| // SPDX-License-Identifier: GPL-2.0-or-later |
| /* |
| * Device driver for the SYMBIOS/LSILOGIC 53C8XX and 53C1010 family |
| * of PCI-SCSI IO processors. |
| * |
| * Copyright (C) 1999-2001 Gerard Roudier <groudier@free.fr> |
| * Copyright (c) 2003-2005 Matthew Wilcox <matthew@wil.cx> |
| * |
| * This driver is derived from the Linux sym53c8xx driver. |
| * Copyright (C) 1998-2000 Gerard Roudier |
| * |
| * The sym53c8xx driver is derived from the ncr53c8xx driver that had been |
| * a port of the FreeBSD ncr driver to Linux-1.2.13. |
| * |
| * The original ncr driver has been written for 386bsd and FreeBSD by |
| * Wolfgang Stanglmeier <wolf@cologne.de> |
| * Stefan Esser <se@mi.Uni-Koeln.de> |
| * Copyright (C) 1994 Wolfgang Stanglmeier |
| * |
| * Other major contributions: |
| * |
| * NVRAM detection and reading. |
| * Copyright (C) 1997 Richard Waltham <dormouse@farsrobt.demon.co.uk> |
| * |
| *----------------------------------------------------------------------------- |
| */ |
| |
| #include <linux/slab.h> |
| #include <asm/param.h> /* for timeouts in units of HZ */ |
| |
| #include "sym_glue.h" |
| #include "sym_nvram.h" |
| |
| #if 0 |
| #define SYM_DEBUG_GENERIC_SUPPORT |
| #endif |
| |
| /* |
| * Needed function prototypes. |
| */ |
| static void sym_int_ma (struct sym_hcb *np); |
| static void sym_int_sir(struct sym_hcb *); |
| static struct sym_ccb *sym_alloc_ccb(struct sym_hcb *np); |
| static struct sym_ccb *sym_ccb_from_dsa(struct sym_hcb *np, u32 dsa); |
| static void sym_alloc_lcb_tags (struct sym_hcb *np, u_char tn, u_char ln); |
| static void sym_complete_error (struct sym_hcb *np, struct sym_ccb *cp); |
| static void sym_complete_ok (struct sym_hcb *np, struct sym_ccb *cp); |
| static int sym_compute_residual(struct sym_hcb *np, struct sym_ccb *cp); |
| |
| /* |
| * Print a buffer in hexadecimal format with a ".\n" at end. |
| */ |
| static void sym_printl_hex(u_char *p, int n) |
| { |
| while (n-- > 0) |
| printf (" %x", *p++); |
| printf (".\n"); |
| } |
| |
| static void sym_print_msg(struct sym_ccb *cp, char *label, u_char *msg) |
| { |
| sym_print_addr(cp->cmd, "%s: ", label); |
| |
| spi_print_msg(msg); |
| printf("\n"); |
| } |
| |
| static void sym_print_nego_msg(struct sym_hcb *np, int target, char *label, u_char *msg) |
| { |
| struct sym_tcb *tp = &np->target[target]; |
| dev_info(&tp->starget->dev, "%s: ", label); |
| |
| spi_print_msg(msg); |
| printf("\n"); |
| } |
| |
| /* |
| * Print something that tells about extended errors. |
| */ |
| void sym_print_xerr(struct scsi_cmnd *cmd, int x_status) |
| { |
| if (x_status & XE_PARITY_ERR) { |
| sym_print_addr(cmd, "unrecovered SCSI parity error.\n"); |
| } |
| if (x_status & XE_EXTRA_DATA) { |
| sym_print_addr(cmd, "extraneous data discarded.\n"); |
| } |
| if (x_status & XE_BAD_PHASE) { |
| sym_print_addr(cmd, "illegal scsi phase (4/5).\n"); |
| } |
| if (x_status & XE_SODL_UNRUN) { |
| sym_print_addr(cmd, "ODD transfer in DATA OUT phase.\n"); |
| } |
| if (x_status & XE_SWIDE_OVRUN) { |
| sym_print_addr(cmd, "ODD transfer in DATA IN phase.\n"); |
| } |
| } |
| |
| /* |
| * Return a string for SCSI BUS mode. |
| */ |
| static char *sym_scsi_bus_mode(int mode) |
| { |
| switch(mode) { |
| case SMODE_HVD: return "HVD"; |
| case SMODE_SE: return "SE"; |
| case SMODE_LVD: return "LVD"; |
| } |
| return "??"; |
| } |
| |
| /* |
| * Soft reset the chip. |
| * |
| * Raising SRST when the chip is running may cause |
| * problems on dual function chips (see below). |
| * On the other hand, LVD devices need some delay |
| * to settle and report actual BUS mode in STEST4. |
| */ |
| static void sym_chip_reset (struct sym_hcb *np) |
| { |
| OUTB(np, nc_istat, SRST); |
| INB(np, nc_mbox1); |
| udelay(10); |
| OUTB(np, nc_istat, 0); |
| INB(np, nc_mbox1); |
| udelay(2000); /* For BUS MODE to settle */ |
| } |
| |
| /* |
| * Really soft reset the chip.:) |
| * |
| * Some 896 and 876 chip revisions may hang-up if we set |
| * the SRST (soft reset) bit at the wrong time when SCRIPTS |
| * are running. |
| * So, we need to abort the current operation prior to |
| * soft resetting the chip. |
| */ |
| static void sym_soft_reset (struct sym_hcb *np) |
| { |
| u_char istat = 0; |
| int i; |
| |
| if (!(np->features & FE_ISTAT1) || !(INB(np, nc_istat1) & SCRUN)) |
| goto do_chip_reset; |
| |
| OUTB(np, nc_istat, CABRT); |
| for (i = 100000 ; i ; --i) { |
| istat = INB(np, nc_istat); |
| if (istat & SIP) { |
| INW(np, nc_sist); |
| } |
| else if (istat & DIP) { |
| if (INB(np, nc_dstat) & ABRT) |
| break; |
| } |
| udelay(5); |
| } |
| OUTB(np, nc_istat, 0); |
| if (!i) |
| printf("%s: unable to abort current chip operation, " |
| "ISTAT=0x%02x.\n", sym_name(np), istat); |
| do_chip_reset: |
| sym_chip_reset(np); |
| } |
| |
| /* |
| * Start reset process. |
| * |
| * The interrupt handler will reinitialize the chip. |
| */ |
| static void sym_start_reset(struct sym_hcb *np) |
| { |
| sym_reset_scsi_bus(np, 1); |
| } |
| |
| int sym_reset_scsi_bus(struct sym_hcb *np, int enab_int) |
| { |
| u32 term; |
| int retv = 0; |
| |
| sym_soft_reset(np); /* Soft reset the chip */ |
| if (enab_int) |
| OUTW(np, nc_sien, RST); |
| /* |
| * Enable Tolerant, reset IRQD if present and |
| * properly set IRQ mode, prior to resetting the bus. |
| */ |
| OUTB(np, nc_stest3, TE); |
| OUTB(np, nc_dcntl, (np->rv_dcntl & IRQM)); |
| OUTB(np, nc_scntl1, CRST); |
| INB(np, nc_mbox1); |
| udelay(200); |
| |
| if (!SYM_SETUP_SCSI_BUS_CHECK) |
| goto out; |
| /* |
| * Check for no terminators or SCSI bus shorts to ground. |
| * Read SCSI data bus, data parity bits and control signals. |
| * We are expecting RESET to be TRUE and other signals to be |
| * FALSE. |
| */ |
| term = INB(np, nc_sstat0); |
| term = ((term & 2) << 7) + ((term & 1) << 17); /* rst sdp0 */ |
| term |= ((INB(np, nc_sstat2) & 0x01) << 26) | /* sdp1 */ |
| ((INW(np, nc_sbdl) & 0xff) << 9) | /* d7-0 */ |
| ((INW(np, nc_sbdl) & 0xff00) << 10) | /* d15-8 */ |
| INB(np, nc_sbcl); /* req ack bsy sel atn msg cd io */ |
| |
| if (!np->maxwide) |
| term &= 0x3ffff; |
| |
| if (term != (2<<7)) { |
| printf("%s: suspicious SCSI data while resetting the BUS.\n", |
| sym_name(np)); |
| printf("%s: %sdp0,d7-0,rst,req,ack,bsy,sel,atn,msg,c/d,i/o = " |
| "0x%lx, expecting 0x%lx\n", |
| sym_name(np), |
| (np->features & FE_WIDE) ? "dp1,d15-8," : "", |
| (u_long)term, (u_long)(2<<7)); |
| if (SYM_SETUP_SCSI_BUS_CHECK == 1) |
| retv = 1; |
| } |
| out: |
| OUTB(np, nc_scntl1, 0); |
| return retv; |
| } |
| |
| /* |
| * Select SCSI clock frequency |
| */ |
| static void sym_selectclock(struct sym_hcb *np, u_char scntl3) |
| { |
| /* |
| * If multiplier not present or not selected, leave here. |
| */ |
| if (np->multiplier <= 1) { |
| OUTB(np, nc_scntl3, scntl3); |
| return; |
| } |
| |
| if (sym_verbose >= 2) |
| printf ("%s: enabling clock multiplier\n", sym_name(np)); |
| |
| OUTB(np, nc_stest1, DBLEN); /* Enable clock multiplier */ |
| /* |
| * Wait for the LCKFRQ bit to be set if supported by the chip. |
| * Otherwise wait 50 micro-seconds (at least). |
| */ |
| if (np->features & FE_LCKFRQ) { |
| int i = 20; |
| while (!(INB(np, nc_stest4) & LCKFRQ) && --i > 0) |
| udelay(20); |
| if (!i) |
| printf("%s: the chip cannot lock the frequency\n", |
| sym_name(np)); |
| } else { |
| INB(np, nc_mbox1); |
| udelay(50+10); |
| } |
| OUTB(np, nc_stest3, HSC); /* Halt the scsi clock */ |
| OUTB(np, nc_scntl3, scntl3); |
| OUTB(np, nc_stest1, (DBLEN|DBLSEL));/* Select clock multiplier */ |
| OUTB(np, nc_stest3, 0x00); /* Restart scsi clock */ |
| } |
| |
| |
| /* |
| * Determine the chip's clock frequency. |
| * |
| * This is essential for the negotiation of the synchronous |
| * transfer rate. |
| * |
| * Note: we have to return the correct value. |
| * THERE IS NO SAFE DEFAULT VALUE. |
| * |
| * Most NCR/SYMBIOS boards are delivered with a 40 Mhz clock. |
| * 53C860 and 53C875 rev. 1 support fast20 transfers but |
| * do not have a clock doubler and so are provided with a |
| * 80 MHz clock. All other fast20 boards incorporate a doubler |
| * and so should be delivered with a 40 MHz clock. |
| * The recent fast40 chips (895/896/895A/1010) use a 40 Mhz base |
| * clock and provide a clock quadrupler (160 Mhz). |
| */ |
| |
| /* |
| * calculate SCSI clock frequency (in KHz) |
| */ |
| static unsigned getfreq (struct sym_hcb *np, int gen) |
| { |
| unsigned int ms = 0; |
| unsigned int f; |
| |
| /* |
| * Measure GEN timer delay in order |
| * to calculate SCSI clock frequency |
| * |
| * This code will never execute too |
| * many loop iterations (if DELAY is |
| * reasonably correct). It could get |
| * too low a delay (too high a freq.) |
| * if the CPU is slow executing the |
| * loop for some reason (an NMI, for |
| * example). For this reason we will |
| * if multiple measurements are to be |
| * performed trust the higher delay |
| * (lower frequency returned). |
| */ |
| OUTW(np, nc_sien, 0); /* mask all scsi interrupts */ |
| INW(np, nc_sist); /* clear pending scsi interrupt */ |
| OUTB(np, nc_dien, 0); /* mask all dma interrupts */ |
| INW(np, nc_sist); /* another one, just to be sure :) */ |
| /* |
| * The C1010-33 core does not report GEN in SIST, |
| * if this interrupt is masked in SIEN. |
| * I don't know yet if the C1010-66 behaves the same way. |
| */ |
| if (np->features & FE_C10) { |
| OUTW(np, nc_sien, GEN); |
| OUTB(np, nc_istat1, SIRQD); |
| } |
| OUTB(np, nc_scntl3, 4); /* set pre-scaler to divide by 3 */ |
| OUTB(np, nc_stime1, 0); /* disable general purpose timer */ |
| OUTB(np, nc_stime1, gen); /* set to nominal delay of 1<<gen * 125us */ |
| while (!(INW(np, nc_sist) & GEN) && ms++ < 100000) |
| udelay(1000/4); /* count in 1/4 of ms */ |
| OUTB(np, nc_stime1, 0); /* disable general purpose timer */ |
| /* |
| * Undo C1010-33 specific settings. |
| */ |
| if (np->features & FE_C10) { |
| OUTW(np, nc_sien, 0); |
| OUTB(np, nc_istat1, 0); |
| } |
| /* |
| * set prescaler to divide by whatever 0 means |
| * 0 ought to choose divide by 2, but appears |
| * to set divide by 3.5 mode in my 53c810 ... |
| */ |
| OUTB(np, nc_scntl3, 0); |
| |
| /* |
| * adjust for prescaler, and convert into KHz |
| */ |
| f = ms ? ((1 << gen) * (4340*4)) / ms : 0; |
| |
| /* |
| * The C1010-33 result is biased by a factor |
| * of 2/3 compared to earlier chips. |
| */ |
| if (np->features & FE_C10) |
| f = (f * 2) / 3; |
| |
| if (sym_verbose >= 2) |
| printf ("%s: Delay (GEN=%d): %u msec, %u KHz\n", |
| sym_name(np), gen, ms/4, f); |
| |
| return f; |
| } |
| |
| static unsigned sym_getfreq (struct sym_hcb *np) |
| { |
| u_int f1, f2; |
| int gen = 8; |
| |
| getfreq (np, gen); /* throw away first result */ |
| f1 = getfreq (np, gen); |
| f2 = getfreq (np, gen); |
| if (f1 > f2) f1 = f2; /* trust lower result */ |
| return f1; |
| } |
| |
| /* |
| * Get/probe chip SCSI clock frequency |
| */ |
| static void sym_getclock (struct sym_hcb *np, int mult) |
| { |
| unsigned char scntl3 = np->sv_scntl3; |
| unsigned char stest1 = np->sv_stest1; |
| unsigned f1; |
| |
| np->multiplier = 1; |
| f1 = 40000; |
| /* |
| * True with 875/895/896/895A with clock multiplier selected |
| */ |
| if (mult > 1 && (stest1 & (DBLEN+DBLSEL)) == DBLEN+DBLSEL) { |
| if (sym_verbose >= 2) |
| printf ("%s: clock multiplier found\n", sym_name(np)); |
| np->multiplier = mult; |
| } |
| |
| /* |
| * If multiplier not found or scntl3 not 7,5,3, |
| * reset chip and get frequency from general purpose timer. |
| * Otherwise trust scntl3 BIOS setting. |
| */ |
| if (np->multiplier != mult || (scntl3 & 7) < 3 || !(scntl3 & 1)) { |
| OUTB(np, nc_stest1, 0); /* make sure doubler is OFF */ |
| f1 = sym_getfreq (np); |
| |
| if (sym_verbose) |
| printf ("%s: chip clock is %uKHz\n", sym_name(np), f1); |
| |
| if (f1 < 45000) f1 = 40000; |
| else if (f1 < 55000) f1 = 50000; |
| else f1 = 80000; |
| |
| if (f1 < 80000 && mult > 1) { |
| if (sym_verbose >= 2) |
| printf ("%s: clock multiplier assumed\n", |
| sym_name(np)); |
| np->multiplier = mult; |
| } |
| } else { |
| if ((scntl3 & 7) == 3) f1 = 40000; |
| else if ((scntl3 & 7) == 5) f1 = 80000; |
| else f1 = 160000; |
| |
| f1 /= np->multiplier; |
| } |
| |
| /* |
| * Compute controller synchronous parameters. |
| */ |
| f1 *= np->multiplier; |
| np->clock_khz = f1; |
| } |
| |
| /* |
| * Get/probe PCI clock frequency |
| */ |
| static int sym_getpciclock (struct sym_hcb *np) |
| { |
| int f = 0; |
| |
| /* |
| * For now, we only need to know about the actual |
| * PCI BUS clock frequency for C1010-66 chips. |
| */ |
| #if 1 |
| if (np->features & FE_66MHZ) { |
| #else |
| if (1) { |
| #endif |
| OUTB(np, nc_stest1, SCLK); /* Use the PCI clock as SCSI clock */ |
| f = sym_getfreq(np); |
| OUTB(np, nc_stest1, 0); |
| } |
| np->pciclk_khz = f; |
| |
| return f; |
| } |
| |
| /* |
| * SYMBIOS chip clock divisor table. |
| * |
| * Divisors are multiplied by 10,000,000 in order to make |
| * calculations more simple. |
| */ |
| #define _5M 5000000 |
| static const u32 div_10M[] = {2*_5M, 3*_5M, 4*_5M, 6*_5M, 8*_5M, 12*_5M, 16*_5M}; |
| |
| /* |
| * Get clock factor and sync divisor for a given |
| * synchronous factor period. |
| */ |
| static int |
| sym_getsync(struct sym_hcb *np, u_char dt, u_char sfac, u_char *divp, u_char *fakp) |
| { |
| u32 clk = np->clock_khz; /* SCSI clock frequency in kHz */ |
| int div = np->clock_divn; /* Number of divisors supported */ |
| u32 fak; /* Sync factor in sxfer */ |
| u32 per; /* Period in tenths of ns */ |
| u32 kpc; /* (per * clk) */ |
| int ret; |
| |
| /* |
| * Compute the synchronous period in tenths of nano-seconds |
| */ |
| if (dt && sfac <= 9) per = 125; |
| else if (sfac <= 10) per = 250; |
| else if (sfac == 11) per = 303; |
| else if (sfac == 12) per = 500; |
| else per = 40 * sfac; |
| ret = per; |
| |
| kpc = per * clk; |
| if (dt) |
| kpc <<= 1; |
| |
| /* |
| * For earliest C10 revision 0, we cannot use extra |
| * clocks for the setting of the SCSI clocking. |
| * Note that this limits the lowest sync data transfer |
| * to 5 Mega-transfers per second and may result in |
| * using higher clock divisors. |
| */ |
| #if 1 |
| if ((np->features & (FE_C10|FE_U3EN)) == FE_C10) { |
| /* |
| * Look for the lowest clock divisor that allows an |
| * output speed not faster than the period. |
| */ |
| while (div > 0) { |
| --div; |
| if (kpc > (div_10M[div] << 2)) { |
| ++div; |
| break; |
| } |
| } |
| fak = 0; /* No extra clocks */ |
| if (div == np->clock_divn) { /* Are we too fast ? */ |
| ret = -1; |
| } |
| *divp = div; |
| *fakp = fak; |
| return ret; |
| } |
| #endif |
| |
| /* |
| * Look for the greatest clock divisor that allows an |
| * input speed faster than the period. |
| */ |
| while (--div > 0) |
| if (kpc >= (div_10M[div] << 2)) break; |
| |
| /* |
| * Calculate the lowest clock factor that allows an output |
| * speed not faster than the period, and the max output speed. |
| * If fak >= 1 we will set both XCLKH_ST and XCLKH_DT. |
| * If fak >= 2 we will also set XCLKS_ST and XCLKS_DT. |
| */ |
| if (dt) { |
| fak = (kpc - 1) / (div_10M[div] << 1) + 1 - 2; |
| /* ret = ((2+fak)*div_10M[div])/np->clock_khz; */ |
| } else { |
| fak = (kpc - 1) / div_10M[div] + 1 - 4; |
| /* ret = ((4+fak)*div_10M[div])/np->clock_khz; */ |
| } |
| |
| /* |
| * Check against our hardware limits, or bugs :). |
| */ |
| if (fak > 2) { |
| fak = 2; |
| ret = -1; |
| } |
| |
| /* |
| * Compute and return sync parameters. |
| */ |
| *divp = div; |
| *fakp = fak; |
| |
| return ret; |
| } |
| |
| /* |
| * SYMBIOS chips allow burst lengths of 2, 4, 8, 16, 32, 64, |
| * 128 transfers. All chips support at least 16 transfers |
| * bursts. The 825A, 875 and 895 chips support bursts of up |
| * to 128 transfers and the 895A and 896 support bursts of up |
| * to 64 transfers. All other chips support up to 16 |
| * transfers bursts. |
| * |
| * For PCI 32 bit data transfers each transfer is a DWORD. |
| * It is a QUADWORD (8 bytes) for PCI 64 bit data transfers. |
| * |
| * We use log base 2 (burst length) as internal code, with |
| * value 0 meaning "burst disabled". |
| */ |
| |
| /* |
| * Burst length from burst code. |
| */ |
| #define burst_length(bc) (!(bc))? 0 : 1 << (bc) |
| |
| /* |
| * Burst code from io register bits. |
| */ |
| #define burst_code(dmode, ctest4, ctest5) \ |
| (ctest4) & 0x80? 0 : (((dmode) & 0xc0) >> 6) + ((ctest5) & 0x04) + 1 |
| |
| /* |
| * Set initial io register bits from burst code. |
| */ |
| static inline void sym_init_burst(struct sym_hcb *np, u_char bc) |
| { |
| np->rv_ctest4 &= ~0x80; |
| np->rv_dmode &= ~(0x3 << 6); |
| np->rv_ctest5 &= ~0x4; |
| |
| if (!bc) { |
| np->rv_ctest4 |= 0x80; |
| } |
| else { |
| --bc; |
| np->rv_dmode |= ((bc & 0x3) << 6); |
| np->rv_ctest5 |= (bc & 0x4); |
| } |
| } |
| |
| /* |
| * Save initial settings of some IO registers. |
| * Assumed to have been set by BIOS. |
| * We cannot reset the chip prior to reading the |
| * IO registers, since informations will be lost. |
| * Since the SCRIPTS processor may be running, this |
| * is not safe on paper, but it seems to work quite |
| * well. :) |
| */ |
| static void sym_save_initial_setting (struct sym_hcb *np) |
| { |
| np->sv_scntl0 = INB(np, nc_scntl0) & 0x0a; |
| np->sv_scntl3 = INB(np, nc_scntl3) & 0x07; |
| np->sv_dmode = INB(np, nc_dmode) & 0xce; |
| np->sv_dcntl = INB(np, nc_dcntl) & 0xa8; |
| np->sv_ctest3 = INB(np, nc_ctest3) & 0x01; |
| np->sv_ctest4 = INB(np, nc_ctest4) & 0x80; |
| np->sv_gpcntl = INB(np, nc_gpcntl); |
| np->sv_stest1 = INB(np, nc_stest1); |
| np->sv_stest2 = INB(np, nc_stest2) & 0x20; |
| np->sv_stest4 = INB(np, nc_stest4); |
| if (np->features & FE_C10) { /* Always large DMA fifo + ultra3 */ |
| np->sv_scntl4 = INB(np, nc_scntl4); |
| np->sv_ctest5 = INB(np, nc_ctest5) & 0x04; |
| } |
| else |
| np->sv_ctest5 = INB(np, nc_ctest5) & 0x24; |
| } |
| |
| /* |
| * Set SCSI BUS mode. |
| * - LVD capable chips (895/895A/896/1010) report the current BUS mode |
| * through the STEST4 IO register. |
| * - For previous generation chips (825/825A/875), the user has to tell us |
| * how to check against HVD, since a 100% safe algorithm is not possible. |
| */ |
| static void sym_set_bus_mode(struct sym_hcb *np, struct sym_nvram *nvram) |
| { |
| if (np->scsi_mode) |
| return; |
| |
| np->scsi_mode = SMODE_SE; |
| if (np->features & (FE_ULTRA2|FE_ULTRA3)) |
| np->scsi_mode = (np->sv_stest4 & SMODE); |
| else if (np->features & FE_DIFF) { |
| if (SYM_SETUP_SCSI_DIFF == 1) { |
| if (np->sv_scntl3) { |
| if (np->sv_stest2 & 0x20) |
| np->scsi_mode = SMODE_HVD; |
| } else if (nvram->type == SYM_SYMBIOS_NVRAM) { |
| if (!(INB(np, nc_gpreg) & 0x08)) |
| np->scsi_mode = SMODE_HVD; |
| } |
| } else if (SYM_SETUP_SCSI_DIFF == 2) |
| np->scsi_mode = SMODE_HVD; |
| } |
| if (np->scsi_mode == SMODE_HVD) |
| np->rv_stest2 |= 0x20; |
| } |
| |
| /* |
| * Prepare io register values used by sym_start_up() |
| * according to selected and supported features. |
| */ |
| static int sym_prepare_setting(struct Scsi_Host *shost, struct sym_hcb *np, struct sym_nvram *nvram) |
| { |
| struct sym_data *sym_data = shost_priv(shost); |
| struct pci_dev *pdev = sym_data->pdev; |
| u_char burst_max; |
| u32 period; |
| int i; |
| |
| np->maxwide = (np->features & FE_WIDE) ? 1 : 0; |
| |
| /* |
| * Guess the frequency of the chip's clock. |
| */ |
| if (np->features & (FE_ULTRA3 | FE_ULTRA2)) |
| np->clock_khz = 160000; |
| else if (np->features & FE_ULTRA) |
| np->clock_khz = 80000; |
| else |
| np->clock_khz = 40000; |
| |
| /* |
| * Get the clock multiplier factor. |
| */ |
| if (np->features & FE_QUAD) |
| np->multiplier = 4; |
| else if (np->features & FE_DBLR) |
| np->multiplier = 2; |
| else |
| np->multiplier = 1; |
| |
| /* |
| * Measure SCSI clock frequency for chips |
| * it may vary from assumed one. |
| */ |
| if (np->features & FE_VARCLK) |
| sym_getclock(np, np->multiplier); |
| |
