| /* |
| * This file is provided under a dual BSD/GPLv2 license. When using or |
| * redistributing this file, you may do so under either license. |
| * |
| * GPL LICENSE SUMMARY |
| * |
| * Copyright(c) 2008 - 2011 Intel Corporation. All rights reserved. |
| * |
| * This program is free software; you can redistribute it and/or modify |
| * it under the terms of version 2 of the GNU General Public License as |
| * published by the Free Software Foundation. |
| * |
| * This program is distributed in the hope that it will be useful, but |
| * WITHOUT ANY WARRANTY; without even the implied warranty of |
| * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU |
| * General Public License for more details. |
| * |
| * You should have received a copy of the GNU General Public License |
| * along with this program; if not, write to the Free Software |
| * Foundation, Inc., 51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA. |
| * The full GNU General Public License is included in this distribution |
| * in the file called LICENSE.GPL. |
| * |
| * BSD LICENSE |
| * |
| * Copyright(c) 2008 - 2011 Intel Corporation. All rights reserved. |
| * All rights reserved. |
| * |
| * Redistribution and use in source and binary forms, with or without |
| * modification, are permitted provided that the following conditions |
| * are met: |
| * |
| * * Redistributions of source code must retain the above copyright |
| * notice, this list of conditions and the following disclaimer. |
| * * Redistributions in binary form must reproduce the above copyright |
| * notice, this list of conditions and the following disclaimer in |
| * the documentation and/or other materials provided with the |
| * distribution. |
| * * Neither the name of Intel Corporation nor the names of its |
| * contributors may be used to endorse or promote products derived |
| * from this software without specific prior written permission. |
| * |
| * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS |
| * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT |
| * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR |
| * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT |
| * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, |
| * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT |
| * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, |
| * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY |
| * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT |
| * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE |
| * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. |
| */ |
| #include <linux/circ_buf.h> |
| #include <linux/device.h> |
| #include <scsi/sas.h> |
| #include "host.h" |
| #include "isci.h" |
| #include "port.h" |
| #include "probe_roms.h" |
| #include "remote_device.h" |
| #include "request.h" |
| #include "scu_completion_codes.h" |
| #include "scu_event_codes.h" |
| #include "registers.h" |
| #include "scu_remote_node_context.h" |
| #include "scu_task_context.h" |
| |
| #define SCU_CONTEXT_RAM_INIT_STALL_TIME 200 |
| |
| #define smu_max_ports(dcc_value) \ |
| (\ |
| (((dcc_value) & SMU_DEVICE_CONTEXT_CAPACITY_MAX_LP_MASK) \ |
| >> SMU_DEVICE_CONTEXT_CAPACITY_MAX_LP_SHIFT) + 1 \ |
| ) |
| |
| #define smu_max_task_contexts(dcc_value) \ |
| (\ |
| (((dcc_value) & SMU_DEVICE_CONTEXT_CAPACITY_MAX_TC_MASK) \ |
| >> SMU_DEVICE_CONTEXT_CAPACITY_MAX_TC_SHIFT) + 1 \ |
| ) |
| |
| #define smu_max_rncs(dcc_value) \ |
| (\ |
| (((dcc_value) & SMU_DEVICE_CONTEXT_CAPACITY_MAX_RNC_MASK) \ |
| >> SMU_DEVICE_CONTEXT_CAPACITY_MAX_RNC_SHIFT) + 1 \ |
| ) |
| |
| #define SCIC_SDS_CONTROLLER_PHY_START_TIMEOUT 100 |
| |
| /** |
| * |
| * |
| * The number of milliseconds to wait while a given phy is consuming power |
| * before allowing another set of phys to consume power. Ultimately, this will |
| * be specified by OEM parameter. |
| */ |
| #define SCIC_SDS_CONTROLLER_POWER_CONTROL_INTERVAL 500 |
| |
| /** |
| * NORMALIZE_PUT_POINTER() - |
| * |
| * This macro will normalize the completion queue put pointer so its value can |
| * be used as an array inde |
| */ |
| #define NORMALIZE_PUT_POINTER(x) \ |
| ((x) & SMU_COMPLETION_QUEUE_PUT_POINTER_MASK) |
| |
| |
| /** |
| * NORMALIZE_EVENT_POINTER() - |
| * |
| * This macro will normalize the completion queue event entry so its value can |
| * be used as an index. |
| */ |
| #define NORMALIZE_EVENT_POINTER(x) \ |
| (\ |
| ((x) & SMU_COMPLETION_QUEUE_GET_EVENT_POINTER_MASK) \ |
| >> SMU_COMPLETION_QUEUE_GET_EVENT_POINTER_SHIFT \ |
| ) |
| |
| /** |
| * NORMALIZE_GET_POINTER() - |
| * |
| * This macro will normalize the completion queue get pointer so its value can |
| * be used as an index into an array |
| */ |
| #define NORMALIZE_GET_POINTER(x) \ |
| ((x) & SMU_COMPLETION_QUEUE_GET_POINTER_MASK) |
| |
| /** |
| * NORMALIZE_GET_POINTER_CYCLE_BIT() - |
| * |
| * This macro will normalize the completion queue cycle pointer so it matches |
| * the completion queue cycle bit |
| */ |
| #define NORMALIZE_GET_POINTER_CYCLE_BIT(x) \ |
| ((SMU_CQGR_CYCLE_BIT & (x)) << (31 - SMU_COMPLETION_QUEUE_GET_CYCLE_BIT_SHIFT)) |
| |
| /** |
| * COMPLETION_QUEUE_CYCLE_BIT() - |
| * |
| * This macro will return the cycle bit of the completion queue entry |
| */ |
| #define COMPLETION_QUEUE_CYCLE_BIT(x) ((x) & 0x80000000) |
| |
| /* Init the state machine and call the state entry function (if any) */ |
| void sci_init_sm(struct sci_base_state_machine *sm, |
| const struct sci_base_state *state_table, u32 initial_state) |
| { |
| sci_state_transition_t handler; |
| |
| sm->initial_state_id = initial_state; |
| sm->previous_state_id = initial_state; |
| sm->current_state_id = initial_state; |
| sm->state_table = state_table; |
| |
| handler = sm->state_table[initial_state].enter_state; |
| if (handler) |
| handler(sm); |
| } |
| |
| /* Call the state exit fn, update the current state, call the state entry fn */ |
| void sci_change_state(struct sci_base_state_machine *sm, u32 next_state) |
| { |
| sci_state_transition_t handler; |
| |
| handler = sm->state_table[sm->current_state_id].exit_state; |
| if (handler) |
| handler(sm); |
| |
| sm->previous_state_id = sm->current_state_id; |
| sm->current_state_id = next_state; |
| |
| handler = sm->state_table[sm->current_state_id].enter_state; |
| if (handler) |
| handler(sm); |
| } |
| |
| static bool sci_controller_completion_queue_has_entries(struct isci_host *ihost) |
| { |
| u32 get_value = ihost->completion_queue_get; |
| u32 get_index = get_value & SMU_COMPLETION_QUEUE_GET_POINTER_MASK; |
| |
| if (NORMALIZE_GET_POINTER_CYCLE_BIT(get_value) == |
| COMPLETION_QUEUE_CYCLE_BIT(ihost->completion_queue[get_index])) |
| return true; |
| |
| return false; |
| } |
| |
| static bool sci_controller_isr(struct isci_host *ihost) |
| { |
| if (sci_controller_completion_queue_has_entries(ihost)) |
| return true; |
| |
| /* we have a spurious interrupt it could be that we have already |
| * emptied the completion queue from a previous interrupt |
