set_tx_csum, |
| .get_sg = ethtool_op_get_sg, |
| .set_sg = ethtool_op_set_sg, |
| .get_tso = ethtool_op_get_tso, |
| .set_tso = igb_set_tso, |
| .self_test = igb_diag_test, |
| .get_strings = igb_get_strings, |
| .phys_id = igb_phys_id, |
| .get_sset_count = igb_get_sset_count, |
| .get_ethtool_stats = igb_get_ethtool_stats, |
| .get_coalesce = igb_get_coalesce, |
| .set_coalesce = igb_set_coalesce, |
| }; |
| |
| void igb_set_ethtool_ops(struct net_device *netdev) |
| { |
| SET_ETHTOOL_OPS(netdev, &igb_ethtool_ops); |
| } |