| /* |
| * Copyright (c) 2006 Oracle. All rights reserved. |
| * |
| * This software is available to you under a choice of one of two |
| * licenses. You may choose to be licensed under the terms of the GNU |
| * General Public License (GPL) Version 2, available from the file |
| * COPYING in the main directory of this source tree, or the |
| * OpenIB.org BSD license below: |
| * |
| * Redistribution and use in source and binary forms, with or |
| * without modification, are permitted provided that the following |
| * conditions are met: |
| * |
| * - Redistributions of source code must retain the above |
| * copyright notice, this list of conditions and the following |
| * disclaimer. |
| * |
| * - Redistributions in binary form must reproduce the above |
| * copyright notice, this list of conditions and the following |
| * disclaimer in the documentation and/or other materials |
| * provided with the distribution. |
| * |
| * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, |
| * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF |
| * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND |
| * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS |
| * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN |
| * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN |
| * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE |
| * SOFTWARE. |
| * |
| */ |
| #include <linux/kernel.h> |
| #include <linux/slab.h> |
| #include <linux/rculist.h> |
| |
| #include "rds.h" |
| #include "ib.h" |
| #include "xlist.h" |
| |
| static DEFINE_PER_CPU(unsigned long, clean_list_grace); |
| #define CLEAN_LIST_BUSY_BIT 0 |
| |
| /* |
| * This is stored as mr->r_trans_private. |
| */ |
| struct rds_ib_mr { |
| struct rds_ib_device *device; |
| struct rds_ib_mr_pool *pool; |
| struct ib_fmr *fmr; |
| |
| struct xlist_head xlist; |
| |
| /* unmap_list is for freeing */ |
| struct list_head unmap_list; |
| unsigned int remap_count; |
| |
| struct scatterlist *sg; |
| unsigned int sg_len; |
| u64 *dma; |
| int sg_dma_len; |
| }; |
| |
| /* |
| * Our own little FMR pool |
| */ |
| struct rds_ib_mr_pool { |
| struct mutex flush_lock; /* serialize fmr invalidate */ |
| struct delayed_work flush_worker; /* flush worker */ |
| |
| atomic_t item_count; /* total # of MRs */ |
| atomic_t dirty_count; /* # dirty of MRs */ |
| |
| struct xlist_head drop_list; /* MRs that have reached their max_maps limit */ |
| struct xlist_head free_list; /* unused MRs */ |
| struct xlist_head clean_list; /* global unused & unamapped MRs */ |
| wait_queue_head_t flush_wait; |
| |
| atomic_t free_pinned; /* memory pinned by free MRs */ |
| unsigned long max_items; |
| unsigned long max_items_soft; |
| unsigned long max_free_pinned; |
| struct ib_fmr_attr fmr_attr; |
