blob: d4d925912c47c83c76a67356f6146c2f6d0ceae6 [file] [log] [blame]
/*
* Copyright(c) 2004 - 2006 Intel Corporation. All rights reserved.
*
* This program is free software; you can redistribute it and/or modify it
* under the terms of the GNU General Public License as published by the Free
* Software Foundation; either version 2 of the License, or (at your option)
* any later version.
*
* This program is distributed in the hope that it will be useful, but WITHOUT
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
* more details.
*
* You should have received a copy of the GNU General Public License along with
* this program; if not, write to the Free Software Foundation, Inc., 59
* Temple Place - Suite 330, Boston, MA 02111-1307, USA.
*
* The full GNU General Public License is included in this distribution in the
* file called COPYING.
*/
/*
* This code implements the DMA subsystem. It provides a HW-neutral interface
* for other kernel code to use asynchronous memory copy capabilities,
* if present, and allows different HW DMA drivers to register as providing
* this capability.
*
* Due to the fact we are accelerating what is already a relatively fast
* operation, the code goes to great lengths to avoid additional overhead,
* such as locking.
*
* LOCKING:
*
* The subsystem keeps two global lists, dma_device_list and dma_client_list.
* Both of these are protected by a mutex, dma_list_mutex.
*
* Each device has a channels list, which runs unlocked but is never modified
* once the device is registered, it's just setup by the driver.
*
* Each client is responsible for keeping track of the channels it uses. See
* the definition of dma_event_callback in dmaengine.h.
*
* Each device has a kref, which is initialized to 1 when the device is
* registered. A kref_get is done for each device registered. When the
* device is released, the corresponding kref_put is done in the release
* method. Every time one of the device's channels is allocated to a client,
* a kref_get occurs. When the channel is freed, the corresponding kref_put
* happens. The device's release function does a completion, so
* unregister_device does a remove event, device_unregister, a kref_put
* for the first reference, then waits on the completion for all other
* references to finish.
*
* Each channel has an open-coded implementation of Rusty Russell's "bigref,"
* with a kref and a per_cpu local_t. A dma_chan_get is called when a client
* signals that it wants to use a channel, and dma_chan_put is called when
* a channel is removed or a client using it is unregistered. A client can
* take extra references per outstanding transaction, as is the case with
* the NET DMA client. The release function does a kref_put on the device.
* -ChrisL, DanW
*/
#include <linux/init.h>
#include <linux/module.h>
#include <linux/mm.h>
#include <linux/device.h>
#include <linux/dmaengine.h>
#include <linux/hardirq.h>
#include <linux/spinlock.h>
#include <linux/percpu.h>
#include <linux/rcupdate.h>
#include <linux/mutex.h>
#include <linux/jiffies.h>
static DEFINE_MUTEX(dma_list_mutex);
static LIST_HEAD(dma_device_list);
static LIST_HEAD(dma_client_list);
static long dmaengine_ref_count;
/* --- sysfs implementation --- */
static ssize_t show_memcpy_count(struct device *dev, struct device_attribute *attr, char *buf)
{
