blob: 492dcc198dd36c0acaa435df17cc3a87c6d7ffc2 [file] [log] [blame]
/*
* Copyright (C) 2009. SUSE Linux Products GmbH. All rights reserved.
*
* Authors:
* Alexander Graf <agraf@suse.de>
* Kevin Wolf <mail@kevin-wolf.de>
*
* Description:
* This file is derived from arch/powerpc/kvm/44x.c,
* by Hollis Blanchard <hollisb@us.ibm.com>.
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License, version 2, as
* published by the Free Software Foundation.
*/
#include <linux/kvm_host.h>
#include <linux/err.h>
#include <asm/reg.h>
#include <asm/cputable.h>
#include <asm/cacheflush.h>
#include <asm/tlbflush.h>
#include <asm/uaccess.h>
#include <asm/io.h>
#include <asm/kvm_ppc.h>
#include <asm/kvm_book3s.h>
#include <asm/mmu_context.h>
#include <linux/sched.h>
#include <linux/vmalloc.h>
#define VCPU_STAT(x) offsetof(struct kvm_vcpu, stat.x), KVM_STAT_VCPU
/* #define EXIT_DEBUG */
/* #define EXIT_DEBUG_SIMPLE */
struct kvm_stats_debugfs_item debugfs_entries[] = {
{ "exits", VCPU_STAT(sum_exits) },
{ "mmio", VCPU_STAT(mmio_exits) },
{ "sig", VCPU_STAT(signal_exits) },
{ "sysc", VCPU_STAT(syscall_exits) },
{ "inst_emu", VCPU_STAT(emulated_inst_exits) },
{ "dec", VCPU_STAT(dec_exits) },
{ "ext_intr", VCPU_STAT(ext_intr_exits) },
{ "queue_intr", VCPU_STAT(queue_intr) },
{ "halt_wakeup", VCPU_STAT(halt_wakeup) },
{ "pf_storage", VCPU_STAT(pf_storage) },
{ "sp_storage", VCPU_STAT(sp_storage) },
{ "pf_instruc", VCPU_STAT(pf_instruc) },
{ "sp_instruc", VCPU_STAT(sp_instruc) },
{ "ld", VCPU_STAT(ld) },
{ "ld_slow", VCPU_STAT(ld_slow) },
{ "st", VCPU_STAT(st) },
{ "st_slow", VCPU_STAT(st_slow) },
{ NULL }
};
void kvmppc_core_load_host_debugstate(struct kvm_vcpu *vcpu)
{
}
void kvmppc_core_load_guest_debugstate(struct kvm_vcpu *vcpu)
{
}
void kvmppc_core_vcpu_load(struct kvm_vcpu *vcpu, int cpu)
{
memcpy(get_paca()->kvm_slb, to_book3s(vcpu)->slb_shadow, sizeof(get_paca()->kvm_slb));
get_paca()->kvm_slb_max = to_book3s(vcpu)->slb_shadow_max;
}
void kvmppc_core_vcpu_put(struct kvm_vcpu *vcpu)
{
memcpy(to_book3s(vcpu)->slb_shadow, get_paca()->kvm_slb, sizeof(get_paca()->kvm_slb));
to_book3s(vcpu)->slb_shadow_max = get_paca()->kvm_slb_max;
}
#if defined(EXIT_DEBUG)
static u32 kvmppc_get_dec(struct kvm_vcpu *vcpu)
{
u64 jd = mftb() - vcpu->arch.dec_jiffies;
return vcpu->arch.dec - jd;
}
#endif
void kvmppc_set_msr(struct kvm_vcpu *vcpu, u64 msr)
{
ulong old_msr = vcpu->arch.msr;
#ifdef EXIT_DEBUG
printk(KERN_INFO "KVM: Set MSR to 0x%llx\n", msr);
#endif
msr &= to_book3s(vcpu)->msr_mask;
vcpu->arch.msr = msr;
vcpu->arch.shadow_msr = msr | MSR_USER32;
vcpu->arch.shadow_msr &= ( MSR_VEC | MSR_VSX | MSR_FP | MSR_FE0 |
MSR_USER64 | MSR_SE | MSR_BE | MSR_DE |
MSR_FE1);
if (msr & (MSR_WE|MSR_POW)) {
if (!vcpu->arch.pending_exceptions) {
kvm_vcpu_block(vcpu);
vcpu->stat.halt_wakeup++;
}
}
if (((vcpu->arch.msr & (MSR_IR|MSR_DR)) != (old_msr & (MSR_IR|MSR_DR))) ||