| /* |
| * Divisor to be used for async (timer pre-scaler). |
| */ |
| i = np->clock_divn - 1; |
| while (--i >= 0) { |
| if (10ul * SYM_CONF_MIN_ASYNC * np->clock_khz > div_10M[i]) { |
| ++i; |
| break; |
| } |
| } |
| np->rv_scntl3 = i+1; |
| |
| /* |
| * The C1010 uses hardwired divisors for async. |
| * So, we just throw away, the async. divisor.:-) |
| */ |
| if (np->features & FE_C10) |
| np->rv_scntl3 = 0; |
| |
| /* |
| * Minimum synchronous period factor supported by the chip. |
| * Btw, 'period' is in tenths of nanoseconds. |
| */ |
| period = (4 * div_10M[0] + np->clock_khz - 1) / np->clock_khz; |
| |
| if (period <= 250) np->minsync = 10; |
| else if (period <= 303) np->minsync = 11; |
| else if (period <= 500) np->minsync = 12; |
| else np->minsync = (period + 40 - 1) / 40; |
| |
| /* |
| * Check against chip SCSI standard support (SCSI-2,ULTRA,ULTRA2). |
| */ |
| if (np->minsync < 25 && |
| !(np->features & (FE_ULTRA|FE_ULTRA2|FE_ULTRA3))) |
| np->minsync = 25; |
| else if (np->minsync < 12 && |
| !(np->features & (FE_ULTRA2|FE_ULTRA3))) |
| np->minsync = 12; |
| |
| /* |
| * Maximum synchronous period factor supported by the chip. |
| */ |
| period = div64_ul(11 * div_10M[np->clock_divn - 1], 4 * np->clock_khz); |
| np->maxsync = period > 2540 ? 254 : period / 10; |
| |
| /* |
| * If chip is a C1010, guess the sync limits in DT mode. |
| */ |
| if ((np->features & (FE_C10|FE_ULTRA3)) == (FE_C10|FE_ULTRA3)) { |
| if (np->clock_khz == 160000) { |
| np->minsync_dt = 9; |
| np->maxsync_dt = 50; |
| np->maxoffs_dt = nvram->type ? 62 : 31; |
| } |
| } |
| |
| /* |
| * 64 bit addressing (895A/896/1010) ? |
| */ |
| if (np->features & FE_DAC) { |
| if (!use_dac(np)) |
| np->rv_ccntl1 |= (DDAC); |
| else if (SYM_CONF_DMA_ADDRESSING_MODE == 1) |
| np->rv_ccntl1 |= (XTIMOD | EXTIBMV); |
| else if (SYM_CONF_DMA_ADDRESSING_MODE == 2) |
| np->rv_ccntl1 |= (0 | EXTIBMV); |
| } |
| |
| /* |
| * Phase mismatch handled by SCRIPTS (895A/896/1010) ? |
| */ |
| if (np->features & FE_NOPM) |
| np->rv_ccntl0 |= (ENPMJ); |
| |
| /* |
| * C1010-33 Errata: Part Number:609-039638 (rev. 1) is fixed. |
| * In dual channel mode, contention occurs if internal cycles |
| * are used. Disable internal cycles. |
| */ |
| if (pdev->device == PCI_DEVICE_ID_LSI_53C1010_33 && |
| pdev->revision < 0x1) |
| np->rv_ccntl0 |= DILS; |
| |
| /* |
| * Select burst length (dwords) |
| */ |
| burst_max = SYM_SETUP_BURST_ORDER; |
| if (burst_max == 255) |
| burst_max = burst_code(np->sv_dmode, np->sv_ctest4, |
| np->sv_ctest5); |
| if (burst_max > 7) |
| burst_max = 7; |
| if (burst_max > np->maxburst) |
| burst_max = np->maxburst; |
| |
| /* |
| * DEL 352 - 53C810 Rev x11 - Part Number 609-0392140 - ITEM 2. |
| * This chip and the 860 Rev 1 may wrongly use PCI cache line |
| * based transactions on LOAD/STORE instructions. So we have |
| * to prevent these chips from using such PCI transactions in |
| * this driver. The generic ncr driver that does not use |
| * LOAD/STORE instructions does not need this work-around. |
| */ |
| if ((pdev->device == PCI_DEVICE_ID_NCR_53C810 && |
| pdev->revision >= 0x10 && pdev->revision <= 0x11) || |
| (pdev->device == PCI_DEVICE_ID_NCR_53C860 && |
| pdev->revision <= 0x1)) |
| np->features &= ~(FE_WRIE|FE_ERL|FE_ERMP); |
| |
| /* |
| * Select all supported special features. |
| * If we are using on-board RAM for scripts, prefetch (PFEN) |
| * does not help, but burst op fetch (BOF) does. |
| * Disabling PFEN makes sure BOF will be used. |
| */ |
| if (np->features & FE_ERL) |
| np->rv_dmode |= ERL; /* Enable Read Line */ |
| if (np->features & FE_BOF) |
| np->rv_dmode |= BOF; /* Burst Opcode Fetch */ |
| if (np->features & FE_ERMP) |
| np->rv_dmode |= ERMP; /* Enable Read Multiple */ |
| #if 1 |
| if ((np->features & FE_PFEN) && !np->ram_ba) |
| #else |
| if (np->features & FE_PFEN) |
| #endif |
| np->rv_dcntl |= PFEN; /* Prefetch Enable */ |
| if (np->features & FE_CLSE) |
| np->rv_dcntl |= CLSE; /* Cache Line Size Enable */ |
| if (np->features & FE_WRIE) |
| np->rv_ctest3 |= WRIE; /* Write and Invalidate */ |
| if (np->features & FE_DFS) |
| np->rv_ctest5 |= DFS; /* Dma Fifo Size */ |
| |
| /* |
| * Select some other |
| */ |
| np->rv_ctest4 |= MPEE; /* Master parity checking */ |
| np->rv_scntl0 |= 0x0a; /* full arb., ena parity, par->ATN */ |
| |
| /* |
| * Get parity checking, host ID and verbose mode from NVRAM |
| */ |
| np->myaddr = 255; |
| np->scsi_mode = 0; |
| sym_nvram_setup_host(shost, np, nvram); |
| |
| /* |
| * Get SCSI addr of host adapter (set by bios?). |
| */ |
| if (np->myaddr == 255) { |
| np->myaddr = INB(np, nc_scid) & 0x07; |
| if (!np->myaddr) |
| np->myaddr = SYM_SETUP_HOST_ID; |
| } |
| |
| /* |
| * Prepare initial io register bits for burst length |
| */ |
| sym_init_burst(np, burst_max); |
| |
| sym_set_bus_mode(np, nvram); |
| |
| /* |
| * Set LED support from SCRIPTS. |
| * Ignore this feature for boards known to use a |
| * specific GPIO wiring and for the 895A, 896 |
| * and 1010 that drive the LED directly. |
| */ |
| if ((SYM_SETUP_SCSI_LED || |
| (nvram->type == SYM_SYMBIOS_NVRAM || |
| (nvram->type == SYM_TEKRAM_NVRAM && |
| pdev->device == PCI_DEVICE_ID_NCR_53C895))) && |
| !(np->features & FE_LEDC) && !(np->sv_gpcntl & 0x01)) |
| np->features |= FE_LED0; |
| |
| /* |
| * Set irq mode. |
| */ |
| switch(SYM_SETUP_IRQ_MODE & 3) { |
| case 2: |
| np->rv_dcntl |= IRQM; |
| break; |
| case 1: |
| np->rv_dcntl |= (np->sv_dcntl & IRQM); |
| break; |
| default: |
| break; |
| } |
| |
| /* |
| * Configure targets according to driver setup. |
| * If NVRAM present get targets setup from NVRAM. |
| */ |
| for (i = 0 ; i < SYM_CONF_MAX_TARGET ; i++) { |
| struct sym_tcb *tp = &np->target[i]; |
| |
| tp->usrflags |= (SYM_DISC_ENABLED | SYM_TAGS_ENABLED); |
| tp->usrtags = SYM_SETUP_MAX_TAG; |
| tp->usr_width = np->maxwide; |
| tp->usr_period = 9; |
| |
| sym_nvram_setup_target(tp, i, nvram); |
| |
| if (!tp->usrtags) |
| tp->usrflags &= ~SYM_TAGS_ENABLED; |
| } |
| |
| /* |
| * Let user know about the settings. |
| */ |
| printf("%s: %s, ID %d, Fast-%d, %s, %s\n", sym_name(np), |
| sym_nvram_type(nvram), np->myaddr, |
| (np->features & FE_ULTRA3) ? 80 : |
| (np->features & FE_ULTRA2) ? 40 : |
| (np->features & FE_ULTRA) ? 20 : 10, |
| sym_scsi_bus_mode(np->scsi_mode), |
| (np->rv_scntl0 & 0xa) ? "parity checking" : "NO parity"); |
| /* |
| * Tell him more on demand. |
| */ |
| if (sym_verbose) { |
| printf("%s: %s IRQ line driver%s\n", |
| sym_name(np), |
| np->rv_dcntl & IRQM ? "totem pole" : "open drain", |
| np->ram_ba ? ", using on-chip SRAM" : ""); |
| printf("%s: using %s firmware.\n", sym_name(np), np->fw_name); |
| if (np->features & FE_NOPM) |
| printf("%s: handling phase mismatch from SCRIPTS.\n", |
| sym_name(np)); |
| } |
| /* |
| * And still more. |
| */ |
| if (sym_verbose >= 2) { |
| printf ("%s: initial SCNTL3/DMODE/DCNTL/CTEST3/4/5 = " |
| "(hex) %02x/%02x/%02x/%02x/%02x/%02x\n", |
| sym_name(np), np->sv_scntl3, np->sv_dmode, np->sv_dcntl, |
| np->sv_ctest3, np->sv_ctest4, np->sv_ctest5); |
| |
| printf ("%s: final SCNTL3/DMODE/DCNTL/CTEST3/4/5 = " |
| "(hex) %02x/%02x/%02x/%02x/%02x/%02x\n", |
| sym_name(np), np->rv_scntl3, np->rv_dmode, np->rv_dcntl, |
| np->rv_ctest3, np->rv_ctest4, np->rv_ctest5); |
| } |
| |
| return 0; |
| } |
| |
| /* |
| * Test the pci bus snoop logic :-( |
| * |
| * Has to be called with interrupts disabled. |
| */ |
| #ifdef CONFIG_SCSI_SYM53C8XX_MMIO |
| static int sym_regtest(struct sym_hcb *np) |
| { |
| register volatile u32 data; |
| /* |
| * chip registers may NOT be cached. |
| * write 0xffffffff to a read only register area, |
| * and try to read it back. |
| */ |
| data = 0xffffffff; |
| OUTL(np, nc_dstat, data); |
| data = INL(np, nc_dstat); |
| #if 1 |
| if (data == 0xffffffff) { |
| #else |
| if ((data & 0xe2f0fffd) != 0x02000080) { |
| #endif |
| printf ("CACHE TEST FAILED: reg dstat-sstat2 readback %x.\n", |
| (unsigned) data); |
| return 0x10; |
| } |
| return 0; |
| } |
| #else |
| static inline int sym_regtest(struct sym_hcb *np) |
| { |
| return 0; |
| } |
| #endif |
| |
| static int sym_snooptest(struct sym_hcb *np) |
| { |
| u32 sym_rd, sym_wr, sym_bk, host_rd, host_wr, pc, dstat; |
| int i, err; |
| |
| err = sym_regtest(np); |
| if (err) |
| return err; |
| restart_test: |
| /* |
| * Enable Master Parity Checking as we intend |
| * to enable it for normal operations. |
| */ |
| OUTB(np, nc_ctest4, (np->rv_ctest4 & MPEE)); |
| /* |
| * init |
| */ |
| pc = SCRIPTZ_BA(np, snooptest); |
| host_wr = 1; |
| sym_wr = 2; |
| /* |
| * Set memory and register. |
| */ |
| np->scratch = cpu_to_scr(host_wr); |
| OUTL(np, nc_temp, sym_wr); |
| /* |
| * Start script (exchange values) |
| */ |
| OUTL(np, nc_dsa, np->hcb_ba); |
| OUTL_DSP(np, pc); |
| /* |
| * Wait 'til done (with timeout) |
| */ |
| for (i=0; i<SYM_SNOOP_TIMEOUT; i++) |
| if (INB(np, nc_istat) & (INTF|SIP|DIP)) |
| break; |
| if (i>=SYM_SNOOP_TIMEOUT) { |
| printf ("CACHE TEST FAILED: timeout.\n"); |
| return (0x20); |
| } |
| /* |
| * Check for fatal DMA errors. |
| */ |
| dstat = INB(np, nc_dstat); |
| #if 1 /* Band aiding for broken hardwares that fail PCI parity */ |
| if ((dstat & MDPE) && (np->rv_ctest4 & MPEE)) { |
| printf ("%s: PCI DATA PARITY ERROR DETECTED - " |
| "DISABLING MASTER DATA PARITY CHECKING.\n", |
| sym_name(np)); |
| np->rv_ctest4 &= ~MPEE; |
| goto restart_test; |
| } |
| #endif |
| if (dstat & (MDPE|BF|IID)) { |
| printf ("CACHE TEST FAILED: DMA error (dstat=0x%02x).", dstat); |
| return (0x80); |
| } |
| /* |
| * Save termination position. |
| */ |
| pc = INL(np, nc_dsp); |
| /* |
| * Read memory and register. |
| */ |
| host_rd = scr_to_cpu(np->scratch); |
| sym_rd = INL(np, nc_scratcha); |
| sym_bk = INL(np, nc_temp); |
| /* |
| * Check termination position. |
| */ |
| if (pc != SCRIPTZ_BA(np, snoopend)+8) { |
| printf ("CACHE TEST FAILED: script execution failed.\n"); |
| printf ("start=%08lx, pc=%08lx, end=%08lx\n", |
| (u_long) SCRIPTZ_BA(np, snooptest), (u_long) pc, |
| (u_long) SCRIPTZ_BA(np, snoopend) +8); |
| return (0x40); |
| } |
| /* |
| * Show results. |
| */ |
| if (host_wr != sym_rd) { |
| printf ("CACHE TEST FAILED: host wrote %d, chip read %d.\n", |
| (int) host_wr, (int) sym_rd); |
| err |= 1; |
| } |
| if (host_rd != sym_wr) { |
| printf ("CACHE TEST FAILED: chip wrote %d, host read %d.\n", |
| (int) sym_wr, (int) host_rd); |
| err |= 2; |
| } |
| if (sym_bk != sym_wr) { |
| printf ("CACHE TEST FAILED: chip wrote %d, read back %d.\n", |
| (int) sym_wr, (int) sym_bk); |
| err |= 4; |
| } |
| |
| return err; |
| } |
| |
| /* |
| * log message for real hard errors |
| * |
| * sym0 targ 0?: ERROR (ds:si) (so-si-sd) (sx/s3/s4) @ name (dsp:dbc). |
| * reg: r0 r1 r2 r3 r4 r5 r6 ..... rf. |
| * |
| * exception register: |
| * ds: dstat |
| * si: sist |
| * |
| * SCSI bus lines: |
| * so: control lines as driven by chip. |
| * si: control lines as seen by chip. |
| * sd: scsi data lines as seen by chip. |
| * |
| * wide/fastmode: |
| * sx: sxfer (see the manual) |
| * s3: scntl3 (see the manual) |
| * s4: scntl4 (see the manual) |
| * |
| * current script command: |
| * dsp: script address (relative to start of script). |
| * dbc: first word of script command. |
| * |
| * First 24 register of the chip: |
| * r0..rf |
| */ |
| static void sym_log_hard_error(struct Scsi_Host *shost, u_short sist, u_char dstat) |
| { |
| struct sym_hcb *np = sym_get_hcb(shost); |
| u32 dsp; |
| int script_ofs; |
| int script_size; |
| char *script_name; |
| u_char *script_base; |
| int i; |
| |
| dsp = INL(np, nc_dsp); |
| |
| if (dsp > np->scripta_ba && |
| dsp <= np->scripta_ba + np->scripta_sz) { |
| script_ofs = dsp - np->scripta_ba; |
| script_size = np->scripta_sz; |
| script_base = (u_char *) np->scripta0; |
| script_name = "scripta"; |
| } |
| else if (np->scriptb_ba < dsp && |
| dsp <= np->scriptb_ba + np->scriptb_sz) { |
| script_ofs = dsp - np->scriptb_ba; |
| script_size = np->scriptb_sz; |
| script_base = (u_char *) np->scriptb0; |
| script_name = "scriptb"; |
| } else { |
| script_ofs = dsp; |
| script_size = 0; |
| script_base = NULL; |
| script_name = "mem"; |
| } |
| |
| printf ("%s:%d: ERROR (%x:%x) (%x-%x-%x) (%x/%x/%x) @ (%s %x:%08x).\n", |
| sym_name(np), (unsigned)INB(np, nc_sdid)&0x0f, dstat, sist, |
| (unsigned)INB(np, nc_socl), (unsigned)INB(np, nc_sbcl), |
| (unsigned)INB(np, nc_sbdl), (unsigned)INB(np, nc_sxfer), |
| (unsigned)INB(np, nc_scntl3), |
| (np->features & FE_C10) ? (unsigned)INB(np, nc_scntl4) : 0, |
| script_name, script_ofs, (unsigned)INL(np, nc_dbc)); |
| |
| if (((script_ofs & 3) == 0) && |
| (unsigned)script_ofs < script_size) { |
| printf ("%s: script cmd = %08x\n", sym_name(np), |
| scr_to_cpu((int) *(u32 *)(script_base + script_ofs))); |
| } |
| |
| printf("%s: regdump:", sym_name(np)); |
| for (i = 0; i < 24; i++) |
| printf(" %02x", (unsigned)INB_OFF(np, i)); |
| printf(".\n"); |
| |
| /* |
| * PCI BUS error. |
| */ |
| if (dstat & (MDPE|BF)) |
| sym_log_bus_error(shost); |
| } |
| |
| void sym_dump_registers(struct Scsi_Host *shost) |
| { |
| struct sym_hcb *np = sym_get_hcb(shost); |
| u_short sist; |
| u_char dstat; |
| |
| sist = INW(np, nc_sist); |
| dstat = INB(np, nc_dstat); |
| sym_log_hard_error(shost, sist, dstat); |
| } |
| |
| static struct sym_chip sym_dev_table[] = { |
| {PCI_DEVICE_ID_NCR_53C810, 0x0f, "810", 4, 8, 4, 64, |
| FE_ERL} |
| , |
| #ifdef SYM_DEBUG_GENERIC_SUPPORT |
| {PCI_DEVICE_ID_NCR_53C810, 0xff, "810a", 4, 8, 4, 1, |
| FE_BOF} |
| , |
| #else |
| {PCI_DEVICE_ID_NCR_53C810, 0xff, "810a", 4, 8, 4, 1, |
| FE_CACHE_SET|FE_LDSTR|FE_PFEN|FE_BOF} |
| , |
| #endif |
| {PCI_DEVICE_ID_NCR_53C815, 0xff, "815", 4, 8, 4, 64, |
| FE_BOF|FE_ERL} |
| , |
| {PCI_DEVICE_ID_NCR_53C825, 0x0f, "825", 6, 8, 4, 64, |
| FE_WIDE|FE_BOF|FE_ERL|FE_DIFF} |
| , |
| {PCI_DEVICE_ID_NCR_53C825, 0xff, "825a", 6, 8, 4, 2, |
| FE_WIDE|FE_CACHE0_SET|FE_BOF|FE_DFS|FE_LDSTR|FE_PFEN|FE_RAM|FE_DIFF} |
| , |
| {PCI_DEVICE_ID_NCR_53C860, 0xff, "860", 4, 8, 5, 1, |
| FE_ULTRA|FE_CACHE_SET|FE_BOF|FE_LDSTR|FE_PFEN} |
| , |
| {PCI_DEVICE_ID_NCR_53C875, 0x01, "875", 6, 16, 5, 2, |
| FE_WIDE|FE_ULTRA|FE_CACHE0_SET|FE_BOF|FE_DFS|FE_LDSTR|FE_PFEN| |
| FE_RAM|FE_DIFF|FE_VARCLK} |
| , |
| {PCI_DEVICE_ID_NCR_53C875, 0xff, "875", 6, 16, 5, 2, |
| FE_WIDE|FE_ULTRA|FE_DBLR|FE_CACHE0_SET|FE_BOF|FE_DFS|FE_LDSTR|FE_PFEN| |
| FE_RAM|FE_DIFF|FE_VARCLK} |
| , |
| {PCI_DEVICE_ID_NCR_53C875J, 0xff, "875J", 6, 16, 5, 2, |
| FE_WIDE|FE_ULTRA|FE_DBLR|FE_CACHE0_SET|FE_BOF|FE_DFS|FE_LDSTR|FE_PFEN| |
| FE_RAM|FE_DIFF|FE_VARCLK} |
| , |
| {PCI_DEVICE_ID_NCR_53C885, 0xff, "885", 6, 16, 5, 2, |
| FE_WIDE|FE_ULTRA|FE_DBLR|FE_CACHE0_SET|FE_BOF|FE_DFS|FE_LDSTR|FE_PFEN| |
| FE_RAM|FE_DIFF|FE_VARCLK} |
| , |
| #ifdef SYM_DEBUG_GENERIC_SUPPORT |
| {PCI_DEVICE_ID_NCR_53C895, 0xff, "895", 6, 31, 7, 2, |
| FE_WIDE|FE_ULTRA2|FE_QUAD|FE_CACHE_SET|FE_BOF|FE_DFS| |
| FE_RAM|FE_LCKFRQ} |
| , |
| #else |
| {PCI_DEVICE_ID_NCR_53C895, 0xff, "895", 6, 31, 7, 2, |
| FE_WIDE|FE_ULTRA2|FE_QUAD|FE_CACHE_SET|FE_BOF|FE_DFS|FE_LDSTR|FE_PFEN| |
| FE_RAM|FE_LCKFRQ} |
| , |
| #endif |
| {PCI_DEVICE_ID_NCR_53C896, 0xff, "896", 6, 31, 7, 4, |
| FE_WIDE|FE_ULTRA2|FE_QUAD|FE_CACHE_SET|FE_BOF|FE_DFS|FE_LDSTR|FE_PFEN| |
| FE_RAM|FE_RAM8K|FE_64BIT|FE_DAC|FE_IO256|FE_NOPM|FE_LEDC|FE_LCKFRQ} |
| , |
| {PCI_DEVICE_ID_LSI_53C895A, 0xff, "895a", 6, 31, 7, 4, |
| FE_WIDE|FE_ULTRA2|FE_QUAD|FE_CACHE_SET|FE_BOF|FE_DFS|FE_LDSTR|FE_PFEN| |
| FE_RAM|FE_RAM8K|FE_DAC|FE_IO256|FE_NOPM|FE_LEDC|FE_LCKFRQ} |
| , |
| {PCI_DEVICE_ID_LSI_53C875A, 0xff, "875a", 6, 31, 7, 4, |
| FE_WIDE|FE_ULTRA|FE_QUAD|FE_CACHE_SET|FE_BOF|FE_DFS|FE_LDSTR|FE_PFEN| |
| FE_RAM|FE_DAC|FE_IO256|FE_NOPM|FE_LEDC|FE_LCKFRQ} |
| , |
| {PCI_DEVICE_ID_LSI_53C1010_33, 0x00, "1010-33", 6, 31, 7, 8, |
| FE_WIDE|FE_ULTRA3|FE_QUAD|FE_CACHE_SET|FE_BOF|FE_DFBC|FE_LDSTR|FE_PFEN| |
| FE_RAM|FE_RAM8K|FE_64BIT|FE_DAC|FE_IO256|FE_NOPM|FE_LEDC|FE_CRC| |
| FE_C10} |
| , |
| {PCI_DEVICE_ID_LSI_53C1010_33, 0xff, "1010-33", 6, 31, 7, 8, |
| FE_WIDE|FE_ULTRA3|FE_QUAD|FE_CACHE_SET|FE_BOF|FE_DFBC|FE_LDSTR|FE_PFEN| |
| FE_RAM|FE_RAM8K|FE_64BIT|FE_DAC|FE_IO256|FE_NOPM|FE_LEDC|FE_CRC| |
| FE_C10|FE_U3EN} |
| , |
| {PCI_DEVICE_ID_LSI_53C1010_66, 0xff, "1010-66", 6, 31, 7, 8, |
| FE_WIDE|FE_ULTRA3|FE_QUAD|FE_CACHE_SET|FE_BOF|FE_DFBC|FE_LDSTR|FE_PFEN| |
| FE_RAM|FE_RAM8K|FE_64BIT|FE_DAC|FE_IO256|FE_NOPM|FE_LEDC|FE_66MHZ|FE_CRC| |
| FE_C10|FE_U3EN} |
| , |
| {PCI_DEVICE_ID_LSI_53C1510, 0xff, "1510d", 6, 31, 7, 4, |
| FE_WIDE|FE_ULTRA2|FE_QUAD|FE_CACHE_SET|FE_BOF|FE_DFS|FE_LDSTR|FE_PFEN| |
| FE_RAM|FE_IO256|FE_LEDC} |
| }; |
| |
| #define sym_num_devs (ARRAY_SIZE(sym_dev_table)) |
| |
| /* |
| * Look up the chip table. |
| * |
| * Return a pointer to the chip entry if found, |
| * zero otherwise. |
| */ |
| struct sym_chip * |
| sym_lookup_chip_table (u_short device_id, u_char revision) |
| { |
| struct sym_chip *chip; |
| int i; |
| |
| for (i = 0; i < sym_num_devs; i++) { |
| chip = &sym_dev_table[i]; |
| if (device_id != chip->device_id) |
| continue; |
| if (revision > chip->revision_id) |
| continue; |
| return chip; |
| } |
| |
| return NULL; |
| } |
| |
| #if SYM_CONF_DMA_ADDRESSING_MODE == 2 |
| /* |
| * Lookup the 64 bit DMA segments map. |
| * This is only used if the direct mapping |
| * has been unsuccessful. |
| */ |
| int sym_lookup_dmap(struct sym_hcb *np, u32 h, int s) |
| { |
| int i; |
| |
| if (!use_dac(np)) |
| goto weird; |
| |
| /* Look up existing mappings */ |
| for (i = SYM_DMAP_SIZE-1; i > 0; i--) { |
| if (h == np->dmap_bah[i]) |
| return i; |
| } |
| /* If direct mapping is free, get it */ |
| if (!np->dmap_bah[s]) |
| goto new; |
| /* Collision -> lookup free mappings */ |
| for (s = SYM_DMAP_SIZE-1; s > 0; s--) { |
| if (!np->dmap_bah[s]) |
| goto new; |
| } |
| weird: |
| panic("sym: ran out of 64 bit DMA segment registers"); |
| return -1; |
| new: |
| np->dmap_bah[s] = h; |
| np->dmap_dirty = 1; |
| return s; |
| } |
| |
| /* |
| * Update IO registers scratch C..R so they will be |
| * in sync. with queued CCB expectations. |
| */ |
| static void sym_update_dmap_regs(struct sym_hcb *np) |
| { |
| int o, i; |
| |
| if (!np->dmap_dirty) |
| return; |
| o = offsetof(struct sym_reg, nc_scrx[0]); |
| for (i = 0; i < SYM_DMAP_SIZE; i++) { |
| OUTL_OFF(np, o, np->dmap_bah[i]); |
| o += 4; |
| } |
| np->dmap_dirty = 0; |
| } |
| #endif |
| |
| /* Enforce all the fiddly SPI rules and the chip limitations */ |
| static void sym_check_goals(struct sym_hcb *np, struct scsi_target *starget, |
| struct sym_trans *goal) |
| { |
| if (!spi_support_wide(starget)) |
| goal->width = 0; |
| |
| if (!spi_support_sync(starget)) { |
| goal->iu = 0; |
| goal->dt = 0; |
| goal->qas = 0; |
| goal->offset = 0; |
| return; |
| } |
| |
| if (spi_support_dt(starget)) { |
| if (spi_support_dt_only(starget)) |
| goal->dt = 1; |
| |
| if (goal->offset == 0) |
| goal->dt = 0; |
| } else { |
| goal->dt = 0; |
| } |
| |
| /* Some targets fail to properly negotiate DT in SE mode */ |
| if ((np->scsi_mode != SMODE_LVD) || !(np->features & FE_U3EN)) |
| goal->dt = 0; |
| |
| if (goal->dt) { |
| /* all DT transfers must be wide */ |
| goal->width = 1; |
| if (goal->offset > np->maxoffs_dt) |
| goal->offset = np->maxoffs_dt; |
| if (goal->period < np->minsync_dt) |
| goal->period = np->minsync_dt; |
| if (goal->period > np->maxsync_dt) |
| goal->period = np->maxsync_dt; |
| } else { |
| goal->iu = goal->qas = 0; |
| if (goal->offset > np->maxoffs) |
| goal->offset = np->maxoffs; |
| if (goal->period < np->minsync) |
| goal->period = np->minsync; |
| if (goal->period > np->maxsync) |
| goal->period = np->maxsync; |
| } |
| } |
| |
| /* |
| * Prepare the next negotiation message if needed. |
| * |
| * Fill in the part of message buffer that contains the |
| * negotiation and the nego_status field of the CCB. |
| * Returns the size of the message in bytes. |
| */ |