struct dma_chan *chan = to_dma_chan(dev);
unsigned long count = 0;
int i;
for_each_possible_cpu(i)
count += per_cpu_ptr(chan->local, i)->memcpy_count;
return sprintf(buf, "%lu\n", count);
}
static ssize_t show_bytes_transferred(struct device *dev, struct device_attribute *attr,
char *buf)
{
struct dma_chan *chan = to_dma_chan(dev);
unsigned long count = 0;
int i;
for_each_possible_cpu(i)
count += per_cpu_ptr(chan->local, i)->bytes_transferred;
return sprintf(buf, "%lu\n", count);
}
static ssize_t show_in_use(struct device *dev, struct device_attribute *attr, char *buf)
{
struct dma_chan *chan = to_dma_chan(dev);
return sprintf(buf, "%d\n", chan->client_count);
}
static struct device_attribute dma_attrs[] = {
__ATTR(memcpy_count, S_IRUGO, show_memcpy_count, NULL),
__ATTR(bytes_transferred, S_IRUGO, show_bytes_transferred, NULL),
__ATTR(in_use, S_IRUGO, show_in_use, NULL),
__ATTR_NULL
};
static void dma_async_device_cleanup(struct kref *kref);
static void dma_dev_release(struct device *dev)
{
struct dma_chan *chan = to_dma_chan(dev);
kref_put(&chan->device->refcount, dma_async_device_cleanup);
}
static struct class dma_devclass = {
.name = "dma",
.dev_attrs = dma_attrs,
.dev_release = dma_dev_release,
};
/* --- client and device registration --- */
#define dma_chan_satisfies_mask(chan, mask) \
__dma_chan_satisfies_mask((chan), &(mask))
static int
__dma_chan_satisfies_mask(struct dma_chan *chan, dma_cap_mask_t *want)
{
dma_cap_mask_t has;
bitmap_and(has.bits, want->bits, chan->device->cap_mask.bits,
DMA_TX_TYPE_END);
return bitmap_equal(want->bits, has.bits, DMA_TX_TYPE_END);
}
static struct module *dma_chan_to_owner(struct dma_chan *chan)
{
return chan->device->dev->driver->owner;
}
/**
* balance_ref_count - catch up the channel reference count
* @chan - channel to balance ->client_count versus dmaengine_ref_count
*
* balance_ref_count must be called under dma_list_mutex
*/
static void balance_ref_count(struct dma_chan *chan)
{
struct module *owner = dma_chan_to_owner(chan);
while (chan->client_count < dmaengine_ref_count) {
__module_get(owner);
chan->client_count++;
}
}
/**
* dma_chan_get - try to grab a dma channel's parent driver module
* @chan - channel to grab
*
* Must be called under dma_list_mutex
*/
static int dma_chan_get(struct dma_chan *chan)
{
int err = -ENODEV;
struct module *owner = dma_chan_to_owner(chan);
if (chan->client_count) {
__module_get(owner);
err = 0;
} else if (try_module_get(owner))
err = 0;
if (err == 0)
chan->client_count++;
/* allocate upon first client reference */
if (chan->client_count == 1 && err == 0) {
int desc_cnt = chan->device->device_alloc_chan_resources(chan, NULL);
if (desc_cnt < 0) {
err = desc_cnt;
chan->client_count = 0;
module_put(owner);
} else
balance_ref_count(chan);
}
return err;
}
/**
* dma_chan_put - drop a reference to a dma channel's parent driver module
* @chan - channel to release
*
* Must be called under dma_list_mutex
*/
static void dma_chan_put(struct dma_chan *chan)
{
if (!chan->client_count)
return; /* this channel failed alloc_chan_resources */
chan->client_count--;
module_put(dma_chan_to_owner(chan));
if (chan->client_count == 0)
chan->device->device_free_chan_resources(chan);
}
/**
* dma_client_chan_alloc - try to allocate channels to a client
* @client: &dma_client
*
* Called with dma_list_mutex held.
