| // SPDX-License-Identifier: GPL-2.0-only |
| /* |
| * Copyright (C) 2015 - ARM Ltd |
| * Author: Marc Zyngier <marc.zyngier@arm.com> |
| */ |
| |
| #include <hyp/switch.h> |
| #include <hyp/sysreg-sr.h> |
| |
| #include <linux/arm-smccc.h> |
| #include <linux/kvm_host.h> |
| #include <linux/types.h> |
| #include <linux/jump_label.h> |
| #include <uapi/linux/psci.h> |
| |
| #include <kvm/arm_psci.h> |
| |
| #include <asm/barrier.h> |
| #include <asm/cpufeature.h> |
| #include <asm/kprobes.h> |
| #include <asm/kvm_asm.h> |
| #include <asm/kvm_emulate.h> |
| #include <asm/kvm_hyp.h> |
| #include <asm/kvm_mmu.h> |
| #include <asm/fpsimd.h> |
| #include <asm/debug-monitors.h> |
| #include <asm/processor.h> |
| #include <asm/thread_info.h> |
| |
| static void __activate_traps(struct kvm_vcpu *vcpu) |
| { |
| u64 val; |
| |
| ___activate_traps(vcpu); |
| __activate_traps_common(vcpu); |
| |
| val = CPTR_EL2_DEFAULT; |
| val |= CPTR_EL2_TTA | CPTR_EL2_TZ | CPTR_EL2_TAM; |
| if (!update_fp_enabled(vcpu)) { |
| val |= CPTR_EL2_TFP; |
| __activate_traps_fpsimd32(vcpu); |
| } |
| |
| write_sysreg(val, cptr_el2); |
| write_sysreg(__hyp_this_cpu_read(kvm_hyp_vector), vbar_el2); |
| |
| if (cpus_have_final_cap(ARM64_WORKAROUND_SPECULATIVE_AT)) { |
| struct kvm_cpu_context *ctxt = &vcpu->arch.ctxt; |
| |
| isb(); |
| /* |
| * At this stage, and thanks to the above isb(), S2 is |
| * configured and enabled. We can now restore the guest's S1 |
| * configuration: SCTLR, and only then TCR. |
| */ |
| write_sysreg_el1(ctxt_sys_reg(ctxt, SCTLR_EL1), SYS_SCTLR); |
| isb(); |
| write_sysreg_el1(ctxt_sys_reg(ctxt, TCR_EL1), SYS_TCR); |
| } |
| } |
| |
| static void __deactivate_traps(struct kvm_vcpu *vcpu) |
| { |
| extern char __kvm_hyp_host_vector[]; |
| u64 mdcr_el2; |
| |
| ___deactivate_traps(vcpu); |
| |
| mdcr_el2 = read_sysreg(mdcr_el2); |
| |
| if (cpus_have_final_cap(ARM64_WORKAROUND_SPECULATIVE_AT)) { |
| u64 val; |
| |
| /* |
| * Set the TCR and SCTLR registers in the exact opposite |
| * sequence as __activate_traps (first prevent walks, |
| * then force the MMU on). A generous sprinkling of isb() |
| * ensure that things happen in this exact order. |
| */ |
| val = read_sysreg_el1(SYS_TCR); |
| write_sysreg_el1(val | TCR_EPD1_MASK | TCR_EPD0_MASK, SYS_TCR); |
| isb(); |
| val = read_sysreg_el1(SYS_SCTLR); |
| write_sysreg_el1(val | SCTLR_ELx_M, SYS_SCTLR); |
| isb(); |
| } |
| |
| __deactivate_traps_common(); |
| |
| mdcr_el2 &= MDCR_EL2_HPMN_MASK; |
| mdcr_el2 |= MDCR_EL2_E2PB_MASK << MDCR_EL2_E2PB_SHIFT; |
| |
| write_sysreg(mdcr_el2, mdcr_el2); |
| write_sysreg(HCR_HOST_NVHE_FLAGS, hcr_el2); |
| write_sysreg(CPTR_EL2_DEFAULT, cptr_el2); |
| write_sysreg(__kvm_hyp_host_vector, vbar_el2); |
| } |
| |
| static void __load_host_stage2(void) |
| { |
| write_sysreg(0, vttbr_el2); |
| } |
| |
| /* Save VGICv3 state on non-VHE systems */ |
| static void __hyp_vgic_save_state(struct kvm_vcpu *vcpu) |
| { |
| if (static_branch_unlikely(&kvm_vgic_global_state.gicv3_cpuif)) { |
| __vgic_v3_save_state(&vcpu->arch.vgic_cpu.vgic_v3); |
| __vgic_v3_deactivate_traps(&vcpu->arch.vgic_cpu.vgic_v3); |
| } |
| } |
| |
| /* Restore VGICv3 state on non_VEH systems */ |
| static void __hyp_vgic_restore_state(struct kvm_vcpu *vcpu) |
| { |
| if (static_branch_unlikely(&kvm_vgic_global_state.gicv3_cpuif)) { |
| __vgic_v3_activate_traps(&vcpu->arch.vgic_cpu.vgic_v3); |
| __vgic_v3_restore_state(&vcpu->arch.vgic_cpu.vgic_v3); |
| } |
| } |
| |
| /** |
| * Disable host events, enable guest events |
| */ |
| static bool __pmu_switch_to_guest(struct kvm_cpu_context *host_ctxt) |
| { |
| struct kvm_host_data *host; |
| struct kvm_pmu_events *pmu; |
| |
| host = container_of(host_ctxt, struct kvm_host_data, host_ctxt); |
| pmu = &host->pmu_events; |
| |
| if (pmu->events_host) |
| write_sysreg(pmu->events_host, pmcntenclr_el0); |
| |
| if (pmu->events_guest) |
| write_sysreg(pmu->events_guest, pmcntenset_el0); |
| |
| return (pmu->events_host || pmu->events_guest); |
| } |
| |
| /** |
| * Disable guest events, enable host events |