| * FIXME: really!? |
| */ |
| writel(SMU_ISR_COMPLETION, &ihost->smu_registers->interrupt_status); |
| |
| /* There is a race in the hardware that could cause us not to be |
| * notified of an interrupt completion if we do not take this |
| * step. We will mask then unmask the interrupts so if there is |
| * another interrupt pending the clearing of the interrupt |
| * source we get the next interrupt message. |
| */ |
| spin_lock(&ihost->scic_lock); |
| if (test_bit(IHOST_IRQ_ENABLED, &ihost->flags)) { |
| writel(0xFF000000, &ihost->smu_registers->interrupt_mask); |
| writel(0, &ihost->smu_registers->interrupt_mask); |
| } |
| spin_unlock(&ihost->scic_lock); |
| |
| return false; |
| } |
| |
| irqreturn_t isci_msix_isr(int vec, void *data) |
| { |
| struct isci_host *ihost = data; |
| |
| if (sci_controller_isr(ihost)) |
| tasklet_schedule(&ihost->completion_tasklet); |
| |
| return IRQ_HANDLED; |
| } |
| |
| static bool sci_controller_error_isr(struct isci_host *ihost) |
| { |
| u32 interrupt_status; |
| |
| interrupt_status = |
| readl(&ihost->smu_registers->interrupt_status); |
| interrupt_status &= (SMU_ISR_QUEUE_ERROR | SMU_ISR_QUEUE_SUSPEND); |
| |
| if (interrupt_status != 0) { |
| /* |
| * There is an error interrupt pending so let it through and handle |
| * in the callback */ |
| return true; |
| } |
| |
| /* |
| * There is a race in the hardware that could cause us not to be notified |
| * of an interrupt completion if we do not take this step. We will mask |
| * then unmask the error interrupts so if there was another interrupt |
| * pending we will be notified. |
| * Could we write the value of (SMU_ISR_QUEUE_ERROR | SMU_ISR_QUEUE_SUSPEND)? */ |
| writel(0xff, &ihost->smu_registers->interrupt_mask); |
| writel(0, &ihost->smu_registers->interrupt_mask); |
| |
| return false; |
| } |
| |
| static void sci_controller_task_completion(struct isci_host *ihost, u32 ent) |
| { |
| u32 index = SCU_GET_COMPLETION_INDEX(ent); |
| struct isci_request *ireq = ihost->reqs[index]; |
| |
| /* Make sure that we really want to process this IO request */ |
| if (test_bit(IREQ_ACTIVE, &ireq->flags) && |
| ireq->io_tag != SCI_CONTROLLER_INVALID_IO_TAG && |
| ISCI_TAG_SEQ(ireq->io_tag) == ihost->io_request_sequence[index]) |
| /* Yep this is a valid io request pass it along to the |
| * io request handler |
| */ |
| sci_io_request_tc_completion(ireq, ent); |
| } |
| |
| static void sci_controller_sdma_completion(struct isci_host *ihost, u32 ent) |
| { |
| u32 index; |
| struct isci_request *ireq; |
| struct isci_remote_device *idev; |
| |
| index = SCU_GET_COMPLETION_INDEX(ent); |
| |
| switch (scu_get_command_request_type(ent)) { |
| case SCU_CONTEXT_COMMAND_REQUEST_TYPE_POST_TC: |
| case SCU_CONTEXT_COMMAND_REQUEST_TYPE_DUMP_TC: |
| ireq = ihost->reqs[index]; |
| dev_warn(&ihost->pdev->dev, "%s: %x for io request %p\n", |
| __func__, ent, ireq); |
| /* @todo For a post TC operation we need to fail the IO |
| * request |
| */ |
| break; |
| case SCU_CONTEXT_COMMAND_REQUEST_TYPE_DUMP_RNC: |
| case SCU_CONTEXT_COMMAND_REQUEST_TYPE_OTHER_RNC: |
| case SCU_CONTEXT_COMMAND_REQUEST_TYPE_POST_RNC: |
| idev = ihost->device_table[index]; |
| dev_warn(&ihost->pdev->dev, "%s: %x for device %p\n", |
| __func__, ent, idev); |
| /* @todo For a port RNC operation we need to fail the |
| * device |
| */ |
| break; |
| default: |
| dev_warn(&ihost->pdev->dev, "%s: unknown completion type %x\n", |
| __func__, ent); |
| break; |
| } |
| } |
| |
| static void sci_controller_unsolicited_frame(struct isci_host *ihost, u32 ent) |
| { |
| u32 index; |
| u32 frame_index; |
| |
| struct scu_unsolicited_frame_header *frame_header; |
| struct isci_phy *iphy; |
| struct isci_remote_device *idev; |
| |
| enum sci_status result = SCI_FAILURE; |
| |
| frame_index = SCU_GET_FRAME_INDEX(ent); |
| |
| frame_header = ihost->uf_control.buffers.array[frame_index].header; |
| ihost->uf_control.buffers.array[frame_index].state = UNSOLICITED_FRAME_IN_USE; |
| |
| if (SCU_GET_FRAME_ERROR(ent)) { |
| /* |
| * / @todo If the IAF frame or SIGNATURE FIS frame has an error will |
| * / this cause a problem? We expect the phy initialization will |
| * / fail if there is an error in the frame. */ |
| sci_controller_release_frame(ihost, frame_index); |
| return; |
| } |
| |
| if (frame_header->is_address_frame) { |
| index = SCU_GET_PROTOCOL_ENGINE_INDEX(ent); |
| iphy = &ihost->phys[index]; |
| result = sci_phy_frame_handler(iphy, frame_index); |
| } else { |
| |
| index = SCU_GET_COMPLETION_INDEX(ent); |
| |
| if (index == SCIC_SDS_REMOTE_NODE_CONTEXT_INVALID_INDEX) { |
| /* |
| * This is a signature fis or a frame from a direct attached SATA |
| * device that has not yet been created. In either case forwared |
| * the frame to the PE and let it take care of the frame data. */ |
| index = SCU_GET_PROTOCOL_ENGINE_INDEX(ent); |
| iphy = &ihost->phys[index]; |
| result = sci_phy_frame_handler(iphy, frame_index); |
| } else { |
| if (index < ihost->remote_node_entries) |
| idev = ihost->device_table[index]; |
| else |
| idev = NULL; |
| |
| if (idev != NULL) |
| result = sci_remote_device_frame_handler(idev, frame_index); |
| else |
| sci_controller_release_frame(ihost, frame_index); |
| } |
| } |
| |
| if (result != SCI_SUCCESS) { |
| /* |
| * / @todo Is there any reason to report some additional error message |
| * / when we get this failure notifiction? */ |
| } |
| } |
| |
| static void sci_controller_event_completion(struct isci_host *ihost, u32 ent) |
| { |
| struct isci_remote_device *idev; |
| struct isci_request *ireq; |
| struct isci_phy *iphy; |
| u32 index; |
| |
| index = SCU_GET_COMPLETION_INDEX(ent); |
| |
| switch (scu_get_event_type(ent)) { |
| case SCU_EVENT_TYPE_SMU_COMMAND_ERROR: |
| /* / @todo The driver did something wrong and we need to fix the condtion. */ |
| dev_err(&ihost->pdev->dev, |
| "%s: SCIC Controller 0x%p received SMU command error " |
| "0x%x\n", |
| __func__, |
| ihost, |
| ent); |
| break; |
| |
| case SCU_EVENT_TYPE_SMU_PCQ_ERROR: |
| case SCU_EVENT_TYPE_SMU_ERROR: |
| case SCU_EVENT_TYPE_FATAL_MEMORY_ERROR: |
| /* |
| * / @todo This is a hardware failure and its likely that we want to |
| * / reset the controller. */ |
| dev_err(&ihost->pdev->dev, |
| "%s: SCIC Controller 0x%p received fatal controller " |
| "event 0x%x\n", |
| __func__, |
| ihost, |
| ent); |
| break; |
| |
| case SCU_EVENT_TYPE_TRANSPORT_ERROR: |
| ireq = ihost->reqs[index]; |
| sci_io_request_event_handler(ireq, ent); |
| break; |
| |
| case SCU_EVENT_TYPE_PTX_SCHEDULE_EVENT: |
| switch (scu_get_event_specifier(ent)) { |
| case SCU_EVENT_SPECIFIC_SMP_RESPONSE_NO_PE: |
| case SCU_EVENT_SPECIFIC_TASK_TIMEOUT: |
| ireq = ihost->reqs[index]; |
| if (ireq != NULL) |
| sci_io_request_event_handler(ireq, ent); |
| else |
| dev_warn(&ihost->pdev->dev, |
| "%s: SCIC Controller 0x%p received " |
| "event 0x%x for io request object " |
| "that doesnt exist.\n", |
| __func__, |
| ihost, |
| ent); |
| |
| break; |
| |