*/
static void dma_client_chan_alloc(struct dma_client *client)
{
struct dma_device *device;
struct dma_chan *chan;
enum dma_state_client ack;
/* Find a channel */
list_for_each_entry(device, &dma_device_list, global_node) {
/* Does the client require a specific DMA controller? */
if (client->slave && client->slave->dma_dev
&& client->slave->dma_dev != device->dev)
continue;
list_for_each_entry(chan, &device->channels, device_node) {
if (!dma_chan_satisfies_mask(chan, client->cap_mask))
continue;
if (!chan->client_count)
continue;
ack = client->event_callback(client, chan,
DMA_RESOURCE_AVAILABLE);
/* we are done once this client rejects
* an available resource
*/
if (ack == DMA_NAK)
return;
}
}
}
enum dma_status dma_sync_wait(struct dma_chan *chan, dma_cookie_t cookie)
{
enum dma_status status;
unsigned long dma_sync_wait_timeout = jiffies + msecs_to_jiffies(5000);
dma_async_issue_pending(chan);
do {
status = dma_async_is_tx_complete(chan, cookie, NULL, NULL);
if (time_after_eq(jiffies, dma_sync_wait_timeout)) {
printk(KERN_ERR "dma_sync_wait_timeout!\n");
return DMA_ERROR;
}
} while (status == DMA_IN_PROGRESS);
return status;
}
EXPORT_SYMBOL(dma_sync_wait);
/**
* dma_chan_cleanup - release a DMA channel's resources
* @kref: kernel reference structure that contains the DMA channel device
*/
void dma_chan_cleanup(struct kref *kref)
{
struct dma_chan *chan = container_of(kref, struct dma_chan, refcount);
kref_put(&chan->device->refcount, dma_async_device_cleanup);
}
EXPORT_SYMBOL(dma_chan_cleanup);
static void dma_chan_free_rcu(struct rcu_head *rcu)
{
struct dma_chan *chan = container_of(rcu, struct dma_chan, rcu);
kref_put(&chan->refcount, dma_chan_cleanup);
}
static void dma_chan_release(struct dma_chan *chan)
{
call_rcu(&chan->rcu, dma_chan_free_rcu);
}
/**
* dma_chans_notify_available - broadcast available channels to the clients
*/
static void dma_clients_notify_available(void)
{
struct dma_client *client;
mutex_lock(&dma_list_mutex);
list_for_each_entry(client, &dma_client_list, global_node)
dma_client_chan_alloc(client);
mutex_unlock(&dma_list_mutex);
}
/**
* dma_async_client_register - register a &dma_client
* @client: ptr to a client structure with valid 'event_callback' and 'cap_mask'
*/
void dma_async_client_register(struct dma_client *client)
{
struct dma_device *device, *_d;
struct dma_chan *chan;
int err;
/* validate client data */
BUG_ON(dma_has_cap(DMA_SLAVE, client->cap_mask) &&
!client->slave);
mutex_lock(&dma_list_mutex);
dmaengine_ref_count++;
/* try to grab channels */
list_for_each_entry_safe(device, _d, &dma_device_list, global_node)
list_for_each_entry(chan, &device->channels, device_node) {
err = dma_chan_get(chan);
if (err == -ENODEV) {
/* module removed before we could use it */
list_del_init(&device->global_node);
break;
} else if (err)
pr_err("dmaengine: failed to get %s: (%d)\n",
dev_name(&chan->dev), err);
}
list_add_tail(&client->global_node, &dma_client_list);
mutex_unlock(&dma_list_mutex);
}
EXPORT_SYMBOL(dma_async_client_register);
/**
* dma_async_client_unregister - unregister a client and free the &dma_client
* @client: &dma_client to free
*
* Force frees any allocated DMA channels, frees the &dma_client memory
*/
void dma_async_client_unregister(struct dma_client *client)
{
struct dma_device *device;
struct dma_chan *chan;
if (!client)
return;
mutex_lock(&dma_list_mutex);
dmaengine_ref_count--;
BUG_ON(dmaengine_ref_count < 0);
/* drop channel references */
list_for_each_entry(device, &dma_device_list, global_node)
list_for_each_entry(chan, &device->channels, device_node)
dma_chan_put(chan);
list_del(&client->global_node);
mutex_unlock(&dma_list_mutex);
}
EXPORT_SYMBOL(dma_async_client_unregister);
/**
* dma_async_client_chan_request - send all available channels to the
* client that satisfy the capability mask
* @client - requester
*/
void dma_async_client_chan_request(struct dma_client *client)
{
mutex_lock(&dma_list_mutex);
dma_client_chan_alloc(client);
mutex_unlock(&dma_list_mutex);
}