| static int sym_prepare_nego(struct sym_hcb *np, struct sym_ccb *cp, u_char *msgptr) |
| { |
| struct sym_tcb *tp = &np->target[cp->target]; |
| struct scsi_target *starget = tp->starget; |
| struct sym_trans *goal = &tp->tgoal; |
| int msglen = 0; |
| int nego; |
| |
| sym_check_goals(np, starget, goal); |
| |
| /* |
| * Many devices implement PPR in a buggy way, so only use it if we |
| * really want to. |
| */ |
| if (goal->renego == NS_PPR || (goal->offset && |
| (goal->iu || goal->dt || goal->qas || (goal->period < 0xa)))) { |
| nego = NS_PPR; |
| } else if (goal->renego == NS_WIDE || goal->width) { |
| nego = NS_WIDE; |
| } else if (goal->renego == NS_SYNC || goal->offset) { |
| nego = NS_SYNC; |
| } else { |
| goal->check_nego = 0; |
| nego = 0; |
| } |
| |
| switch (nego) { |
| case NS_SYNC: |
| msglen += spi_populate_sync_msg(msgptr + msglen, goal->period, |
| goal->offset); |
| break; |
| case NS_WIDE: |
| msglen += spi_populate_width_msg(msgptr + msglen, goal->width); |
| break; |
| case NS_PPR: |
| msglen += spi_populate_ppr_msg(msgptr + msglen, goal->period, |
| goal->offset, goal->width, |
| (goal->iu ? PPR_OPT_IU : 0) | |
| (goal->dt ? PPR_OPT_DT : 0) | |
| (goal->qas ? PPR_OPT_QAS : 0)); |
| break; |
| } |
| |
| cp->nego_status = nego; |
| |
| if (nego) { |
| tp->nego_cp = cp; /* Keep track a nego will be performed */ |
| if (DEBUG_FLAGS & DEBUG_NEGO) { |
| sym_print_nego_msg(np, cp->target, |
| nego == NS_SYNC ? "sync msgout" : |
| nego == NS_WIDE ? "wide msgout" : |
| "ppr msgout", msgptr); |
| } |
| } |
| |
| return msglen; |
| } |
| |
| /* |
| * Insert a job into the start queue. |
| */ |
| void sym_put_start_queue(struct sym_hcb *np, struct sym_ccb *cp) |
| { |
| u_short qidx; |
| |
| #ifdef SYM_CONF_IARB_SUPPORT |
| /* |
| * If the previously queued CCB is not yet done, |
| * set the IARB hint. The SCRIPTS will go with IARB |
| * for this job when starting the previous one. |
| * We leave devices a chance to win arbitration by |
| * not using more than 'iarb_max' consecutive |
| * immediate arbitrations. |
| */ |
| if (np->last_cp && np->iarb_count < np->iarb_max) { |
| np->last_cp->host_flags |= HF_HINT_IARB; |
| ++np->iarb_count; |
| } |
| else |
| np->iarb_count = 0; |
| np->last_cp = cp; |
| #endif |
| |
| #if SYM_CONF_DMA_ADDRESSING_MODE == 2 |
| /* |
| * Make SCRIPTS aware of the 64 bit DMA |
| * segment registers not being up-to-date. |
| */ |
| if (np->dmap_dirty) |
| cp->host_xflags |= HX_DMAP_DIRTY; |
| #endif |
| |
| /* |
| * Insert first the idle task and then our job. |
| * The MBs should ensure proper ordering. |
| */ |
| qidx = np->squeueput + 2; |
| if (qidx >= MAX_QUEUE*2) qidx = 0; |
| |
| np->squeue [qidx] = cpu_to_scr(np->idletask_ba); |
| MEMORY_WRITE_BARRIER(); |
| np->squeue [np->squeueput] = cpu_to_scr(cp->ccb_ba); |
| |
| np->squeueput = qidx; |
| |
| if (DEBUG_FLAGS & DEBUG_QUEUE) |
| scmd_printk(KERN_DEBUG, cp->cmd, "queuepos=%d\n", |
| np->squeueput); |
| |
| /* |
| * Script processor may be waiting for reselect. |
| * Wake it up. |
| */ |
| MEMORY_WRITE_BARRIER(); |
| OUTB(np, nc_istat, SIGP|np->istat_sem); |
| } |
| |
| #ifdef SYM_OPT_HANDLE_DEVICE_QUEUEING |
| /* |
| * Start next ready-to-start CCBs. |
| */ |
| void sym_start_next_ccbs(struct sym_hcb *np, struct sym_lcb *lp, int maxn) |
| { |
| SYM_QUEHEAD *qp; |
| struct sym_ccb *cp; |
| |
| /* |
| * Paranoia, as usual. :-) |
| */ |
| assert(!lp->started_tags || !lp->started_no_tag); |
| |
| /* |
| * Try to start as many commands as asked by caller. |
| * Prevent from having both tagged and untagged |
| * commands queued to the device at the same time. |
| */ |
| while (maxn--) { |
| qp = sym_remque_head(&lp->waiting_ccbq); |
| if (!qp) |
| break; |
| cp = sym_que_entry(qp, struct sym_ccb, link2_ccbq); |
| if (cp->tag != NO_TAG) { |
| if (lp->started_no_tag || |
| lp->started_tags >= lp->started_max) { |
| sym_insque_head(qp, &lp->waiting_ccbq); |
| break; |
| } |
| lp->itlq_tbl[cp->tag] = cpu_to_scr(cp->ccb_ba); |
| lp->head.resel_sa = |
| cpu_to_scr(SCRIPTA_BA(np, resel_tag)); |
| ++lp->started_tags; |
| } else { |
| if (lp->started_no_tag || lp->started_tags) { |
| sym_insque_head(qp, &lp->waiting_ccbq); |
| break; |
| } |
| lp->head.itl_task_sa = cpu_to_scr(cp->ccb_ba); |
| lp->head.resel_sa = |
| cpu_to_scr(SCRIPTA_BA(np, resel_no_tag)); |
| ++lp->started_no_tag; |
| } |
| cp->started = 1; |
| sym_insque_tail(qp, &lp->started_ccbq); |
| sym_put_start_queue(np, cp); |
| } |
| } |
| #endif /* SYM_OPT_HANDLE_DEVICE_QUEUEING */ |
| |
| /* |
| * The chip may have completed jobs. Look at the DONE QUEUE. |
| * |
| * On paper, memory read barriers may be needed here to |
| * prevent out of order LOADs by the CPU from having |
| * prefetched stale data prior to DMA having occurred. |
| */ |
| static int sym_wakeup_done (struct sym_hcb *np) |
| { |
| struct sym_ccb *cp; |
| int i, n; |
| u32 dsa; |
| |
| n = 0; |
| i = np->dqueueget; |
| |
| /* MEMORY_READ_BARRIER(); */ |
| while (1) { |
| dsa = scr_to_cpu(np->dqueue[i]); |
| if (!dsa) |
| break; |
| np->dqueue[i] = 0; |
| if ((i = i+2) >= MAX_QUEUE*2) |
| i = 0; |
| |
| cp = sym_ccb_from_dsa(np, dsa); |
| if (cp) { |
| MEMORY_READ_BARRIER(); |
| sym_complete_ok (np, cp); |
| ++n; |
| } |
| else |
| printf ("%s: bad DSA (%x) in done queue.\n", |
| sym_name(np), (u_int) dsa); |
| } |
| np->dqueueget = i; |
| |
| return n; |
| } |
| |
| /* |
| * Complete all CCBs queued to the COMP queue. |
| * |
| * These CCBs are assumed: |
| * - Not to be referenced either by devices or |
| * SCRIPTS-related queues and datas. |
| * - To have to be completed with an error condition |
| * or requeued. |
| * |
| * The device queue freeze count is incremented |
| * for each CCB that does not prevent this. |
| * This function is called when all CCBs involved |
| * in error handling/recovery have been reaped. |
| */ |
| static void sym_flush_comp_queue(struct sym_hcb *np, int cam_status) |
| { |
| SYM_QUEHEAD *qp; |
| struct sym_ccb *cp; |
| |
| while ((qp = sym_remque_head(&np->comp_ccbq)) != NULL) { |
| struct scsi_cmnd *cmd; |
| cp = sym_que_entry(qp, struct sym_ccb, link_ccbq); |
| sym_insque_tail(&cp->link_ccbq, &np->busy_ccbq); |
| /* Leave quiet CCBs waiting for resources */ |
| if (cp->host_status == HS_WAIT) |
| continue; |
| cmd = cp->cmd; |
| if (cam_status) |
| sym_set_cam_status(cmd, cam_status); |
| #ifdef SYM_OPT_HANDLE_DEVICE_QUEUEING |
| if (sym_get_cam_status(cmd) == DID_SOFT_ERROR) { |
| struct sym_tcb *tp = &np->target[cp->target]; |
| struct sym_lcb *lp = sym_lp(tp, cp->lun); |
| if (lp) { |
| sym_remque(&cp->link2_ccbq); |
| sym_insque_tail(&cp->link2_ccbq, |
| &lp->waiting_ccbq); |
| if (cp->started) { |
| if (cp->tag != NO_TAG) |
| --lp->started_tags; |
| else |
| --lp->started_no_tag; |
| } |
| } |
| cp->started = 0; |
| continue; |
| } |
| #endif |
| sym_free_ccb(np, cp); |
| sym_xpt_done(np, cmd); |
| } |
| } |
| |
| /* |
| * Complete all active CCBs with error. |
| * Used on CHIP/SCSI RESET. |
| */ |
| static void sym_flush_busy_queue (struct sym_hcb *np, int cam_status) |
| { |
| /* |
| * Move all active CCBs to the COMP queue |
| * and flush this queue. |
| */ |
| sym_que_splice(&np->busy_ccbq, &np->comp_ccbq); |
| sym_que_init(&np->busy_ccbq); |
| sym_flush_comp_queue(np, cam_status); |
| } |
| |
| /* |
| * Start chip. |
| * |
| * 'reason' means: |
| * 0: initialisation. |
| * 1: SCSI BUS RESET delivered or received. |
| * 2: SCSI BUS MODE changed. |
| */ |
| void sym_start_up(struct Scsi_Host *shost, int reason) |
| { |
| struct sym_data *sym_data = shost_priv(shost); |
| struct pci_dev *pdev = sym_data->pdev; |
| struct sym_hcb *np = sym_data->ncb; |
| int i; |
| u32 phys; |
| |
| /* |
| * Reset chip if asked, otherwise just clear fifos. |
| */ |
| if (reason == 1) |
| sym_soft_reset(np); |
| else { |
| OUTB(np, nc_stest3, TE|CSF); |
| OUTONB(np, nc_ctest3, CLF); |
| } |
| |
| /* |
| * Clear Start Queue |
| */ |
| phys = np->squeue_ba; |
| for (i = 0; i < MAX_QUEUE*2; i += 2) { |
| np->squeue[i] = cpu_to_scr(np->idletask_ba); |
| np->squeue[i+1] = cpu_to_scr(phys + (i+2)*4); |
| } |
| np->squeue[MAX_QUEUE*2-1] = cpu_to_scr(phys); |
| |
| /* |
| * Start at first entry. |
| */ |
| np->squeueput = 0; |
| |
| /* |
| * Clear Done Queue |
| */ |
| phys = np->dqueue_ba; |
| for (i = 0; i < MAX_QUEUE*2; i += 2) { |
| np->dqueue[i] = 0; |
| np->dqueue[i+1] = cpu_to_scr(phys + (i+2)*4); |
| } |
| np->dqueue[MAX_QUEUE*2-1] = cpu_to_scr(phys); |
| |
| /* |
| * Start at first entry. |
| */ |
| np->dqueueget = 0; |
| |
| /* |
| * Install patches in scripts. |
| * This also let point to first position the start |
| * and done queue pointers used from SCRIPTS. |
| */ |
| np->fw_patch(shost); |
| |
| /* |
| * Wakeup all pending jobs. |
| */ |
| sym_flush_busy_queue(np, DID_RESET); |
| |
| /* |
| * Init chip. |
| */ |
| OUTB(np, nc_istat, 0x00); /* Remove Reset, abort */ |
| INB(np, nc_mbox1); |
| udelay(2000); /* The 895 needs time for the bus mode to settle */ |
| |
| OUTB(np, nc_scntl0, np->rv_scntl0 | 0xc0); |
| /* full arb., ena parity, par->ATN */ |
| OUTB(np, nc_scntl1, 0x00); /* odd parity, and remove CRST!! */ |
| |
| sym_selectclock(np, np->rv_scntl3); /* Select SCSI clock */ |
| |
| OUTB(np, nc_scid , RRE|np->myaddr); /* Adapter SCSI address */ |
| OUTW(np, nc_respid, 1ul<<np->myaddr); /* Id to respond to */ |
| OUTB(np, nc_istat , SIGP ); /* Signal Process */ |
| OUTB(np, nc_dmode , np->rv_dmode); /* Burst length, dma mode */ |
| OUTB(np, nc_ctest5, np->rv_ctest5); /* Large fifo + large burst */ |
| |
| OUTB(np, nc_dcntl , NOCOM|np->rv_dcntl); /* Protect SFBR */ |
| OUTB(np, nc_ctest3, np->rv_ctest3); /* Write and invalidate */ |
| OUTB(np, nc_ctest4, np->rv_ctest4); /* Master parity checking */ |
| |
| /* Extended Sreq/Sack filtering not supported on the C10 */ |
| if (np->features & FE_C10) |
| OUTB(np, nc_stest2, np->rv_stest2); |
| else |
| OUTB(np, nc_stest2, EXT|np->rv_stest2); |
| |
| OUTB(np, nc_stest3, TE); /* TolerANT enable */ |
| OUTB(np, nc_stime0, 0x0c); /* HTH disabled STO 0.25 sec */ |
| |
| /* |
| * For now, disable AIP generation on C1010-66. |
| */ |
| if (pdev->device == PCI_DEVICE_ID_LSI_53C1010_66) |
| OUTB(np, nc_aipcntl1, DISAIP); |
| |
| /* |
| * C10101 rev. 0 errata. |
| * Errant SGE's when in narrow. Write bits 4 & 5 of |
| * STEST1 register to disable SGE. We probably should do |
| * that from SCRIPTS for each selection/reselection, but |
| * I just don't want. :) |
| */ |
| if (pdev->device == PCI_DEVICE_ID_LSI_53C1010_33 && |
| pdev->revision < 1) |
| OUTB(np, nc_stest1, INB(np, nc_stest1) | 0x30); |
| |
| /* |
| * DEL 441 - 53C876 Rev 5 - Part Number 609-0392787/2788 - ITEM 2. |
| * Disable overlapped arbitration for some dual function devices, |
| * regardless revision id (kind of post-chip-design feature. ;-)) |
| */ |
| if (pdev->device == PCI_DEVICE_ID_NCR_53C875) |
| OUTB(np, nc_ctest0, (1<<5)); |
| else if (pdev->device == PCI_DEVICE_ID_NCR_53C896) |
| np->rv_ccntl0 |= DPR; |
| |
| /* |
| * Write CCNTL0/CCNTL1 for chips capable of 64 bit addressing |
| * and/or hardware phase mismatch, since only such chips |
| * seem to support those IO registers. |
| */ |
| if (np->features & (FE_DAC|FE_NOPM)) { |
| OUTB(np, nc_ccntl0, np->rv_ccntl0); |
| OUTB(np, nc_ccntl1, np->rv_ccntl1); |
| } |
| |
| #if SYM_CONF_DMA_ADDRESSING_MODE == 2 |
| /* |
| * Set up scratch C and DRS IO registers to map the 32 bit |
| * DMA address range our data structures are located in. |
| */ |
| if (use_dac(np)) { |
| np->dmap_bah[0] = 0; /* ??? */ |
| OUTL(np, nc_scrx[0], np->dmap_bah[0]); |
| OUTL(np, nc_drs, np->dmap_bah[0]); |
| } |
| #endif |
| |
| /* |
| * If phase mismatch handled by scripts (895A/896/1010), |
| * set PM jump addresses. |
| */ |
| if (np->features & FE_NOPM) { |
| OUTL(np, nc_pmjad1, SCRIPTB_BA(np, pm_handle)); |
| OUTL(np, nc_pmjad2, SCRIPTB_BA(np, pm_handle)); |
| } |
| |
| /* |
| * Enable GPIO0 pin for writing if LED support from SCRIPTS. |
| * Also set GPIO5 and clear GPIO6 if hardware LED control. |
| */ |
| if (np->features & FE_LED0) |
| OUTB(np, nc_gpcntl, INB(np, nc_gpcntl) & ~0x01); |
| else if (np->features & FE_LEDC) |
| OUTB(np, nc_gpcntl, (INB(np, nc_gpcntl) & ~0x41) | 0x20); |
| |
| /* |
| * enable ints |
| */ |
| OUTW(np, nc_sien , STO|HTH|MA|SGE|UDC|RST|PAR); |
| OUTB(np, nc_dien , MDPE|BF|SSI|SIR|IID); |
| |
| /* |
| * For 895/6 enable SBMC interrupt and save current SCSI bus mode. |
| * Try to eat the spurious SBMC interrupt that may occur when |
| * we reset the chip but not the SCSI BUS (at initialization). |
| */ |
| if (np->features & (FE_ULTRA2|FE_ULTRA3)) { |
| OUTONW(np, nc_sien, SBMC); |
| if (reason == 0) { |
| INB(np, nc_mbox1); |
| mdelay(100); |
| INW(np, nc_sist); |
| } |
| np->scsi_mode = INB(np, nc_stest4) & SMODE; |
| } |
| |
| /* |
| * Fill in target structure. |
| * Reinitialize usrsync. |
| * Reinitialize usrwide. |
| * Prepare sync negotiation according to actual SCSI bus mode. |
| */ |
| for (i=0;i<SYM_CONF_MAX_TARGET;i++) { |
| struct sym_tcb *tp = &np->target[i]; |
| |
| tp->to_reset = 0; |
| tp->head.sval = 0; |
| tp->head.wval = np->rv_scntl3; |
| tp->head.uval = 0; |
| if (tp->lun0p) |
| tp->lun0p->to_clear = 0; |
| if (tp->lunmp) { |
| int ln; |
| |
| for (ln = 1; ln < SYM_CONF_MAX_LUN; ln++) |
| if (tp->lunmp[ln]) |
| tp->lunmp[ln]->to_clear = 0; |
| } |
| } |
| |
| /* |
| * Download SCSI SCRIPTS to on-chip RAM if present, |
| * and start script processor. |
| * We do the download preferently from the CPU. |
| * For platforms that may not support PCI memory mapping, |
| * we use simple SCRIPTS that performs MEMORY MOVEs. |
| */ |
| phys = SCRIPTA_BA(np, init); |
| if (np->ram_ba) { |
| if (sym_verbose >= 2) |
| printf("%s: Downloading SCSI SCRIPTS.\n", sym_name(np)); |
| memcpy_toio(np->s.ramaddr, np->scripta0, np->scripta_sz); |
| if (np->features & FE_RAM8K) { |
| memcpy_toio(np->s.ramaddr + 4096, np->scriptb0, np->scriptb_sz); |
| phys = scr_to_cpu(np->scr_ram_seg); |
| OUTL(np, nc_mmws, phys); |
| OUTL(np, nc_mmrs, phys); |
| OUTL(np, nc_sfs, phys); |
| phys = SCRIPTB_BA(np, start64); |
| } |
| } |
| |
| np->istat_sem = 0; |
| |
| OUTL(np, nc_dsa, np->hcb_ba); |
| OUTL_DSP(np, phys); |
| |
| /* |
| * Notify the XPT about the RESET condition. |
| */ |
| if (reason != 0) |
| sym_xpt_async_bus_reset(np); |
| } |
| |
| /* |
| * Switch trans mode for current job and its target. |
| */ |
| static void sym_settrans(struct sym_hcb *np, int target, u_char opts, u_char ofs, |
| u_char per, u_char wide, u_char div, u_char fak) |
| { |
| SYM_QUEHEAD *qp; |
| u_char sval, wval, uval; |
| struct sym_tcb *tp = &np->target[target]; |
| |
| assert(target == (INB(np, nc_sdid) & 0x0f)); |
| |
| sval = tp->head.sval; |
| wval = tp->head.wval; |
| uval = tp->head.uval; |
| |
| #if 0 |
| printf("XXXX sval=%x wval=%x uval=%x (%x)\n", |
| sval, wval, uval, np->rv_scntl3); |
| #endif |
| /* |
| * Set the offset. |
| */ |
| if (!(np->features & FE_C10)) |
| sval = (sval & ~0x1f) | ofs; |
| else |
| sval = (sval & ~0x3f) | ofs; |
| |
| /* |
| * Set the sync divisor and extra clock factor. |
| */ |
| if (ofs != 0) { |
| wval = (wval & ~0x70) | ((div+1) << 4); |
| if (!(np->features & FE_C10)) |
| sval = (sval & ~0xe0) | (fak << 5); |
| else { |
| uval = uval & ~(XCLKH_ST|XCLKH_DT|XCLKS_ST|XCLKS_DT); |
| if (fak >= 1) uval |= (XCLKH_ST|XCLKH_DT); |
| if (fak >= 2) uval |= (XCLKS_ST|XCLKS_DT); |
| } |
| } |
| |
| /* |
| * Set the bus width. |
| */ |
| wval = wval & ~EWS; |
| if (wide != 0) |
| wval |= EWS; |
| |
| /* |
| * Set misc. ultra enable bits. |
| */ |
| if (np->features & FE_C10) { |
| uval = uval & ~(U3EN|AIPCKEN); |
| if (opts) { |
| assert(np->features & FE_U3EN); |
| uval |= U3EN; |
| } |
| } else { |
| wval = wval & ~ULTRA; |
| if (per <= 12) wval |= ULTRA; |
| } |
| |
| /* |
| * Stop there if sync parameters are unchanged. |
| */ |
| if (tp->head.sval == sval && |
| tp->head.wval == wval && |
| tp->head.uval == uval) |
| return; |
| tp->head.sval = sval; |
| tp->head.wval = wval; |
| tp->head.uval = uval; |
| |
| /* |
| * Disable extended Sreq/Sack filtering if per < 50. |
| * Not supported on the C1010. |
| */ |
| if (per < 50 && !(np->features & FE_C10)) |
| OUTOFFB(np, nc_stest2, EXT); |
| |
| /* |
| * set actual value and sync_status |
| */ |
| OUTB(np, nc_sxfer, tp->head.sval); |
| OUTB(np, nc_scntl3, tp->head.wval); |
| |
| if (np->features & FE_C10) { |
| OUTB(np, nc_scntl4, tp->head.uval); |
| } |
| |
| /* |
| * patch ALL busy ccbs of this target. |
| */ |
| FOR_EACH_QUEUED_ELEMENT(&np->busy_ccbq, qp) { |
| struct sym_ccb *cp; |
| cp = sym_que_entry(qp, struct sym_ccb, link_ccbq); |
| if (cp->target != target) |
| continue; |
| cp->phys.select.sel_scntl3 = tp->head.wval; |
| cp->phys.select.sel_sxfer = tp->head.sval; |
| if (np->features & FE_C10) { |
| cp->phys.select.sel_scntl4 = tp->head.uval; |
| } |
| } |
| } |
| |
| static void sym_announce_transfer_rate(struct sym_tcb *tp) |
| { |
| struct scsi_target *starget = tp->starget; |
| |
| if (tp->tprint.period != spi_period(starget) || |
| tp->tprint.offset != spi_offset(starget) || |
| tp->tprint.width != spi_width(starget) || |
| tp->tprint.iu != spi_iu(starget) || |
| tp->tprint.dt != spi_dt(starget) || |
| tp->tprint.qas != spi_qas(starget) || |
| !tp->tprint.check_nego) { |
| tp->tprint.period = spi_period(starget); |
| tp->tprint.offset = spi_offset(starget); |
| tp->tprint.width = spi_width(starget); |
| tp->tprint.iu = spi_iu(starget); |
| tp->tprint.dt = spi_dt(starget); |
| tp->tprint.qas = spi_qas(starget); |
| tp->tprint.check_nego = 1; |
| |
| spi_display_xfer_agreement(starget); |
| } |
| } |
| |
| /* |
| * We received a WDTR. |
| * Let everything be aware of the changes. |
| */ |
| static void sym_setwide(struct sym_hcb *np, int target, u_char wide) |
| { |
| struct sym_tcb *tp = &np->target[target]; |
| struct scsi_target *starget = tp->starget; |
| |
| sym_settrans(np, target, 0, 0, 0, wide, 0, 0); |
| |
| if (wide) |
| tp->tgoal.renego = NS_WIDE; |
| else |
| tp->tgoal.renego = 0; |
| tp->tgoal.check_nego = 0; |
| tp->tgoal.width = wide; |
| spi_offset(starget) = 0; |
| spi_period(starget) = 0; |
| spi_width(starget) = wide; |
| spi_iu(starget) = 0; |
| spi_dt(starget) = 0; |
| spi_qas(starget) = 0; |
| |
| if (sym_verbose >= 3) |
| sym_announce_transfer_rate(tp); |
| } |
| |
| /* |
| * We received a SDTR. |
| * Let everything be aware of the changes. |
| */ |
| static void |
| sym_setsync(struct sym_hcb *np, int target, |
| u_char ofs, u_char per, u_char div, u_char fak) |
| { |
| struct sym_tcb *tp = &np->target[target]; |
| struct scsi_target *starget = tp->starget; |
| u_char wide = (tp->head.wval & EWS) ? BUS_16_BIT : BUS_8_BIT; |
| |
| sym_settrans(np, target, 0, ofs, per, wide, div, fak); |
| |
| if (wide) |
| tp->tgoal.renego = NS_WIDE; |
| else if (ofs) |
| tp->tgoal.renego = NS_SYNC; |
| else |
| tp->tgoal.renego = 0; |
| spi_period(starget) = per; |
| spi_offset(starget) = ofs; |
| spi_iu(starget) = spi_dt(starget) = spi_qas(starget) = 0; |
| |
| if (!tp->tgoal.dt && !tp->tgoal.iu && !tp->tgoal.qas) { |
| tp->tgoal.period = per; |
| tp->tgoal.offset = ofs; |
| tp->tgoal.check_nego = 0; |
| } |
| |
| sym_announce_transfer_rate(tp); |
| } |
| |
| /* |
| * We received a PPR. |
| * Let everything be aware of the changes. |
| */ |
| static void |
| sym_setpprot(struct sym_hcb *np, int target, u_char opts, u_char ofs, |
| u_char per, u_char wide, u_char div, u_char fak) |
| { |
| struct sym_tcb *tp = &np->target[target]; |
| struct scsi_target *starget = tp->starget; |
| |
| sym_settrans(np, target, opts, ofs, per, wide, div, fak); |
| |
| if (wide || ofs) |
| tp->tgoal.renego = NS_PPR; |
| else |
| tp->tgoal.renego = 0; |
| spi_width(starget) = tp->tgoal.width = wide; |
| spi_period(starget) = tp->tgoal.period = per; |
| spi_offset(starget) = tp->tgoal.offset = ofs; |
| spi_iu(starget) = tp->tgoal.iu = !!(opts & PPR_OPT_IU); |