| case SCU_EVENT_SPECIFIC_IT_NEXUS_TIMEOUT: |
| idev = ihost->device_table[index]; |
| if (idev != NULL) |
| sci_remote_device_event_handler(idev, ent); |
| else |
| dev_warn(&ihost->pdev->dev, |
| "%s: SCIC Controller 0x%p received " |
| "event 0x%x for remote device object " |
| "that doesnt exist.\n", |
| __func__, |
| ihost, |
| ent); |
| |
| break; |
| } |
| break; |
| |
| case SCU_EVENT_TYPE_BROADCAST_CHANGE: |
| /* |
| * direct the broadcast change event to the phy first and then let |
| * the phy redirect the broadcast change to the port object */ |
| case SCU_EVENT_TYPE_ERR_CNT_EVENT: |
| /* |
| * direct error counter event to the phy object since that is where |
| * we get the event notification. This is a type 4 event. */ |
| case SCU_EVENT_TYPE_OSSP_EVENT: |
| index = SCU_GET_PROTOCOL_ENGINE_INDEX(ent); |
| iphy = &ihost->phys[index]; |
| sci_phy_event_handler(iphy, ent); |
| break; |
| |
| case SCU_EVENT_TYPE_RNC_SUSPEND_TX: |
| case SCU_EVENT_TYPE_RNC_SUSPEND_TX_RX: |
| case SCU_EVENT_TYPE_RNC_OPS_MISC: |
| if (index < ihost->remote_node_entries) { |
| idev = ihost->device_table[index]; |
| |
| if (idev != NULL) |
| sci_remote_device_event_handler(idev, ent); |
| } else |
| dev_err(&ihost->pdev->dev, |
| "%s: SCIC Controller 0x%p received event 0x%x " |
| "for remote device object 0x%0x that doesnt " |
| "exist.\n", |
| __func__, |
| ihost, |
| ent, |
| index); |
| |
| break; |
| |
| default: |
| dev_warn(&ihost->pdev->dev, |
| "%s: SCIC Controller received unknown event code %x\n", |
| __func__, |
| ent); |
| break; |
| } |
| } |
| |
| static void sci_controller_process_completions(struct isci_host *ihost) |
| { |
| u32 completion_count = 0; |
| u32 ent; |
| u32 get_index; |
| u32 get_cycle; |
| u32 event_get; |
| u32 event_cycle; |
| |
| dev_dbg(&ihost->pdev->dev, |
| "%s: completion queue begining get:0x%08x\n", |
| __func__, |
| ihost->completion_queue_get); |
| |
| /* Get the component parts of the completion queue */ |
| get_index = NORMALIZE_GET_POINTER(ihost->completion_queue_get); |
| get_cycle = SMU_CQGR_CYCLE_BIT & ihost->completion_queue_get; |
| |
| event_get = NORMALIZE_EVENT_POINTER(ihost->completion_queue_get); |
| event_cycle = SMU_CQGR_EVENT_CYCLE_BIT & ihost->completion_queue_get; |
| |
| while ( |
| NORMALIZE_GET_POINTER_CYCLE_BIT(get_cycle) |
| == COMPLETION_QUEUE_CYCLE_BIT(ihost->completion_queue[get_index]) |
| ) { |
| completion_count++; |
| |
| ent = ihost->completion_queue[get_index]; |
| |
| /* increment the get pointer and check for rollover to toggle the cycle bit */ |
| get_cycle ^= ((get_index+1) & SCU_MAX_COMPLETION_QUEUE_ENTRIES) << |
| (SMU_COMPLETION_QUEUE_GET_CYCLE_BIT_SHIFT - SCU_MAX_COMPLETION_QUEUE_SHIFT); |
| get_index = (get_index+1) & (SCU_MAX_COMPLETION_QUEUE_ENTRIES-1); |
| |
| dev_dbg(&ihost->pdev->dev, |
| "%s: completion queue entry:0x%08x\n", |
| __func__, |
| ent); |
| |
| switch (SCU_GET_COMPLETION_TYPE(ent)) { |
| case SCU_COMPLETION_TYPE_TASK: |
| sci_controller_task_completion(ihost, ent); |
| break; |
| |
| case SCU_COMPLETION_TYPE_SDMA: |
| sci_controller_sdma_completion(ihost, ent); |
| break; |
| |
| case SCU_COMPLETION_TYPE_UFI: |
| sci_controller_unsolicited_frame(ihost, ent); |
| break; |
| |
| case SCU_COMPLETION_TYPE_EVENT: |
| sci_controller_event_completion(ihost, ent); |
| break; |
| |
| case SCU_COMPLETION_TYPE_NOTIFY: { |
| event_cycle ^= ((event_get+1) & SCU_MAX_EVENTS) << |
| (SMU_COMPLETION_QUEUE_GET_EVENT_CYCLE_BIT_SHIFT - SCU_MAX_EVENTS_SHIFT); |
| event_get = (event_get+1) & (SCU_MAX_EVENTS-1); |
| |
| sci_controller_event_completion(ihost, ent); |
| break; |
| } |
| default: |
| dev_warn(&ihost->pdev->dev, |
| "%s: SCIC Controller received unknown " |
| "completion type %x\n", |
| __func__, |
| ent); |
| break; |
| } |
| } |
| |
| /* Update the get register if we completed one or more entries */ |
| if (completion_count > 0) { |
| ihost->completion_queue_get = |
| SMU_CQGR_GEN_BIT(ENABLE) | |
| SMU_CQGR_GEN_BIT(EVENT_ENABLE) | |
| event_cycle | |
| SMU_CQGR_GEN_VAL(EVENT_POINTER, event_get) | |
| get_cycle | |
| SMU_CQGR_GEN_VAL(POINTER, get_index); |
| |
| writel(ihost->completion_queue_get, |
| &ihost->smu_registers->completion_queue_get); |
| |
| } |
| |
| dev_dbg(&ihost->pdev->dev, |
| "%s: completion queue ending get:0x%08x\n", |
| __func__, |
| ihost->completion_queue_get); |
| |
| } |
| |
| static void sci_controller_error_handler(struct isci_host *ihost) |
| { |
| u32 interrupt_status; |
| |
| interrupt_status = |
| readl(&ihost->smu_registers->interrupt_status); |
| |
| if ((interrupt_status & SMU_ISR_QUEUE_SUSPEND) && |
| sci_controller_completion_queue_has_entries(ihost)) { |
| |
| sci_controller_process_completions(ihost); |
| writel(SMU_ISR_QUEUE_SUSPEND, &ihost->smu_registers->interrupt_status); |
| } else { |
| dev_err(&ihost->pdev->dev, "%s: status: %#x\n", __func__, |
| interrupt_status); |
| |
| sci_change_state(&ihost->sm, SCIC_FAILED); |
| |
| return; |
| } |
| |
| /* If we dont process any completions I am not sure that we want to do this. |
| * We are in the middle of a hardware fault and should probably be reset. |
| */ |
| writel(0, &ihost->smu_registers->interrupt_mask); |
| } |
| |
| irqreturn_t isci_intx_isr(int vec, void *data) |
| { |
| irqreturn_t ret = IRQ_NONE; |
| struct isci_host *ihost = data; |
| |
| if (sci_controller_isr(ihost)) { |
| writel(SMU_ISR_COMPLETION, &ihost->smu_registers->interrupt_status); |
| tasklet_schedule(&ihost->completion_tasklet); |
| ret = IRQ_HANDLED; |
| } else if (sci_controller_error_isr(ihost)) { |
| spin_lock(&ihost->scic_lock); |
| sci_controller_error_handler(ihost); |
| spin_unlock(&ihost->scic_lock); |
| ret = IRQ_HANDLED; |
| } |
| |
| return ret; |
| } |
| |
| irqreturn_t isci_error_isr(int vec, void *data) |
| { |
| struct isci_host *ihost = data; |
| |
| if (sci_controller_error_isr(ihost)) |
| sci_controller_error_handler(ihost); |
| |
| return IRQ_HANDLED; |
| } |
| |
| /** |
| * isci_host_start_complete() - This function is called by the core library, |
| * through the ISCI Module, to indicate controller start status. |
| * @isci_host: This parameter specifies the ISCI host object |
| * @completion_status: This parameter specifies the completion status from the |
| * core library. |
| * |
| */ |
| static void isci_host_start_complete(struct isci_host *ihost, enum sci_status completion_status) |
| { |
| if (completion_status != SCI_SUCCESS) |
| dev_info(&ihost->pdev->dev, |
| "controller start timed out, continuing...\n"); |
| clear_bit(IHOST_START_PENDING, &ihost->flags); |
| wake_up(&ihost->eventq); |
| } |
| |
| int isci_host_scan_finished(struct Scsi_Host *shost, unsigned long time) |
| { |
| struct sas_ha_struct *ha = SHOST_TO_SAS_HA(shost); |
| struct isci_host *ihost = ha->lldd_ha; |
| |
| if (test_bit(IHOST_START_PENDING, &ihost->flags)) |
| return 0; |
| |
| sas_drain_work(ha); |
| |
| return 1; |
| } |
| |
| /** |
| * sci_controller_get_suggested_start_timeout() - This method returns the |