EXPORT_SYMBOL(dma_async_client_chan_request);
/**
* dma_async_device_register - registers DMA devices found
* @device: &dma_device
*/
int dma_async_device_register(struct dma_device *device)
{
static int id;
int chancnt = 0, rc;
struct dma_chan* chan;
if (!device)
return -ENODEV;
/* validate device routines */
BUG_ON(dma_has_cap(DMA_MEMCPY, device->cap_mask) &&
!device->device_prep_dma_memcpy);
BUG_ON(dma_has_cap(DMA_XOR, device->cap_mask) &&
!device->device_prep_dma_xor);
BUG_ON(dma_has_cap(DMA_ZERO_SUM, device->cap_mask) &&
!device->device_prep_dma_zero_sum);
BUG_ON(dma_has_cap(DMA_MEMSET, device->cap_mask) &&
!device->device_prep_dma_memset);
BUG_ON(dma_has_cap(DMA_INTERRUPT, device->cap_mask) &&
!device->device_prep_dma_interrupt);
BUG_ON(dma_has_cap(DMA_SLAVE, device->cap_mask) &&
!device->device_prep_slave_sg);
BUG_ON(dma_has_cap(DMA_SLAVE, device->cap_mask) &&
!device->device_terminate_all);
BUG_ON(!device->device_alloc_chan_resources);
BUG_ON(!device->device_free_chan_resources);
BUG_ON(!device->device_is_tx_complete);
BUG_ON(!device->device_issue_pending);
BUG_ON(!device->dev);
init_completion(&device->done);
kref_init(&device->refcount);
mutex_lock(&dma_list_mutex);
device->dev_id = id++;
mutex_unlock(&dma_list_mutex);
/* represent channels in sysfs. Probably want devs too */
list_for_each_entry(chan, &device->channels, device_node) {
chan->local = alloc_percpu(typeof(*chan->local));
if (chan->local == NULL)
continue;
chan->chan_id = chancnt++;
chan->dev.class = &dma_devclass;
chan->dev.parent = device->dev;
dev_set_name(&chan->dev, "dma%dchan%d",
device->dev_id, chan->chan_id);
rc = device_register(&chan->dev);
if (rc) {
chancnt--;
free_percpu(chan->local);
chan->local = NULL;
goto err_out;
}
/* One for the channel, one of the class device */
kref_get(&device->refcount);
kref_get(&device->refcount);
kref_init(&chan->refcount);
chan->client_count = 0;
chan->slow_ref = 0;
INIT_RCU_HEAD(&chan->rcu);
}
mutex_lock(&dma_list_mutex);
if (dmaengine_ref_count)
list_for_each_entry(chan, &device->channels, device_node) {
/* if clients are already waiting for channels we need
* to take references on their behalf
*/
if (dma_chan_get(chan) == -ENODEV) {
/* note we can only get here for the first
* channel as the remaining channels are
* guaranteed to get a reference
*/
rc = -ENODEV;
mutex_unlock(&dma_list_mutex);
goto err_out;
}
}
list_add_tail(&device->global_node, &dma_device_list);
mutex_unlock(&dma_list_mutex);
dma_clients_notify_available();
return 0;
err_out:
list_for_each_entry(chan, &device->channels, device_node) {
if (chan->local == NULL)
continue;
kref_put(&device->refcount, dma_async_device_cleanup);
device_unregister(&chan->dev);
chancnt--;
free_percpu(chan->local);
}
return rc;
}
EXPORT_SYMBOL(dma_async_device_register);
/**
* dma_async_device_cleanup - function called when all references are released
* @kref: kernel reference object
*/
static void dma_async_device_cleanup(struct kref *kref)
{
struct dma_device *device;
device = container_of(kref, struct dma_device, refcount);
complete(&device->done);
}
/**
* dma_async_device_unregister - unregister a DMA device
* @device: &dma_device
*/
void dma_async_device_unregister(struct dma_device *device)
{
struct dma_chan *chan;
mutex_lock(&dma_list_mutex);
list_del(&device->global_node);
mutex_unlock(&dma_list_mutex);
list_for_each_entry(chan, &device->channels, device_node) {
WARN_ONCE(chan->client_count,
"%s called while %d clients hold a reference\n",
__func__, chan->client_count);
device_unregister(&chan->dev);
dma_chan_release(chan);
}
kref_put(&device->refcount, dma_async_device_cleanup);
wait_for_completion(&device->done);
}
EXPORT_SYMBOL(dma_async_device_unregister);
/**
* dma_async_memcpy_buf_to_buf - offloaded copy between virtual addresses
* @chan: DMA channel to offload copy to
* @dest: destination address (virtual)
* @src: source address (virtual)
* @len: length
*
* Both @dest and @src must be mappable to a bus address according to the
* DMA mapping API rules for streaming mappings.