(vcpu->arch.msr & MSR_PR) != (old_msr & MSR_PR)) {
kvmppc_mmu_flush_segments(vcpu);
kvmppc_mmu_map_segment(vcpu, vcpu->arch.pc);
}
}
void kvmppc_inject_interrupt(struct kvm_vcpu *vcpu, int vec, u64 flags)
{
vcpu->arch.srr0 = vcpu->arch.pc;
vcpu->arch.srr1 = vcpu->arch.msr | flags;
vcpu->arch.pc = to_book3s(vcpu)->hior + vec;
vcpu->arch.mmu.reset_msr(vcpu);
}
static int kvmppc_book3s_vec2irqprio(unsigned int vec)
{
unsigned int prio;
switch (vec) {
case 0x100: prio = BOOK3S_IRQPRIO_SYSTEM_RESET; break;
case 0x200: prio = BOOK3S_IRQPRIO_MACHINE_CHECK; break;
case 0x300: prio = BOOK3S_IRQPRIO_DATA_STORAGE; break;
case 0x380: prio = BOOK3S_IRQPRIO_DATA_SEGMENT; break;
case 0x400: prio = BOOK3S_IRQPRIO_INST_STORAGE; break;
case 0x480: prio = BOOK3S_IRQPRIO_INST_SEGMENT; break;
case 0x500: prio = BOOK3S_IRQPRIO_EXTERNAL; break;
case 0x600: prio = BOOK3S_IRQPRIO_ALIGNMENT; break;
case 0x700: prio = BOOK3S_IRQPRIO_PROGRAM; break;
case 0x800: prio = BOOK3S_IRQPRIO_FP_UNAVAIL; break;
case 0x900: prio = BOOK3S_IRQPRIO_DECREMENTER; break;
case 0xc00: prio = BOOK3S_IRQPRIO_SYSCALL; break;
case 0xd00: prio = BOOK3S_IRQPRIO_DEBUG; break;
case 0xf20: prio = BOOK3S_IRQPRIO_ALTIVEC; break;
case 0xf40: prio = BOOK3S_IRQPRIO_VSX; break;
default: prio = BOOK3S_IRQPRIO_MAX; break;
}
return prio;
}
static void kvmppc_book3s_dequeue_irqprio(struct kvm_vcpu *vcpu,
unsigned int vec)
{
clear_bit(kvmppc_book3s_vec2irqprio(vec),
&vcpu->arch.pending_exceptions);
}
void kvmppc_book3s_queue_irqprio(struct kvm_vcpu *vcpu, unsigned int vec)
{
vcpu->stat.queue_intr++;
set_bit(kvmppc_book3s_vec2irqprio(vec),
&vcpu->arch.pending_exceptions);
#ifdef EXIT_DEBUG
printk(KERN_INFO "Queueing interrupt %x\n", vec);
#endif
}
void kvmppc_core_queue_program(struct kvm_vcpu *vcpu)
{
kvmppc_book3s_queue_irqprio(vcpu, BOOK3S_INTERRUPT_PROGRAM);
}
void kvmppc_core_queue_dec(struct kvm_vcpu *vcpu)
{
kvmppc_book3s_queue_irqprio(vcpu, BOOK3S_INTERRUPT_DECREMENTER);
}
int kvmppc_core_pending_dec(struct kvm_vcpu *vcpu)
{
return test_bit(BOOK3S_INTERRUPT_DECREMENTER >> 7, &vcpu->arch.pending_exceptions);
}
void kvmppc_core_dequeue_dec(struct kvm_vcpu *vcpu)
{
kvmppc_book3s_dequeue_irqprio(vcpu, BOOK3S_INTERRUPT_DECREMENTER);
}
void kvmppc_core_queue_external(struct kvm_vcpu *vcpu,
struct kvm_interrupt *irq)
{
kvmppc_book3s_queue_irqprio(vcpu, BOOK3S_INTERRUPT_EXTERNAL);
}
int kvmppc_book3s_irqprio_deliver(struct kvm_vcpu *vcpu, unsigned int priority)
{
int deliver = 1;
int vec = 0;
switch (priority) {
case BOOK3S_IRQPRIO_DECREMENTER:
deliver = vcpu->arch.msr & MSR_EE;
vec = BOOK3S_INTERRUPT_DECREMENTER;
break;
case BOOK3S_IRQPRIO_EXTERNAL:
deliver = vcpu->arch.msr & MSR_EE;
vec = BOOK3S_INTERRUPT_EXTERNAL;
break;
case BOOK3S_IRQPRIO_SYSTEM_RESET:
vec = BOOK3S_INTERRUPT_SYSTEM_RESET;
break;
case BOOK3S_IRQPRIO_MACHINE_CHECK:
vec = BOOK3S_INTERRUPT_MACHINE_CHECK;