| * suggested sci_controller_start() timeout amount. The user is free to |
| * use any timeout value, but this method provides the suggested minimum |
| * start timeout value. The returned value is based upon empirical |
| * information determined as a result of interoperability testing. |
| * @controller: the handle to the controller object for which to return the |
| * suggested start timeout. |
| * |
| * This method returns the number of milliseconds for the suggested start |
| * operation timeout. |
| */ |
| static u32 sci_controller_get_suggested_start_timeout(struct isci_host *ihost) |
| { |
| /* Validate the user supplied parameters. */ |
| if (!ihost) |
| return 0; |
| |
| /* |
| * The suggested minimum timeout value for a controller start operation: |
| * |
| * Signature FIS Timeout |
| * + Phy Start Timeout |
| * + Number of Phy Spin Up Intervals |
| * --------------------------------- |
| * Number of milliseconds for the controller start operation. |
| * |
| * NOTE: The number of phy spin up intervals will be equivalent |
| * to the number of phys divided by the number phys allowed |
| * per interval - 1 (once OEM parameters are supported). |
| * Currently we assume only 1 phy per interval. */ |
| |
| return SCIC_SDS_SIGNATURE_FIS_TIMEOUT |
| + SCIC_SDS_CONTROLLER_PHY_START_TIMEOUT |
| + ((SCI_MAX_PHYS - 1) * SCIC_SDS_CONTROLLER_POWER_CONTROL_INTERVAL); |
| } |
| |
| static void sci_controller_enable_interrupts(struct isci_host *ihost) |
| { |
| set_bit(IHOST_IRQ_ENABLED, &ihost->flags); |
| writel(0, &ihost->smu_registers->interrupt_mask); |
| } |
| |
| void sci_controller_disable_interrupts(struct isci_host *ihost) |
| { |
| clear_bit(IHOST_IRQ_ENABLED, &ihost->flags); |
| writel(0xffffffff, &ihost->smu_registers->interrupt_mask); |
| readl(&ihost->smu_registers->interrupt_mask); /* flush */ |
| } |
| |
| static void sci_controller_enable_port_task_scheduler(struct isci_host *ihost) |
| { |
| u32 port_task_scheduler_value; |
| |
| port_task_scheduler_value = |
| readl(&ihost->scu_registers->peg0.ptsg.control); |
| port_task_scheduler_value |= |
| (SCU_PTSGCR_GEN_BIT(ETM_ENABLE) | |
| SCU_PTSGCR_GEN_BIT(PTSG_ENABLE)); |
| writel(port_task_scheduler_value, |
| &ihost->scu_registers->peg0.ptsg.control); |
| } |
| |
| static void sci_controller_assign_task_entries(struct isci_host *ihost) |
| { |
| u32 task_assignment; |
| |
| /* |
| * Assign all the TCs to function 0 |
| * TODO: Do we actually need to read this register to write it back? |
| */ |
| |
| task_assignment = |
| readl(&ihost->smu_registers->task_context_assignment[0]); |
| |
| task_assignment |= (SMU_TCA_GEN_VAL(STARTING, 0)) | |
| (SMU_TCA_GEN_VAL(ENDING, ihost->task_context_entries - 1)) | |
| (SMU_TCA_GEN_BIT(RANGE_CHECK_ENABLE)); |
| |
| writel(task_assignment, |
| &ihost->smu_registers->task_context_assignment[0]); |
| |
| } |
| |
| static void sci_controller_initialize_completion_queue(struct isci_host *ihost) |
| { |
| u32 index; |
| u32 completion_queue_control_value; |
| u32 completion_queue_get_value; |
| u32 completion_queue_put_value; |
| |
| ihost->completion_queue_get = 0; |
| |
| completion_queue_control_value = |
| (SMU_CQC_QUEUE_LIMIT_SET(SCU_MAX_COMPLETION_QUEUE_ENTRIES - 1) | |
| SMU_CQC_EVENT_LIMIT_SET(SCU_MAX_EVENTS - 1)); |
| |
| writel(completion_queue_control_value, |
| &ihost->smu_registers->completion_queue_control); |
| |
| |
| /* Set the completion queue get pointer and enable the queue */ |
| completion_queue_get_value = ( |
| (SMU_CQGR_GEN_VAL(POINTER, 0)) |
| | (SMU_CQGR_GEN_VAL(EVENT_POINTER, 0)) |
| | (SMU_CQGR_GEN_BIT(ENABLE)) |
| | (SMU_CQGR_GEN_BIT(EVENT_ENABLE)) |
| ); |
| |
| writel(completion_queue_get_value, |
| &ihost->smu_registers->completion_queue_get); |
| |
| /* Set the completion queue put pointer */ |
| completion_queue_put_value = ( |
| (SMU_CQPR_GEN_VAL(POINTER, 0)) |
| | (SMU_CQPR_GEN_VAL(EVENT_POINTER, 0)) |
| ); |
| |
| writel(completion_queue_put_value, |
| &ihost->smu_registers->completion_queue_put); |
| |
| /* Initialize the cycle bit of the completion queue entries */ |
| for (index = 0; index < SCU_MAX_COMPLETION_QUEUE_ENTRIES; index++) { |
| /* |
| * If get.cycle_bit != completion_queue.cycle_bit |
| * its not a valid completion queue entry |
| * so at system start all entries are invalid */ |
| ihost->completion_queue[index] = 0x80000000; |
| } |
| } |
| |
| static void sci_controller_initialize_unsolicited_frame_queue(struct isci_host *ihost) |
| { |
| u32 frame_queue_control_value; |
| u32 frame_queue_get_value; |
| u32 frame_queue_put_value; |
| |
| /* Write the queue size */ |
| frame_queue_control_value = |
| SCU_UFQC_GEN_VAL(QUEUE_SIZE, SCU_MAX_UNSOLICITED_FRAMES); |
| |
| writel(frame_queue_control_value, |
| &ihost->scu_registers->sdma.unsolicited_frame_queue_control); |
| |
| /* Setup the get pointer for the unsolicited frame queue */ |
| frame_queue_get_value = ( |
| SCU_UFQGP_GEN_VAL(POINTER, 0) |
| | SCU_UFQGP_GEN_BIT(ENABLE_BIT) |
| ); |
| |
| writel(frame_queue_get_value, |
| &ihost->scu_registers->sdma.unsolicited_frame_get_pointer); |
| /* Setup the put pointer for the unsolicited frame queue */ |
| frame_queue_put_value = SCU_UFQPP_GEN_VAL(POINTER, 0); |
| writel(frame_queue_put_value, |
| &ihost->scu_registers->sdma.unsolicited_frame_put_pointer); |
| } |
| |
| void sci_controller_transition_to_ready(struct isci_host *ihost, enum sci_status status) |
| { |
| if (ihost->sm.current_state_id == SCIC_STARTING) { |
| /* |
| * We move into the ready state, because some of the phys/ports |
| * may be up and operational. |
| */ |
| sci_change_state(&ihost->sm, SCIC_READY); |
| |
| isci_host_start_complete(ihost, status); |
| } |
| } |
| |
| static bool is_phy_starting(struct isci_phy *iphy) |
| { |
| enum sci_phy_states state; |
| |
| state = iphy->sm.current_state_id; |
| switch (state) { |
| case SCI_PHY_STARTING: |
| case SCI_PHY_SUB_INITIAL: |
| case SCI_PHY_SUB_AWAIT_SAS_SPEED_EN: |
| case SCI_PHY_SUB_AWAIT_IAF_UF: |
| case SCI_PHY_SUB_AWAIT_SAS_POWER: |
| case SCI_PHY_SUB_AWAIT_SATA_POWER: |
| case SCI_PHY_SUB_AWAIT_SATA_PHY_EN: |
| case SCI_PHY_SUB_AWAIT_SATA_SPEED_EN: |
| case SCI_PHY_SUB_AWAIT_OSSP_EN: |
| case SCI_PHY_SUB_AWAIT_SIG_FIS_UF: |
| case SCI_PHY_SUB_FINAL: |
| return true; |
| default: |
| return false; |
| } |
| } |
| |
| bool is_controller_start_complete(struct isci_host *ihost) |
| { |
| int i; |
| |
| for (i = 0; i < SCI_MAX_PHYS; i++) { |
| struct isci_phy *iphy = &ihost->phys[i]; |
| u32 state = iphy->sm.current_state_id; |
| |
| /* in apc mode we need to check every phy, in |
| * mpc mode we only need to check phys that have |
| * been configured into a port |
| */ |
| if (is_port_config_apc(ihost)) |
| /* pass */; |
| else if (!phy_get_non_dummy_port(iphy)) |
| continue; |
| |
| /* The controller start operation is complete iff: |
| * - all links have been given an opportunity to start |
| * - have no indication of a connected device |
| * - have an indication of a connected device and it has |