| }; |
| |
| static int rds_ib_flush_mr_pool(struct rds_ib_mr_pool *pool, int free_all, struct rds_ib_mr **); |
| static void rds_ib_teardown_mr(struct rds_ib_mr *ibmr); |
| static void rds_ib_mr_pool_flush_worker(struct work_struct *work); |
| |
| static struct rds_ib_device *rds_ib_get_device(__be32 ipaddr) |
| { |
| struct rds_ib_device *rds_ibdev; |
| struct rds_ib_ipaddr *i_ipaddr; |
| |
| list_for_each_entry(rds_ibdev, &rds_ib_devices, list) { |
| rcu_read_lock(); |
| list_for_each_entry_rcu(i_ipaddr, &rds_ibdev->ipaddr_list, list) { |
| if (i_ipaddr->ipaddr == ipaddr) { |
| atomic_inc(&rds_ibdev->refcount); |
| rcu_read_unlock(); |
| return rds_ibdev; |
| } |
| } |
| rcu_read_unlock(); |
| } |
| |
| return NULL; |
| } |
| |
| static int rds_ib_add_ipaddr(struct rds_ib_device *rds_ibdev, __be32 ipaddr) |
| { |
| struct rds_ib_ipaddr *i_ipaddr; |
| |
| i_ipaddr = kmalloc(sizeof *i_ipaddr, GFP_KERNEL); |
| if (!i_ipaddr) |
| return -ENOMEM; |
| |
| i_ipaddr->ipaddr = ipaddr; |
| |
| spin_lock_irq(&rds_ibdev->spinlock); |
| list_add_tail_rcu(&i_ipaddr->list, &rds_ibdev->ipaddr_list); |
| spin_unlock_irq(&rds_ibdev->spinlock); |
| |
| return 0; |
| } |
| |
| static void rds_ib_remove_ipaddr(struct rds_ib_device *rds_ibdev, __be32 ipaddr) |
| { |
| struct rds_ib_ipaddr *i_ipaddr; |
| struct rds_ib_ipaddr *to_free = NULL; |
| |
| |
| spin_lock_irq(&rds_ibdev->spinlock); |
| list_for_each_entry_rcu(i_ipaddr, &rds_ibdev->ipaddr_list, list) { |
| if (i_ipaddr->ipaddr == ipaddr) { |
| list_del_rcu(&i_ipaddr->list); |
| to_free = i_ipaddr; |
| break; |
| } |
| } |
| spin_unlock_irq(&rds_ibdev->spinlock); |
| |
| if (to_free) { |
| synchronize_rcu(); |
| kfree(to_free); |
| } |
| } |
| |
| int rds_ib_update_ipaddr(struct rds_ib_device *rds_ibdev, __be32 ipaddr) |
| { |
| struct rds_ib_device *rds_ibdev_old; |
| |
| rds_ibdev_old = rds_ib_get_device(ipaddr); |
| if (rds_ibdev_old) { |
| rds_ib_remove_ipaddr(rds_ibdev_old, ipaddr); |
| rds_ib_dev_put(rds_ibdev_old); |
| } |
| |
| return rds_ib_add_ipaddr(rds_ibdev, ipaddr); |
| } |
| |
| void rds_ib_add_conn(struct rds_ib_device *rds_ibdev, struct rds_connection *conn) |
| { |
| struct rds_ib_connection *ic = conn->c_transport_data; |
| |
| /* conn was previously on the nodev_conns_list */ |
| spin_lock_irq(&ib_nodev_conns_lock); |
| BUG_ON(list_empty(&ib_nodev_conns)); |
| BUG_ON(list_empty(&ic->ib_node)); |
| list_del(&ic->ib_node); |
| |
| spin_lock_irq(&rds_ibdev->spinlock); |
| list_add_tail(&ic->ib_node, &rds_ibdev->conn_list); |
| spin_unlock_irq(&rds_ibdev->spinlock); |
| spin_unlock_irq(&ib_nodev_conns_lock); |
| |
| ic->rds_ibdev = rds_ibdev; |
| atomic_inc(&rds_ibdev->refcount); |
| } |
| |
| void rds_ib_remove_conn(struct rds_ib_device *rds_ibdev, struct rds_connection *conn) |