| spi_dt(starget) = tp->tgoal.dt = !!(opts & PPR_OPT_DT); |
| spi_qas(starget) = tp->tgoal.qas = !!(opts & PPR_OPT_QAS); |
| tp->tgoal.check_nego = 0; |
| |
| sym_announce_transfer_rate(tp); |
| } |
| |
| /* |
| * generic recovery from scsi interrupt |
| * |
| * The doc says that when the chip gets an SCSI interrupt, |
| * it tries to stop in an orderly fashion, by completing |
| * an instruction fetch that had started or by flushing |
| * the DMA fifo for a write to memory that was executing. |
| * Such a fashion is not enough to know if the instruction |
| * that was just before the current DSP value has been |
| * executed or not. |
| * |
| * There are some small SCRIPTS sections that deal with |
| * the start queue and the done queue that may break any |
| * assomption from the C code if we are interrupted |
| * inside, so we reset if this happens. Btw, since these |
| * SCRIPTS sections are executed while the SCRIPTS hasn't |
| * started SCSI operations, it is very unlikely to happen. |
| * |
| * All the driver data structures are supposed to be |
| * allocated from the same 4 GB memory window, so there |
| * is a 1 to 1 relationship between DSA and driver data |
| * structures. Since we are careful :) to invalidate the |
| * DSA when we complete a command or when the SCRIPTS |
| * pushes a DSA into a queue, we can trust it when it |
| * points to a CCB. |
| */ |
| static void sym_recover_scsi_int (struct sym_hcb *np, u_char hsts) |
| { |
| u32 dsp = INL(np, nc_dsp); |
| u32 dsa = INL(np, nc_dsa); |
| struct sym_ccb *cp = sym_ccb_from_dsa(np, dsa); |
| |
| /* |
| * If we haven't been interrupted inside the SCRIPTS |
| * critical pathes, we can safely restart the SCRIPTS |
| * and trust the DSA value if it matches a CCB. |
| */ |
| if ((!(dsp > SCRIPTA_BA(np, getjob_begin) && |
| dsp < SCRIPTA_BA(np, getjob_end) + 1)) && |
| (!(dsp > SCRIPTA_BA(np, ungetjob) && |
| dsp < SCRIPTA_BA(np, reselect) + 1)) && |
| (!(dsp > SCRIPTB_BA(np, sel_for_abort) && |
| dsp < SCRIPTB_BA(np, sel_for_abort_1) + 1)) && |
| (!(dsp > SCRIPTA_BA(np, done) && |
| dsp < SCRIPTA_BA(np, done_end) + 1))) { |
| OUTB(np, nc_ctest3, np->rv_ctest3 | CLF); /* clear dma fifo */ |
| OUTB(np, nc_stest3, TE|CSF); /* clear scsi fifo */ |
| /* |
| * If we have a CCB, let the SCRIPTS call us back for |
| * the handling of the error with SCRATCHA filled with |
| * STARTPOS. This way, we will be able to freeze the |
| * device queue and requeue awaiting IOs. |
| */ |
| if (cp) { |
| cp->host_status = hsts; |
| OUTL_DSP(np, SCRIPTA_BA(np, complete_error)); |
| } |
| /* |
| * Otherwise just restart the SCRIPTS. |
| */ |
| else { |
| OUTL(np, nc_dsa, 0xffffff); |
| OUTL_DSP(np, SCRIPTA_BA(np, start)); |
| } |
| } |
| else |
| goto reset_all; |
| |
| return; |
| |
| reset_all: |
| sym_start_reset(np); |
| } |
| |
| /* |
| * chip exception handler for selection timeout |
| */ |
| static void sym_int_sto (struct sym_hcb *np) |
| { |
| u32 dsp = INL(np, nc_dsp); |
| |
| if (DEBUG_FLAGS & DEBUG_TINY) printf ("T"); |
| |
| if (dsp == SCRIPTA_BA(np, wf_sel_done) + 8) |
| sym_recover_scsi_int(np, HS_SEL_TIMEOUT); |
| else |
| sym_start_reset(np); |
| } |
| |
| /* |
| * chip exception handler for unexpected disconnect |
| */ |
| static void sym_int_udc (struct sym_hcb *np) |
| { |
| printf ("%s: unexpected disconnect\n", sym_name(np)); |
| sym_recover_scsi_int(np, HS_UNEXPECTED); |
| } |
| |
| /* |
| * chip exception handler for SCSI bus mode change |
| * |
| * spi2-r12 11.2.3 says a transceiver mode change must |
| * generate a reset event and a device that detects a reset |
| * event shall initiate a hard reset. It says also that a |
| * device that detects a mode change shall set data transfer |
| * mode to eight bit asynchronous, etc... |
| * So, just reinitializing all except chip should be enough. |
| */ |
| static void sym_int_sbmc(struct Scsi_Host *shost) |
| { |
| struct sym_hcb *np = sym_get_hcb(shost); |
| u_char scsi_mode = INB(np, nc_stest4) & SMODE; |
| |
| /* |
| * Notify user. |
| */ |
| printf("%s: SCSI BUS mode change from %s to %s.\n", sym_name(np), |
| sym_scsi_bus_mode(np->scsi_mode), sym_scsi_bus_mode(scsi_mode)); |
| |
| /* |
| * Should suspend command processing for a few seconds and |
| * reinitialize all except the chip. |
| */ |
| sym_start_up(shost, 2); |
| } |
| |
| /* |
| * chip exception handler for SCSI parity error. |
| * |
| * When the chip detects a SCSI parity error and is |
| * currently executing a (CH)MOV instruction, it does |
| * not interrupt immediately, but tries to finish the |
| * transfer of the current scatter entry before |
| * interrupting. The following situations may occur: |
| * |
| * - The complete scatter entry has been transferred |
| * without the device having changed phase. |
| * The chip will then interrupt with the DSP pointing |
| * to the instruction that follows the MOV. |
| * |
| * - A phase mismatch occurs before the MOV finished |
| * and phase errors are to be handled by the C code. |
| * The chip will then interrupt with both PAR and MA |
| * conditions set. |
| * |
| * - A phase mismatch occurs before the MOV finished and |
| * phase errors are to be handled by SCRIPTS. |
| * The chip will load the DSP with the phase mismatch |
| * JUMP address and interrupt the host processor. |
| */ |
| static void sym_int_par (struct sym_hcb *np, u_short sist) |
| { |
| u_char hsts = INB(np, HS_PRT); |
| u32 dsp = INL(np, nc_dsp); |
| u32 dbc = INL(np, nc_dbc); |
| u32 dsa = INL(np, nc_dsa); |
| u_char sbcl = INB(np, nc_sbcl); |
| u_char cmd = dbc >> 24; |
| int phase = cmd & 7; |
| struct sym_ccb *cp = sym_ccb_from_dsa(np, dsa); |
| |
| if (printk_ratelimit()) |
| printf("%s: SCSI parity error detected: SCR1=%d DBC=%x SBCL=%x\n", |
| sym_name(np), hsts, dbc, sbcl); |
| |
| /* |
| * Check that the chip is connected to the SCSI BUS. |
| */ |
| if (!(INB(np, nc_scntl1) & ISCON)) { |
| sym_recover_scsi_int(np, HS_UNEXPECTED); |
| return; |
| } |
| |
| /* |
| * If the nexus is not clearly identified, reset the bus. |
| * We will try to do better later. |
| */ |
| if (!cp) |
| goto reset_all; |
| |
| /* |
| * Check instruction was a MOV, direction was INPUT and |
| * ATN is asserted. |
| */ |
| if ((cmd & 0xc0) || !(phase & 1) || !(sbcl & 0x8)) |
| goto reset_all; |
| |
| /* |
| * Keep track of the parity error. |
| */ |
| OUTONB(np, HF_PRT, HF_EXT_ERR); |
| cp->xerr_status |= XE_PARITY_ERR; |
| |
| /* |
| * Prepare the message to send to the device. |
| */ |
| np->msgout[0] = (phase == 7) ? M_PARITY : M_ID_ERROR; |
| |
| /* |
| * If the old phase was DATA IN phase, we have to deal with |
| * the 3 situations described above. |
| * For other input phases (MSG IN and STATUS), the device |
| * must resend the whole thing that failed parity checking |
| * or signal error. So, jumping to dispatcher should be OK. |
| */ |
| if (phase == 1 || phase == 5) { |
| /* Phase mismatch handled by SCRIPTS */ |
| if (dsp == SCRIPTB_BA(np, pm_handle)) |
| OUTL_DSP(np, dsp); |
| /* Phase mismatch handled by the C code */ |
| else if (sist & MA) |
| sym_int_ma (np); |
| /* No phase mismatch occurred */ |
| else { |
| sym_set_script_dp (np, cp, dsp); |
| OUTL_DSP(np, SCRIPTA_BA(np, dispatch)); |
| } |
| } |
| else if (phase == 7) /* We definitely cannot handle parity errors */ |
| #if 1 /* in message-in phase due to the relection */ |
| goto reset_all; /* path and various message anticipations. */ |
| #else |
| OUTL_DSP(np, SCRIPTA_BA(np, clrack)); |
| #endif |
| else |
| OUTL_DSP(np, SCRIPTA_BA(np, dispatch)); |
| return; |
| |
| reset_all: |
| sym_start_reset(np); |
| return; |
| } |
| |
| /* |
| * chip exception handler for phase errors. |
| * |
| * We have to construct a new transfer descriptor, |
| * to transfer the rest of the current block. |
| */ |
| static void sym_int_ma (struct sym_hcb *np) |
| { |
| u32 dbc; |
| u32 rest; |
| u32 dsp; |
| u32 dsa; |
| u32 nxtdsp; |
| u32 *vdsp; |
| u32 oadr, olen; |
| u32 *tblp; |
| u32 newcmd; |
| u_int delta; |
| u_char cmd; |
| u_char hflags, hflags0; |
| struct sym_pmc *pm; |
| struct sym_ccb *cp; |
| |
| dsp = INL(np, nc_dsp); |
| dbc = INL(np, nc_dbc); |
| dsa = INL(np, nc_dsa); |
| |
| cmd = dbc >> 24; |
| rest = dbc & 0xffffff; |
| delta = 0; |
| |
| /* |
| * locate matching cp if any. |
| */ |
| cp = sym_ccb_from_dsa(np, dsa); |
| |
| /* |
| * Donnot take into account dma fifo and various buffers in |
| * INPUT phase since the chip flushes everything before |
| * raising the MA interrupt for interrupted INPUT phases. |
| * For DATA IN phase, we will check for the SWIDE later. |
| */ |
| if ((cmd & 7) != 1 && (cmd & 7) != 5) { |
| u_char ss0, ss2; |
| |
| if (np->features & FE_DFBC) |
| delta = INW(np, nc_dfbc); |
| else { |
| u32 dfifo; |
| |
| /* |
| * Read DFIFO, CTEST[4-6] using 1 PCI bus ownership. |
| */ |
| dfifo = INL(np, nc_dfifo); |
| |
| /* |
| * Calculate remaining bytes in DMA fifo. |
| * (CTEST5 = dfifo >> 16) |
| */ |
| if (dfifo & (DFS << 16)) |
| delta = ((((dfifo >> 8) & 0x300) | |
| (dfifo & 0xff)) - rest) & 0x3ff; |
| else |
| delta = ((dfifo & 0xff) - rest) & 0x7f; |
| } |
| |
| /* |
| * The data in the dma fifo has not been transferred to |
| * the target -> add the amount to the rest |
| * and clear the data. |
| * Check the sstat2 register in case of wide transfer. |
| */ |
| rest += delta; |
| ss0 = INB(np, nc_sstat0); |
| if (ss0 & OLF) rest++; |
| if (!(np->features & FE_C10)) |
| if (ss0 & ORF) rest++; |
| if (cp && (cp->phys.select.sel_scntl3 & EWS)) { |
| ss2 = INB(np, nc_sstat2); |
| if (ss2 & OLF1) rest++; |
| if (!(np->features & FE_C10)) |
| if (ss2 & ORF1) rest++; |
| } |
| |
| /* |
| * Clear fifos. |
| */ |
| OUTB(np, nc_ctest3, np->rv_ctest3 | CLF); /* dma fifo */ |
| OUTB(np, nc_stest3, TE|CSF); /* scsi fifo */ |
| } |
| |
| /* |
| * log the information |
| */ |
| if (DEBUG_FLAGS & (DEBUG_TINY|DEBUG_PHASE)) |
| printf ("P%x%x RL=%d D=%d ", cmd&7, INB(np, nc_sbcl)&7, |
| (unsigned) rest, (unsigned) delta); |
| |
| /* |
| * try to find the interrupted script command, |
| * and the address at which to continue. |
| */ |
| vdsp = NULL; |
| nxtdsp = 0; |
| if (dsp > np->scripta_ba && |
| dsp <= np->scripta_ba + np->scripta_sz) { |
| vdsp = (u32 *)((char*)np->scripta0 + (dsp-np->scripta_ba-8)); |
| nxtdsp = dsp; |
| } |
| else if (dsp > np->scriptb_ba && |
| dsp <= np->scriptb_ba + np->scriptb_sz) { |
| vdsp = (u32 *)((char*)np->scriptb0 + (dsp-np->scriptb_ba-8)); |
| nxtdsp = dsp; |
| } |
| |
| /* |
| * log the information |
| */ |
| if (DEBUG_FLAGS & DEBUG_PHASE) { |
| printf ("\nCP=%p DSP=%x NXT=%x VDSP=%p CMD=%x ", |
| cp, (unsigned)dsp, (unsigned)nxtdsp, vdsp, cmd); |
| } |
| |
| if (!vdsp) { |
| printf ("%s: interrupted SCRIPT address not found.\n", |
| sym_name (np)); |
| goto reset_all; |
| } |
| |
| if (!cp) { |
| printf ("%s: SCSI phase error fixup: CCB already dequeued.\n", |
| sym_name (np)); |
| goto reset_all; |
| } |
| |
| /* |
| * get old startaddress and old length. |
| */ |
| oadr = scr_to_cpu(vdsp[1]); |
| |
| if (cmd & 0x10) { /* Table indirect */ |
| tblp = (u32 *) ((char*) &cp->phys + oadr); |
| olen = scr_to_cpu(tblp[0]); |
| oadr = scr_to_cpu(tblp[1]); |
| } else { |
| tblp = (u32 *) 0; |
| olen = scr_to_cpu(vdsp[0]) & 0xffffff; |
| } |
| |
| if (DEBUG_FLAGS & DEBUG_PHASE) { |
| printf ("OCMD=%x\nTBLP=%p OLEN=%x OADR=%x\n", |
| (unsigned) (scr_to_cpu(vdsp[0]) >> 24), |
| tblp, |
| (unsigned) olen, |
| (unsigned) oadr); |
| } |
| |
| /* |
| * check cmd against assumed interrupted script command. |
| * If dt data phase, the MOVE instruction hasn't bit 4 of |
| * the phase. |
| */ |
| if (((cmd & 2) ? cmd : (cmd & ~4)) != (scr_to_cpu(vdsp[0]) >> 24)) { |
| sym_print_addr(cp->cmd, |
| "internal error: cmd=%02x != %02x=(vdsp[0] >> 24)\n", |
| cmd, scr_to_cpu(vdsp[0]) >> 24); |
| |
| goto reset_all; |
| } |
| |
| /* |
| * if old phase not dataphase, leave here. |
| */ |
| if (cmd & 2) { |
| sym_print_addr(cp->cmd, |
| "phase change %x-%x %d@%08x resid=%d.\n", |
| cmd&7, INB(np, nc_sbcl)&7, (unsigned)olen, |
| (unsigned)oadr, (unsigned)rest); |
| goto unexpected_phase; |
| } |
| |
| /* |
| * Choose the correct PM save area. |
| * |
| * Look at the PM_SAVE SCRIPT if you want to understand |
| * this stuff. The equivalent code is implemented in |
| * SCRIPTS for the 895A, 896 and 1010 that are able to |
| * handle PM from the SCRIPTS processor. |
| */ |
| hflags0 = INB(np, HF_PRT); |
| hflags = hflags0; |
| |
| if (hflags & (HF_IN_PM0 | HF_IN_PM1 | HF_DP_SAVED)) { |
| if (hflags & HF_IN_PM0) |
| nxtdsp = scr_to_cpu(cp->phys.pm0.ret); |
| else if (hflags & HF_IN_PM1) |
| nxtdsp = scr_to_cpu(cp->phys.pm1.ret); |
| |
| if (hflags & HF_DP_SAVED) |
| hflags ^= HF_ACT_PM; |
| } |
| |
| if (!(hflags & HF_ACT_PM)) { |
| pm = &cp->phys.pm0; |
| newcmd = SCRIPTA_BA(np, pm0_data); |
| } |
| else { |
| pm = &cp->phys.pm1; |
| newcmd = SCRIPTA_BA(np, pm1_data); |
| } |
| |
| hflags &= ~(HF_IN_PM0 | HF_IN_PM1 | HF_DP_SAVED); |
| if (hflags != hflags0) |
| OUTB(np, HF_PRT, hflags); |
| |
| /* |
| * fillin the phase mismatch context |
| */ |
| pm->sg.addr = cpu_to_scr(oadr + olen - rest); |
| pm->sg.size = cpu_to_scr(rest); |
| pm->ret = cpu_to_scr(nxtdsp); |
| |
| /* |
| * If we have a SWIDE, |
| * - prepare the address to write the SWIDE from SCRIPTS, |
| * - compute the SCRIPTS address to restart from, |
| * - move current data pointer context by one byte. |
| */ |
| nxtdsp = SCRIPTA_BA(np, dispatch); |
| if ((cmd & 7) == 1 && cp && (cp->phys.select.sel_scntl3 & EWS) && |
| (INB(np, nc_scntl2) & WSR)) { |
| u32 tmp; |
| |
| /* |
| * Set up the table indirect for the MOVE |
| * of the residual byte and adjust the data |
| * pointer context. |
| */ |
| tmp = scr_to_cpu(pm->sg.addr); |
| cp->phys.wresid.addr = cpu_to_scr(tmp); |
| pm->sg.addr = cpu_to_scr(tmp + 1); |
| tmp = scr_to_cpu(pm->sg.size); |
| cp->phys.wresid.size = cpu_to_scr((tmp&0xff000000) | 1); |
| pm->sg.size = cpu_to_scr(tmp - 1); |
| |
| /* |
| * If only the residual byte is to be moved, |
| * no PM context is needed. |
| */ |
| if ((tmp&0xffffff) == 1) |
| newcmd = pm->ret; |
| |
| /* |
| * Prepare the address of SCRIPTS that will |
| * move the residual byte to memory. |
| */ |
| nxtdsp = SCRIPTB_BA(np, wsr_ma_helper); |
| } |
| |
| if (DEBUG_FLAGS & DEBUG_PHASE) { |
| sym_print_addr(cp->cmd, "PM %x %x %x / %x %x %x.\n", |
| hflags0, hflags, newcmd, |
| (unsigned)scr_to_cpu(pm->sg.addr), |
| (unsigned)scr_to_cpu(pm->sg.size), |
| (unsigned)scr_to_cpu(pm->ret)); |
| } |
| |
| /* |
| * Restart the SCRIPTS processor. |
| */ |
| sym_set_script_dp (np, cp, newcmd); |
| OUTL_DSP(np, nxtdsp); |
| return; |
| |
| /* |
| * Unexpected phase changes that occurs when the current phase |
| * is not a DATA IN or DATA OUT phase are due to error conditions. |
| * Such event may only happen when the SCRIPTS is using a |
| * multibyte SCSI MOVE. |
| * |
| * Phase change Some possible cause |
| * |
| * COMMAND --> MSG IN SCSI parity error detected by target. |
| * COMMAND --> STATUS Bad command or refused by target. |
| * MSG OUT --> MSG IN Message rejected by target. |
| * MSG OUT --> COMMAND Bogus target that discards extended |
| * negotiation messages. |
| * |
| * The code below does not care of the new phase and so |
| * trusts the target. Why to annoy it ? |
| * If the interrupted phase is COMMAND phase, we restart at |
| * dispatcher. |
| * If a target does not get all the messages after selection, |
| * the code assumes blindly that the target discards extended |
| * messages and clears the negotiation status. |
| * If the target does not want all our response to negotiation, |
| * we force a SIR_NEGO_PROTO interrupt (it is a hack that avoids |
| * bloat for such a should_not_happen situation). |
| * In all other situation, we reset the BUS. |
| * Are these assumptions reasonable ? (Wait and see ...) |
| */ |
| unexpected_phase: |
| dsp -= 8; |
| nxtdsp = 0; |
| |
| switch (cmd & 7) { |
| case 2: /* COMMAND phase */ |
| nxtdsp = SCRIPTA_BA(np, dispatch); |
| break; |
| #if 0 |
| case 3: /* STATUS phase */ |
| nxtdsp = SCRIPTA_BA(np, dispatch); |
| break; |
| #endif |
| case 6: /* MSG OUT phase */ |
| /* |
| * If the device may want to use untagged when we want |
| * tagged, we prepare an IDENTIFY without disc. granted, |
| * since we will not be able to handle reselect. |
| * Otherwise, we just don't care. |
| */ |
| if (dsp == SCRIPTA_BA(np, send_ident)) { |
| if (cp->tag != NO_TAG && olen - rest <= 3) { |
| cp->host_status = HS_BUSY; |
| np->msgout[0] = IDENTIFY(0, cp->lun); |
| nxtdsp = SCRIPTB_BA(np, ident_break_atn); |
| } |
| else |
| nxtdsp = SCRIPTB_BA(np, ident_break); |
| } |
| else if (dsp == SCRIPTB_BA(np, send_wdtr) || |
| dsp == SCRIPTB_BA(np, send_sdtr) || |
| dsp == SCRIPTB_BA(np, send_ppr)) { |
| nxtdsp = SCRIPTB_BA(np, nego_bad_phase); |
| if (dsp == SCRIPTB_BA(np, send_ppr)) { |
| struct scsi_device *dev = cp->cmd->device; |
| dev->ppr = 0; |
| } |
| } |
| break; |
| #if 0 |
| case 7: /* MSG IN phase */ |
| nxtdsp = SCRIPTA_BA(np, clrack); |
| break; |
| #endif |
| } |
| |
| if (nxtdsp) { |
| OUTL_DSP(np, nxtdsp); |
| return; |
| } |
| |
| reset_all: |
| sym_start_reset(np); |
| } |
| |
| /* |
| * chip interrupt handler |
| * |
| * In normal situations, interrupt conditions occur one at |
| * a time. But when something bad happens on the SCSI BUS, |
| * the chip may raise several interrupt flags before |
| * stopping and interrupting the CPU. The additionnal |
| * interrupt flags are stacked in some extra registers |
| * after the SIP and/or DIP flag has been raised in the |
| * ISTAT. After the CPU has read the interrupt condition |
| * flag from SIST or DSTAT, the chip unstacks the other |
| * interrupt flags and sets the corresponding bits in |
| * SIST or DSTAT. Since the chip starts stacking once the |
| * SIP or DIP flag is set, there is a small window of time |
| * where the stacking does not occur. |
| * |
| * Typically, multiple interrupt conditions may happen in |
| * the following situations: |
| * |
| * - SCSI parity error + Phase mismatch (PAR|MA) |
| * When an parity error is detected in input phase |
| * and the device switches to msg-in phase inside a |
| * block MOV. |
| * - SCSI parity error + Unexpected disconnect (PAR|UDC) |
| * When a stupid device does not want to handle the |
| * recovery of an SCSI parity error. |
| * - Some combinations of STO, PAR, UDC, ... |
| * When using non compliant SCSI stuff, when user is |
| * doing non compliant hot tampering on the BUS, when |
| * something really bad happens to a device, etc ... |
| * |
| * The heuristic suggested by SYMBIOS to handle |
| * multiple interrupts is to try unstacking all |
| * interrupts conditions and to handle them on some |
| * priority based on error severity. |
| * This will work when the unstacking has been |
| * successful, but we cannot be 100 % sure of that, |
| * since the CPU may have been faster to unstack than |
| * the chip is able to stack. Hmmm ... But it seems that |
| * such a situation is very unlikely to happen. |
| * |
| * If this happen, for example STO caught by the CPU |
| * then UDC happenning before the CPU have restarted |
| * the SCRIPTS, the driver may wrongly complete the |
| * same command on UDC, since the SCRIPTS didn't restart |
| * and the DSA still points to the same command. |
| * We avoid this situation by setting the DSA to an |
| * invalid value when the CCB is completed and before |
| * restarting the SCRIPTS. |
| * |
| * Another issue is that we need some section of our |
| * recovery procedures to be somehow uninterruptible but |
| * the SCRIPTS processor does not provides such a |
| * feature. For this reason, we handle recovery preferently |
| * from the C code and check against some SCRIPTS critical |
| * sections from the C code. |
| * |
| * Hopefully, the interrupt handling of the driver is now |
| * able to resist to weird BUS error conditions, but donnot |