| * finished the link training process. |
| */ |
| if ((iphy->is_in_link_training == false && state == SCI_PHY_INITIAL) || |
| (iphy->is_in_link_training == false && state == SCI_PHY_STOPPED) || |
| (iphy->is_in_link_training == true && is_phy_starting(iphy)) || |
| (ihost->port_agent.phy_ready_mask != ihost->port_agent.phy_configured_mask)) |
| return false; |
| } |
| |
| return true; |
| } |
| |
| /** |
| * sci_controller_start_next_phy - start phy |
| * @scic: controller |
| * |
| * If all the phys have been started, then attempt to transition the |
| * controller to the READY state and inform the user |
| * (sci_cb_controller_start_complete()). |
| */ |
| static enum sci_status sci_controller_start_next_phy(struct isci_host *ihost) |
| { |
| struct sci_oem_params *oem = &ihost->oem_parameters; |
| struct isci_phy *iphy; |
| enum sci_status status; |
| |
| status = SCI_SUCCESS; |
| |
| if (ihost->phy_startup_timer_pending) |
| return status; |
| |
| if (ihost->next_phy_to_start >= SCI_MAX_PHYS) { |
| if (is_controller_start_complete(ihost)) { |
| sci_controller_transition_to_ready(ihost, SCI_SUCCESS); |
| sci_del_timer(&ihost->phy_timer); |
| ihost->phy_startup_timer_pending = false; |
| } |
| } else { |
| iphy = &ihost->phys[ihost->next_phy_to_start]; |
| |
| if (oem->controller.mode_type == SCIC_PORT_MANUAL_CONFIGURATION_MODE) { |
| if (phy_get_non_dummy_port(iphy) == NULL) { |
| ihost->next_phy_to_start++; |
| |
| /* Caution recursion ahead be forwarned |
| * |
| * The PHY was never added to a PORT in MPC mode |
| * so start the next phy in sequence This phy |
| * will never go link up and will not draw power |
| * the OEM parameters either configured the phy |
| * incorrectly for the PORT or it was never |
| * assigned to a PORT |
| */ |
| return sci_controller_start_next_phy(ihost); |
| } |
| } |
| |
| status = sci_phy_start(iphy); |
| |
| if (status == SCI_SUCCESS) { |
| sci_mod_timer(&ihost->phy_timer, |
| SCIC_SDS_CONTROLLER_PHY_START_TIMEOUT); |
| ihost->phy_startup_timer_pending = true; |
| } else { |
| dev_warn(&ihost->pdev->dev, |
| "%s: Controller stop operation failed " |
| "to stop phy %d because of status " |
| "%d.\n", |
| __func__, |
| ihost->phys[ihost->next_phy_to_start].phy_index, |
| status); |
| } |
| |
| ihost->next_phy_to_start++; |
| } |
| |
| return status; |
| } |
| |
| static void phy_startup_timeout(unsigned long data) |
| { |
| struct sci_timer *tmr = (struct sci_timer *)data; |
| struct isci_host *ihost = container_of(tmr, typeof(*ihost), phy_timer); |
| unsigned long flags; |
| enum sci_status status; |
| |
| spin_lock_irqsave(&ihost->scic_lock, flags); |
| |
| if (tmr->cancel) |
| goto done; |
| |
| ihost->phy_startup_timer_pending = false; |
| |
| do { |
| status = sci_controller_start_next_phy(ihost); |
| } while (status != SCI_SUCCESS); |
| |
| done: |
| spin_unlock_irqrestore(&ihost->scic_lock, flags); |
| } |
| |
| static u16 isci_tci_active(struct isci_host *ihost) |
| { |
| return CIRC_CNT(ihost->tci_head, ihost->tci_tail, SCI_MAX_IO_REQUESTS); |
| } |
| |
| static enum sci_status sci_controller_start(struct isci_host *ihost, |
| u32 timeout) |
| { |
| enum sci_status result; |
| u16 index; |
| |
| if (ihost->sm.current_state_id != SCIC_INITIALIZED) { |
| dev_warn(&ihost->pdev->dev, "%s invalid state: %d\n", |
| __func__, ihost->sm.current_state_id); |
| return SCI_FAILURE_INVALID_STATE; |
| } |
| |
| /* Build the TCi free pool */ |
| BUILD_BUG_ON(SCI_MAX_IO_REQUESTS > 1 << sizeof(ihost->tci_pool[0]) * 8); |
| ihost->tci_head = 0; |
| ihost->tci_tail = 0; |
| for (index = 0; index < ihost->task_context_entries; index++) |
| isci_tci_free(ihost, index); |
| |
| /* Build the RNi free pool */ |
| sci_remote_node_table_initialize(&ihost->available_remote_nodes, |
| ihost->remote_node_entries); |
| |
| /* |
| * Before anything else lets make sure we will not be |
| * interrupted by the hardware. |
| */ |
| sci_controller_disable_interrupts(ihost); |
| |
| /* Enable the port task scheduler */ |
| sci_controller_enable_port_task_scheduler(ihost); |
| |
| /* Assign all the task entries to ihost physical function */ |
| sci_controller_assign_task_entries(ihost); |
| |
| /* Now initialize the completion queue */ |
| sci_controller_initialize_completion_queue(ihost); |
| |
| /* Initialize the unsolicited frame queue for use */ |
| sci_controller_initialize_unsolicited_frame_queue(ihost); |
| |
| /* Start all of the ports on this controller */ |
| for (index = 0; index < ihost->logical_port_entries; index++) { |
| struct isci_port *iport = &ihost->ports[index]; |
| |
| result = sci_port_start(iport); |
| if (result) |
| return result; |
| } |
| |
| sci_controller_start_next_phy(ihost); |
| |
| sci_mod_timer(&ihost->timer, timeout); |
| |
| sci_change_state(&ihost->sm, SCIC_STARTING); |
| |
| return SCI_SUCCESS; |
| } |
| |
| void isci_host_scan_start(struct Scsi_Host *shost) |
| { |
| struct isci_host *ihost = SHOST_TO_SAS_HA(shost)->lldd_ha; |
| unsigned long tmo = sci_controller_get_suggested_start_timeout(ihost); |
| |
| set_bit(IHOST_START_PENDING, &ihost->flags); |
| |
| spin_lock_irq(&ihost->scic_lock); |
| sci_controller_start(ihost, tmo); |
| sci_controller_enable_interrupts(ihost); |
| spin_unlock_irq(&ihost->scic_lock); |
| } |
| |
| static void isci_host_stop_complete(struct isci_host *ihost) |
| { |
| sci_controller_disable_interrupts(ihost); |
| clear_bit(IHOST_STOP_PENDING, &ihost->flags); |
| wake_up(&ihost->eventq); |
| } |
| |
| static void sci_controller_completion_handler(struct isci_host *ihost) |
| { |
| /* Empty out the completion queue */ |
| if (sci_controller_completion_queue_has_entries(ihost)) |
| sci_controller_process_completions(ihost); |
| |
| /* Clear the interrupt and enable all interrupts again */ |
| writel(SMU_ISR_COMPLETION, &ihost->smu_registers->interrupt_status); |
| /* Could we write the value of SMU_ISR_COMPLETION? */ |
| writel(0xFF000000, &ihost->smu_registers->interrupt_mask); |
| writel(0, &ihost->smu_registers->interrupt_mask); |
| } |
| |
| /** |
| * isci_host_completion_routine() - This function is the delayed service |
| * routine that calls the sci core library's completion handler. It's |
| * scheduled as a tasklet from the interrupt service routine when interrupts |
| * in use, or set as the timeout function in polled mode. |
| * @data: This parameter specifies the ISCI host object |
| * |
| */ |
| void isci_host_completion_routine(unsigned long data) |
| { |
| struct isci_host *ihost = (struct isci_host *)data; |
| struct list_head completed_request_list; |
| struct list_head *current_position; |
| struct list_head *next_position; |
| struct isci_request *request; |
| struct sas_task *task; |
| u16 active; |
| |
| INIT_LIST_HEAD(&completed_request_list); |
| |
| spin_lock_irq(&ihost->scic_lock); |
| |
| sci_controller_completion_handler(ihost); |
| |
| /* Take the lists of completed I/Os from the host. */ |
| list_splice_init(&ihost->requests_to_complete, |
| &completed_request_list); |
| |