* Both @dest and @src must stay memory resident (kernel memory or locked
* user space pages).
*/
dma_cookie_t
dma_async_memcpy_buf_to_buf(struct dma_chan *chan, void *dest,
void *src, size_t len)
{
struct dma_device *dev = chan->device;
struct dma_async_tx_descriptor *tx;
dma_addr_t dma_dest, dma_src;
dma_cookie_t cookie;
int cpu;
dma_src = dma_map_single(dev->dev, src, len, DMA_TO_DEVICE);
dma_dest = dma_map_single(dev->dev, dest, len, DMA_FROM_DEVICE);
tx = dev->device_prep_dma_memcpy(chan, dma_dest, dma_src, len,
DMA_CTRL_ACK);
if (!tx) {
dma_unmap_single(dev->dev, dma_src, len, DMA_TO_DEVICE);
dma_unmap_single(dev->dev, dma_dest, len, DMA_FROM_DEVICE);
return -ENOMEM;
}
tx->callback = NULL;
cookie = tx->tx_submit(tx);
cpu = get_cpu();
per_cpu_ptr(chan->local, cpu)->bytes_transferred += len;
per_cpu_ptr(chan->local, cpu)->memcpy_count++;
put_cpu();
return cookie;
}
EXPORT_SYMBOL(dma_async_memcpy_buf_to_buf);
/**
* dma_async_memcpy_buf_to_pg - offloaded copy from address to page
* @chan: DMA channel to offload copy to
* @page: destination page
* @offset: offset in page to copy to
* @kdata: source address (virtual)
* @len: length
*
* Both @page/@offset and @kdata must be mappable to a bus address according
* to the DMA mapping API rules for streaming mappings.
* Both @page/@offset and @kdata must stay memory resident (kernel memory or
* locked user space pages)
*/
dma_cookie_t
dma_async_memcpy_buf_to_pg(struct dma_chan *chan, struct page *page,
unsigned int offset, void *kdata, size_t len)
{
struct dma_device *dev = chan->device;
struct dma_async_tx_descriptor *tx;
dma_addr_t dma_dest, dma_src;
dma_cookie_t cookie;
int cpu;
dma_src = dma_map_single(dev->dev, kdata, len, DMA_TO_DEVICE);
dma_dest = dma_map_page(dev->dev, page, offset, len, DMA_FROM_DEVICE);
tx = dev->device_prep_dma_memcpy(chan, dma_dest, dma_src, len,
DMA_CTRL_ACK);
if (!tx) {
dma_unmap_single(dev->dev, dma_src, len, DMA_TO_DEVICE);
dma_unmap_page(dev->dev, dma_dest, len, DMA_FROM_DEVICE);
return -ENOMEM;
}
tx->callback = NULL;
cookie = tx->tx_submit(tx);
cpu = get_cpu();
per_cpu_ptr(chan->local, cpu)->bytes_transferred += len;
per_cpu_ptr(chan->local, cpu)->memcpy_count++;
put_cpu();
return cookie;
}
EXPORT_SYMBOL(dma_async_memcpy_buf_to_pg);
/**
* dma_async_memcpy_pg_to_pg - offloaded copy from page to page
* @chan: DMA channel to offload copy to
* @dest_pg: destination page
* @dest_off: offset in page to copy to
* @src_pg: source page
* @src_off: offset in page to copy from
* @len: length
*
* Both @dest_page/@dest_off and @src_page/@src_off must be mappable to a bus
* address according to the DMA mapping API rules for streaming mappings.
* Both @dest_page/@dest_off and @src_page/@src_off must stay memory resident
* (kernel memory or locked user space pages).