| * ask me for any guarantee that it will never fail. :-) |
| * Use at your own decision and risk. |
| */ |
| |
| irqreturn_t sym_interrupt(struct Scsi_Host *shost) |
| { |
| struct sym_data *sym_data = shost_priv(shost); |
| struct sym_hcb *np = sym_data->ncb; |
| struct pci_dev *pdev = sym_data->pdev; |
| u_char istat, istatc; |
| u_char dstat; |
| u_short sist; |
| |
| /* |
| * interrupt on the fly ? |
| * (SCRIPTS may still be running) |
| * |
| * A `dummy read' is needed to ensure that the |
| * clear of the INTF flag reaches the device |
| * and that posted writes are flushed to memory |
| * before the scanning of the DONE queue. |
| * Note that SCRIPTS also (dummy) read to memory |
| * prior to deliver the INTF interrupt condition. |
| */ |
| istat = INB(np, nc_istat); |
| if (istat & INTF) { |
| OUTB(np, nc_istat, (istat & SIGP) | INTF | np->istat_sem); |
| istat |= INB(np, nc_istat); /* DUMMY READ */ |
| if (DEBUG_FLAGS & DEBUG_TINY) printf ("F "); |
| sym_wakeup_done(np); |
| } |
| |
| if (!(istat & (SIP|DIP))) |
| return (istat & INTF) ? IRQ_HANDLED : IRQ_NONE; |
| |
| #if 0 /* We should never get this one */ |
| if (istat & CABRT) |
| OUTB(np, nc_istat, CABRT); |
| #endif |
| |
| /* |
| * PAR and MA interrupts may occur at the same time, |
| * and we need to know of both in order to handle |
| * this situation properly. We try to unstack SCSI |
| * interrupts for that reason. BTW, I dislike a LOT |
| * such a loop inside the interrupt routine. |
| * Even if DMA interrupt stacking is very unlikely to |
| * happen, we also try unstacking these ones, since |
| * this has no performance impact. |
| */ |
| sist = 0; |
| dstat = 0; |
| istatc = istat; |
| do { |
| if (istatc & SIP) |
| sist |= INW(np, nc_sist); |
| if (istatc & DIP) |
| dstat |= INB(np, nc_dstat); |
| istatc = INB(np, nc_istat); |
| istat |= istatc; |
| |
| /* Prevent deadlock waiting on a condition that may |
| * never clear. */ |
| if (unlikely(sist == 0xffff && dstat == 0xff)) { |
| if (pci_channel_offline(pdev)) |
| return IRQ_NONE; |
| } |
| } while (istatc & (SIP|DIP)); |
| |
| if (DEBUG_FLAGS & DEBUG_TINY) |
| printf ("<%d|%x:%x|%x:%x>", |
| (int)INB(np, nc_scr0), |
| dstat,sist, |
| (unsigned)INL(np, nc_dsp), |
| (unsigned)INL(np, nc_dbc)); |
| /* |
| * On paper, a memory read barrier may be needed here to |
| * prevent out of order LOADs by the CPU from having |
| * prefetched stale data prior to DMA having occurred. |
| * And since we are paranoid ... :) |
| */ |
| MEMORY_READ_BARRIER(); |
| |
| /* |
| * First, interrupts we want to service cleanly. |
| * |
| * Phase mismatch (MA) is the most frequent interrupt |
| * for chip earlier than the 896 and so we have to service |
| * it as quickly as possible. |
| * A SCSI parity error (PAR) may be combined with a phase |
| * mismatch condition (MA). |
| * Programmed interrupts (SIR) are used to call the C code |
| * from SCRIPTS. |
| * The single step interrupt (SSI) is not used in this |
| * driver. |
| */ |
| if (!(sist & (STO|GEN|HTH|SGE|UDC|SBMC|RST)) && |
| !(dstat & (MDPE|BF|ABRT|IID))) { |
| if (sist & PAR) sym_int_par (np, sist); |
| else if (sist & MA) sym_int_ma (np); |
| else if (dstat & SIR) sym_int_sir(np); |
| else if (dstat & SSI) OUTONB_STD(); |
| else goto unknown_int; |
| return IRQ_HANDLED; |
| } |
| |
| /* |
| * Now, interrupts that donnot happen in normal |
| * situations and that we may need to recover from. |
| * |
| * On SCSI RESET (RST), we reset everything. |
| * On SCSI BUS MODE CHANGE (SBMC), we complete all |
| * active CCBs with RESET status, prepare all devices |
| * for negotiating again and restart the SCRIPTS. |
| * On STO and UDC, we complete the CCB with the corres- |
| * ponding status and restart the SCRIPTS. |
| */ |
| if (sist & RST) { |
| printf("%s: SCSI BUS reset detected.\n", sym_name(np)); |
| sym_start_up(shost, 1); |
| return IRQ_HANDLED; |
| } |
| |
| OUTB(np, nc_ctest3, np->rv_ctest3 | CLF); /* clear dma fifo */ |
| OUTB(np, nc_stest3, TE|CSF); /* clear scsi fifo */ |
| |
| if (!(sist & (GEN|HTH|SGE)) && |
| !(dstat & (MDPE|BF|ABRT|IID))) { |
| if (sist & SBMC) sym_int_sbmc(shost); |
| else if (sist & STO) sym_int_sto (np); |
| else if (sist & UDC) sym_int_udc (np); |
| else goto unknown_int; |
| return IRQ_HANDLED; |
| } |
| |
| /* |
| * Now, interrupts we are not able to recover cleanly. |
| * |
| * Log message for hard errors. |
| * Reset everything. |
| */ |
| |
| sym_log_hard_error(shost, sist, dstat); |
| |
| if ((sist & (GEN|HTH|SGE)) || |
| (dstat & (MDPE|BF|ABRT|IID))) { |
| sym_start_reset(np); |
| return IRQ_HANDLED; |
| } |
| |
| unknown_int: |
| /* |
| * We just miss the cause of the interrupt. :( |
| * Print a message. The timeout will do the real work. |
| */ |
| printf( "%s: unknown interrupt(s) ignored, " |
| "ISTAT=0x%x DSTAT=0x%x SIST=0x%x\n", |
| sym_name(np), istat, dstat, sist); |
| return IRQ_NONE; |
| } |
| |
| /* |
| * Dequeue from the START queue all CCBs that match |
| * a given target/lun/task condition (-1 means all), |
| * and move them from the BUSY queue to the COMP queue |
| * with DID_SOFT_ERROR status condition. |
| * This function is used during error handling/recovery. |
| * It is called with SCRIPTS not running. |
| */ |
| static int |
| sym_dequeue_from_squeue(struct sym_hcb *np, int i, int target, int lun, int task) |
| { |
| int j; |
| struct sym_ccb *cp; |
| |
| /* |
| * Make sure the starting index is within range. |
| */ |
| assert((i >= 0) && (i < 2*MAX_QUEUE)); |
| |
| /* |
| * Walk until end of START queue and dequeue every job |
| * that matches the target/lun/task condition. |
| */ |
| j = i; |
| while (i != np->squeueput) { |
| cp = sym_ccb_from_dsa(np, scr_to_cpu(np->squeue[i])); |
| assert(cp); |
| #ifdef SYM_CONF_IARB_SUPPORT |
| /* Forget hints for IARB, they may be no longer relevant */ |
| cp->host_flags &= ~HF_HINT_IARB; |
| #endif |
| if ((target == -1 || cp->target == target) && |
| (lun == -1 || cp->lun == lun) && |
| (task == -1 || cp->tag == task)) { |
| #ifdef SYM_OPT_HANDLE_DEVICE_QUEUEING |
| sym_set_cam_status(cp->cmd, DID_SOFT_ERROR); |
| #else |
| sym_set_cam_status(cp->cmd, DID_REQUEUE); |
| #endif |
| sym_remque(&cp->link_ccbq); |
| sym_insque_tail(&cp->link_ccbq, &np->comp_ccbq); |
| } |
| else { |
| if (i != j) |
| np->squeue[j] = np->squeue[i]; |
| if ((j += 2) >= MAX_QUEUE*2) j = 0; |
| } |
| if ((i += 2) >= MAX_QUEUE*2) i = 0; |
| } |
| if (i != j) /* Copy back the idle task if needed */ |
| np->squeue[j] = np->squeue[i]; |
| np->squeueput = j; /* Update our current start queue pointer */ |
| |
| return (i - j) / 2; |
| } |
| |
| /* |
| * chip handler for bad SCSI status condition |
| * |
| * In case of bad SCSI status, we unqueue all the tasks |
| * currently queued to the controller but not yet started |
| * and then restart the SCRIPTS processor immediately. |
| * |
| * QUEUE FULL and BUSY conditions are handled the same way. |
| * Basically all the not yet started tasks are requeued in |
| * device queue and the queue is frozen until a completion. |
| * |
| * For CHECK CONDITION and COMMAND TERMINATED status, we use |
| * the CCB of the failed command to prepare a REQUEST SENSE |
| * SCSI command and queue it to the controller queue. |
| * |
| * SCRATCHA is assumed to have been loaded with STARTPOS |
| * before the SCRIPTS called the C code. |
| */ |
| static void sym_sir_bad_scsi_status(struct sym_hcb *np, int num, struct sym_ccb *cp) |
| { |
| u32 startp; |
| u_char s_status = cp->ssss_status; |
| u_char h_flags = cp->host_flags; |
| int msglen; |
| int i; |
| |
| /* |
| * Compute the index of the next job to start from SCRIPTS. |
| */ |
| i = (INL(np, nc_scratcha) - np->squeue_ba) / 4; |
| |
| /* |
| * The last CCB queued used for IARB hint may be |
| * no longer relevant. Forget it. |
| */ |
| #ifdef SYM_CONF_IARB_SUPPORT |
| if (np->last_cp) |
| np->last_cp = 0; |
| #endif |
| |
| /* |
| * Now deal with the SCSI status. |
| */ |
| switch(s_status) { |
| case S_BUSY: |
| case S_QUEUE_FULL: |
| if (sym_verbose >= 2) { |
| sym_print_addr(cp->cmd, "%s\n", |
| s_status == S_BUSY ? "BUSY" : "QUEUE FULL\n"); |
| } |
| fallthrough; |
| default: /* S_INT, S_INT_COND_MET, S_CONFLICT */ |
| sym_complete_error (np, cp); |
| break; |
| case S_TERMINATED: |
| case S_CHECK_COND: |
| /* |
| * If we get an SCSI error when requesting sense, give up. |
| */ |
| if (h_flags & HF_SENSE) { |
| sym_complete_error (np, cp); |
| break; |
| } |
| |
| /* |
| * Dequeue all queued CCBs for that device not yet started, |
| * and restart the SCRIPTS processor immediately. |
| */ |
| sym_dequeue_from_squeue(np, i, cp->target, cp->lun, -1); |
| OUTL_DSP(np, SCRIPTA_BA(np, start)); |
| |
| /* |
| * Save some info of the actual IO. |
| * Compute the data residual. |
| */ |
| cp->sv_scsi_status = cp->ssss_status; |
| cp->sv_xerr_status = cp->xerr_status; |
| cp->sv_resid = sym_compute_residual(np, cp); |
| |
| /* |
| * Prepare all needed data structures for |
| * requesting sense data. |
| */ |
| |
| cp->scsi_smsg2[0] = IDENTIFY(0, cp->lun); |
| msglen = 1; |
| |
| /* |
| * If we are currently using anything different from |
| * async. 8 bit data transfers with that target, |
| * start a negotiation, since the device may want |
| * to report us a UNIT ATTENTION condition due to |
| * a cause we currently ignore, and we donnot want |
| * to be stuck with WIDE and/or SYNC data transfer. |
| * |
| * cp->nego_status is filled by sym_prepare_nego(). |
| */ |
| cp->nego_status = 0; |
| msglen += sym_prepare_nego(np, cp, &cp->scsi_smsg2[msglen]); |
| /* |
| * Message table indirect structure. |
| */ |
| cp->phys.smsg.addr = CCB_BA(cp, scsi_smsg2); |
| cp->phys.smsg.size = cpu_to_scr(msglen); |
| |
| /* |
| * sense command |
| */ |
| cp->phys.cmd.addr = CCB_BA(cp, sensecmd); |
| cp->phys.cmd.size = cpu_to_scr(6); |
| |
| /* |
| * patch requested size into sense command |
| */ |
| cp->sensecmd[0] = REQUEST_SENSE; |
| cp->sensecmd[1] = 0; |
| if (cp->cmd->device->scsi_level <= SCSI_2 && cp->lun <= 7) |
| cp->sensecmd[1] = cp->lun << 5; |
| cp->sensecmd[4] = SYM_SNS_BBUF_LEN; |
| cp->data_len = SYM_SNS_BBUF_LEN; |
| |
| /* |
| * sense data |
| */ |
| memset(cp->sns_bbuf, 0, SYM_SNS_BBUF_LEN); |
| cp->phys.sense.addr = CCB_BA(cp, sns_bbuf); |
| cp->phys.sense.size = cpu_to_scr(SYM_SNS_BBUF_LEN); |
| |
| /* |
| * requeue the command. |
| */ |
| startp = SCRIPTB_BA(np, sdata_in); |
| |
| cp->phys.head.savep = cpu_to_scr(startp); |
| cp->phys.head.lastp = cpu_to_scr(startp); |
| cp->startp = cpu_to_scr(startp); |
| cp->goalp = cpu_to_scr(startp + 16); |
| |
| cp->host_xflags = 0; |
| cp->host_status = cp->nego_status ? HS_NEGOTIATE : HS_BUSY; |
| cp->ssss_status = S_ILLEGAL; |
| cp->host_flags = (HF_SENSE|HF_DATA_IN); |
| cp->xerr_status = 0; |
| cp->extra_bytes = 0; |
| |
| cp->phys.head.go.start = cpu_to_scr(SCRIPTA_BA(np, select)); |
| |
| /* |
| * Requeue the command. |
| */ |
| sym_put_start_queue(np, cp); |
| |
| /* |
| * Give back to upper layer everything we have dequeued. |
| */ |
| sym_flush_comp_queue(np, 0); |
| break; |
| } |
| } |
| |
| /* |
| * After a device has accepted some management message |
| * as BUS DEVICE RESET, ABORT TASK, etc ..., or when |
| * a device signals a UNIT ATTENTION condition, some |
| * tasks are thrown away by the device. We are required |
| * to reflect that on our tasks list since the device |
| * will never complete these tasks. |
| * |
| * This function move from the BUSY queue to the COMP |
| * queue all disconnected CCBs for a given target that |
| * match the following criteria: |
| * - lun=-1 means any logical UNIT otherwise a given one. |
| * - task=-1 means any task, otherwise a given one. |
| */ |
| int sym_clear_tasks(struct sym_hcb *np, int cam_status, int target, int lun, int task) |
| { |
| SYM_QUEHEAD qtmp, *qp; |
| int i = 0; |
| struct sym_ccb *cp; |
| |
| /* |
| * Move the entire BUSY queue to our temporary queue. |
| */ |
| sym_que_init(&qtmp); |
| sym_que_splice(&np->busy_ccbq, &qtmp); |
| sym_que_init(&np->busy_ccbq); |
| |
| /* |
| * Put all CCBs that matches our criteria into |
| * the COMP queue and put back other ones into |
| * the BUSY queue. |
| */ |
| while ((qp = sym_remque_head(&qtmp)) != NULL) { |
| struct scsi_cmnd *cmd; |
| cp = sym_que_entry(qp, struct sym_ccb, link_ccbq); |
| cmd = cp->cmd; |
| if (cp->host_status != HS_DISCONNECT || |
| cp->target != target || |
| (lun != -1 && cp->lun != lun) || |
| (task != -1 && |
| (cp->tag != NO_TAG && cp->scsi_smsg[2] != task))) { |
| sym_insque_tail(&cp->link_ccbq, &np->busy_ccbq); |
| continue; |
| } |
| sym_insque_tail(&cp->link_ccbq, &np->comp_ccbq); |
| |
| /* Preserve the software timeout condition */ |
| if (sym_get_cam_status(cmd) != DID_TIME_OUT) |
| sym_set_cam_status(cmd, cam_status); |
| ++i; |
| #if 0 |
| printf("XXXX TASK @%p CLEARED\n", cp); |
| #endif |
| } |
| return i; |
| } |
| |
| /* |
| * chip handler for TASKS recovery |
| * |
| * We cannot safely abort a command, while the SCRIPTS |
| * processor is running, since we just would be in race |
| * with it. |
| * |
| * As long as we have tasks to abort, we keep the SEM |
| * bit set in the ISTAT. When this bit is set, the |
| * SCRIPTS processor interrupts (SIR_SCRIPT_STOPPED) |
| * each time it enters the scheduler. |
| * |
| * If we have to reset a target, clear tasks of a unit, |
| * or to perform the abort of a disconnected job, we |
| * restart the SCRIPTS for selecting the target. Once |
| * selected, the SCRIPTS interrupts (SIR_TARGET_SELECTED). |
| * If it loses arbitration, the SCRIPTS will interrupt again |
| * the next time it will enter its scheduler, and so on ... |
| * |
| * On SIR_TARGET_SELECTED, we scan for the more |
| * appropriate thing to do: |
| * |
| * - If nothing, we just sent a M_ABORT message to the |
| * target to get rid of the useless SCSI bus ownership. |
| * According to the specs, no tasks shall be affected. |
| * - If the target is to be reset, we send it a M_RESET |
| * message. |
| * - If a logical UNIT is to be cleared , we send the |
| * IDENTIFY(lun) + M_ABORT. |
| * - If an untagged task is to be aborted, we send the |
| * IDENTIFY(lun) + M_ABORT. |
| * - If a tagged task is to be aborted, we send the |
| * IDENTIFY(lun) + task attributes + M_ABORT_TAG. |
| * |
| * Once our 'kiss of death' :) message has been accepted |
| * by the target, the SCRIPTS interrupts again |
| * (SIR_ABORT_SENT). On this interrupt, we complete |
| * all the CCBs that should have been aborted by the |
| * target according to our message. |
| */ |
| static void sym_sir_task_recovery(struct sym_hcb *np, int num) |
| { |
| SYM_QUEHEAD *qp; |
| struct sym_ccb *cp; |
| struct sym_tcb *tp = NULL; /* gcc isn't quite smart enough yet */ |
| struct scsi_target *starget; |
| int target=-1, lun=-1, task; |
| int i, k; |
| |
| switch(num) { |
| /* |
| * The SCRIPTS processor stopped before starting |
| * the next command in order to allow us to perform |
| * some task recovery. |
| */ |
| case SIR_SCRIPT_STOPPED: |
| /* |
| * Do we have any target to reset or unit to clear ? |
| */ |
| for (i = 0 ; i < SYM_CONF_MAX_TARGET ; i++) { |
| tp = &np->target[i]; |
| if (tp->to_reset || |
| (tp->lun0p && tp->lun0p->to_clear)) { |
| target = i; |
| break; |
| } |
| if (!tp->lunmp) |
| continue; |
| for (k = 1 ; k < SYM_CONF_MAX_LUN ; k++) { |
| if (tp->lunmp[k] && tp->lunmp[k]->to_clear) { |
| target = i; |
| break; |
| } |
| } |
| if (target != -1) |
| break; |
| } |
| |
| /* |
| * If not, walk the busy queue for any |
| * disconnected CCB to be aborted. |
| */ |
| if (target == -1) { |
| FOR_EACH_QUEUED_ELEMENT(&np->busy_ccbq, qp) { |
| cp = sym_que_entry(qp,struct sym_ccb,link_ccbq); |
| if (cp->host_status != HS_DISCONNECT) |
| continue; |
| if (cp->to_abort) { |
| target = cp->target; |
| break; |
| } |
| } |
| } |
| |
| /* |
| * If some target is to be selected, |
| * prepare and start the selection. |
| */ |
| if (target != -1) { |
| tp = &np->target[target]; |
| np->abrt_sel.sel_id = target; |
| np->abrt_sel.sel_scntl3 = tp->head.wval; |
| np->abrt_sel.sel_sxfer = tp->head.sval; |
| OUTL(np, nc_dsa, np->hcb_ba); |
| OUTL_DSP(np, SCRIPTB_BA(np, sel_for_abort)); |
| return; |
| } |
| |
| /* |
| * Now look for a CCB to abort that haven't started yet. |
| * Btw, the SCRIPTS processor is still stopped, so |
| * we are not in race. |
| */ |
| i = 0; |
| cp = NULL; |
| FOR_EACH_QUEUED_ELEMENT(&np->busy_ccbq, qp) { |
| cp = sym_que_entry(qp, struct sym_ccb, link_ccbq); |
| if (cp->host_status != HS_BUSY && |
| cp->host_status != HS_NEGOTIATE) |
| continue; |
| if (!cp->to_abort) |
| continue; |
| #ifdef SYM_CONF_IARB_SUPPORT |
| /* |
| * If we are using IMMEDIATE ARBITRATION, we donnot |
| * want to cancel the last queued CCB, since the |
| * SCRIPTS may have anticipated the selection. |
| */ |
| if (cp == np->last_cp) { |
| cp->to_abort = 0; |
| continue; |
| } |
| #endif |
| i = 1; /* Means we have found some */ |
| break; |
| } |
| if (!i) { |
| /* |
| * We are done, so we donnot need |
| * to synchronize with the SCRIPTS anylonger. |
| * Remove the SEM flag from the ISTAT. |
| */ |
| np->istat_sem = 0; |
| OUTB(np, nc_istat, SIGP); |
| break; |
| } |
| /* |
| * Compute index of next position in the start |
| * queue the SCRIPTS intends to start and dequeue |
| * all CCBs for that device that haven't been started. |
| */ |
| i = (INL(np, nc_scratcha) - np->squeue_ba) / 4; |
| i = sym_dequeue_from_squeue(np, i, cp->target, cp->lun, -1); |
| |
| /* |
| * Make sure at least our IO to abort has been dequeued. |
| */ |
| #ifndef SYM_OPT_HANDLE_DEVICE_QUEUEING |
| assert(i && sym_get_cam_status(cp->cmd) == DID_SOFT_ERROR); |
| #else |
| sym_remque(&cp->link_ccbq); |
| sym_insque_tail(&cp->link_ccbq, &np->comp_ccbq); |
| #endif |
| /* |
| * Keep track in cam status of the reason of the abort. |
| */ |
| if (cp->to_abort == 2) |
| sym_set_cam_status(cp->cmd, DID_TIME_OUT); |
| else |
| sym_set_cam_status(cp->cmd, DID_ABORT); |
| |
| /* |
| * Complete with error everything that we have dequeued. |
| */ |
| sym_flush_comp_queue(np, 0); |
| break; |
| /* |
| * The SCRIPTS processor has selected a target |
| * we may have some manual recovery to perform for. |
| */ |
| case SIR_TARGET_SELECTED: |
| target = INB(np, nc_sdid) & 0xf; |
| tp = &np->target[target]; |
| |
| np->abrt_tbl.addr = cpu_to_scr(vtobus(np->abrt_msg)); |
| |
| /* |
| * If the target is to be reset, prepare a |
| * M_RESET message and clear the to_reset flag |
| * since we donnot expect this operation to fail. |
| */ |
| if (tp->to_reset) { |
| np->abrt_msg[0] = M_RESET; |
| np->abrt_tbl.size = 1; |
| tp->to_reset = 0; |
| break; |
| } |
| |
| /* |
| * Otherwise, look for some logical unit to be cleared. |
| */ |
| if (tp->lun0p && tp->lun0p->to_clear) |
| lun = 0; |
| else if (tp->lunmp) { |
| for (k = 1 ; k < SYM_CONF_MAX_LUN ; k++) { |
| if (tp->lunmp[k] && tp->lunmp[k]->to_clear) { |
| lun = k; |
| break; |
| } |
| } |
| } |
| |
| /* |
| * If a logical unit is to be cleared, prepare |
| * an IDENTIFY(lun) + ABORT MESSAGE. |
| */ |
| if (lun != -1) { |
| struct sym_lcb *lp = sym_lp(tp, lun); |
| lp->to_clear = 0; /* We don't expect to fail here */ |
| np->abrt_msg[0] = IDENTIFY(0, lun); |
| np->abrt_msg[1] = M_ABORT; |
| np->abrt_tbl.size = 2; |
| break; |
| } |
| |
| /* |
| * Otherwise, look for some disconnected job to |
| * abort for this target. |
| */ |
| i = 0; |
| cp = NULL; |
| FOR_EACH_QUEUED_ELEMENT(&np->busy_ccbq, qp) { |
| cp = sym_que_entry(qp, struct sym_ccb, link_ccbq); |
| if (cp->host_status != HS_DISCONNECT) |
| continue; |
| if (cp->target != target) |
| continue; |
| if (!cp->to_abort) |
| continue; |
| i = 1; /* Means we have some */ |
| break; |
| } |
| |
| /* |
| * If we have none, probably since the device has |
| * completed the command before we won abitration, |
| * send a M_ABORT message without IDENTIFY. |
| * According to the specs, the device must just |