| /* Process any completions in the list. */ |
| list_for_each_safe(current_position, next_position, |
| &completed_request_list) { |
| |
| request = list_entry(current_position, struct isci_request, |
| completed_node); |
| task = isci_request_access_task(request); |
| |
| /* Return the task to libsas */ |
| if (task != NULL) { |
| |
| task->lldd_task = NULL; |
| if (!test_bit(IREQ_ABORT_PATH_ACTIVE, &request->flags) && |
| !(task->task_state_flags & SAS_TASK_STATE_ABORTED)) { |
| if (test_bit(IREQ_COMPLETE_IN_TARGET, |
| &request->flags)) { |
| |
| /* Normal notification (task_done) */ |
| dev_dbg(&ihost->pdev->dev, "%s: Normal" |
| " - request/task = %p/%p\n", |
| __func__, request, task); |
| |
| task->task_done(task); |
| } else { |
| dev_warn(&ihost->pdev->dev, |
| "%s: Error - request/task" |
| " = %p/%p\n", |
| __func__, request, task); |
| |
| sas_task_abort(task); |
| } |
| } |
| } |
| if (test_and_clear_bit(IREQ_ABORT_PATH_ACTIVE, &request->flags)) |
| wake_up_all(&ihost->eventq); |
| |
| if (!test_bit(IREQ_NO_AUTO_FREE_TAG, &request->flags)) |
| isci_free_tag(ihost, request->io_tag); |
| } |
| spin_unlock_irq(&ihost->scic_lock); |
| |
| /* the coalesence timeout doubles at each encoding step, so |
| * update it based on the ilog2 value of the outstanding requests |
| */ |
| active = isci_tci_active(ihost); |
| writel(SMU_ICC_GEN_VAL(NUMBER, active) | |
| SMU_ICC_GEN_VAL(TIMER, ISCI_COALESCE_BASE + ilog2(active)), |
| &ihost->smu_registers->interrupt_coalesce_control); |
| } |
| |
| /** |
| * sci_controller_stop() - This method will stop an individual controller |
| * object.This method will invoke the associated user callback upon |
| * completion. The completion callback is called when the following |
| * conditions are met: -# the method return status is SCI_SUCCESS. -# the |
| * controller has been quiesced. This method will ensure that all IO |
| * requests are quiesced, phys are stopped, and all additional operation by |
| * the hardware is halted. |
| * @controller: the handle to the controller object to stop. |
| * @timeout: This parameter specifies the number of milliseconds in which the |
| * stop operation should complete. |
| * |
| * The controller must be in the STARTED or STOPPED state. Indicate if the |
| * controller stop method succeeded or failed in some way. SCI_SUCCESS if the |
| * stop operation successfully began. SCI_WARNING_ALREADY_IN_STATE if the |
| * controller is already in the STOPPED state. SCI_FAILURE_INVALID_STATE if the |
| * controller is not either in the STARTED or STOPPED states. |
| */ |
| static enum sci_status sci_controller_stop(struct isci_host *ihost, u32 timeout) |
| { |
| if (ihost->sm.current_state_id != SCIC_READY) { |
| dev_warn(&ihost->pdev->dev, "%s invalid state: %d\n", |
| __func__, ihost->sm.current_state_id); |
| return SCI_FAILURE_INVALID_STATE; |
| } |
| |
| sci_mod_timer(&ihost->timer, timeout); |
| sci_change_state(&ihost->sm, SCIC_STOPPING); |
| return SCI_SUCCESS; |
| } |
| |
| /** |
| * sci_controller_reset() - This method will reset the supplied core |
| * controller regardless of the state of said controller. This operation is |
| * considered destructive. In other words, all current operations are wiped |
| * out. No IO completions for outstanding devices occur. Outstanding IO |
| * requests are not aborted or completed at the actual remote device. |
| * @controller: the handle to the controller object to reset. |
| * |
| * Indicate if the controller reset method succeeded or failed in some way. |
| * SCI_SUCCESS if the reset operation successfully started. SCI_FATAL_ERROR if |
| * the controller reset operation is unable to complete. |
| */ |
| static enum sci_status sci_controller_reset(struct isci_host *ihost) |
| { |
| switch (ihost->sm.current_state_id) { |
| case SCIC_RESET: |
| case SCIC_READY: |
| case SCIC_STOPPING: |
| case SCIC_FAILED: |
| /* |
| * The reset operation is not a graceful cleanup, just |
| * perform the state transition. |
| */ |
| sci_change_state(&ihost->sm, SCIC_RESETTING); |
| return SCI_SUCCESS; |
| default: |
| dev_warn(&ihost->pdev->dev, "%s invalid state: %d\n", |
| __func__, ihost->sm.current_state_id); |
| return SCI_FAILURE_INVALID_STATE; |
| } |
| } |
| |
| static enum sci_status sci_controller_stop_phys(struct isci_host *ihost) |
| { |
| u32 index; |
| enum sci_status status; |
| enum sci_status phy_status; |
| |
| status = SCI_SUCCESS; |
| |
| for (index = 0; index < SCI_MAX_PHYS; index++) { |
| phy_status = sci_phy_stop(&ihost->phys[index]); |
| |
| if (phy_status != SCI_SUCCESS && |
| phy_status != SCI_FAILURE_INVALID_STATE) { |
| status = SCI_FAILURE; |
| |
| dev_warn(&ihost->pdev->dev, |
| "%s: Controller stop operation failed to stop " |
| "phy %d because of status %d.\n", |
| __func__, |
| ihost->phys[index].phy_index, phy_status); |
| } |
| } |
| |
| return status; |
| } |
| |
| |
| /** |
| * isci_host_deinit - shutdown frame reception and dma |
| * @ihost: host to take down |
| * |
| * This is called in either the driver shutdown or the suspend path. In |
| * the shutdown case libsas went through port teardown and normal device |
| * removal (i.e. physical links stayed up to service scsi_device removal |
| * commands). In the suspend case we disable the hardware without |
| * notifying libsas of the link down events since we want libsas to |
| * remember the domain across the suspend/resume cycle |
| */ |
| void isci_host_deinit(struct isci_host *ihost) |
| { |
| int i; |
| |
| /* disable output data selects */ |
| for (i = 0; i < isci_gpio_count(ihost); i++) |
| writel(SGPIO_HW_CONTROL, &ihost->scu_registers->peg0.sgpio.output_data_select[i]); |
| |
| set_bit(IHOST_STOP_PENDING, &ihost->flags); |
| |
| spin_lock_irq(&ihost->scic_lock); |
| sci_controller_stop(ihost, SCIC_CONTROLLER_STOP_TIMEOUT); |
| spin_unlock_irq(&ihost->scic_lock); |
| |
| wait_for_stop(ihost); |
| |
| /* phy stop is after controller stop to allow port and device to |
| * go idle before shutting down the phys, but the expectation is |
| * that i/o has been shut off well before we reach this |
| * function. |
| */ |
| sci_controller_stop_phys(ihost); |
| |
| /* disable sgpio: where the above wait should give time for the |
| * enclosure to sample the gpios going inactive |
| */ |
| writel(0, &ihost->scu_registers->peg0.sgpio.interface_control); |
| |
| spin_lock_irq(&ihost->scic_lock); |
| sci_controller_reset(ihost); |
| spin_unlock_irq(&ihost->scic_lock); |
| |
| /* Cancel any/all outstanding port timers */ |
| for (i = 0; i < ihost->logical_port_entries; i++) { |
| struct isci_port *iport = &ihost->ports[i]; |
| del_timer_sync(&iport->timer.timer); |
| } |
| |
| /* Cancel any/all outstanding phy timers */ |
| for (i = 0; i < SCI_MAX_PHYS; i++) { |
| struct isci_phy *iphy = &ihost->phys[i]; |
| del_timer_sync(&iphy->sata_timer.timer); |
| } |
| |
| del_timer_sync(&ihost->port_agent.timer.timer); |
| |
| del_timer_sync(&ihost->power_control.timer.timer); |
| |