break;
case BOOK3S_IRQPRIO_DATA_STORAGE:
vec = BOOK3S_INTERRUPT_DATA_STORAGE;
break;
case BOOK3S_IRQPRIO_INST_STORAGE:
vec = BOOK3S_INTERRUPT_INST_STORAGE;
break;
case BOOK3S_IRQPRIO_DATA_SEGMENT:
vec = BOOK3S_INTERRUPT_DATA_SEGMENT;
break;
case BOOK3S_IRQPRIO_INST_SEGMENT:
vec = BOOK3S_INTERRUPT_INST_SEGMENT;
break;
case BOOK3S_IRQPRIO_ALIGNMENT:
vec = BOOK3S_INTERRUPT_ALIGNMENT;
break;
case BOOK3S_IRQPRIO_PROGRAM:
vec = BOOK3S_INTERRUPT_PROGRAM;
break;
case BOOK3S_IRQPRIO_VSX:
vec = BOOK3S_INTERRUPT_VSX;
break;
case BOOK3S_IRQPRIO_ALTIVEC:
vec = BOOK3S_INTERRUPT_ALTIVEC;
break;
case BOOK3S_IRQPRIO_FP_UNAVAIL:
vec = BOOK3S_INTERRUPT_FP_UNAVAIL;
break;
case BOOK3S_IRQPRIO_SYSCALL:
vec = BOOK3S_INTERRUPT_SYSCALL;
break;
case BOOK3S_IRQPRIO_DEBUG:
vec = BOOK3S_INTERRUPT_TRACE;
break;
case BOOK3S_IRQPRIO_PERFORMANCE_MONITOR:
vec = BOOK3S_INTERRUPT_PERFMON;
break;
default:
deliver = 0;
printk(KERN_ERR "KVM: Unknown interrupt: 0x%x\n", priority);
break;
}
#if 0
printk(KERN_INFO "Deliver interrupt 0x%x? %x\n", vec, deliver);
#endif
if (deliver)
kvmppc_inject_interrupt(vcpu, vec, 0ULL);
return deliver;
}
void kvmppc_core_deliver_interrupts(struct kvm_vcpu *vcpu)
{
unsigned long *pending = &vcpu->arch.pending_exceptions;
unsigned int priority;
#ifdef EXIT_DEBUG
if (vcpu->arch.pending_exceptions)
printk(KERN_EMERG "KVM: Check pending: %lx\n", vcpu->arch.pending_exceptions);
#endif
priority = __ffs(*pending);
while (priority <= (sizeof(unsigned int) * 8)) {
if (kvmppc_book3s_irqprio_deliver(vcpu, priority) &&
(priority != BOOK3S_IRQPRIO_DECREMENTER)) {
/* DEC interrupts get cleared by mtdec */
clear_bit(priority, &vcpu->arch.pending_exceptions);
break;
}
priority = find_next_bit(pending,
BITS_PER_BYTE * sizeof(*pending),
priority + 1);
}
}
void kvmppc_set_pvr(struct kvm_vcpu *vcpu, u32 pvr)
{
vcpu->arch.hflags &= ~BOOK3S_HFLAG_SLB;
vcpu->arch.pvr = pvr;
if ((pvr >= 0x330000) && (pvr < 0x70330000)) {
kvmppc_mmu_book3s_64_init(vcpu);
to_book3s(vcpu)->hior = 0xfff00000;
to_book3s(vcpu)->msr_mask = 0xffffffffffffffffULL;
} else {
kvmppc_mmu_book3s_32_init(vcpu);
to_book3s(vcpu)->hior = 0;
to_book3s(vcpu)->msr_mask = 0xffffffffULL;
}
/* If we are in hypervisor level on 970, we can tell the CPU to
* treat DCBZ as 32 bytes store */
vcpu->arch.hflags &= ~BOOK3S_HFLAG_DCBZ32;
if (vcpu->arch.mmu.is_dcbz32(vcpu) && (mfmsr() & MSR_HV) &&
!strcmp(cur_cpu_spec->platform, "ppc970"))
vcpu->arch.hflags |= BOOK3S_HFLAG_DCBZ32;
}
/* Book3s_32 CPUs always have 32 bytes cache line size, which Linux assumes. To
* make Book3s_32 Linux work on Book3s_64, we have to make sure we trap dcbz to
* emulate 32 bytes dcbz length.
*
* The Book3s_64 inventors also realized this case and implemented a special bit
* in the HID5 register, which is a hypervisor ressource. Thus we can't use it.
*
* My approach here is to patch the dcbz instruction on executing pages.