| { |
| struct rds_ib_connection *ic = conn->c_transport_data; |
| |
| /* place conn on nodev_conns_list */ |
| spin_lock(&ib_nodev_conns_lock); |
| |
| spin_lock_irq(&rds_ibdev->spinlock); |
| BUG_ON(list_empty(&ic->ib_node)); |
| list_del(&ic->ib_node); |
| spin_unlock_irq(&rds_ibdev->spinlock); |
| |
| list_add_tail(&ic->ib_node, &ib_nodev_conns); |
| |
| spin_unlock(&ib_nodev_conns_lock); |
| |
| ic->rds_ibdev = NULL; |
| rds_ib_dev_put(rds_ibdev); |
| } |
| |
| void __rds_ib_destroy_conns(struct list_head *list, spinlock_t *list_lock) |
| { |
| struct rds_ib_connection *ic, *_ic; |
| LIST_HEAD(tmp_list); |
| |
| /* avoid calling conn_destroy with irqs off */ |
| spin_lock_irq(list_lock); |
| list_splice(list, &tmp_list); |
| INIT_LIST_HEAD(list); |
| spin_unlock_irq(list_lock); |
| |
| list_for_each_entry_safe(ic, _ic, &tmp_list, ib_node) |
| rds_conn_destroy(ic->conn); |
| } |
| |
| struct rds_ib_mr_pool *rds_ib_create_mr_pool(struct rds_ib_device *rds_ibdev) |
| { |
| struct rds_ib_mr_pool *pool; |
| |
| pool = kzalloc(sizeof(*pool), GFP_KERNEL); |
| if (!pool) |
| return ERR_PTR(-ENOMEM); |
| |
| INIT_XLIST_HEAD(&pool->free_list); |
| INIT_XLIST_HEAD(&pool->drop_list); |
| INIT_XLIST_HEAD(&pool->clean_list); |
| mutex_init(&pool->flush_lock); |
| init_waitqueue_head(&pool->flush_wait); |
| INIT_DELAYED_WORK(&pool->flush_worker, rds_ib_mr_pool_flush_worker); |
| |
| pool->fmr_attr.max_pages = fmr_message_size; |
| pool->fmr_attr.max_maps = rds_ibdev->fmr_max_remaps; |
| pool->fmr_attr.page_shift = PAGE_SHIFT; |
| pool->max_free_pinned = rds_ibdev->max_fmrs * fmr_message_size / 4; |
| |
| /* We never allow more than max_items MRs to be allocated. |
| * When we exceed more than max_items_soft, we start freeing |
| * items more aggressively. |
| * Make sure that max_items > max_items_soft > max_items / 2 |
| */ |
| pool->max_items_soft = rds_ibdev->max_fmrs * 3 / 4; |
| pool->max_items = rds_ibdev->max_fmrs; |
| |
| return pool; |
| } |
| |
| void rds_ib_get_mr_info(struct rds_ib_device *rds_ibdev, struct rds_info_rdma_connection *iinfo) |
| { |
| struct rds_ib_mr_pool *pool = rds_ibdev->mr_pool; |
| |
| iinfo->rdma_mr_max = pool->max_items; |
| iinfo->rdma_mr_size = pool->fmr_attr.max_pages; |
| } |
| |
| void rds_ib_destroy_mr_pool(struct rds_ib_mr_pool *pool) |
| { |
| cancel_delayed_work_sync(&pool->flush_worker); |
| rds_ib_flush_mr_pool(pool, 1, NULL); |
| WARN_ON(atomic_read(&pool->item_count)); |
| WARN_ON(atomic_read(&pool->free_pinned)); |
| kfree(pool); |
| } |
| |
| static void refill_local(struct rds_ib_mr_pool *pool, struct xlist_head *xl, |
| struct rds_ib_mr **ibmr_ret) |
| { |
| struct xlist_head *ibmr_xl; |
| ibmr_xl = xlist_del_head_fast(xl); |
| *ibmr_ret = list_entry(ibmr_xl, struct rds_ib_mr, xlist); |