| * disconnect the BUS and not abort any task. |
| */ |
| if (!i) { |
| np->abrt_msg[0] = M_ABORT; |
| np->abrt_tbl.size = 1; |
| break; |
| } |
| |
| /* |
| * We have some task to abort. |
| * Set the IDENTIFY(lun) |
| */ |
| np->abrt_msg[0] = IDENTIFY(0, cp->lun); |
| |
| /* |
| * If we want to abort an untagged command, we |
| * will send a IDENTIFY + M_ABORT. |
| * Otherwise (tagged command), we will send |
| * a IDENTITFY + task attributes + ABORT TAG. |
| */ |
| if (cp->tag == NO_TAG) { |
| np->abrt_msg[1] = M_ABORT; |
| np->abrt_tbl.size = 2; |
| } else { |
| np->abrt_msg[1] = cp->scsi_smsg[1]; |
| np->abrt_msg[2] = cp->scsi_smsg[2]; |
| np->abrt_msg[3] = M_ABORT_TAG; |
| np->abrt_tbl.size = 4; |
| } |
| /* |
| * Keep track of software timeout condition, since the |
| * peripheral driver may not count retries on abort |
| * conditions not due to timeout. |
| */ |
| if (cp->to_abort == 2) |
| sym_set_cam_status(cp->cmd, DID_TIME_OUT); |
| cp->to_abort = 0; /* We donnot expect to fail here */ |
| break; |
| |
| /* |
| * The target has accepted our message and switched |
| * to BUS FREE phase as we expected. |
| */ |
| case SIR_ABORT_SENT: |
| target = INB(np, nc_sdid) & 0xf; |
| tp = &np->target[target]; |
| starget = tp->starget; |
| |
| /* |
| ** If we didn't abort anything, leave here. |
| */ |
| if (np->abrt_msg[0] == M_ABORT) |
| break; |
| |
| /* |
| * If we sent a M_RESET, then a hardware reset has |
| * been performed by the target. |
| * - Reset everything to async 8 bit |
| * - Tell ourself to negotiate next time :-) |
| * - Prepare to clear all disconnected CCBs for |
| * this target from our task list (lun=task=-1) |
| */ |
| lun = -1; |
| task = -1; |
| if (np->abrt_msg[0] == M_RESET) { |
| tp->head.sval = 0; |
| tp->head.wval = np->rv_scntl3; |
| tp->head.uval = 0; |
| spi_period(starget) = 0; |
| spi_offset(starget) = 0; |
| spi_width(starget) = 0; |
| spi_iu(starget) = 0; |
| spi_dt(starget) = 0; |
| spi_qas(starget) = 0; |
| tp->tgoal.check_nego = 1; |
| tp->tgoal.renego = 0; |
| } |
| |
| /* |
| * Otherwise, check for the LUN and TASK(s) |
| * concerned by the cancelation. |
| * If it is not ABORT_TAG then it is CLEAR_QUEUE |
| * or an ABORT message :-) |
| */ |
| else { |
| lun = np->abrt_msg[0] & 0x3f; |
| if (np->abrt_msg[1] == M_ABORT_TAG) |
| task = np->abrt_msg[2]; |
| } |
| |
| /* |
| * Complete all the CCBs the device should have |
| * aborted due to our 'kiss of death' message. |
| */ |
| i = (INL(np, nc_scratcha) - np->squeue_ba) / 4; |
| sym_dequeue_from_squeue(np, i, target, lun, -1); |
| sym_clear_tasks(np, DID_ABORT, target, lun, task); |
| sym_flush_comp_queue(np, 0); |
| |
| /* |
| * If we sent a BDR, make upper layer aware of that. |
| */ |
| if (np->abrt_msg[0] == M_RESET) |
| starget_printk(KERN_NOTICE, starget, |
| "has been reset\n"); |
| break; |
| } |
| |
| /* |
| * Print to the log the message we intend to send. |
| */ |
| if (num == SIR_TARGET_SELECTED) { |
| dev_info(&tp->starget->dev, "control msgout:"); |
| sym_printl_hex(np->abrt_msg, np->abrt_tbl.size); |
| np->abrt_tbl.size = cpu_to_scr(np->abrt_tbl.size); |
| } |
| |
| /* |
| * Let the SCRIPTS processor continue. |
| */ |
| OUTONB_STD(); |
| } |
| |
| /* |
| * Gerard's alchemy:) that deals with with the data |
| * pointer for both MDP and the residual calculation. |
| * |
| * I didn't want to bloat the code by more than 200 |
| * lines for the handling of both MDP and the residual. |
| * This has been achieved by using a data pointer |
| * representation consisting in an index in the data |
| * array (dp_sg) and a negative offset (dp_ofs) that |
| * have the following meaning: |
| * |
| * - dp_sg = SYM_CONF_MAX_SG |
| * we are at the end of the data script. |
| * - dp_sg < SYM_CONF_MAX_SG |
| * dp_sg points to the next entry of the scatter array |
| * we want to transfer. |
| * - dp_ofs < 0 |
| * dp_ofs represents the residual of bytes of the |
| * previous entry scatter entry we will send first. |
| * - dp_ofs = 0 |
| * no residual to send first. |
| * |
| * The function sym_evaluate_dp() accepts an arbitray |
| * offset (basically from the MDP message) and returns |
| * the corresponding values of dp_sg and dp_ofs. |
| */ |
| |
| static int sym_evaluate_dp(struct sym_hcb *np, struct sym_ccb *cp, u32 scr, int *ofs) |
| { |
| u32 dp_scr; |
| int dp_ofs, dp_sg, dp_sgmin; |
| int tmp; |
| struct sym_pmc *pm; |
| |
| /* |
| * Compute the resulted data pointer in term of a script |
| * address within some DATA script and a signed byte offset. |
| */ |
| dp_scr = scr; |
| dp_ofs = *ofs; |
| if (dp_scr == SCRIPTA_BA(np, pm0_data)) |
| pm = &cp->phys.pm0; |
| else if (dp_scr == SCRIPTA_BA(np, pm1_data)) |
| pm = &cp->phys.pm1; |
| else |
| pm = NULL; |
| |
| if (pm) { |
| dp_scr = scr_to_cpu(pm->ret); |
| dp_ofs -= scr_to_cpu(pm->sg.size) & 0x00ffffff; |
| } |
| |
| /* |
| * If we are auto-sensing, then we are done. |
| */ |
| if (cp->host_flags & HF_SENSE) { |
| *ofs = dp_ofs; |
| return 0; |
| } |
| |
| /* |
| * Deduce the index of the sg entry. |
| * Keep track of the index of the first valid entry. |
| * If result is dp_sg = SYM_CONF_MAX_SG, then we are at the |
| * end of the data. |
| */ |
| tmp = scr_to_cpu(cp->goalp); |
| dp_sg = SYM_CONF_MAX_SG; |
| if (dp_scr != tmp) |
| dp_sg -= (tmp - 8 - (int)dp_scr) / (2*4); |
| dp_sgmin = SYM_CONF_MAX_SG - cp->segments; |
| |
| /* |
| * Move to the sg entry the data pointer belongs to. |
| * |
| * If we are inside the data area, we expect result to be: |
| * |
| * Either, |
| * dp_ofs = 0 and dp_sg is the index of the sg entry |
| * the data pointer belongs to (or the end of the data) |
| * Or, |
| * dp_ofs < 0 and dp_sg is the index of the sg entry |
| * the data pointer belongs to + 1. |
| */ |
| if (dp_ofs < 0) { |
| int n; |
| while (dp_sg > dp_sgmin) { |
| --dp_sg; |
| tmp = scr_to_cpu(cp->phys.data[dp_sg].size); |
| n = dp_ofs + (tmp & 0xffffff); |
| if (n > 0) { |
| ++dp_sg; |
| break; |
| } |
| dp_ofs = n; |
| } |
| } |
| else if (dp_ofs > 0) { |
| while (dp_sg < SYM_CONF_MAX_SG) { |
| tmp = scr_to_cpu(cp->phys.data[dp_sg].size); |
| dp_ofs -= (tmp & 0xffffff); |
| ++dp_sg; |
| if (dp_ofs <= 0) |
| break; |
| } |
| } |
| |
| /* |
| * Make sure the data pointer is inside the data area. |
| * If not, return some error. |
| */ |
| if (dp_sg < dp_sgmin || (dp_sg == dp_sgmin && dp_ofs < 0)) |
| goto out_err; |
| else if (dp_sg > SYM_CONF_MAX_SG || |
| (dp_sg == SYM_CONF_MAX_SG && dp_ofs > 0)) |
| goto out_err; |
| |
| /* |
| * Save the extreme pointer if needed. |
| */ |
| if (dp_sg > cp->ext_sg || |
| (dp_sg == cp->ext_sg && dp_ofs > cp->ext_ofs)) { |
| cp->ext_sg = dp_sg; |
| cp->ext_ofs = dp_ofs; |
| } |
| |
| /* |
| * Return data. |
| */ |
| *ofs = dp_ofs; |
| return dp_sg; |
| |
| out_err: |
| return -1; |
| } |
| |
| /* |
| * chip handler for MODIFY DATA POINTER MESSAGE |
| * |
| * We also call this function on IGNORE WIDE RESIDUE |
| * messages that do not match a SWIDE full condition. |
| * Btw, we assume in that situation that such a message |
| * is equivalent to a MODIFY DATA POINTER (offset=-1). |
| */ |
| |
| static void sym_modify_dp(struct sym_hcb *np, struct sym_tcb *tp, struct sym_ccb *cp, int ofs) |
| { |
| int dp_ofs = ofs; |
| u32 dp_scr = sym_get_script_dp (np, cp); |
| u32 dp_ret; |
| u32 tmp; |
| u_char hflags; |
| int dp_sg; |
| struct sym_pmc *pm; |
| |
| /* |
| * Not supported for auto-sense. |
| */ |
| if (cp->host_flags & HF_SENSE) |
| goto out_reject; |
| |
| /* |
| * Apply our alchemy:) (see comments in sym_evaluate_dp()), |
| * to the resulted data pointer. |
| */ |
| dp_sg = sym_evaluate_dp(np, cp, dp_scr, &dp_ofs); |
| if (dp_sg < 0) |
| goto out_reject; |
| |
| /* |
| * And our alchemy:) allows to easily calculate the data |
| * script address we want to return for the next data phase. |
| */ |
| dp_ret = cpu_to_scr(cp->goalp); |
| dp_ret = dp_ret - 8 - (SYM_CONF_MAX_SG - dp_sg) * (2*4); |
| |
| /* |
| * If offset / scatter entry is zero we donnot need |
| * a context for the new current data pointer. |
| */ |
| if (dp_ofs == 0) { |
| dp_scr = dp_ret; |
| goto out_ok; |
| } |
| |
| /* |
| * Get a context for the new current data pointer. |
| */ |
| hflags = INB(np, HF_PRT); |
| |
| if (hflags & HF_DP_SAVED) |
| hflags ^= HF_ACT_PM; |
| |
| if (!(hflags & HF_ACT_PM)) { |
| pm = &cp->phys.pm0; |
| dp_scr = SCRIPTA_BA(np, pm0_data); |
| } |
| else { |
| pm = &cp->phys.pm1; |
| dp_scr = SCRIPTA_BA(np, pm1_data); |
| } |
| |
| hflags &= ~(HF_DP_SAVED); |
| |
| OUTB(np, HF_PRT, hflags); |
| |
| /* |
| * Set up the new current data pointer. |
| * ofs < 0 there, and for the next data phase, we |
| * want to transfer part of the data of the sg entry |
| * corresponding to index dp_sg-1 prior to returning |
| * to the main data script. |
| */ |
| pm->ret = cpu_to_scr(dp_ret); |
| tmp = scr_to_cpu(cp->phys.data[dp_sg-1].addr); |
| tmp += scr_to_cpu(cp->phys.data[dp_sg-1].size) + dp_ofs; |
| pm->sg.addr = cpu_to_scr(tmp); |
| pm->sg.size = cpu_to_scr(-dp_ofs); |
| |
| out_ok: |
| sym_set_script_dp (np, cp, dp_scr); |
| OUTL_DSP(np, SCRIPTA_BA(np, clrack)); |
| return; |
| |
| out_reject: |
| OUTL_DSP(np, SCRIPTB_BA(np, msg_bad)); |
| } |
| |
| |
| /* |
| * chip calculation of the data residual. |
| * |
| * As I used to say, the requirement of data residual |
| * in SCSI is broken, useless and cannot be achieved |
| * without huge complexity. |
| * But most OSes and even the official CAM require it. |
| * When stupidity happens to be so widely spread inside |
| * a community, it gets hard to convince. |
| * |
| * Anyway, I don't care, since I am not going to use |
| * any software that considers this data residual as |
| * a relevant information. :) |
| */ |
| |
| int sym_compute_residual(struct sym_hcb *np, struct sym_ccb *cp) |
| { |
| int dp_sg, resid = 0; |
| int dp_ofs = 0; |
| |
| /* |
| * Check for some data lost or just thrown away. |
| * We are not required to be quite accurate in this |
| * situation. Btw, if we are odd for output and the |
| * device claims some more data, it may well happen |
| * than our residual be zero. :-) |
| */ |
| if (cp->xerr_status & (XE_EXTRA_DATA|XE_SODL_UNRUN|XE_SWIDE_OVRUN)) { |
| if (cp->xerr_status & XE_EXTRA_DATA) |
| resid -= cp->extra_bytes; |
| if (cp->xerr_status & XE_SODL_UNRUN) |
| ++resid; |
| if (cp->xerr_status & XE_SWIDE_OVRUN) |
| --resid; |
| } |
| |
| /* |
| * If all data has been transferred, |
| * there is no residual. |
| */ |
| if (cp->phys.head.lastp == cp->goalp) |
| return resid; |
| |
| /* |
| * If no data transfer occurs, or if the data |
| * pointer is weird, return full residual. |
| */ |
| if (cp->startp == cp->phys.head.lastp || |
| sym_evaluate_dp(np, cp, scr_to_cpu(cp->phys.head.lastp), |
| &dp_ofs) < 0) { |
| return cp->data_len - cp->odd_byte_adjustment; |
| } |
| |
| /* |
| * If we were auto-sensing, then we are done. |
| */ |
| if (cp->host_flags & HF_SENSE) { |
| return -dp_ofs; |
| } |
| |
| /* |
| * We are now full comfortable in the computation |
| * of the data residual (2's complement). |
| */ |
| resid = -cp->ext_ofs; |
| for (dp_sg = cp->ext_sg; dp_sg < SYM_CONF_MAX_SG; ++dp_sg) { |
| u_int tmp = scr_to_cpu(cp->phys.data[dp_sg].size); |
| resid += (tmp & 0xffffff); |
| } |
| |
| resid -= cp->odd_byte_adjustment; |
| |
| /* |
| * Hopefully, the result is not too wrong. |
| */ |
| return resid; |
| } |
| |
| /* |
| * Negotiation for WIDE and SYNCHRONOUS DATA TRANSFER. |
| * |
| * When we try to negotiate, we append the negotiation message |
| * to the identify and (maybe) simple tag message. |
| * The host status field is set to HS_NEGOTIATE to mark this |
| * situation. |
| * |
| * If the target doesn't answer this message immediately |
| * (as required by the standard), the SIR_NEGO_FAILED interrupt |
| * will be raised eventually. |
| * The handler removes the HS_NEGOTIATE status, and sets the |
| * negotiated value to the default (async / nowide). |
| * |
| * If we receive a matching answer immediately, we check it |
| * for validity, and set the values. |
| * |
| * If we receive a Reject message immediately, we assume the |
| * negotiation has failed, and fall back to standard values. |
| * |
| * If we receive a negotiation message while not in HS_NEGOTIATE |
| * state, it's a target initiated negotiation. We prepare a |
| * (hopefully) valid answer, set our parameters, and send back |
| * this answer to the target. |
| * |
| * If the target doesn't fetch the answer (no message out phase), |
| * we assume the negotiation has failed, and fall back to default |
| * settings (SIR_NEGO_PROTO interrupt). |
| * |
| * When we set the values, we adjust them in all ccbs belonging |
| * to this target, in the controller's register, and in the "phys" |
| * field of the controller's struct sym_hcb. |
| */ |
| |
| /* |
| * chip handler for SYNCHRONOUS DATA TRANSFER REQUEST (SDTR) message. |
| */ |
| static int |
| sym_sync_nego_check(struct sym_hcb *np, int req, struct sym_ccb *cp) |
| { |
| int target = cp->target; |
| u_char chg, ofs, per, fak, div; |
| |
| if (DEBUG_FLAGS & DEBUG_NEGO) { |
| sym_print_nego_msg(np, target, "sync msgin", np->msgin); |
| } |
| |
| /* |
| * Get requested values. |
| */ |
| chg = 0; |
| per = np->msgin[3]; |
| ofs = np->msgin[4]; |
| |
| /* |
| * Check values against our limits. |
| */ |
| if (ofs) { |
| if (ofs > np->maxoffs) |
| {chg = 1; ofs = np->maxoffs;} |
| } |
| |
| if (ofs) { |
| if (per < np->minsync) |
| {chg = 1; per = np->minsync;} |
| } |
| |
| /* |
| * Get new chip synchronous parameters value. |
| */ |
| div = fak = 0; |
| if (ofs && sym_getsync(np, 0, per, &div, &fak) < 0) |
| goto reject_it; |
| |
| if (DEBUG_FLAGS & DEBUG_NEGO) { |
| sym_print_addr(cp->cmd, |
| "sdtr: ofs=%d per=%d div=%d fak=%d chg=%d.\n", |
| ofs, per, div, fak, chg); |
| } |
| |
| /* |
| * If it was an answer we want to change, |
| * then it isn't acceptable. Reject it. |
| */ |
| if (!req && chg) |
| goto reject_it; |
| |
| /* |
| * Apply new values. |
| */ |
| sym_setsync (np, target, ofs, per, div, fak); |
| |
| /* |
| * It was an answer. We are done. |
| */ |
| if (!req) |
| return 0; |
| |
| /* |
| * It was a request. Prepare an answer message. |
| */ |
| spi_populate_sync_msg(np->msgout, per, ofs); |
| |
| if (DEBUG_FLAGS & DEBUG_NEGO) { |
| sym_print_nego_msg(np, target, "sync msgout", np->msgout); |
| } |
| |
| np->msgin [0] = M_NOOP; |
| |
| return 0; |
| |
| reject_it: |
| sym_setsync (np, target, 0, 0, 0, 0); |
| return -1; |
| } |
| |
| static void sym_sync_nego(struct sym_hcb *np, struct sym_tcb *tp, struct sym_ccb *cp) |
| { |
| int req = 1; |
| int result; |
| |
| /* |
| * Request or answer ? |
| */ |
| if (INB(np, HS_PRT) == HS_NEGOTIATE) { |
| OUTB(np, HS_PRT, HS_BUSY); |
| if (cp->nego_status && cp->nego_status != NS_SYNC) |
| goto reject_it; |
| req = 0; |
| } |
| |
| /* |
| * Check and apply new values. |
| */ |
| result = sym_sync_nego_check(np, req, cp); |
| if (result) /* Not acceptable, reject it */ |
| goto reject_it; |
| if (req) { /* Was a request, send response. */ |
| cp->nego_status = NS_SYNC; |
| OUTL_DSP(np, SCRIPTB_BA(np, sdtr_resp)); |
| } |
| else /* Was a response, we are done. */ |
| OUTL_DSP(np, SCRIPTA_BA(np, clrack)); |
| return; |
| |
| reject_it: |
| OUTL_DSP(np, SCRIPTB_BA(np, msg_bad)); |
| } |
| |
| /* |
| * chip handler for PARALLEL PROTOCOL REQUEST (PPR) message. |
| */ |
| static int |
| sym_ppr_nego_check(struct sym_hcb *np, int req, int target) |
| { |
| struct sym_tcb *tp = &np->target[target]; |
| unsigned char fak, div; |
| int dt, chg = 0; |
| |
| unsigned char per = np->msgin[3]; |
| unsigned char ofs = np->msgin[5]; |
| unsigned char wide = np->msgin[6]; |
| unsigned char opts = np->msgin[7] & PPR_OPT_MASK; |
| |
| if (DEBUG_FLAGS & DEBUG_NEGO) { |
| sym_print_nego_msg(np, target, "ppr msgin", np->msgin); |
| } |
| |
| /* |
| * Check values against our limits. |
| */ |
| if (wide > np->maxwide) { |
| chg = 1; |
| wide = np->maxwide; |
| } |
| if (!wide || !(np->features & FE_U3EN)) |
| opts = 0; |
| |
| if (opts != (np->msgin[7] & PPR_OPT_MASK)) |
| chg = 1; |
| |
| dt = opts & PPR_OPT_DT; |
| |
| if (ofs) { |
| unsigned char maxoffs = dt ? np->maxoffs_dt : np->maxoffs; |
| if (ofs > maxoffs) { |
| chg = 1; |
| ofs = maxoffs; |
| } |
| } |
| |
| if (ofs) { |
| unsigned char minsync = dt ? np->minsync_dt : np->minsync; |
| if (per < minsync) { |
| chg = 1; |
| per = minsync; |
| } |
| } |
| |
| /* |
| * Get new chip synchronous parameters value. |
| */ |
| div = fak = 0; |
| if (ofs && sym_getsync(np, dt, per, &div, &fak) < 0) |
| goto reject_it; |
| |
| /* |
| * If it was an answer we want to change, |
| * then it isn't acceptable. Reject it. |
| */ |
| if (!req && chg) |
| goto reject_it; |
| |
| /* |
| * Apply new values. |
| */ |
| sym_setpprot(np, target, opts, ofs, per, wide, div, fak); |
| |
| /* |
| * It was an answer. We are done. |
| */ |
| if (!req) |
| return 0; |
| |
| /* |
| * It was a request. Prepare an answer message. |
| */ |
| spi_populate_ppr_msg(np->msgout, per, ofs, wide, opts); |
| |
| if (DEBUG_FLAGS & DEBUG_NEGO) { |
| sym_print_nego_msg(np, target, "ppr msgout", np->msgout); |
| } |
| |
| np->msgin [0] = M_NOOP; |
| |
| return 0; |
| |
| reject_it: |
| sym_setpprot (np, target, 0, 0, 0, 0, 0, 0); |
| /* |
| * If it is a device response that should result in |
| * ST, we may want to try a legacy negotiation later. |
| */ |
| if (!req && !opts) { |
| tp->tgoal.period = per; |
| tp->tgoal.offset = ofs; |
| tp->tgoal.width = wide; |
| tp->tgoal.iu = tp->tgoal.dt = tp->tgoal.qas = 0; |
| tp->tgoal.check_nego = 1; |
| } |
| return -1; |
| } |
| |
| static void sym_ppr_nego(struct sym_hcb *np, struct sym_tcb *tp, struct sym_ccb *cp) |
| { |
| int req = 1; |
| int result; |
| |
| /* |
| * Request or answer ? |
| */ |
| if (INB(np, HS_PRT) == HS_NEGOTIATE) { |
| OUTB(np, HS_PRT, HS_BUSY); |
| if (cp->nego_status && cp->nego_status != NS_PPR) |
| goto reject_it; |
| req = 0; |
| } |
| |
| /* |
| * Check and apply new values. |
| */ |
| result = sym_ppr_nego_check(np, req, cp->target); |
| if (result) /* Not acceptable, reject it */ |
| goto reject_it; |
| if (req) { /* Was a request, send response. */ |
| cp->nego_status = NS_PPR; |
| OUTL_DSP(np, SCRIPTB_BA(np, ppr_resp)); |
| } |
| else /* Was a response, we are done. */ |
| OUTL_DSP(np, SCRIPTA_BA(np, clrack)); |
| return; |
| |
| reject_it: |
| OUTL_DSP(np, SCRIPTB_BA(np, msg_bad)); |
| } |
| |
| /* |
| * chip handler for WIDE DATA TRANSFER REQUEST (WDTR) message. |
| */ |
| static int |
| sym_wide_nego_check(struct sym_hcb *np, int req, struct sym_ccb *cp) |
| { |
| int target = cp->target; |
| u_char chg, wide; |
| |
| if (DEBUG_FLAGS & DEBUG_NEGO) { |
| sym_print_nego_msg(np, target, "wide msgin", np->msgin); |
| } |
| |
| /* |
| * Get requested values. |
| */ |
| chg = 0; |
| wide = np->msgin[3]; |
| |
| /* |
| * Check values against our limits. |
| */ |
| if (wide > np->maxwide) { |
| chg = 1; |
| wide = np->maxwide; |
| } |
| |
| if (DEBUG_FLAGS & DEBUG_NEGO) { |
| sym_print_addr(cp->cmd, "wdtr: wide=%d chg=%d.\n", |
| wide, chg); |
| } |
| |
| /* |
| * If it was an answer we want to change, |
| * then it isn't acceptable. Reject it. |
| */ |
| if (!req && chg) |
| goto reject_it; |
| |
| /* |
| * Apply new values. |
| */ |
| sym_setwide (np, target, wide); |
| |
| /* |
| * It was an answer. We are done. |
| */ |
| if (!req) |
| return 0; |
| |
| /* |
| * It was a request. Prepare an answer message. |
| */ |
| spi_populate_width_msg(np->msgout, wide); |
| |
| np->msgin [0] = M_NOOP; |
| |
| if (DEBUG_FLAGS & DEBUG_NEGO) { |
| sym_print_nego_msg(np, target, "wide msgout", np->msgout); |
| } |
| |
| return 0; |
| |
| reject_it: |
| return -1; |
| } |
| |
| static void sym_wide_nego(struct sym_hcb *np, struct sym_tcb *tp, struct sym_ccb *cp) |
| { |
| int req = 1; |
| int result; |
| |
| /* |
| * Request or answer ? |
| */ |