*/
static void kvmppc_patch_dcbz(struct kvm_vcpu *vcpu, struct kvmppc_pte *pte)
{
bool touched = false;
hva_t hpage;
u32 *page;
int i;
hpage = gfn_to_hva(vcpu->kvm, pte->raddr >> PAGE_SHIFT);
if (kvm_is_error_hva(hpage))
return;
hpage |= pte->raddr & ~PAGE_MASK;
hpage &= ~0xFFFULL;
page = vmalloc(HW_PAGE_SIZE);
if (copy_from_user(page, (void __user *)hpage, HW_PAGE_SIZE))
goto out;
for (i=0; i < HW_PAGE_SIZE / 4; i++)
if ((page[i] & 0xff0007ff) == INS_DCBZ) {
page[i] &= 0xfffffff7; // reserved instruction, so we trap
touched = true;
}
if (touched)
copy_to_user((void __user *)hpage, page, HW_PAGE_SIZE);
out:
vfree(page);
}
static int kvmppc_xlate(struct kvm_vcpu *vcpu, ulong eaddr, bool data,
struct kvmppc_pte *pte)
{
int relocated = (vcpu->arch.msr & (data ? MSR_DR : MSR_IR));
int r;
if (relocated) {
r = vcpu->arch.mmu.xlate(vcpu, eaddr, pte, data);
} else {
pte->eaddr = eaddr;
pte->raddr = eaddr & 0xffffffff;
pte->vpage = eaddr >> 12;
switch (vcpu->arch.msr & (MSR_DR|MSR_IR)) {
case 0:
pte->vpage |= VSID_REAL;
case MSR_DR:
pte->vpage |= VSID_REAL_DR;
case MSR_IR:
pte->vpage |= VSID_REAL_IR;
}
pte->may_read = true;
pte->may_write = true;
pte->may_execute = true;
r = 0;
}
return r;
}
static hva_t kvmppc_bad_hva(void)
{
return PAGE_OFFSET;
}
static hva_t kvmppc_pte_to_hva(struct kvm_vcpu *vcpu, struct kvmppc_pte *pte,
bool read)
{
hva_t hpage;
if (read && !pte->may_read)
goto err;
if (!read && !pte->may_write)
goto err;
hpage = gfn_to_hva(vcpu->kvm, pte->raddr >> PAGE_SHIFT);
if (kvm_is_error_hva(hpage))
goto err;
return hpage | (pte->raddr & ~PAGE_MASK);
err:
return kvmppc_bad_hva();
}
int kvmppc_st(struct kvm_vcpu *vcpu, ulong eaddr, int size, void *ptr)
{
struct kvmppc_pte pte;
hva_t hva = eaddr;
vcpu->stat.st++;
if (kvmppc_xlate(vcpu, eaddr, false, &pte))
goto err;
hva = kvmppc_pte_to_hva(vcpu, &pte, false);
if (kvm_is_error_hva(hva))
goto err;
if (copy_to_user((void __user *)hva, ptr, size)) {
printk(KERN_INFO "kvmppc_st at 0x%lx failed\n", hva);
goto err;
}
return 0;
err:
return -ENOENT;
}
int kvmppc_ld(struct kvm_vcpu *vcpu, ulong eaddr, int size, void *ptr,
bool data)
{
struct kvmppc_pte pte;
hva_t hva = eaddr;
vcpu->stat.ld++;
if (kvmppc_xlate(vcpu, eaddr, data, &pte))
goto err;
hva = kvmppc_pte_to_hva(vcpu, &pte, true);
if (kvm_is_error_hva(hva))
goto err;
if (copy_from_user(ptr, (void __user *)hva, size)) {
printk(KERN_INFO "kvmppc_ld at 0x%lx failed\n", hva);
goto err;
}
return 0;
err:
return -ENOENT;
}
static int kvmppc_visible_gfn(struct kvm_vcpu *vcpu, gfn_t gfn)
{
return kvm_is_visible_gfn(vcpu->kvm, gfn);
}
int kvmppc_handle_pagefault(struct kvm_run *run, struct kvm_vcpu *vcpu,
ulong eaddr, int vec)
{
bool data = (vec == BOOK3S_INTERRUPT_DATA_STORAGE);
int r = RESUME_GUEST;
int relocated;
int page_found = 0;
struct kvmppc_pte pte;
bool is_mmio = false;
if ( vec == BOOK3S_INTERRUPT_DATA_STORAGE ) {
relocated = (vcpu->arch.msr & MSR_DR);
} else {
relocated = (vcpu->arch.msr & MSR_IR);
}
/* Resolve real address if translation turned on */
if (relocated) {
page_found = vcpu->arch.mmu.xlate(vcpu, eaddr, &pte, data);
} else {
pte.may_execute = true;
pte.may_read = true;
pte.may_write = true;
pte.raddr = eaddr & 0xffffffff;
pte.eaddr = eaddr;
pte.vpage = eaddr >> 12;
switch (vcpu->arch.msr & (MSR_DR|MSR_IR)) {
case 0:
pte.vpage |= VSID_REAL;
case MSR_DR:
pte.vpage |= VSID_REAL_DR;
case MSR_IR:
pte.vpage |= VSID_REAL_IR;
}
}
if (vcpu->arch.mmu.is_dcbz32(vcpu) &&
(!(vcpu->arch.hflags & BOOK3S_HFLAG_DCBZ32))) {
/*
* If we do the dcbz hack, we have to NX on every execution,
* so we can patch the executing code. This renders our guest
* NX-less.