| } |
| |
| static inline struct rds_ib_mr *rds_ib_reuse_fmr(struct rds_ib_mr_pool *pool) |
| { |
| struct rds_ib_mr *ibmr = NULL; |
| struct xlist_head *ret; |
| unsigned long *flag; |
| |
| preempt_disable(); |
| flag = &__get_cpu_var(clean_list_grace); |
| set_bit(CLEAN_LIST_BUSY_BIT, flag); |
| ret = xlist_del_head(&pool->clean_list); |
| if (ret) |
| ibmr = list_entry(ret, struct rds_ib_mr, xlist); |
| |
| clear_bit(CLEAN_LIST_BUSY_BIT, flag); |
| preempt_enable(); |
| return ibmr; |
| } |
| |
| static inline void wait_clean_list_grace(void) |
| { |
| int cpu; |
| unsigned long *flag; |
| |
| for_each_online_cpu(cpu) { |
| flag = &per_cpu(clean_list_grace, cpu); |
| while (test_bit(CLEAN_LIST_BUSY_BIT, flag)) |
| cpu_relax(); |
| } |
| } |
| |
| static struct rds_ib_mr *rds_ib_alloc_fmr(struct rds_ib_device *rds_ibdev) |
| { |
| struct rds_ib_mr_pool *pool = rds_ibdev->mr_pool; |
| struct rds_ib_mr *ibmr = NULL; |
| int err = 0, iter = 0; |
| |
| while (1) { |
| ibmr = rds_ib_reuse_fmr(pool); |
| if (ibmr) |
| return ibmr; |
| |
| /* No clean MRs - now we have the choice of either |
| * allocating a fresh MR up to the limit imposed by the |
| * driver, or flush any dirty unused MRs. |
| * We try to avoid stalling in the send path if possible, |
| * so we allocate as long as we're allowed to. |
| * |
| * We're fussy with enforcing the FMR limit, though. If the driver |
| * tells us we can't use more than N fmrs, we shouldn't start |
| * arguing with it */ |
| if (atomic_inc_return(&pool->item_count) <= pool->max_items) |
| break; |
| |
| atomic_dec(&pool->item_count); |
| |
| if (++iter > 2) { |
| rds_ib_stats_inc(s_ib_rdma_mr_pool_depleted); |
| return ERR_PTR(-EAGAIN); |
| } |
| |
| /* We do have some empty MRs. Flush them out. */ |
| rds_ib_stats_inc(s_ib_rdma_mr_pool_wait); |
| rds_ib_flush_mr_pool(pool, 0, &ibmr); |
| if (ibmr) |
| return ibmr; |
| } |
| |
| ibmr = kzalloc_node(sizeof(*ibmr), GFP_KERNEL, rdsibdev_to_node(rds_ibdev)); |
| if (!ibmr) { |
| err = -ENOMEM; |
| goto out_no_cigar; |
| } |
| |
| memset(ibmr, 0, sizeof(*ibmr)); |
| |
| ibmr->fmr = ib_alloc_fmr(rds_ibdev->pd, |
| (IB_ACCESS_LOCAL_WRITE | |
| IB_ACCESS_REMOTE_READ | |
| IB_ACCESS_REMOTE_WRITE| |
| IB_ACCESS_REMOTE_ATOMIC), |
| |
| &pool->fmr_attr); |
| if (IS_ERR(ibmr->fmr)) { |
| err = PTR_ERR(ibmr->fmr); |
| ibmr->fmr = NULL; |
| printk(KERN_WARNING "RDS/IB: ib_alloc_fmr failed (err=%d)\n", err); |
| goto out_no_cigar; |
| } |
| |
| rds_ib_stats_inc(s_ib_rdma_mr_alloc); |
| return ibmr; |
| |
| out_no_cigar: |
| if (ibmr) { |
| if (ibmr->fmr) |
| ib_dealloc_fmr(ibmr->fmr); |
| kfree(ibmr); |
| } |
| atomic_dec(&pool->item_count); |
| return ERR_PTR(err); |
| } |
| |
| static int rds_ib_map_fmr(struct rds_ib_device *rds_ibdev, struct rds_ib_mr *ibmr, |