| del_timer_sync(&ihost->timer.timer); |
| |
| del_timer_sync(&ihost->phy_timer.timer); |
| } |
| |
| static void __iomem *scu_base(struct isci_host *isci_host) |
| { |
| struct pci_dev *pdev = isci_host->pdev; |
| int id = isci_host->id; |
| |
| return pcim_iomap_table(pdev)[SCI_SCU_BAR * 2] + SCI_SCU_BAR_SIZE * id; |
| } |
| |
| static void __iomem *smu_base(struct isci_host *isci_host) |
| { |
| struct pci_dev *pdev = isci_host->pdev; |
| int id = isci_host->id; |
| |
| return pcim_iomap_table(pdev)[SCI_SMU_BAR * 2] + SCI_SMU_BAR_SIZE * id; |
| } |
| |
| static void sci_controller_initial_state_enter(struct sci_base_state_machine *sm) |
| { |
| struct isci_host *ihost = container_of(sm, typeof(*ihost), sm); |
| |
| sci_change_state(&ihost->sm, SCIC_RESET); |
| } |
| |
| static inline void sci_controller_starting_state_exit(struct sci_base_state_machine *sm) |
| { |
| struct isci_host *ihost = container_of(sm, typeof(*ihost), sm); |
| |
| sci_del_timer(&ihost->timer); |
| } |
| |
| #define INTERRUPT_COALESCE_TIMEOUT_BASE_RANGE_LOWER_BOUND_NS 853 |
| #define INTERRUPT_COALESCE_TIMEOUT_BASE_RANGE_UPPER_BOUND_NS 1280 |
| #define INTERRUPT_COALESCE_TIMEOUT_MAX_US 2700000 |
| #define INTERRUPT_COALESCE_NUMBER_MAX 256 |
| #define INTERRUPT_COALESCE_TIMEOUT_ENCODE_MIN 7 |
| #define INTERRUPT_COALESCE_TIMEOUT_ENCODE_MAX 28 |
| |
| /** |
| * sci_controller_set_interrupt_coalescence() - This method allows the user to |
| * configure the interrupt coalescence. |
| * @controller: This parameter represents the handle to the controller object |
| * for which its interrupt coalesce register is overridden. |
| * @coalesce_number: Used to control the number of entries in the Completion |
| * Queue before an interrupt is generated. If the number of entries exceed |
| * this number, an interrupt will be generated. The valid range of the input |
| * is [0, 256]. A setting of 0 results in coalescing being disabled. |
| * @coalesce_timeout: Timeout value in microseconds. The valid range of the |
| * input is [0, 2700000] . A setting of 0 is allowed and results in no |
| * interrupt coalescing timeout. |
| * |
| * Indicate if the user successfully set the interrupt coalesce parameters. |
| * SCI_SUCCESS The user successfully updated the interrutp coalescence. |
| * SCI_FAILURE_INVALID_PARAMETER_VALUE The user input value is out of range. |
| */ |
| static enum sci_status |
| sci_controller_set_interrupt_coalescence(struct isci_host *ihost, |
| u32 coalesce_number, |
| u32 coalesce_timeout) |
| { |
| u8 timeout_encode = 0; |
| u32 min = 0; |
| u32 max = 0; |
| |
| /* Check if the input parameters fall in the range. */ |
| if (coalesce_number > INTERRUPT_COALESCE_NUMBER_MAX) |
| return SCI_FAILURE_INVALID_PARAMETER_VALUE; |
| |
| /* |
| * Defined encoding for interrupt coalescing timeout: |
| * Value Min Max Units |
| * ----- --- --- ----- |
| * 0 - - Disabled |
| * 1 13.3 20.0 ns |
| * 2 26.7 40.0 |
| * 3 53.3 80.0 |
| * 4 106.7 160.0 |
| * 5 213.3 320.0 |
| * 6 426.7 640.0 |
| * 7 853.3 1280.0 |
| * 8 1.7 2.6 us |
| * 9 3.4 5.1 |
| * 10 6.8 10.2 |
| * 11 13.7 20.5 |
| * 12 27.3 41.0 |
| * 13 54.6 81.9 |
| * 14 109.2 163.8 |
| * 15 218.5 327.7 |
| * 16 436.9 655.4 |
| * 17 873.8 1310.7 |
| * 18 1.7 2.6 ms |
| * 19 3.5 5.2 |
| * 20 7.0 10.5 |
| * 21 14.0 21.0 |
| * 22 28.0 41.9 |
| * 23 55.9 83.9 |
| * 24 111.8 167.8 |
| * 25 223.7 335.5 |
| * 26 447.4 671.1 |
| * 27 894.8 1342.2 |
| * 28 1.8 2.7 s |
| * Others Undefined */ |
| |
| /* |
| * Use the table above to decide the encode of interrupt coalescing timeout |
| * value for register writing. */ |
| if (coalesce_timeout == 0) |
| timeout_encode = 0; |
| else{ |
| /* make the timeout value in unit of (10 ns). */ |
| coalesce_timeout = coalesce_timeout * 100; |
| min = INTERRUPT_COALESCE_TIMEOUT_BASE_RANGE_LOWER_BOUND_NS / 10; |
| max = INTERRUPT_COALESCE_TIMEOUT_BASE_RANGE_UPPER_BOUND_NS / 10; |
| |
| /* get the encode of timeout for register writing. */ |
| for (timeout_encode = INTERRUPT_COALESCE_TIMEOUT_ENCODE_MIN; |
| timeout_encode <= INTERRUPT_COALESCE_TIMEOUT_ENCODE_MAX; |
| timeout_encode++) { |
| if (min <= coalesce_timeout && max > coalesce_timeout) |
| break; |
| else if (coalesce_timeout >= max && coalesce_timeout < min * 2 |
| && coalesce_timeout <= INTERRUPT_COALESCE_TIMEOUT_MAX_US * 100) { |
| if ((coalesce_timeout - max) < (2 * min - coalesce_timeout)) |
| break; |
| else{ |
| timeout_encode++; |
| break; |
| } |
| } else { |
| max = max * 2; |
| min = min * 2; |
| } |
| } |
| |
| if (timeout_encode == INTERRUPT_COALESCE_TIMEOUT_ENCODE_MAX + 1) |
| /* the value is out of range. */ |
| return SCI_FAILURE_INVALID_PARAMETER_VALUE; |
| } |
| |
| writel(SMU_ICC_GEN_VAL(NUMBER, coalesce_number) | |
| SMU_ICC_GEN_VAL(TIMER, timeout_encode), |
| &ihost->smu_registers->interrupt_coalesce_control); |
| |
| |
| ihost->interrupt_coalesce_number = (u16)coalesce_number; |
| ihost->interrupt_coalesce_timeout = coalesce_timeout / 100; |
| |
| return SCI_SUCCESS; |
| } |
| |
| |
| static void sci_controller_ready_state_enter(struct sci_base_state_machine *sm) |
| { |
| struct isci_host *ihost = container_of(sm, typeof(*ihost), sm); |
| u32 val; |
| |
| /* enable clock gating for power control of the scu unit */ |
| val = readl(&ihost->smu_registers->clock_gating_control); |
| val &= ~(SMU_CGUCR_GEN_BIT(REGCLK_ENABLE) | |
| SMU_CGUCR_GEN_BIT(TXCLK_ENABLE) | |
| SMU_CGUCR_GEN_BIT(XCLK_ENABLE)); |
| val |= SMU_CGUCR_GEN_BIT(IDLE_ENABLE); |
| writel(val, &ihost->smu_registers->clock_gating_control); |
| |
| /* set the default interrupt coalescence number and timeout value. */ |
| sci_controller_set_interrupt_coalescence(ihost, 0, 0); |
| } |
| |
| static void sci_controller_ready_state_exit(struct sci_base_state_machine *sm) |
| { |
| struct isci_host *ihost = container_of(sm, typeof(*ihost), sm); |
| |
| /* disable interrupt coalescence. */ |
| sci_controller_set_interrupt_coalescence(ihost, 0, 0); |
| } |
| |
| static enum sci_status sci_controller_stop_ports(struct isci_host *ihost) |
| { |
| u32 index; |
| enum sci_status port_status; |
| enum sci_status status = SCI_SUCCESS; |
| |
| for (index = 0; index < ihost->logical_port_entries; index++) { |
| struct isci_port *iport = &ihost->ports[index]; |
| |
| port_status = sci_port_stop(iport); |
| |
| if ((port_status != SCI_SUCCESS) && |
| (port_status != SCI_FAILURE_INVALID_STATE)) { |
| status = SCI_FAILURE; |
| |
| dev_warn(&ihost->pdev->dev, |
| "%s: Controller stop operation failed to " |
| "stop port %d because of status %d.\n", |
| __func__, |
| iport->logical_port_index, |
| port_status); |
| } |
| } |
| |
| return status; |
| } |
| |
| static enum sci_status sci_controller_stop_devices(struct isci_host *ihost) |
| { |
| u32 index; |
| enum sci_status status; |
| enum sci_status device_status; |
| |
| status = SCI_SUCCESS; |
| |
| for (index = 0; index < ihost->remote_node_entries; index++) { |
| if (ihost->device_table[index] != NULL) { |
| /* / @todo What timeout value do we want to provide to this request? */ |