*/
pte.may_execute = !data;
}
if (page_found == -ENOENT) {
/* Page not found in guest PTE entries */
vcpu->arch.dear = vcpu->arch.fault_dear;
to_book3s(vcpu)->dsisr = vcpu->arch.fault_dsisr;
vcpu->arch.msr |= (vcpu->arch.shadow_msr & 0x00000000f8000000ULL);
kvmppc_book3s_queue_irqprio(vcpu, vec);
} else if (page_found == -EPERM) {
/* Storage protection */
vcpu->arch.dear = vcpu->arch.fault_dear;
to_book3s(vcpu)->dsisr = vcpu->arch.fault_dsisr & ~DSISR_NOHPTE;
to_book3s(vcpu)->dsisr |= DSISR_PROTFAULT;
vcpu->arch.msr |= (vcpu->arch.shadow_msr & 0x00000000f8000000ULL);
kvmppc_book3s_queue_irqprio(vcpu, vec);
} else if (page_found == -EINVAL) {
/* Page not found in guest SLB */
vcpu->arch.dear = vcpu->arch.fault_dear;
kvmppc_book3s_queue_irqprio(vcpu, vec + 0x80);
} else if (!is_mmio &&
kvmppc_visible_gfn(vcpu, pte.raddr >> PAGE_SHIFT)) {
/* The guest's PTE is not mapped yet. Map on the host */
kvmppc_mmu_map_page(vcpu, &pte);
if (data)
vcpu->stat.sp_storage++;
else if (vcpu->arch.mmu.is_dcbz32(vcpu) &&
(!(vcpu->arch.hflags & BOOK3S_HFLAG_DCBZ32)))
kvmppc_patch_dcbz(vcpu, &pte);
} else {
/* MMIO */
vcpu->stat.mmio_exits++;
vcpu->arch.paddr_accessed = pte.raddr;
r = kvmppc_emulate_mmio(run, vcpu);
if ( r == RESUME_HOST_NV )
r = RESUME_HOST;
if ( r == RESUME_GUEST_NV )
r = RESUME_GUEST;
}
return r;
}
int kvmppc_handle_exit(struct kvm_run *run, struct kvm_vcpu *vcpu,
unsigned int exit_nr)
{
int r = RESUME_HOST;
vcpu->stat.sum_exits++;
run->exit_reason = KVM_EXIT_UNKNOWN;
run->ready_for_interrupt_injection = 1;
#ifdef EXIT_DEBUG
printk(KERN_EMERG "exit_nr=0x%x | pc=0x%lx | dar=0x%lx | dec=0x%x | msr=0x%lx\n",
exit_nr, vcpu->arch.pc, vcpu->arch.fault_dear,
kvmppc_get_dec(vcpu), vcpu->arch.msr);
#elif defined (EXIT_DEBUG_SIMPLE)
if ((exit_nr != 0x900) && (exit_nr != 0x500))
printk(KERN_EMERG "exit_nr=0x%x | pc=0x%lx | dar=0x%lx | msr=0x%lx\n",
exit_nr, vcpu->arch.pc, vcpu->arch.fault_dear,
vcpu->arch.msr);
#endif
kvm_resched(vcpu);
switch (exit_nr) {
case BOOK3S_INTERRUPT_INST_STORAGE:
vcpu->stat.pf_instruc++;
/* only care about PTEG not found errors, but leave NX alone */
if (vcpu->arch.shadow_msr & 0x40000000) {
r = kvmppc_handle_pagefault(run, vcpu, vcpu->arch.pc, exit_nr);
vcpu->stat.sp_instruc++;
} else if (vcpu->arch.mmu.is_dcbz32(vcpu) &&
(!(vcpu->arch.hflags & BOOK3S_HFLAG_DCBZ32))) {
/*
* XXX If we do the dcbz hack we use the NX bit to flush&patch the page,
* so we can't use the NX bit inside the guest. Let's cross our fingers,
* that no guest that needs the dcbz hack does NX.