| struct scatterlist *sg, unsigned int nents) |
| { |
| struct ib_device *dev = rds_ibdev->dev; |
| struct scatterlist *scat = sg; |
| u64 io_addr = 0; |
| u64 *dma_pages; |
| u32 len; |
| int page_cnt, sg_dma_len; |
| int i, j; |
| int ret; |
| |
| sg_dma_len = ib_dma_map_sg(dev, sg, nents, |
| DMA_BIDIRECTIONAL); |
| if (unlikely(!sg_dma_len)) { |
| printk(KERN_WARNING "RDS/IB: dma_map_sg failed!\n"); |
| return -EBUSY; |
| } |
| |
| len = 0; |
| page_cnt = 0; |
| |
| for (i = 0; i < sg_dma_len; ++i) { |
| unsigned int dma_len = ib_sg_dma_len(dev, &scat[i]); |
| u64 dma_addr = ib_sg_dma_address(dev, &scat[i]); |
| |
| if (dma_addr & ~PAGE_MASK) { |
| if (i > 0) |
| return -EINVAL; |
| else |
| ++page_cnt; |
| } |
| if ((dma_addr + dma_len) & ~PAGE_MASK) { |
| if (i < sg_dma_len - 1) |
| return -EINVAL; |
| else |
| ++page_cnt; |
| } |
| |
| len += dma_len; |
| } |
| |
| page_cnt += len >> PAGE_SHIFT; |
| if (page_cnt > fmr_message_size) |
| return -EINVAL; |
| |
| dma_pages = kmalloc_node(sizeof(u64) * page_cnt, GFP_ATOMIC, |
| rdsibdev_to_node(rds_ibdev)); |
| if (!dma_pages) |
| return -ENOMEM; |
| |
| page_cnt = 0; |
| for (i = 0; i < sg_dma_len; ++i) { |
| unsigned int dma_len = ib_sg_dma_len(dev, &scat[i]); |
| u64 dma_addr = ib_sg_dma_address(dev, &scat[i]); |
| |
| for (j = 0; j < dma_len; j += PAGE_SIZE) |
| dma_pages[page_cnt++] = |
| (dma_addr & PAGE_MASK) + j; |
| } |
| |
| ret = ib_map_phys_fmr(ibmr->fmr, |
| dma_pages, page_cnt, io_addr); |
| if (ret) |
| goto out; |
| |
| /* Success - we successfully remapped the MR, so we can |
| * safely tear down the old mapping. */ |
| rds_ib_teardown_mr(ibmr); |
| |
| ibmr->sg = scat; |
| ibmr->sg_len = nents; |
| ibmr->sg_dma_len = sg_dma_len; |
| ibmr->remap_count++; |
| |
| rds_ib_stats_inc(s_ib_rdma_mr_used); |
| ret = 0; |
| |
| out: |
| kfree(dma_pages); |
| |
| return ret; |
| } |
| |
| void rds_ib_sync_mr(void *trans_private, int direction) |
| { |
| struct rds_ib_mr *ibmr = trans_private; |
| struct rds_ib_device *rds_ibdev = ibmr->device; |
| |
| switch (direction) { |
| case DMA_FROM_DEVICE: |
| ib_dma_sync_sg_for_cpu(rds_ibdev->dev, ibmr->sg, |
| ibmr->sg_dma_len, DMA_BIDIRECTIONAL); |
| break; |
| case DMA_TO_DEVICE: |
| ib_dma_sync_sg_for_device(rds_ibdev->dev, ibmr->sg, |
| ibmr->sg_dma_len, DMA_BIDIRECTIONAL); |
| break; |
| } |
| } |
| |
| static void __rds_ib_teardown_mr(struct rds_ib_mr *ibmr) |
| { |
| struct rds_ib_device *rds_ibdev = ibmr->device; |
| |
| if (ibmr->sg_dma_len) { |
| ib_dma_unmap_sg(rds_ibdev->dev, |
| ibmr->sg, ibmr->sg_len, |
| DMA_BIDIRECTIONAL); |
| ibmr->sg_dma_len = 0; |
| } |
| |
| /* Release the s/g list */ |
| if (ibmr->sg_len) { |
| unsigned int i; |
| |
| for (i = 0; i < ibmr->sg_len; ++i) { |
| struct page *page = sg_page(&ibmr->sg[i]); |