*/
dma_cookie_t
dma_async_memcpy_pg_to_pg(struct dma_chan *chan, struct page *dest_pg,
unsigned int dest_off, struct page *src_pg, unsigned int src_off,
size_t len)
{
struct dma_device *dev = chan->device;
struct dma_async_tx_descriptor *tx;
dma_addr_t dma_dest, dma_src;
dma_cookie_t cookie;
int cpu;
dma_src = dma_map_page(dev->dev, src_pg, src_off, len, DMA_TO_DEVICE);
dma_dest = dma_map_page(dev->dev, dest_pg, dest_off, len,
DMA_FROM_DEVICE);
tx = dev->device_prep_dma_memcpy(chan, dma_dest, dma_src, len,
DMA_CTRL_ACK);
if (!tx) {
dma_unmap_page(dev->dev, dma_src, len, DMA_TO_DEVICE);
dma_unmap_page(dev->dev, dma_dest, len, DMA_FROM_DEVICE);
return -ENOMEM;
}
tx->callback = NULL;
cookie = tx->tx_submit(tx);
cpu = get_cpu();
per_cpu_ptr(chan->local, cpu)->bytes_transferred += len;
per_cpu_ptr(chan->local, cpu)->memcpy_count++;
put_cpu();
return cookie;
}
EXPORT_SYMBOL(dma_async_memcpy_pg_to_pg);
void dma_async_tx_descriptor_init(struct dma_async_tx_descriptor *tx,
struct dma_chan *chan)
{
tx->chan = chan;
spin_lock_init(&tx->lock);
}
EXPORT_SYMBOL(dma_async_tx_descriptor_init);
/* dma_wait_for_async_tx - spin wait for a transaction to complete
* @tx: in-flight transaction to wait on
*
* This routine assumes that tx was obtained from a call to async_memcpy,
* async_xor, async_memset, etc which ensures that tx is "in-flight" (prepped
* and submitted). Walking the parent chain is only meant to cover for DMA
* drivers that do not implement the DMA_INTERRUPT capability and may race with
* the driver's descriptor cleanup routine.
*/
enum dma_status
dma_wait_for_async_tx(struct dma_async_tx_descriptor *tx)
{
enum dma_status status;
struct dma_async_tx_descriptor *iter;
struct dma_async_tx_descriptor *parent;
if (!tx)
return DMA_SUCCESS;
WARN_ONCE(tx->parent, "%s: speculatively walking dependency chain for"
" %s\n", __func__, dev_name(&tx->chan->dev));
/* poll through the dependency chain, return when tx is complete */
do {
iter = tx;
/* find the root of the unsubmitted dependency chain */
do {
parent = iter->parent;
if (!parent)
break;
else
iter = parent;
} while (parent);
/* there is a small window for ->parent == NULL and
* ->cookie == -EBUSY
*/
while (iter->cookie == -EBUSY)
cpu_relax();
status = dma_sync_wait(iter->chan, iter->cookie);
} while (status == DMA_IN_PROGRESS || (iter != tx));
return status;
}
EXPORT_SYMBOL_GPL(dma_wait_for_async_tx);
/* dma_run_dependencies - helper routine for dma drivers to process
* (start) dependent operations on their target channel
* @tx: transaction with dependencies
*/
void dma_run_dependencies(struct dma_async_tx_descriptor *tx)
{
struct dma_async_tx_descriptor *dep = tx->next;
struct dma_async_tx_descriptor *dep_next;
struct dma_chan *chan;
if (!dep)
return;
chan = dep->chan;
/* keep submitting up until a channel switch is detected
* in that case we will be called again as a result of
* processing the interrupt from async_tx_channel_switch
*/
for (; dep; dep = dep_next) {
spin_lock_bh(&dep->lock);
dep->parent = NULL;
dep_next = dep->next;
if (dep_next && dep_next->chan == chan)
dep->next = NULL; /* ->next will be submitted */
else
dep_next = NULL; /* submit current dep and terminate */
spin_unlock_bh(&dep->lock);
dep->tx_submit(dep);
}
chan->device->device_issue_pending(chan);
}
EXPORT_SYMBOL_GPL(dma_run_dependencies);
static int __init dma_bus_init(void)
{
mutex_init(&dma_list_mutex);
return class_register(&dma_devclass);
}
subsys_initcall(dma_bus_init);