*/
kvmppc_mmu_pte_flush(vcpu, vcpu->arch.pc, ~0xFFFULL);
} else {
vcpu->arch.msr |= (vcpu->arch.shadow_msr & 0x58000000);
kvmppc_book3s_queue_irqprio(vcpu, exit_nr);
kvmppc_mmu_pte_flush(vcpu, vcpu->arch.pc, ~0xFFFULL);
r = RESUME_GUEST;
}
break;
case BOOK3S_INTERRUPT_DATA_STORAGE:
vcpu->stat.pf_storage++;
/* The only case we need to handle is missing shadow PTEs */
if (vcpu->arch.fault_dsisr & DSISR_NOHPTE) {
r = kvmppc_handle_pagefault(run, vcpu, vcpu->arch.fault_dear, exit_nr);
} else {
vcpu->arch.dear = vcpu->arch.fault_dear;
to_book3s(vcpu)->dsisr = vcpu->arch.fault_dsisr;
kvmppc_book3s_queue_irqprio(vcpu, exit_nr);
kvmppc_mmu_pte_flush(vcpu, vcpu->arch.dear, ~0xFFFULL);
r = RESUME_GUEST;
}
break;
case BOOK3S_INTERRUPT_DATA_SEGMENT:
if (kvmppc_mmu_map_segment(vcpu, vcpu->arch.fault_dear) < 0) {
vcpu->arch.dear = vcpu->arch.fault_dear;
kvmppc_book3s_queue_irqprio(vcpu,
BOOK3S_INTERRUPT_DATA_SEGMENT);
}
r = RESUME_GUEST;
break;
case BOOK3S_INTERRUPT_INST_SEGMENT:
if (kvmppc_mmu_map_segment(vcpu, vcpu->arch.pc) < 0) {
kvmppc_book3s_queue_irqprio(vcpu,
BOOK3S_INTERRUPT_INST_SEGMENT);
}
r = RESUME_GUEST;
break;
/* We're good on these - the host merely wanted to get our attention */
case BOOK3S_INTERRUPT_DECREMENTER:
vcpu->stat.dec_exits++;
r = RESUME_GUEST;
break;
case BOOK3S_INTERRUPT_EXTERNAL:
vcpu->stat.ext_intr_exits++;
r = RESUME_GUEST;
break;
case BOOK3S_INTERRUPT_PROGRAM:
{
enum emulation_result er;
if (vcpu->arch.msr & MSR_PR) {
#ifdef EXIT_DEBUG
printk(KERN_INFO "Userspace triggered 0x700 exception at 0x%lx (0x%x)\n", vcpu->arch.pc, vcpu->arch.last_inst);
#endif
if ((vcpu->arch.last_inst & 0xff0007ff) !=
(INS_DCBZ & 0xfffffff7)) {
kvmppc_book3s_queue_irqprio(vcpu, exit_nr);
r = RESUME_GUEST;
break;
}
}
vcpu->stat.emulated_inst_exits++;
er = kvmppc_emulate_instruction(run, vcpu);
switch (er) {
case EMULATE_DONE:
r = RESUME_GUEST;
break;
case EMULATE_FAIL:
printk(KERN_CRIT "%s: emulation at %lx failed (%08x)\n",
__func__, vcpu->arch.pc, vcpu->arch.last_inst);
kvmppc_book3s_queue_irqprio(vcpu, exit_nr);
r = RESUME_GUEST;
break;
default:
BUG();
}
break;
}
case BOOK3S_INTERRUPT_SYSCALL:
#ifdef EXIT_DEBUG
printk(KERN_INFO "Syscall Nr %d\n", (int)vcpu->arch.gpr[0]);
#endif
vcpu->stat.syscall_exits++;
kvmppc_book3s_queue_irqprio(vcpu, exit_nr);
r = RESUME_GUEST;
break;
case BOOK3S_INTERRUPT_MACHINE_CHECK:
case BOOK3S_INTERRUPT_FP_UNAVAIL:
case BOOK3S_INTERRUPT_TRACE:
case BOOK3S_INTERRUPT_ALTIVEC:
case BOOK3S_INTERRUPT_VSX:
kvmppc_book3s_queue_irqprio(vcpu, exit_nr);
r = RESUME_GUEST;
break;
default:
/* Ugh - bork here! What did we get? */
printk(KERN_EMERG "exit_nr=0x%x | pc=0x%lx | msr=0x%lx\n", exit_nr, vcpu->arch.pc, vcpu->arch.shadow_msr);
r = RESUME_HOST;
BUG();
break;
}
if (!(r & RESUME_HOST)) {
/* To avoid clobbering exit_reason, only check for signals if
* we aren't already exiting to userspace for some other
* reason. */
if (signal_pending(current)) {
#ifdef EXIT_DEBUG
printk(KERN_EMERG "KVM: Going back to host\n");
#endif
vcpu->stat.signal_exits++;
run->exit_reason = KVM_EXIT_INTR;
r = -EINTR;
} else {
/* In case an interrupt came in that was triggered
* from userspace (like DEC), we need to check what
* to inject now! */
kvmppc_core_deliver_interrupts(vcpu);
}
}
#ifdef EXIT_DEBUG
printk(KERN_EMERG "KVM exit: vcpu=0x%p pc=0x%lx r=0x%x\n", vcpu, vcpu->arch.pc, r);