| |
| /* FIXME we need a way to tell a r/w MR |
| * from a r/o MR */ |
| BUG_ON(irqs_disabled()); |
| set_page_dirty(page); |
| put_page(page); |
| } |
| kfree(ibmr->sg); |
| |
| ibmr->sg = NULL; |
| ibmr->sg_len = 0; |
| } |
| } |
| |
| static void rds_ib_teardown_mr(struct rds_ib_mr *ibmr) |
| { |
| unsigned int pinned = ibmr->sg_len; |
| |
| __rds_ib_teardown_mr(ibmr); |
| if (pinned) { |
| struct rds_ib_device *rds_ibdev = ibmr->device; |
| struct rds_ib_mr_pool *pool = rds_ibdev->mr_pool; |
| |
| atomic_sub(pinned, &pool->free_pinned); |
| } |
| } |
| |
| static inline unsigned int rds_ib_flush_goal(struct rds_ib_mr_pool *pool, int free_all) |
| { |
| unsigned int item_count; |
| |
| item_count = atomic_read(&pool->item_count); |
| if (free_all) |
| return item_count; |
| |
| return 0; |
| } |
| |
| /* |
| * given an xlist of mrs, put them all into the list_head for more processing |
| */ |
| static void xlist_append_to_list(struct xlist_head *xlist, struct list_head *list) |
| { |
| struct rds_ib_mr *ibmr; |
| struct xlist_head splice; |
| struct xlist_head *cur; |
| struct xlist_head *next; |
| |
| splice.next = NULL; |
| xlist_splice(xlist, &splice); |
| cur = splice.next; |
| while (cur) { |
| next = cur->next; |
| ibmr = list_entry(cur, struct rds_ib_mr, xlist); |
| list_add_tail(&ibmr->unmap_list, list); |
| cur = next; |
| } |
| } |
| |
| /* |
| * this takes a list head of mrs and turns it into an xlist of clusters. |
| * each cluster has an xlist of MR_CLUSTER_SIZE mrs that are ready for |
| * reuse. |
| */ |
| static void list_append_to_xlist(struct rds_ib_mr_pool *pool, |
| struct list_head *list, struct xlist_head *xlist, |
| struct xlist_head **tail_ret) |
| { |
| struct rds_ib_mr *ibmr; |
| struct xlist_head *cur_mr = xlist; |
| struct xlist_head *tail_mr = NULL; |
| |
| list_for_each_entry(ibmr, list, unmap_list) { |
| tail_mr = &ibmr->xlist; |
| tail_mr->next = NULL; |
| cur_mr->next = tail_mr; |
| cur_mr = tail_mr; |
| } |
| *tail_ret = tail_mr; |
| } |
| |
| /* |
| * Flush our pool of MRs. |
| * At a minimum, all currently unused MRs are unmapped. |
| * If the number of MRs allocated exceeds the limit, we also try |
| * to free as many MRs as needed to get back to this limit. |
| */ |
| static int rds_ib_flush_mr_pool(struct rds_ib_mr_pool *pool, |
| int free_all, struct rds_ib_mr **ibmr_ret) |
| { |
| struct rds_ib_mr *ibmr, *next; |
| struct xlist_head clean_xlist; |
| struct xlist_head *clean_tail; |
| LIST_HEAD(unmap_list); |
| LIST_HEAD(fmr_list); |
| unsigned long unpinned = 0; |
| unsigned int nfreed = 0, ncleaned = 0, free_goal; |
| int ret = 0; |
| |
| rds_ib_stats_inc(s_ib_rdma_mr_pool_flush); |
| |
| if (ibmr_ret) { |
| DEFINE_WAIT(wait); |
| while(!mutex_trylock(&pool->flush_lock)) { |