| if (INB(np, HS_PRT) == HS_NEGOTIATE) { |
| OUTB(np, HS_PRT, HS_BUSY); |
| if (cp->nego_status && cp->nego_status != NS_WIDE) |
| goto reject_it; |
| req = 0; |
| } |
| |
| /* |
| * Check and apply new values. |
| */ |
| result = sym_wide_nego_check(np, req, cp); |
| if (result) /* Not acceptable, reject it */ |
| goto reject_it; |
| if (req) { /* Was a request, send response. */ |
| cp->nego_status = NS_WIDE; |
| OUTL_DSP(np, SCRIPTB_BA(np, wdtr_resp)); |
| } else { /* Was a response. */ |
| /* |
| * Negotiate for SYNC immediately after WIDE response. |
| * This allows to negotiate for both WIDE and SYNC on |
| * a single SCSI command (Suggested by Justin Gibbs). |
| */ |
| if (tp->tgoal.offset) { |
| spi_populate_sync_msg(np->msgout, tp->tgoal.period, |
| tp->tgoal.offset); |
| |
| if (DEBUG_FLAGS & DEBUG_NEGO) { |
| sym_print_nego_msg(np, cp->target, |
| "sync msgout", np->msgout); |
| } |
| |
| cp->nego_status = NS_SYNC; |
| OUTB(np, HS_PRT, HS_NEGOTIATE); |
| OUTL_DSP(np, SCRIPTB_BA(np, sdtr_resp)); |
| return; |
| } else |
| OUTL_DSP(np, SCRIPTA_BA(np, clrack)); |
| } |
| |
| return; |
| |
| reject_it: |
| OUTL_DSP(np, SCRIPTB_BA(np, msg_bad)); |
| } |
| |
| /* |
| * Reset DT, SYNC or WIDE to default settings. |
| * |
| * Called when a negotiation does not succeed either |
| * on rejection or on protocol error. |
| * |
| * A target that understands a PPR message should never |
| * reject it, and messing with it is very unlikely. |
| * So, if a PPR makes problems, we may just want to |
| * try a legacy negotiation later. |
| */ |
| static void sym_nego_default(struct sym_hcb *np, struct sym_tcb *tp, struct sym_ccb *cp) |
| { |
| switch (cp->nego_status) { |
| case NS_PPR: |
| #if 0 |
| sym_setpprot (np, cp->target, 0, 0, 0, 0, 0, 0); |
| #else |
| if (tp->tgoal.period < np->minsync) |
| tp->tgoal.period = np->minsync; |
| if (tp->tgoal.offset > np->maxoffs) |
| tp->tgoal.offset = np->maxoffs; |
| tp->tgoal.iu = tp->tgoal.dt = tp->tgoal.qas = 0; |
| tp->tgoal.check_nego = 1; |
| #endif |
| break; |
| case NS_SYNC: |
| sym_setsync (np, cp->target, 0, 0, 0, 0); |
| break; |
| case NS_WIDE: |
| sym_setwide (np, cp->target, 0); |
| break; |
| } |
| np->msgin [0] = M_NOOP; |
| np->msgout[0] = M_NOOP; |
| cp->nego_status = 0; |
| } |
| |
| /* |
| * chip handler for MESSAGE REJECT received in response to |
| * PPR, WIDE or SYNCHRONOUS negotiation. |
| */ |
| static void sym_nego_rejected(struct sym_hcb *np, struct sym_tcb *tp, struct sym_ccb *cp) |
| { |
| sym_nego_default(np, tp, cp); |
| OUTB(np, HS_PRT, HS_BUSY); |
| } |
| |
| #define sym_printk(lvl, tp, cp, fmt, v...) do { \ |
| if (cp) \ |
| scmd_printk(lvl, cp->cmd, fmt, ##v); \ |
| else \ |
| starget_printk(lvl, tp->starget, fmt, ##v); \ |
| } while (0) |
| |
| /* |
| * chip exception handler for programmed interrupts. |
| */ |
| static void sym_int_sir(struct sym_hcb *np) |
| { |
| u_char num = INB(np, nc_dsps); |
| u32 dsa = INL(np, nc_dsa); |
| struct sym_ccb *cp = sym_ccb_from_dsa(np, dsa); |
| u_char target = INB(np, nc_sdid) & 0x0f; |
| struct sym_tcb *tp = &np->target[target]; |
| int tmp; |
| |
| if (DEBUG_FLAGS & DEBUG_TINY) printf ("I#%d", num); |
| |
| switch (num) { |
| #if SYM_CONF_DMA_ADDRESSING_MODE == 2 |
| /* |
| * SCRIPTS tell us that we may have to update |
| * 64 bit DMA segment registers. |
| */ |
| case SIR_DMAP_DIRTY: |
| sym_update_dmap_regs(np); |
| goto out; |
| #endif |
| /* |
| * Command has been completed with error condition |
| * or has been auto-sensed. |
| */ |
| case SIR_COMPLETE_ERROR: |
| sym_complete_error(np, cp); |
| return; |
| /* |
| * The C code is currently trying to recover from something. |
| * Typically, user want to abort some command. |
| */ |
| case SIR_SCRIPT_STOPPED: |
| case SIR_TARGET_SELECTED: |
| case SIR_ABORT_SENT: |
| sym_sir_task_recovery(np, num); |
| return; |
| /* |
| * The device didn't go to MSG OUT phase after having |
| * been selected with ATN. We do not want to handle that. |
| */ |
| case SIR_SEL_ATN_NO_MSG_OUT: |
| sym_printk(KERN_WARNING, tp, cp, |
| "No MSG OUT phase after selection with ATN\n"); |
| goto out_stuck; |
| /* |
| * The device didn't switch to MSG IN phase after |
| * having reselected the initiator. |
| */ |
| case SIR_RESEL_NO_MSG_IN: |
| sym_printk(KERN_WARNING, tp, cp, |
| "No MSG IN phase after reselection\n"); |
| goto out_stuck; |
| /* |
| * After reselection, the device sent a message that wasn't |
| * an IDENTIFY. |
| */ |
| case SIR_RESEL_NO_IDENTIFY: |
| sym_printk(KERN_WARNING, tp, cp, |
| "No IDENTIFY after reselection\n"); |
| goto out_stuck; |
| /* |
| * The device reselected a LUN we do not know about. |
| */ |
| case SIR_RESEL_BAD_LUN: |
| np->msgout[0] = M_RESET; |
| goto out; |
| /* |
| * The device reselected for an untagged nexus and we |
| * haven't any. |
| */ |
| case SIR_RESEL_BAD_I_T_L: |
| np->msgout[0] = M_ABORT; |
| goto out; |
| /* |
| * The device reselected for a tagged nexus that we do not have. |
| */ |
| case SIR_RESEL_BAD_I_T_L_Q: |
| np->msgout[0] = M_ABORT_TAG; |
| goto out; |
| /* |
| * The SCRIPTS let us know that the device has grabbed |
| * our message and will abort the job. |
| */ |
| case SIR_RESEL_ABORTED: |
| np->lastmsg = np->msgout[0]; |
| np->msgout[0] = M_NOOP; |
| sym_printk(KERN_WARNING, tp, cp, |
| "message %x sent on bad reselection\n", np->lastmsg); |
| goto out; |
| /* |
| * The SCRIPTS let us know that a message has been |
| * successfully sent to the device. |
| */ |
| case SIR_MSG_OUT_DONE: |
| np->lastmsg = np->msgout[0]; |
| np->msgout[0] = M_NOOP; |
| /* Should we really care of that */ |
| if (np->lastmsg == M_PARITY || np->lastmsg == M_ID_ERROR) { |
| if (cp) { |
| cp->xerr_status &= ~XE_PARITY_ERR; |
| if (!cp->xerr_status) |
| OUTOFFB(np, HF_PRT, HF_EXT_ERR); |
| } |
| } |
| goto out; |
| /* |
| * The device didn't send a GOOD SCSI status. |
| * We may have some work to do prior to allow |
| * the SCRIPTS processor to continue. |
| */ |
| case SIR_BAD_SCSI_STATUS: |
| if (!cp) |
| goto out; |
| sym_sir_bad_scsi_status(np, num, cp); |
| return; |
| /* |
| * We are asked by the SCRIPTS to prepare a |
| * REJECT message. |
| */ |
| case SIR_REJECT_TO_SEND: |
| sym_print_msg(cp, "M_REJECT to send for ", np->msgin); |
| np->msgout[0] = M_REJECT; |
| goto out; |
| /* |
| * We have been ODD at the end of a DATA IN |
| * transfer and the device didn't send a |
| * IGNORE WIDE RESIDUE message. |
| * It is a data overrun condition. |
| */ |
| case SIR_SWIDE_OVERRUN: |
| if (cp) { |
| OUTONB(np, HF_PRT, HF_EXT_ERR); |
| cp->xerr_status |= XE_SWIDE_OVRUN; |
| } |
| goto out; |
| /* |
| * We have been ODD at the end of a DATA OUT |
| * transfer. |
| * It is a data underrun condition. |
| */ |
| case SIR_SODL_UNDERRUN: |
| if (cp) { |
| OUTONB(np, HF_PRT, HF_EXT_ERR); |
| cp->xerr_status |= XE_SODL_UNRUN; |
| } |
| goto out; |
| /* |
| * The device wants us to tranfer more data than |
| * expected or in the wrong direction. |
| * The number of extra bytes is in scratcha. |
| * It is a data overrun condition. |
| */ |
| case SIR_DATA_OVERRUN: |
| if (cp) { |
| OUTONB(np, HF_PRT, HF_EXT_ERR); |
| cp->xerr_status |= XE_EXTRA_DATA; |
| cp->extra_bytes += INL(np, nc_scratcha); |
| } |
| goto out; |
| /* |
| * The device switched to an illegal phase (4/5). |
| */ |
| case SIR_BAD_PHASE: |
| if (cp) { |
| OUTONB(np, HF_PRT, HF_EXT_ERR); |
| cp->xerr_status |= XE_BAD_PHASE; |
| } |
| goto out; |
| /* |
| * We received a message. |
| */ |
| case SIR_MSG_RECEIVED: |
| if (!cp) |
| goto out_stuck; |
| switch (np->msgin [0]) { |
| /* |
| * We received an extended message. |
| * We handle MODIFY DATA POINTER, SDTR, WDTR |
| * and reject all other extended messages. |
| */ |
| case M_EXTENDED: |
| switch (np->msgin [2]) { |
| case M_X_MODIFY_DP: |
| if (DEBUG_FLAGS & DEBUG_POINTER) |
| sym_print_msg(cp, "extended msg ", |
| np->msgin); |
| tmp = (np->msgin[3]<<24) + (np->msgin[4]<<16) + |
| (np->msgin[5]<<8) + (np->msgin[6]); |
| sym_modify_dp(np, tp, cp, tmp); |
| return; |
| case M_X_SYNC_REQ: |
| sym_sync_nego(np, tp, cp); |
| return; |
| case M_X_PPR_REQ: |
| sym_ppr_nego(np, tp, cp); |
| return; |
| case M_X_WIDE_REQ: |
| sym_wide_nego(np, tp, cp); |
| return; |
| default: |
| goto out_reject; |
| } |
| break; |
| /* |
| * We received a 1/2 byte message not handled from SCRIPTS. |
| * We are only expecting MESSAGE REJECT and IGNORE WIDE |
| * RESIDUE messages that haven't been anticipated by |
| * SCRIPTS on SWIDE full condition. Unanticipated IGNORE |
| * WIDE RESIDUE messages are aliased as MODIFY DP (-1). |
| */ |
| case M_IGN_RESIDUE: |
| if (DEBUG_FLAGS & DEBUG_POINTER) |
| sym_print_msg(cp, "1 or 2 byte ", np->msgin); |
| if (cp->host_flags & HF_SENSE) |
| OUTL_DSP(np, SCRIPTA_BA(np, clrack)); |
| else |
| sym_modify_dp(np, tp, cp, -1); |
| return; |
| case M_REJECT: |
| if (INB(np, HS_PRT) == HS_NEGOTIATE) |
| sym_nego_rejected(np, tp, cp); |
| else { |
| sym_print_addr(cp->cmd, |
| "M_REJECT received (%x:%x).\n", |
| scr_to_cpu(np->lastmsg), np->msgout[0]); |
| } |
| goto out_clrack; |
| break; |
| default: |
| goto out_reject; |
| } |
| break; |
| /* |
| * We received an unknown message. |
| * Ignore all MSG IN phases and reject it. |
| */ |
| case SIR_MSG_WEIRD: |
| sym_print_msg(cp, "WEIRD message received", np->msgin); |
| OUTL_DSP(np, SCRIPTB_BA(np, msg_weird)); |
| return; |
| /* |
| * Negotiation failed. |
| * Target does not send us the reply. |
| * Remove the HS_NEGOTIATE status. |
| */ |
| case SIR_NEGO_FAILED: |
| OUTB(np, HS_PRT, HS_BUSY); |
| /* |
| * Negotiation failed. |
| * Target does not want answer message. |
| */ |
| fallthrough; |
| case SIR_NEGO_PROTO: |
| sym_nego_default(np, tp, cp); |
| goto out; |
| } |
| |
| out: |
| OUTONB_STD(); |
| return; |
| out_reject: |
| OUTL_DSP(np, SCRIPTB_BA(np, msg_bad)); |
| return; |
| out_clrack: |
| OUTL_DSP(np, SCRIPTA_BA(np, clrack)); |
| return; |
| out_stuck: |
| return; |
| } |
| |
| /* |
| * Acquire a control block |
| */ |
| struct sym_ccb *sym_get_ccb (struct sym_hcb *np, struct scsi_cmnd *cmd, u_char tag_order) |
| { |
| u_char tn = cmd->device->id; |
| u_char ln = cmd->device->lun; |
| struct sym_tcb *tp = &np->target[tn]; |
| struct sym_lcb *lp = sym_lp(tp, ln); |
| u_short tag = NO_TAG; |
| SYM_QUEHEAD *qp; |
| struct sym_ccb *cp = NULL; |
| |
| /* |
| * Look for a free CCB |
| */ |
| if (sym_que_empty(&np->free_ccbq)) |
| sym_alloc_ccb(np); |
| qp = sym_remque_head(&np->free_ccbq); |
| if (!qp) |
| goto out; |
| cp = sym_que_entry(qp, struct sym_ccb, link_ccbq); |
| |
| { |
| /* |
| * If we have been asked for a tagged command. |
| */ |
| if (tag_order) { |
| /* |
| * Debugging purpose. |
| */ |
| #ifndef SYM_OPT_HANDLE_DEVICE_QUEUEING |
| if (lp->busy_itl != 0) |
| goto out_free; |
| #endif |
| /* |
| * Allocate resources for tags if not yet. |
| */ |
| if (!lp->cb_tags) { |
| sym_alloc_lcb_tags(np, tn, ln); |
| if (!lp->cb_tags) |
| goto out_free; |
| } |
| /* |
| * Get a tag for this SCSI IO and set up |
| * the CCB bus address for reselection, |
| * and count it for this LUN. |
| * Toggle reselect path to tagged. |
| */ |
| if (lp->busy_itlq < SYM_CONF_MAX_TASK) { |
| tag = lp->cb_tags[lp->ia_tag]; |
| if (++lp->ia_tag == SYM_CONF_MAX_TASK) |
| lp->ia_tag = 0; |
| ++lp->busy_itlq; |
| #ifndef SYM_OPT_HANDLE_DEVICE_QUEUEING |
| lp->itlq_tbl[tag] = cpu_to_scr(cp->ccb_ba); |
| lp->head.resel_sa = |
| cpu_to_scr(SCRIPTA_BA(np, resel_tag)); |
| #endif |
| #ifdef SYM_OPT_LIMIT_COMMAND_REORDERING |
| cp->tags_si = lp->tags_si; |
| ++lp->tags_sum[cp->tags_si]; |
| ++lp->tags_since; |
| #endif |
| } |
| else |
| goto out_free; |
| } |
| /* |
| * This command will not be tagged. |
| * If we already have either a tagged or untagged |
| * one, refuse to overlap this untagged one. |
| */ |
| else { |
| /* |
| * Debugging purpose. |
| */ |
| #ifndef SYM_OPT_HANDLE_DEVICE_QUEUEING |
| if (lp->busy_itl != 0 || lp->busy_itlq != 0) |
| goto out_free; |
| #endif |
| /* |
| * Count this nexus for this LUN. |
| * Set up the CCB bus address for reselection. |
| * Toggle reselect path to untagged. |
| */ |
| ++lp->busy_itl; |
| #ifndef SYM_OPT_HANDLE_DEVICE_QUEUEING |
| if (lp->busy_itl == 1) { |
| lp->head.itl_task_sa = cpu_to_scr(cp->ccb_ba); |
| lp->head.resel_sa = |
| cpu_to_scr(SCRIPTA_BA(np, resel_no_tag)); |
| } |
| else |
| goto out_free; |
| #endif |
| } |
| } |
| /* |
| * Put the CCB into the busy queue. |
| */ |
| sym_insque_tail(&cp->link_ccbq, &np->busy_ccbq); |
| #ifdef SYM_OPT_HANDLE_DEVICE_QUEUEING |
| if (lp) { |
| sym_remque(&cp->link2_ccbq); |
| sym_insque_tail(&cp->link2_ccbq, &lp->waiting_ccbq); |
| } |
| |
| #endif |
| cp->to_abort = 0; |
| cp->odd_byte_adjustment = 0; |
| cp->tag = tag; |
| cp->order = tag_order; |
| cp->target = tn; |
| cp->lun = ln; |
| |
| if (DEBUG_FLAGS & DEBUG_TAGS) { |
| sym_print_addr(cmd, "ccb @%p using tag %d.\n", cp, tag); |
| } |
| |
| out: |
| return cp; |
| out_free: |
| sym_insque_head(&cp->link_ccbq, &np->free_ccbq); |
| return NULL; |
| } |
| |
| /* |
| * Release one control block |
| */ |
| void sym_free_ccb (struct sym_hcb *np, struct sym_ccb *cp) |
| { |
| struct sym_tcb *tp = &np->target[cp->target]; |
| struct sym_lcb *lp = sym_lp(tp, cp->lun); |
| |
| if (DEBUG_FLAGS & DEBUG_TAGS) { |
| sym_print_addr(cp->cmd, "ccb @%p freeing tag %d.\n", |
| cp, cp->tag); |
| } |
| |
| /* |
| * If LCB available, |
| */ |
| if (lp) { |
| /* |
| * If tagged, release the tag, set the relect path |
| */ |
| if (cp->tag != NO_TAG) { |
| #ifdef SYM_OPT_LIMIT_COMMAND_REORDERING |
| --lp->tags_sum[cp->tags_si]; |
| #endif |
| /* |
| * Free the tag value. |
| */ |
| lp->cb_tags[lp->if_tag] = cp->tag; |
| if (++lp->if_tag == SYM_CONF_MAX_TASK) |
| lp->if_tag = 0; |
| /* |
| * Make the reselect path invalid, |
| * and uncount this CCB. |
| */ |
| lp->itlq_tbl[cp->tag] = cpu_to_scr(np->bad_itlq_ba); |
| --lp->busy_itlq; |
| } else { /* Untagged */ |
| /* |
| * Make the reselect path invalid, |
| * and uncount this CCB. |
| */ |
| lp->head.itl_task_sa = cpu_to_scr(np->bad_itl_ba); |
| --lp->busy_itl; |
| } |
| /* |
| * If no JOB active, make the LUN reselect path invalid. |
| */ |
| if (lp->busy_itlq == 0 && lp->busy_itl == 0) |
| lp->head.resel_sa = |
| cpu_to_scr(SCRIPTB_BA(np, resel_bad_lun)); |
| } |
| |
| /* |
| * We donnot queue more than 1 ccb per target |
| * with negotiation at any time. If this ccb was |
| * used for negotiation, clear this info in the tcb. |
| */ |
| if (cp == tp->nego_cp) |
| tp->nego_cp = NULL; |
| |
| #ifdef SYM_CONF_IARB_SUPPORT |
| /* |
| * If we just complete the last queued CCB, |
| * clear this info that is no longer relevant. |
| */ |
| if (cp == np->last_cp) |
| np->last_cp = 0; |
| #endif |
| |
| /* |
| * Make this CCB available. |
| */ |
| cp->cmd = NULL; |
| cp->host_status = HS_IDLE; |
| sym_remque(&cp->link_ccbq); |
| sym_insque_head(&cp->link_ccbq, &np->free_ccbq); |
| |
| #ifdef SYM_OPT_HANDLE_DEVICE_QUEUEING |
| if (lp) { |
| sym_remque(&cp->link2_ccbq); |
| sym_insque_tail(&cp->link2_ccbq, &np->dummy_ccbq); |
| if (cp->started) { |
| if (cp->tag != NO_TAG) |
| --lp->started_tags; |
| else |
| --lp->started_no_tag; |
| } |
| } |
| cp->started = 0; |
| #endif |
| } |
| |
| /* |
| * Allocate a CCB from memory and initialize its fixed part. |
| */ |
| static struct sym_ccb *sym_alloc_ccb(struct sym_hcb *np) |
| { |
| struct sym_ccb *cp = NULL; |
| int hcode; |
| |
| /* |
| * Prevent from allocating more CCBs than we can |
| * queue to the controller. |
| */ |
| if (np->actccbs >= SYM_CONF_MAX_START) |
| return NULL; |
| |
| /* |
| * Allocate memory for this CCB. |
| */ |
| cp = sym_calloc_dma(sizeof(struct sym_ccb), "CCB"); |
| if (!cp) |
| goto out_free; |
| |
| /* |
| * Count it. |
| */ |
| np->actccbs++; |
| |
| /* |
| * Compute the bus address of this ccb. |
| */ |
| cp->ccb_ba = vtobus(cp); |
| |
| /* |
| * Insert this ccb into the hashed list. |
| */ |
| hcode = CCB_HASH_CODE(cp->ccb_ba); |
| cp->link_ccbh = np->ccbh[hcode]; |
| np->ccbh[hcode] = cp; |
| |
| /* |
| * Initialyze the start and restart actions. |
| */ |
| cp->phys.head.go.start = cpu_to_scr(SCRIPTA_BA(np, idle)); |
| cp->phys.head.go.restart = cpu_to_scr(SCRIPTB_BA(np, bad_i_t_l)); |
| |
| /* |
| * Initilialyze some other fields. |
| */ |
| cp->phys.smsg_ext.addr = cpu_to_scr(HCB_BA(np, msgin[2])); |
| |
| /* |
| * Chain into free ccb queue. |
| */ |
| sym_insque_head(&cp->link_ccbq, &np->free_ccbq); |
| |
| /* |
| * Chain into optionnal lists. |
| */ |
| #ifdef SYM_OPT_HANDLE_DEVICE_QUEUEING |
| sym_insque_head(&cp->link2_ccbq, &np->dummy_ccbq); |
| #endif |
| return cp; |
| out_free: |
| if (cp) |
| sym_mfree_dma(cp, sizeof(*cp), "CCB"); |
| return NULL; |
| } |
| |
| /* |
| * Look up a CCB from a DSA value. |
| */ |
| static struct sym_ccb *sym_ccb_from_dsa(struct sym_hcb *np, u32 dsa) |
| { |
| int hcode; |
| struct sym_ccb *cp; |
| |
| hcode = CCB_HASH_CODE(dsa); |
| cp = np->ccbh[hcode]; |
| while (cp) { |
| if (cp->ccb_ba == dsa) |
| break; |
| cp = cp->link_ccbh; |
| } |
| |
| return cp; |
| } |
| |
| /* |
| * Target control block initialisation. |
| * Nothing important to do at the moment. |
| */ |
| static void sym_init_tcb (struct sym_hcb *np, u_char tn) |
| { |
| #if 0 /* Hmmm... this checking looks paranoid. */ |
| /* |
| * Check some alignments required by the chip. |
| */ |
| assert (((offsetof(struct sym_reg, nc_sxfer) ^ |
| offsetof(struct sym_tcb, head.sval)) &3) == 0); |
| assert (((offsetof(struct sym_reg, nc_scntl3) ^ |
| offsetof(struct sym_tcb, head.wval)) &3) == 0); |
| #endif |
| } |
| |
| /* |
| * Lun control block allocation and initialization. |
| */ |
| struct sym_lcb *sym_alloc_lcb (struct sym_hcb *np, u_char tn, u_char ln) |
| { |
| struct sym_tcb *tp = &np->target[tn]; |
| struct sym_lcb *lp = NULL; |
| |
| /* |
| * Initialize the target control block if not yet. |
| */ |
| sym_init_tcb (np, tn); |
| |
| /* |
| * Allocate the LCB bus address array. |
| * Compute the bus address of this table. |
| */ |
| if (ln && !tp->luntbl) { |
| tp->luntbl = sym_calloc_dma(256, "LUNTBL"); |
| if (!tp->luntbl) |
| goto fail; |
| memset32(tp->luntbl, cpu_to_scr(vtobus(&np->badlun_sa)), 64); |
| tp->head.luntbl_sa = cpu_to_scr(vtobus(tp->luntbl)); |
| } |
| |
| /* |
| * Allocate the table of pointers for LUN(s) > 0, if needed. |
| */ |
| if (ln && !tp->lunmp) { |
| tp->lunmp = kcalloc(SYM_CONF_MAX_LUN, sizeof(struct sym_lcb *), |
| GFP_ATOMIC); |
| if (!tp->lunmp) |
| goto fail; |
| } |
| |
| /* |
| * Allocate the lcb. |
| * Make it available to the chip. |
| */ |
| lp = sym_calloc_dma(sizeof(struct sym_lcb), "LCB"); |
| if (!lp) |
| goto fail; |
| if (ln) { |
| tp->lunmp[ln] = lp; |
| tp->luntbl[ln] = cpu_to_scr(vtobus(lp)); |
| } |
| else { |
| tp->lun0p = lp; |
| tp->head.lun0_sa = cpu_to_scr(vtobus(lp)); |
| } |
| tp->nlcb++; |
| |
| /* |
| * Let the itl task point to error handling. |
| */ |
| lp->head.itl_task_sa = cpu_to_scr(np->bad_itl_ba); |
| |
| /* |
| * Set the reselect pattern to our default. :) |
| */ |
| lp->head.resel_sa = cpu_to_scr(SCRIPTB_BA(np, resel_bad_lun)); |
| |
| /* |
| * Set user capabilities. |
| */ |
| lp->user_flags = tp->usrflags & (SYM_DISC_ENABLED | SYM_TAGS_ENABLED); |
| |
| #ifdef SYM_OPT_HANDLE_DEVICE_QUEUEING |
| /* |
| * Initialize device queueing. |
| */ |
| sym_que_init(&lp->waiting_ccbq); |
| sym_que_init(&lp->started_ccbq); |
| lp->started_max = SYM_CONF_MAX_TASK; |
| lp->started_limit = SYM_CONF_MAX_TASK; |
| #endif |
| |
| fail: |
| return lp; |
| } |
| |
| /* |
| * Allocate LCB resources for tagged command queuing. |
| */ |
| static void sym_alloc_lcb_tags (struct sym_hcb *np, u_char tn, u_char ln) |
| { |
| struct sym_tcb *tp = &np->target[tn]; |
| struct sym_lcb *lp = sym_lp(tp, ln); |
| int i; |
| |
| /* |
| * Allocate the task table and and the tag allocation |
| * circular buffer. We want both or none. |
| */ |
| lp->itlq_tbl = sym_calloc_dma(SYM_CONF_MAX_TASK*4, "ITLQ_TBL"); |