#endif
return r;
}
int kvm_arch_vcpu_setup(struct kvm_vcpu *vcpu)
{
return 0;
}
int kvm_arch_vcpu_ioctl_get_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs)
{
int i;
regs->pc = vcpu->arch.pc;
regs->cr = vcpu->arch.cr;
regs->ctr = vcpu->arch.ctr;
regs->lr = vcpu->arch.lr;
regs->xer = vcpu->arch.xer;
regs->msr = vcpu->arch.msr;
regs->srr0 = vcpu->arch.srr0;
regs->srr1 = vcpu->arch.srr1;
regs->pid = vcpu->arch.pid;
regs->sprg0 = vcpu->arch.sprg0;
regs->sprg1 = vcpu->arch.sprg1;
regs->sprg2 = vcpu->arch.sprg2;
regs->sprg3 = vcpu->arch.sprg3;
regs->sprg5 = vcpu->arch.sprg4;
regs->sprg6 = vcpu->arch.sprg5;
regs->sprg7 = vcpu->arch.sprg6;
for (i = 0; i < ARRAY_SIZE(regs->gpr); i++)
regs->gpr[i] = vcpu->arch.gpr[i];
return 0;
}
int kvm_arch_vcpu_ioctl_set_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs)
{
int i;
vcpu->arch.pc = regs->pc;
vcpu->arch.cr = regs->cr;
vcpu->arch.ctr = regs->ctr;
vcpu->arch.lr = regs->lr;
vcpu->arch.xer = regs->xer;
kvmppc_set_msr(vcpu, regs->msr);
vcpu->arch.srr0 = regs->srr0;
vcpu->arch.srr1 = regs->srr1;
vcpu->arch.sprg0 = regs->sprg0;
vcpu->arch.sprg1 = regs->sprg1;
vcpu->arch.sprg2 = regs->sprg2;
vcpu->arch.sprg3 = regs->sprg3;
vcpu->arch.sprg5 = regs->sprg4;
vcpu->arch.sprg6 = regs->sprg5;
vcpu->arch.sprg7 = regs->sprg6;
for (i = 0; i < ARRAY_SIZE(vcpu->arch.gpr); i++)
vcpu->arch.gpr[i] = regs->gpr[i];
return 0;
}
int kvm_arch_vcpu_ioctl_get_sregs(struct kvm_vcpu *vcpu,
struct kvm_sregs *sregs)
{
struct kvmppc_vcpu_book3s *vcpu3s = to_book3s(vcpu);
int i;
sregs->pvr = vcpu->arch.pvr;
sregs->u.s.sdr1 = to_book3s(vcpu)->sdr1;
if (vcpu->arch.hflags & BOOK3S_HFLAG_SLB) {
for (i = 0; i < 64; i++) {
sregs->u.s.ppc64.slb[i].slbe = vcpu3s->slb[i].orige | i;
sregs->u.s.ppc64.slb[i].slbv = vcpu3s->slb[i].origv;
}
} else {
for (i = 0; i < 16; i++) {
sregs->u.s.ppc32.sr[i] = vcpu3s->sr[i].raw;
sregs->u.s.ppc32.sr[i] = vcpu3s->sr[i].raw;
}
for (i = 0; i < 8; i++) {
sregs->u.s.ppc32.ibat[i] = vcpu3s->ibat[i].raw;
sregs->u.s.ppc32.dbat[i] = vcpu3s->dbat[i].raw;
}
}
return 0;
}
int kvm_arch_vcpu_ioctl_set_sregs(struct kvm_vcpu *vcpu,
struct kvm_sregs *sregs)
{
struct kvmppc_vcpu_book3s *vcpu3s = to_book3s(vcpu);
int i;
kvmppc_set_pvr(vcpu, sregs->pvr);
vcpu3s->sdr1 = sregs->u.s.sdr1;
if (vcpu->arch.hflags & BOOK3S_HFLAG_SLB) {
for (i = 0; i < 64; i++) {
vcpu->arch.mmu.slbmte(vcpu, sregs->u.s.ppc64.slb[i].slbv,
sregs->u.s.ppc64.slb[i].slbe);
}
} else {
for (i = 0; i < 16; i++) {
vcpu->arch.mmu.mtsrin(vcpu, i, sregs->u.s.ppc32.sr[i]);
}
for (i = 0; i < 8; i++) {
kvmppc_set_bat(vcpu, &(vcpu3s->ibat[i]), false,
(u32)sregs->u.s.ppc32.ibat[i]);
kvmppc_set_bat(vcpu, &(vcpu3s->ibat[i]), true,
(u32)(sregs->u.s.ppc32.ibat[i] >> 32));
kvmppc_set_bat(vcpu, &(vcpu3s->dbat[i]), false,
(u32)sregs->u.s.ppc32.dbat[i]);
kvmppc_set_bat(vcpu, &(vcpu3s->dbat[i]), true,
(u32)(sregs->u.s.ppc32.dbat[i] >> 32));
}
}
/* Flush the MMU after messing with the segments */
kvmppc_mmu_pte_flush(vcpu, 0, 0);
return 0;
}
int kvm_arch_vcpu_ioctl_get_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu)
{
return -ENOTSUPP;
}
int kvm_arch_vcpu_ioctl_set_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu)
{
return -ENOTSUPP;
}
int kvm_arch_vcpu_ioctl_translate(struct kvm_vcpu *vcpu,
struct kvm_translation *tr)
{
return 0;
}
/*
* Get (and clear) the dirty memory log for a memory slot.