| ibmr = rds_ib_reuse_fmr(pool); |
| if (ibmr) { |
| *ibmr_ret = ibmr; |
| finish_wait(&pool->flush_wait, &wait); |
| goto out_nolock; |
| } |
| |
| prepare_to_wait(&pool->flush_wait, &wait, |
| TASK_UNINTERRUPTIBLE); |
| if (xlist_empty(&pool->clean_list)) |
| schedule(); |
| |
| ibmr = rds_ib_reuse_fmr(pool); |
| if (ibmr) { |
| *ibmr_ret = ibmr; |
| finish_wait(&pool->flush_wait, &wait); |
| goto out_nolock; |
| } |
| } |
| finish_wait(&pool->flush_wait, &wait); |
| } else |
| mutex_lock(&pool->flush_lock); |
| |
| if (ibmr_ret) { |
| ibmr = rds_ib_reuse_fmr(pool); |
| if (ibmr) { |
| *ibmr_ret = ibmr; |
| goto out; |
| } |
| } |
| |
| /* Get the list of all MRs to be dropped. Ordering matters - |
| * we want to put drop_list ahead of free_list. |
| */ |
| xlist_append_to_list(&pool->drop_list, &unmap_list); |
| xlist_append_to_list(&pool->free_list, &unmap_list); |
| if (free_all) |
| xlist_append_to_list(&pool->clean_list, &unmap_list); |
| |
| free_goal = rds_ib_flush_goal(pool, free_all); |
| |
| if (list_empty(&unmap_list)) |
| goto out; |
| |
| /* String all ib_mr's onto one list and hand them to ib_unmap_fmr */ |
| list_for_each_entry(ibmr, &unmap_list, unmap_list) |
| list_add(&ibmr->fmr->list, &fmr_list); |
| |
| ret = ib_unmap_fmr(&fmr_list); |
| if (ret) |
| printk(KERN_WARNING "RDS/IB: ib_unmap_fmr failed (err=%d)\n", ret); |
| |
| /* Now we can destroy the DMA mapping and unpin any pages */ |
| list_for_each_entry_safe(ibmr, next, &unmap_list, unmap_list) { |
| unpinned += ibmr->sg_len; |
| __rds_ib_teardown_mr(ibmr); |
| if (nfreed < free_goal || ibmr->remap_count >= pool->fmr_attr.max_maps) { |
| rds_ib_stats_inc(s_ib_rdma_mr_free); |
| list_del(&ibmr->unmap_list); |
| ib_dealloc_fmr(ibmr->fmr); |
| kfree(ibmr); |
| nfreed++; |
| } |
| ncleaned++; |
| } |
| |
| if (!list_empty(&unmap_list)) { |
| /* we have to make sure that none of the things we're about |
| * to put on the clean list would race with other cpus trying |
| * to pull items off. The xlist would explode if we managed to |
| * remove something from the clean list and then add it back again |
| * while another CPU was spinning on that same item in xlist_del_head. |
| * |
| * This is pretty unlikely, but just in case wait for an xlist grace period |
| * here before adding anything back into the clean list. |
| */ |
| wait_clean_list_grace(); |
| |
| list_append_to_xlist(pool, &unmap_list, &clean_xlist, &clean_tail); |
| if (ibmr_ret) |
| refill_local(pool, &clean_xlist, ibmr_ret); |
| |
| /* refill_local may have emptied our list */ |
| if (!xlist_empty(&clean_xlist)) |
| xlist_add(clean_xlist.next, clean_tail, &pool->clean_list); |
| |
| } |
| |
| atomic_sub(unpinned, &pool->free_pinned); |
| atomic_sub(ncleaned, &pool->dirty_count); |