| if (!lp->itlq_tbl) |
| goto fail; |
| lp->cb_tags = kcalloc(SYM_CONF_MAX_TASK, 1, GFP_ATOMIC); |
| if (!lp->cb_tags) { |
| sym_mfree_dma(lp->itlq_tbl, SYM_CONF_MAX_TASK*4, "ITLQ_TBL"); |
| lp->itlq_tbl = NULL; |
| goto fail; |
| } |
| |
| /* |
| * Initialize the task table with invalid entries. |
| */ |
| memset32(lp->itlq_tbl, cpu_to_scr(np->notask_ba), SYM_CONF_MAX_TASK); |
| |
| /* |
| * Fill up the tag buffer with tag numbers. |
| */ |
| for (i = 0 ; i < SYM_CONF_MAX_TASK ; i++) |
| lp->cb_tags[i] = i; |
| |
| /* |
| * Make the task table available to SCRIPTS, |
| * And accept tagged commands now. |
| */ |
| lp->head.itlq_tbl_sa = cpu_to_scr(vtobus(lp->itlq_tbl)); |
| |
| return; |
| fail: |
| return; |
| } |
| |
| /* |
| * Lun control block deallocation. Returns the number of valid remaining LCBs |
| * for the target. |
| */ |
| int sym_free_lcb(struct sym_hcb *np, u_char tn, u_char ln) |
| { |
| struct sym_tcb *tp = &np->target[tn]; |
| struct sym_lcb *lp = sym_lp(tp, ln); |
| |
| tp->nlcb--; |
| |
| if (ln) { |
| if (!tp->nlcb) { |
| kfree(tp->lunmp); |
| sym_mfree_dma(tp->luntbl, 256, "LUNTBL"); |
| tp->lunmp = NULL; |
| tp->luntbl = NULL; |
| tp->head.luntbl_sa = cpu_to_scr(vtobus(np->badluntbl)); |
| } else { |
| tp->luntbl[ln] = cpu_to_scr(vtobus(&np->badlun_sa)); |
| tp->lunmp[ln] = NULL; |
| } |
| } else { |
| tp->lun0p = NULL; |
| tp->head.lun0_sa = cpu_to_scr(vtobus(&np->badlun_sa)); |
| } |
| |
| if (lp->itlq_tbl) { |
| sym_mfree_dma(lp->itlq_tbl, SYM_CONF_MAX_TASK*4, "ITLQ_TBL"); |
| kfree(lp->cb_tags); |
| } |
| |
| sym_mfree_dma(lp, sizeof(*lp), "LCB"); |
| |
| return tp->nlcb; |
| } |
| |
| /* |
| * Queue a SCSI IO to the controller. |
| */ |
| int sym_queue_scsiio(struct sym_hcb *np, struct scsi_cmnd *cmd, struct sym_ccb *cp) |
| { |
| struct scsi_device *sdev = cmd->device; |
| struct sym_tcb *tp; |
| struct sym_lcb *lp; |
| u_char *msgptr; |
| u_int msglen; |
| int can_disconnect; |
| |
| /* |
| * Keep track of the IO in our CCB. |
| */ |
| cp->cmd = cmd; |
| |
| /* |
| * Retrieve the target descriptor. |
| */ |
| tp = &np->target[cp->target]; |
| |
| /* |
| * Retrieve the lun descriptor. |
| */ |
| lp = sym_lp(tp, sdev->lun); |
| |
| can_disconnect = (cp->tag != NO_TAG) || |
| (lp && (lp->curr_flags & SYM_DISC_ENABLED)); |
| |
| msgptr = cp->scsi_smsg; |
| msglen = 0; |
| msgptr[msglen++] = IDENTIFY(can_disconnect, sdev->lun); |
| |
| /* |
| * Build the tag message if present. |
| */ |
| if (cp->tag != NO_TAG) { |
| u_char order = cp->order; |
| |
| switch(order) { |
| case M_ORDERED_TAG: |
| break; |
| case M_HEAD_TAG: |
| break; |
| default: |
| order = M_SIMPLE_TAG; |
| } |
| #ifdef SYM_OPT_LIMIT_COMMAND_REORDERING |
| /* |
| * Avoid too much reordering of SCSI commands. |
| * The algorithm tries to prevent completion of any |
| * tagged command from being delayed against more |
| * than 3 times the max number of queued commands. |
| */ |
| if (lp && lp->tags_since > 3*SYM_CONF_MAX_TAG) { |
| lp->tags_si = !(lp->tags_si); |
| if (lp->tags_sum[lp->tags_si]) { |
| order = M_ORDERED_TAG; |
| if ((DEBUG_FLAGS & DEBUG_TAGS)||sym_verbose>1) { |
| sym_print_addr(cmd, |
| "ordered tag forced.\n"); |
| } |
| } |
| lp->tags_since = 0; |
| } |
| #endif |
| msgptr[msglen++] = order; |
| |
| /* |
| * For less than 128 tags, actual tags are numbered |
| * 1,3,5,..2*MAXTAGS+1,since we may have to deal |
| * with devices that have problems with #TAG 0 or too |
| * great #TAG numbers. For more tags (up to 256), |
| * we use directly our tag number. |
| */ |
| #if SYM_CONF_MAX_TASK > (512/4) |
| msgptr[msglen++] = cp->tag; |
| #else |
| msgptr[msglen++] = (cp->tag << 1) + 1; |
| #endif |
| } |
| |
| /* |
| * Build a negotiation message if needed. |
| * (nego_status is filled by sym_prepare_nego()) |
| * |
| * Always negotiate on INQUIRY and REQUEST SENSE. |
| * |
| */ |
| cp->nego_status = 0; |
| if ((tp->tgoal.check_nego || |
| cmd->cmnd[0] == INQUIRY || cmd->cmnd[0] == REQUEST_SENSE) && |
| !tp->nego_cp && lp) { |
| msglen += sym_prepare_nego(np, cp, msgptr + msglen); |
| } |
| |
| /* |
| * Startqueue |
| */ |
| cp->phys.head.go.start = cpu_to_scr(SCRIPTA_BA(np, select)); |
| cp->phys.head.go.restart = cpu_to_scr(SCRIPTA_BA(np, resel_dsa)); |
| |
| /* |
| * select |
| */ |
| cp->phys.select.sel_id = cp->target; |
| cp->phys.select.sel_scntl3 = tp->head.wval; |
| cp->phys.select.sel_sxfer = tp->head.sval; |
| cp->phys.select.sel_scntl4 = tp->head.uval; |
| |
| /* |
| * message |
| */ |
| cp->phys.smsg.addr = CCB_BA(cp, scsi_smsg); |
| cp->phys.smsg.size = cpu_to_scr(msglen); |
| |
| /* |
| * status |
| */ |
| cp->host_xflags = 0; |
| cp->host_status = cp->nego_status ? HS_NEGOTIATE : HS_BUSY; |
| cp->ssss_status = S_ILLEGAL; |
| cp->xerr_status = 0; |
| cp->host_flags = 0; |
| cp->extra_bytes = 0; |
| |
| /* |
| * extreme data pointer. |
| * shall be positive, so -1 is lower than lowest.:) |
| */ |
| cp->ext_sg = -1; |
| cp->ext_ofs = 0; |
| |
| /* |
| * Build the CDB and DATA descriptor block |
| * and start the IO. |
| */ |
| return sym_setup_data_and_start(np, cmd, cp); |
| } |
| |
| /* |
| * Reset a SCSI target (all LUNs of this target). |
| */ |
| int sym_reset_scsi_target(struct sym_hcb *np, int target) |
| { |
| struct sym_tcb *tp; |
| |
| if (target == np->myaddr || (u_int)target >= SYM_CONF_MAX_TARGET) |
| return -1; |
| |
| tp = &np->target[target]; |
| tp->to_reset = 1; |
| |
| np->istat_sem = SEM; |
| OUTB(np, nc_istat, SIGP|SEM); |
| |
| return 0; |
| } |
| |
| /* |
| * Abort a SCSI IO. |
| */ |
| static int sym_abort_ccb(struct sym_hcb *np, struct sym_ccb *cp, int timed_out) |
| { |
| /* |
| * Check that the IO is active. |
| */ |
| if (!cp || !cp->host_status || cp->host_status == HS_WAIT) |
| return -1; |
| |
| /* |
| * If a previous abort didn't succeed in time, |
| * perform a BUS reset. |
| */ |
| if (cp->to_abort) { |
| sym_reset_scsi_bus(np, 1); |
| return 0; |
| } |
| |
| /* |
| * Mark the CCB for abort and allow time for. |
| */ |
| cp->to_abort = timed_out ? 2 : 1; |
| |
| /* |
| * Tell the SCRIPTS processor to stop and synchronize with us. |
| */ |
| np->istat_sem = SEM; |
| OUTB(np, nc_istat, SIGP|SEM); |
| return 0; |
| } |
| |
| int sym_abort_scsiio(struct sym_hcb *np, struct scsi_cmnd *cmd, int timed_out) |
| { |
| struct sym_ccb *cp; |
| SYM_QUEHEAD *qp; |
| |
| /* |
| * Look up our CCB control block. |
| */ |
| cp = NULL; |
| FOR_EACH_QUEUED_ELEMENT(&np->busy_ccbq, qp) { |
| struct sym_ccb *cp2 = sym_que_entry(qp, struct sym_ccb, link_ccbq); |
| if (cp2->cmd == cmd) { |
| cp = cp2; |
| break; |
| } |
| } |
| |
| return sym_abort_ccb(np, cp, timed_out); |
| } |
| |
| /* |
| * Complete execution of a SCSI command with extended |
| * error, SCSI status error, or having been auto-sensed. |
| * |
| * The SCRIPTS processor is not running there, so we |
| * can safely access IO registers and remove JOBs from |
| * the START queue. |
| * SCRATCHA is assumed to have been loaded with STARTPOS |
| * before the SCRIPTS called the C code. |
| */ |
| void sym_complete_error(struct sym_hcb *np, struct sym_ccb *cp) |
| { |
| struct scsi_device *sdev; |
| struct scsi_cmnd *cmd; |
| #ifdef SYM_OPT_HANDLE_DEVICE_QUEUEING |
| struct sym_tcb *tp; |
| struct sym_lcb *lp; |
| #endif |
| int resid; |
| int i; |
| |
| /* |
| * Paranoid check. :) |
| */ |
| if (!cp || !cp->cmd) |
| return; |
| |
| cmd = cp->cmd; |
| sdev = cmd->device; |
| if (DEBUG_FLAGS & (DEBUG_TINY|DEBUG_RESULT)) { |
| dev_info(&sdev->sdev_gendev, "CCB=%p STAT=%x/%x/%x\n", cp, |
| cp->host_status, cp->ssss_status, cp->host_flags); |
| } |
| |
| #ifdef SYM_OPT_HANDLE_DEVICE_QUEUEING |
| /* |
| * Get target and lun pointers. |
| */ |
| tp = &np->target[cp->target]; |
| lp = sym_lp(tp, sdev->lun); |
| #endif |
| |
| /* |
| * Check for extended errors. |
| */ |
| if (cp->xerr_status) { |
| if (sym_verbose) |
| sym_print_xerr(cmd, cp->xerr_status); |
| if (cp->host_status == HS_COMPLETE) |
| cp->host_status = HS_COMP_ERR; |
| } |
| |
| /* |
| * Calculate the residual. |
| */ |
| resid = sym_compute_residual(np, cp); |
| |
| if (!SYM_SETUP_RESIDUAL_SUPPORT) {/* If user does not want residuals */ |
| resid = 0; /* throw them away. :) */ |
| cp->sv_resid = 0; |
| } |
| #ifdef DEBUG_2_0_X |
| if (resid) |
| printf("XXXX RESID= %d - 0x%x\n", resid, resid); |
| #endif |
| |
| /* |
| * Dequeue all queued CCBs for that device |
| * not yet started by SCRIPTS. |
| */ |
| i = (INL(np, nc_scratcha) - np->squeue_ba) / 4; |
| i = sym_dequeue_from_squeue(np, i, cp->target, sdev->lun, -1); |
| |
| /* |
| * Restart the SCRIPTS processor. |
| */ |
| OUTL_DSP(np, SCRIPTA_BA(np, start)); |
| |
| #ifdef SYM_OPT_HANDLE_DEVICE_QUEUEING |
| if (cp->host_status == HS_COMPLETE && |
| cp->ssss_status == S_QUEUE_FULL) { |
| if (!lp || lp->started_tags - i < 2) |
| goto weirdness; |
| /* |
| * Decrease queue depth as needed. |
| */ |
| lp->started_max = lp->started_tags - i - 1; |
| lp->num_sgood = 0; |
| |
| if (sym_verbose >= 2) { |
| sym_print_addr(cmd, " queue depth is now %d\n", |
| lp->started_max); |
| } |
| |
| /* |
| * Repair the CCB. |
| */ |
| cp->host_status = HS_BUSY; |
| cp->ssss_status = S_ILLEGAL; |
| |
| /* |
| * Let's requeue it to device. |
| */ |
| sym_set_cam_status(cmd, DID_SOFT_ERROR); |
| goto finish; |
| } |
| weirdness: |
| #endif |
| /* |
| * Build result in CAM ccb. |
| */ |
| sym_set_cam_result_error(np, cp, resid); |
| |
| #ifdef SYM_OPT_HANDLE_DEVICE_QUEUEING |
| finish: |
| #endif |
| /* |
| * Add this one to the COMP queue. |
| */ |
| sym_remque(&cp->link_ccbq); |
| sym_insque_head(&cp->link_ccbq, &np->comp_ccbq); |
| |
| /* |
| * Complete all those commands with either error |
| * or requeue condition. |
| */ |
| sym_flush_comp_queue(np, 0); |
| |
| #ifdef SYM_OPT_HANDLE_DEVICE_QUEUEING |
| /* |
| * Donnot start more than 1 command after an error. |
| */ |
| sym_start_next_ccbs(np, lp, 1); |
| #endif |
| } |
| |
| /* |
| * Complete execution of a successful SCSI command. |
| * |
| * Only successful commands go to the DONE queue, |
| * since we need to have the SCRIPTS processor |
| * stopped on any error condition. |
| * The SCRIPTS processor is running while we are |
| * completing successful commands. |
| */ |
| void sym_complete_ok (struct sym_hcb *np, struct sym_ccb *cp) |
| { |
| #ifdef SYM_OPT_HANDLE_DEVICE_QUEUEING |
| struct sym_tcb *tp; |
| struct sym_lcb *lp; |
| #endif |
| struct scsi_cmnd *cmd; |
| int resid; |
| |
| /* |
| * Paranoid check. :) |
| */ |
| if (!cp || !cp->cmd) |
| return; |
| assert (cp->host_status == HS_COMPLETE); |
| |
| /* |
| * Get user command. |
| */ |
| cmd = cp->cmd; |
| |
| #ifdef SYM_OPT_HANDLE_DEVICE_QUEUEING |
| /* |
| * Get target and lun pointers. |
| */ |
| tp = &np->target[cp->target]; |
| lp = sym_lp(tp, cp->lun); |
| #endif |
| |
| /* |
| * If all data have been transferred, given than no |
| * extended error did occur, there is no residual. |
| */ |
| resid = 0; |
| if (cp->phys.head.lastp != cp->goalp) |
| resid = sym_compute_residual(np, cp); |
| |
| /* |
| * Wrong transfer residuals may be worse than just always |
| * returning zero. User can disable this feature in |
| * sym53c8xx.h. Residual support is enabled by default. |
| */ |
| if (!SYM_SETUP_RESIDUAL_SUPPORT) |
| resid = 0; |
| #ifdef DEBUG_2_0_X |
| if (resid) |
| printf("XXXX RESID= %d - 0x%x\n", resid, resid); |
| #endif |
| |
| /* |
| * Build result in CAM ccb. |
| */ |
| sym_set_cam_result_ok(cp, cmd, resid); |
| |
| #ifdef SYM_OPT_HANDLE_DEVICE_QUEUEING |
| /* |
| * If max number of started ccbs had been reduced, |
| * increase it if 200 good status received. |
| */ |
| if (lp && lp->started_max < lp->started_limit) { |
| ++lp->num_sgood; |
| if (lp->num_sgood >= 200) { |
| lp->num_sgood = 0; |
| ++lp->started_max; |
| if (sym_verbose >= 2) { |
| sym_print_addr(cmd, " queue depth is now %d\n", |
| lp->started_max); |
| } |
| } |
| } |
| #endif |
| |
| /* |
| * Free our CCB. |
| */ |
| sym_free_ccb (np, cp); |
| |
| #ifdef SYM_OPT_HANDLE_DEVICE_QUEUEING |
| /* |
| * Requeue a couple of awaiting scsi commands. |
| */ |
| if (!sym_que_empty(&lp->waiting_ccbq)) |
| sym_start_next_ccbs(np, lp, 2); |
| #endif |
| /* |
| * Complete the command. |
| */ |
| sym_xpt_done(np, cmd); |
| } |
| |
| /* |
| * Soft-attach the controller. |
| */ |
| int sym_hcb_attach(struct Scsi_Host *shost, struct sym_fw *fw, struct sym_nvram *nvram) |
| { |
| struct sym_hcb *np = sym_get_hcb(shost); |
| int i; |
| |
| /* |
| * Get some info about the firmware. |
| */ |
| np->scripta_sz = fw->a_size; |
| np->scriptb_sz = fw->b_size; |
| np->scriptz_sz = fw->z_size; |
| np->fw_setup = fw->setup; |
| np->fw_patch = fw->patch; |
| np->fw_name = fw->name; |
| |
| /* |
| * Save setting of some IO registers, so we will |
| * be able to probe specific implementations. |
| */ |
| sym_save_initial_setting (np); |
| |
| /* |
| * Reset the chip now, since it has been reported |
| * that SCSI clock calibration may not work properly |
| * if the chip is currently active. |
| */ |
| sym_chip_reset(np); |
| |
| /* |
| * Prepare controller and devices settings, according |
| * to chip features, user set-up and driver set-up. |
| */ |
| sym_prepare_setting(shost, np, nvram); |
| |
| /* |
| * Check the PCI clock frequency. |
| * Must be performed after prepare_setting since it destroys |
| * STEST1 that is used to probe for the clock doubler. |
| */ |
| i = sym_getpciclock(np); |
| if (i > 37000 && !(np->features & FE_66MHZ)) |
| printf("%s: PCI BUS clock seems too high: %u KHz.\n", |
| sym_name(np), i); |
| |
| /* |
| * Allocate the start queue. |
| */ |
| np->squeue = sym_calloc_dma(sizeof(u32)*(MAX_QUEUE*2),"SQUEUE"); |
| if (!np->squeue) |
| goto attach_failed; |
| np->squeue_ba = vtobus(np->squeue); |
| |
| /* |
| * Allocate the done queue. |
| */ |
| np->dqueue = sym_calloc_dma(sizeof(u32)*(MAX_QUEUE*2),"DQUEUE"); |
| if (!np->dqueue) |
| goto attach_failed; |
| np->dqueue_ba = vtobus(np->dqueue); |
| |
| /* |
| * Allocate the target bus address array. |
| */ |
| np->targtbl = sym_calloc_dma(256, "TARGTBL"); |
| if (!np->targtbl) |
| goto attach_failed; |
| np->targtbl_ba = vtobus(np->targtbl); |
| |
| /* |
| * Allocate SCRIPTS areas. |
| */ |
| np->scripta0 = sym_calloc_dma(np->scripta_sz, "SCRIPTA0"); |
| np->scriptb0 = sym_calloc_dma(np->scriptb_sz, "SCRIPTB0"); |
| np->scriptz0 = sym_calloc_dma(np->scriptz_sz, "SCRIPTZ0"); |
| if (!np->scripta0 || !np->scriptb0 || !np->scriptz0) |
| goto attach_failed; |
| |
| /* |
| * Allocate the array of lists of CCBs hashed by DSA. |
| */ |
| np->ccbh = kcalloc(CCB_HASH_SIZE, sizeof(struct sym_ccb **), GFP_KERNEL); |
| if (!np->ccbh) |
| goto attach_failed; |
| |
| /* |
| * Initialyze the CCB free and busy queues. |
| */ |
| sym_que_init(&np->free_ccbq); |
| sym_que_init(&np->busy_ccbq); |
| sym_que_init(&np->comp_ccbq); |
| |
| /* |
| * Initialization for optional handling |
| * of device queueing. |
| */ |
| #ifdef SYM_OPT_HANDLE_DEVICE_QUEUEING |
| sym_que_init(&np->dummy_ccbq); |
| #endif |
| /* |
| * Allocate some CCB. We need at least ONE. |
| */ |
| if (!sym_alloc_ccb(np)) |
| goto attach_failed; |
| |
| /* |
| * Calculate BUS addresses where we are going |
| * to load the SCRIPTS. |
| */ |
| np->scripta_ba = vtobus(np->scripta0); |
| np->scriptb_ba = vtobus(np->scriptb0); |
| np->scriptz_ba = vtobus(np->scriptz0); |
| |
| if (np->ram_ba) { |
| np->scripta_ba = np->ram_ba; |
| if (np->features & FE_RAM8K) { |
| np->scriptb_ba = np->scripta_ba + 4096; |
| #if 0 /* May get useful for 64 BIT PCI addressing */ |
| np->scr_ram_seg = cpu_to_scr(np->scripta_ba >> 32); |
| #endif |
| } |
| } |
| |
| /* |
| * Copy scripts to controller instance. |
| */ |
| memcpy(np->scripta0, fw->a_base, np->scripta_sz); |
| memcpy(np->scriptb0, fw->b_base, np->scriptb_sz); |
| memcpy(np->scriptz0, fw->z_base, np->scriptz_sz); |
| |
| /* |
| * Setup variable parts in scripts and compute |
| * scripts bus addresses used from the C code. |
| */ |
| np->fw_setup(np, fw); |
| |
| /* |
| * Bind SCRIPTS with physical addresses usable by the |
| * SCRIPTS processor (as seen from the BUS = BUS addresses). |
| */ |
| sym_fw_bind_script(np, (u32 *) np->scripta0, np->scripta_sz); |
| sym_fw_bind_script(np, (u32 *) np->scriptb0, np->scriptb_sz); |
| sym_fw_bind_script(np, (u32 *) np->scriptz0, np->scriptz_sz); |
| |
| #ifdef SYM_CONF_IARB_SUPPORT |
| /* |
| * If user wants IARB to be set when we win arbitration |
| * and have other jobs, compute the max number of consecutive |
| * settings of IARB hints before we leave devices a chance to |
| * arbitrate for reselection. |
| */ |
| #ifdef SYM_SETUP_IARB_MAX |
| np->iarb_max = SYM_SETUP_IARB_MAX; |
| #else |
| np->iarb_max = 4; |
| #endif |
| #endif |
| |
| /* |
| * Prepare the idle and invalid task actions. |
| */ |
| np->idletask.start = cpu_to_scr(SCRIPTA_BA(np, idle)); |
| np->idletask.restart = cpu_to_scr(SCRIPTB_BA(np, bad_i_t_l)); |
| np->idletask_ba = vtobus(&np->idletask); |
| |
| np->notask.start = cpu_to_scr(SCRIPTA_BA(np, idle)); |
| np->notask.restart = cpu_to_scr(SCRIPTB_BA(np, bad_i_t_l)); |
| np->notask_ba = vtobus(&np->notask); |
| |
| np->bad_itl.start = cpu_to_scr(SCRIPTA_BA(np, idle)); |
| np->bad_itl.restart = cpu_to_scr(SCRIPTB_BA(np, bad_i_t_l)); |
| np->bad_itl_ba = vtobus(&np->bad_itl); |
| |
| np->bad_itlq.start = cpu_to_scr(SCRIPTA_BA(np, idle)); |
| np->bad_itlq.restart = cpu_to_scr(SCRIPTB_BA(np,bad_i_t_l_q)); |
| np->bad_itlq_ba = vtobus(&np->bad_itlq); |
| |
| /* |
| * Allocate and prepare the lun JUMP table that is used |
| * for a target prior the probing of devices (bad lun table). |
| * A private table will be allocated for the target on the |
| * first INQUIRY response received. |
| */ |
| np->badluntbl = sym_calloc_dma(256, "BADLUNTBL"); |
| if (!np->badluntbl) |
| goto attach_failed; |
| |
| np->badlun_sa = cpu_to_scr(SCRIPTB_BA(np, resel_bad_lun)); |
| memset32(np->badluntbl, cpu_to_scr(vtobus(&np->badlun_sa)), 64); |
| |
| /* |
| * Prepare the bus address array that contains the bus |
| * address of each target control block. |
| * For now, assume all logical units are wrong. :) |
| */ |
| for (i = 0 ; i < SYM_CONF_MAX_TARGET ; i++) { |
| np->targtbl[i] = cpu_to_scr(vtobus(&np->target[i])); |
| np->target[i].head.luntbl_sa = |
| cpu_to_scr(vtobus(np->badluntbl)); |
| np->target[i].head.lun0_sa = |
| cpu_to_scr(vtobus(&np->badlun_sa)); |
| } |
| |
| /* |
| * Now check the cache handling of the pci chipset. |
| */ |
| if (sym_snooptest (np)) { |
| printf("%s: CACHE INCORRECTLY CONFIGURED.\n", sym_name(np)); |
| goto attach_failed; |
| } |
| |
| /* |
| * Sigh! we are done. |
| */ |
| return 0; |
| |
| attach_failed: |
| return -ENXIO; |
| } |
| |
| /* |
| * Free everything that has been allocated for this device. |
| */ |
| void sym_hcb_free(struct sym_hcb *np) |
| { |
| SYM_QUEHEAD *qp; |
| struct sym_ccb *cp; |
| struct sym_tcb *tp; |
| int target; |
| |
| if (np->scriptz0) |
| sym_mfree_dma(np->scriptz0, np->scriptz_sz, "SCRIPTZ0"); |
| if (np->scriptb0) |
| sym_mfree_dma(np->scriptb0, np->scriptb_sz, "SCRIPTB0"); |
| if (np->scripta0) |
| sym_mfree_dma(np->scripta0, np->scripta_sz, "SCRIPTA0"); |
| if (np->squeue) |
| sym_mfree_dma(np->squeue, sizeof(u32)*(MAX_QUEUE*2), "SQUEUE"); |
| if (np->dqueue) |
| sym_mfree_dma(np->dqueue, sizeof(u32)*(MAX_QUEUE*2), "DQUEUE"); |
| |
| if (np->actccbs) { |
| while ((qp = sym_remque_head(&np->free_ccbq)) != NULL) { |
| cp = sym_que_entry(qp, struct sym_ccb, link_ccbq); |
| sym_mfree_dma(cp, sizeof(*cp), "CCB"); |
| } |
| } |
| kfree(np->ccbh); |
| |
| if (np->badluntbl) |
| sym_mfree_dma(np->badluntbl, 256,"BADLUNTBL"); |
| |
| for (target = 0; target < SYM_CONF_MAX_TARGET ; target++) { |
| tp = &np->target[target]; |
| if (tp->luntbl) |
| sym_mfree_dma(tp->luntbl, 256, "LUNTBL"); |
| #if SYM_CONF_MAX_LUN > 1 |
| kfree(tp->lunmp); |
| #endif |
| } |
| if (np->targtbl) |
| sym_mfree_dma(np->targtbl, 256, "TARGTBL"); |
| } |