*/
int kvm_vm_ioctl_get_dirty_log(struct kvm *kvm,
struct kvm_dirty_log *log)
{
struct kvm_memory_slot *memslot;
struct kvm_vcpu *vcpu;
ulong ga, ga_end;
int is_dirty = 0;
int r, n;
mutex_lock(&kvm->slots_lock);
r = kvm_get_dirty_log(kvm, log, &is_dirty);
if (r)
goto out;
/* If nothing is dirty, don't bother messing with page tables. */
if (is_dirty) {
memslot = &kvm->memslots->memslots[log->slot];
ga = memslot->base_gfn << PAGE_SHIFT;
ga_end = ga + (memslot->npages << PAGE_SHIFT);
kvm_for_each_vcpu(n, vcpu, kvm)
kvmppc_mmu_pte_pflush(vcpu, ga, ga_end);
n = ALIGN(memslot->npages, BITS_PER_LONG) / 8;
memset(memslot->dirty_bitmap, 0, n);
}
r = 0;
out:
mutex_unlock(&kvm->slots_lock);
return r;
}
int kvmppc_core_check_processor_compat(void)
{
return 0;
}
struct kvm_vcpu *kvmppc_core_vcpu_create(struct kvm *kvm, unsigned int id)
{
struct kvmppc_vcpu_book3s *vcpu_book3s;
struct kvm_vcpu *vcpu;
int err;
vcpu_book3s = (struct kvmppc_vcpu_book3s *)__get_free_pages( GFP_KERNEL | __GFP_ZERO,
get_order(sizeof(struct kvmppc_vcpu_book3s)));
if (!vcpu_book3s) {
err = -ENOMEM;
goto out;
}
vcpu = &vcpu_book3s->vcpu;
err = kvm_vcpu_init(vcpu, kvm, id);
if (err)
goto free_vcpu;
vcpu->arch.host_retip = kvm_return_point;
vcpu->arch.host_msr = mfmsr();
/* default to book3s_64 (970fx) */
vcpu->arch.pvr = 0x3C0301;
kvmppc_set_pvr(vcpu, vcpu->arch.pvr);
vcpu_book3s->slb_nr = 64;
/* remember where some real-mode handlers are */
vcpu->arch.trampoline_lowmem = kvmppc_trampoline_lowmem;
vcpu->arch.trampoline_enter = kvmppc_trampoline_enter;
vcpu->arch.highmem_handler = (ulong)kvmppc_handler_highmem;
vcpu->arch.shadow_msr = MSR_USER64;
err = __init_new_context();
if (err < 0)
goto free_vcpu;
vcpu_book3s->context_id = err;
vcpu_book3s->vsid_max = ((vcpu_book3s->context_id + 1) << USER_ESID_BITS) - 1;
vcpu_book3s->vsid_first = vcpu_book3s->context_id << USER_ESID_BITS;
vcpu_book3s->vsid_next = vcpu_book3s->vsid_first;
return vcpu;
free_vcpu:
free_pages((long)vcpu_book3s, get_order(sizeof(struct kvmppc_vcpu_book3s)));
out:
return ERR_PTR(err);
}
void kvmppc_core_vcpu_free(struct kvm_vcpu *vcpu)
{
struct kvmppc_vcpu_book3s *vcpu_book3s = to_book3s(vcpu);
__destroy_context(vcpu_book3s->context_id);
kvm_vcpu_uninit(vcpu);
free_pages((long)vcpu_book3s, get_order(sizeof(struct kvmppc_vcpu_book3s)));
}
extern int __kvmppc_vcpu_entry(struct kvm_run *kvm_run, struct kvm_vcpu *vcpu);
int __kvmppc_vcpu_run(struct kvm_run *kvm_run, struct kvm_vcpu *vcpu)
{
int ret;
/* No need to go into the guest when all we do is going out */
if (signal_pending(current)) {
kvm_run->exit_reason = KVM_EXIT_INTR;
return -EINTR;
}
/* XXX we get called with irq disabled - change that! */
local_irq_enable();
ret = __kvmppc_vcpu_entry(kvm_run, vcpu);
local_irq_disable();
return ret;
}
static int kvmppc_book3s_init(void)
{
return kvm_init(NULL, sizeof(struct kvmppc_vcpu_book3s), THIS_MODULE);
}
static void kvmppc_book3s_exit(void)
{
kvm_exit();
}
module_init(kvmppc_book3s_init);
module_exit(kvmppc_book3s_exit);