| atomic_sub(nfreed, &pool->item_count); |
| |
| out: |
| mutex_unlock(&pool->flush_lock); |
| if (waitqueue_active(&pool->flush_wait)) |
| wake_up(&pool->flush_wait); |
| out_nolock: |
| return ret; |
| } |
| |
| static void rds_ib_mr_pool_flush_worker(struct work_struct *work) |
| { |
| struct rds_ib_mr_pool *pool = container_of(work, struct rds_ib_mr_pool, flush_worker.work); |
| |
| rds_ib_flush_mr_pool(pool, 0, NULL); |
| } |
| |
| void rds_ib_free_mr(void *trans_private, int invalidate) |
| { |
| struct rds_ib_mr *ibmr = trans_private; |
| struct rds_ib_device *rds_ibdev = ibmr->device; |
| struct rds_ib_mr_pool *pool = rds_ibdev->mr_pool; |
| |
| rdsdebug("RDS/IB: free_mr nents %u\n", ibmr->sg_len); |
| |
| /* Return it to the pool's free list */ |
| if (ibmr->remap_count >= pool->fmr_attr.max_maps) |
| xlist_add(&ibmr->xlist, &ibmr->xlist, &pool->drop_list); |
| else |
| xlist_add(&ibmr->xlist, &ibmr->xlist, &pool->free_list); |
| |
| atomic_add(ibmr->sg_len, &pool->free_pinned); |
| atomic_inc(&pool->dirty_count); |
| |
| /* If we've pinned too many pages, request a flush */ |
| if (atomic_read(&pool->free_pinned) >= pool->max_free_pinned || |
| atomic_read(&pool->dirty_count) >= pool->max_items / 10) |
| queue_delayed_work(rds_wq, &pool->flush_worker, 10); |
| |
| if (invalidate) { |
| if (likely(!in_interrupt())) { |
| rds_ib_flush_mr_pool(pool, 0, NULL); |
| } else { |
| /* We get here if the user created a MR marked |
| * as use_once and invalidate at the same time. */ |
| queue_delayed_work(rds_wq, &pool->flush_worker, 10); |
| } |
| } |
| |
| rds_ib_dev_put(rds_ibdev); |
| } |
| |
| void rds_ib_flush_mrs(void) |
| { |
| struct rds_ib_device *rds_ibdev; |
| |
| list_for_each_entry(rds_ibdev, &rds_ib_devices, list) { |
| struct rds_ib_mr_pool *pool = rds_ibdev->mr_pool; |
| |
| if (pool) |
| rds_ib_flush_mr_pool(pool, 0, NULL); |
| } |
| } |
| |
| void *rds_ib_get_mr(struct scatterlist *sg, unsigned long nents, |
| struct rds_sock *rs, u32 *key_ret) |
| { |
| struct rds_ib_device *rds_ibdev; |
| struct rds_ib_mr *ibmr = NULL; |
| int ret; |
| |
| rds_ibdev = rds_ib_get_device(rs->rs_bound_addr); |
| if (!rds_ibdev) { |
| ret = -ENODEV; |
| goto out; |
| } |
| |
| if (!rds_ibdev->mr_pool) { |
| ret = -ENODEV; |
| goto out; |
| } |
| |
| ibmr = rds_ib_alloc_fmr(rds_ibdev); |
| if (IS_ERR(ibmr)) |
| return ibmr; |
| |
| ret = rds_ib_map_fmr(rds_ibdev, ibmr, sg, nents); |
| if (ret == 0) |
| *key_ret = ibmr->fmr->rkey; |
| else |
| printk(KERN_WARNING "RDS/IB: map_fmr failed (errno=%d)\n", ret); |
| |
| ibmr->device = rds_ibdev; |
| rds_ibdev = NULL; |
| |
| out: |
| if (ret) { |
| if (ibmr) |
| rds_ib_free_mr(ibmr, 0); |
| ibmr = ERR_PTR(ret); |
| } |
| if (rds_ibdev) |
| rds_ib_dev_put(rds_ibdev); |
| return ibmr; |
| } |
| |