| */ |
| static void __pmu_switch_to_host(struct kvm_cpu_context *host_ctxt) |
| { |
| struct kvm_host_data *host; |
| struct kvm_pmu_events *pmu; |
| |
| host = container_of(host_ctxt, struct kvm_host_data, host_ctxt); |
| pmu = &host->pmu_events; |
| |
| if (pmu->events_guest) |
| write_sysreg(pmu->events_guest, pmcntenclr_el0); |
| |
| if (pmu->events_host) |
| write_sysreg(pmu->events_host, pmcntenset_el0); |
| } |
| |
| /* Switch to the guest for legacy non-VHE systems */ |
| int __kvm_vcpu_run(struct kvm_vcpu *vcpu) |
| { |
| struct kvm_cpu_context *host_ctxt; |
| struct kvm_cpu_context *guest_ctxt; |
| bool pmu_switch_needed; |
| u64 exit_code; |
| |
| /* |
| * Having IRQs masked via PMR when entering the guest means the GIC |
| * will not signal the CPU of interrupts of lower priority, and the |
| * only way to get out will be via guest exceptions. |
| * Naturally, we want to avoid this. |
| */ |
| if (system_uses_irq_prio_masking()) { |
| gic_write_pmr(GIC_PRIO_IRQON | GIC_PRIO_PSR_I_SET); |
| pmr_sync(); |
| } |
| |
| vcpu = kern_hyp_va(vcpu); |
| |
| host_ctxt = &__hyp_this_cpu_ptr(kvm_host_data)->host_ctxt; |
| host_ctxt->__hyp_running_vcpu = vcpu; |
| guest_ctxt = &vcpu->arch.ctxt; |
| |
| pmu_switch_needed = __pmu_switch_to_guest(host_ctxt); |
| |
| __sysreg_save_state_nvhe(host_ctxt); |
| |
| /* |
| * We must restore the 32-bit state before the sysregs, thanks |
| * to erratum #852523 (Cortex-A57) or #853709 (Cortex-A72). |
| * |
| * Also, and in order to be able to deal with erratum #1319537 (A57) |
| * and #1319367 (A72), we must ensure that all VM-related sysreg are |
| * restored before we enable S2 translation. |
| */ |
| __sysreg32_restore_state(vcpu); |
| __sysreg_restore_state_nvhe(guest_ctxt); |
| |
| __load_guest_stage2(kern_hyp_va(vcpu->arch.hw_mmu)); |
| __activate_traps(vcpu); |
| |
| __hyp_vgic_restore_state(vcpu); |
| __timer_enable_traps(vcpu); |
| |
| __debug_switch_to_guest(vcpu); |
| |
| __set_guest_arch_workaround_state(vcpu); |
| |
| do { |
| /* Jump in the fire! */ |
| exit_code = __guest_enter(vcpu, host_ctxt); |
| |
| /* And we're baaack! */ |
| } while (fixup_guest_exit(vcpu, &exit_code)); |
| |
| __set_host_arch_workaround_state(vcpu); |
| |
| __sysreg_save_state_nvhe(guest_ctxt); |
| __sysreg32_save_state(vcpu); |
| __timer_disable_traps(vcpu); |
| __hyp_vgic_save_state(vcpu); |
| |
| __deactivate_traps(vcpu); |
| __load_host_stage2(); |
| |
| __sysreg_restore_state_nvhe(host_ctxt); |
| |
| if (vcpu->arch.flags & KVM_ARM64_FP_ENABLED) |
| __fpsimd_save_fpexc32(vcpu); |
| |
| /* |
| * This must come after restoring the host sysregs, since a non-VHE |
| * system may enable SPE here and make use of the TTBRs. |
| */ |
| __debug_switch_to_host(vcpu); |
| |
| if (pmu_switch_needed) |
| __pmu_switch_to_host(host_ctxt); |
| |
| /* Returning to host will clear PSR.I, remask PMR if needed */ |
| if (system_uses_irq_prio_masking()) |
| gic_write_pmr(GIC_PRIO_IRQOFF); |
| |
| return exit_code; |
| } |
| |
| void __noreturn hyp_panic(void) |
| { |
| u64 spsr = read_sysreg_el2(SYS_SPSR); |
| u64 elr = read_sysreg_el2(SYS_ELR); |
| u64 par = read_sysreg(par_el1); |
| struct kvm_cpu_context *host_ctxt; |
| struct kvm_vcpu *vcpu; |
| unsigned long str_va; |
| |
| host_ctxt = &__hyp_this_cpu_ptr(kvm_host_data)->host_ctxt; |
| vcpu = host_ctxt->__hyp_running_vcpu; |
| |
| if (read_sysreg(vttbr_el2)) { |
| __timer_disable_traps(vcpu); |
| __deactivate_traps(vcpu); |
| __load_host_stage2(); |
| __sysreg_restore_state_nvhe(host_ctxt); |
| } |
| |
| /* |
| * Force the panic string to be loaded from the literal pool, |
| * making sure it is a kernel address and not a PC-relative |
| * reference. |
| */ |
| asm volatile("ldr %0, =%1" : "=r" (str_va) : "S" (__hyp_panic_string)); |
| |
| __hyp_do_panic(str_va, |
| spsr, elr, |
| read_sysreg(esr_el2), read_sysreg_el2(SYS_FAR), |
| read_sysreg(hpfar_el2), par, vcpu); |
| unreachable(); |
| } |
| |
| asmlinkage void kvm_unexpected_el2_exception(void) |
| { |
| return __kvm_unexpected_el2_exception(); |
| } |