| device_status = sci_remote_device_stop(ihost->device_table[index], 0); |
| |
| if ((device_status != SCI_SUCCESS) && |
| (device_status != SCI_FAILURE_INVALID_STATE)) { |
| dev_warn(&ihost->pdev->dev, |
| "%s: Controller stop operation failed " |
| "to stop device 0x%p because of " |
| "status %d.\n", |
| __func__, |
| ihost->device_table[index], device_status); |
| } |
| } |
| } |
| |
| return status; |
| } |
| |
| static void sci_controller_stopping_state_enter(struct sci_base_state_machine *sm) |
| { |
| struct isci_host *ihost = container_of(sm, typeof(*ihost), sm); |
| |
| sci_controller_stop_devices(ihost); |
| sci_controller_stop_ports(ihost); |
| |
| if (!sci_controller_has_remote_devices_stopping(ihost)) |
| isci_host_stop_complete(ihost); |
| } |
| |
| static void sci_controller_stopping_state_exit(struct sci_base_state_machine *sm) |
| { |
| struct isci_host *ihost = container_of(sm, typeof(*ihost), sm); |
| |
| sci_del_timer(&ihost->timer); |
| } |
| |
| static void sci_controller_reset_hardware(struct isci_host *ihost) |
| { |
| /* Disable interrupts so we dont take any spurious interrupts */ |
| sci_controller_disable_interrupts(ihost); |
| |
| /* Reset the SCU */ |
| writel(0xFFFFFFFF, &ihost->smu_registers->soft_reset_control); |
| |
| /* Delay for 1ms to before clearing the CQP and UFQPR. */ |
| udelay(1000); |
| |
| /* The write to the CQGR clears the CQP */ |
| writel(0x00000000, &ihost->smu_registers->completion_queue_get); |
| |
| /* The write to the UFQGP clears the UFQPR */ |
| writel(0, &ihost->scu_registers->sdma.unsolicited_frame_get_pointer); |
| |
| /* clear all interrupts */ |
| writel(~SMU_INTERRUPT_STATUS_RESERVED_MASK, &ihost->smu_registers->interrupt_status); |
| } |
| |
| static void sci_controller_resetting_state_enter(struct sci_base_state_machine *sm) |
| { |
| struct isci_host *ihost = container_of(sm, typeof(*ihost), sm); |
| |
| sci_controller_reset_hardware(ihost); |
| sci_change_state(&ihost->sm, SCIC_RESET); |
| } |
| |
| static const struct sci_base_state sci_controller_state_table[] = { |
| [SCIC_INITIAL] = { |
| .enter_state = sci_controller_initial_state_enter, |
| }, |
| [SCIC_RESET] = {}, |
| [SCIC_INITIALIZING] = {}, |
| [SCIC_INITIALIZED] = {}, |
| [SCIC_STARTING] = { |
| .exit_state = sci_controller_starting_state_exit, |
| }, |
| [SCIC_READY] = { |
| .enter_state = sci_controller_ready_state_enter, |
| .exit_state = sci_controller_ready_state_exit, |
| }, |
| [SCIC_RESETTING] = { |
| .enter_state = sci_controller_resetting_state_enter, |
| }, |
| [SCIC_STOPPING] = { |
| .enter_state = sci_controller_stopping_state_enter, |
| .exit_state = sci_controller_stopping_state_exit, |
| }, |
| [SCIC_FAILED] = {} |
| }; |
| |
| static void controller_timeout(unsigned long data) |
| { |
| struct sci_timer *tmr = (struct sci_timer *)data; |
| struct isci_host *ihost = container_of(tmr, typeof(*ihost), timer); |
| struct sci_base_state_machine *sm = &ihost->sm; |
| unsigned long flags; |
| |
| spin_lock_irqsave(&ihost->scic_lock, flags); |
| |
| if (tmr->cancel) |
| goto done; |
| |
| if (sm->current_state_id == SCIC_STARTING) |
| sci_controller_transition_to_ready(ihost, SCI_FAILURE_TIMEOUT); |
| else if (sm->current_state_id == SCIC_STOPPING) { |
| sci_change_state(sm, SCIC_FAILED); |
| isci_host_stop_complete(ihost); |
| } else /* / @todo Now what do we want to do in this case? */ |
| dev_err(&ihost->pdev->dev, |
| "%s: Controller timer fired when controller was not " |
| "in a state being timed.\n", |
| __func__); |
| |
| done: |
| spin_unlock_irqrestore(&ihost->scic_lock, flags); |
| } |
| |
| static enum sci_status sci_controller_construct(struct isci_host *ihost, |
| void __iomem *scu_base, |
| void __iomem *smu_base) |
| { |
| u8 i; |
| |
| sci_init_sm(&ihost->sm, sci_controller_state_table, SCIC_INITIAL); |
| |
| ihost->scu_registers = scu_base; |
| ihost->smu_registers = smu_base; |
| |
| sci_port_configuration_agent_construct(&ihost->port_agent); |
| |
| /* Construct the ports for this controller */ |
| for (i = 0; i < SCI_MAX_PORTS; i++) |
| sci_port_construct(&ihost->ports[i], i, ihost); |
| sci_port_construct(&ihost->ports[i], SCIC_SDS_DUMMY_PORT, ihost); |
| |
| /* Construct the phys for this controller */ |
| for (i = 0; i < SCI_MAX_PHYS; i++) { |
| /* Add all the PHYs to the dummy port */ |
| sci_phy_construct(&ihost->phys[i], |
| &ihost->ports[SCI_MAX_PORTS], i); |
| } |
| |
| ihost->invalid_phy_mask = 0; |
| |
| sci_init_timer(&ihost->timer, controller_timeout); |
| |
| return sci_controller_reset(ihost); |
| } |
| |
| int sci_oem_parameters_validate(struct sci_oem_params *oem, u8 version) |
| { |
| int i; |
| |
| for (i = 0; i < SCI_MAX_PORTS; i++) |
| if (oem->ports[i].phy_mask > SCIC_SDS_PARM_PHY_MASK_MAX) |
| return -EINVAL; |
| |
| for (i = 0; i < SCI_MAX_PHYS; i++) |
| if (oem->phys[i].sas_address.high == 0 && |
| oem->phys[i].sas_address.low == 0) |
| return -EINVAL; |
| |
| if (oem->controller.mode_type == SCIC_PORT_AUTOMATIC_CONFIGURATION_MODE) { |
| for (i = 0; i < SCI_MAX_PHYS; i++) |
| if (oem->ports[i].phy_mask != 0) |
| return -EINVAL; |
| } else if (oem->controller.mode_type == SCIC_PORT_MANUAL_CONFIGURATION_MODE) { |
| u8 phy_mask = 0; |
| |
| for (i = 0; i < SCI_MAX_PHYS; i++) |
| phy_mask |= oem->ports[i].phy_mask; |
| |
| if (phy_mask == 0) |
| return -EINVAL; |
| } else |
| return -EINVAL; |
| |
| if (oem->controller.max_concurr_spin_up > MAX_CONCURRENT_DEVICE_SPIN_UP_COUNT || |
| oem->controller.max_concurr_spin_up < 1) |
| return -EINVAL; |
| |
| if (oem->controller.do_enable_ssc) { |
| if (version < ISCI_ROM_VER_1_1 && oem->controller.do_enable_ssc != 1) |
| return -EINVAL; |
| |
| if (version >= ISCI_ROM_VER_1_1) { |
| u8 test = oem->controller.ssc_sata_tx_spread_level; |
| |
| switch (test) { |
| case 0: |
| case 2: |
| case 3: |
| case 6: |
| case 7: |
| break; |
| default: |
| return -EINVAL; |
| } |
| |
| test = oem->controller.ssc_sas_tx_spread_level; |
| if (oem->controller.ssc_sas_tx_type == 0) { |
| switch (test) { |
| case 0: |
| case 2: |
| case 3: |
| break; |
| default: |
| return -EINVAL; |
| } |
| } else if (oem->controller.ssc_sas_tx_type == 1) { |
| switch (test) { |
| case 0: |
| case 3: |
| case 6: |
| break; |
| default: |
| return -EINVAL; |
| } |
| } |
| } |
| } |
| |
| return 0; |
| } |
| |
| static u8 max_spin_up(struct isci_host *ihost) |
| { |
| if (ihost->user_parameters.max_concurr_spinup) |
| return min_t(u8, ihost->user_parameters.max_concurr_spinup, |
| MAX_CONCURRENT_DEVICE_SPIN_UP_COUNT); |
| else |
| return min_t(u8, ihost->oem_parameters.controller.max_concurr_spin_up, |
| MAX_CONCURRENT_DEVICE_SPIN_UP_COUNT); |
| } |
| |
| static void power_control_timeout(unsigned long data) |
| { |
| struct sci_timer *tmr = (struct sci_timer *)data; |
| struct isci_host *ihost = container_of(tmr, typeof(*ihost), power_control.timer); |
| struct isci_phy *iphy; |
| unsigned long flags; |
| u8 i; |
| |
| spin_lock_irqsave(&ihost->scic_lock, flags); |
| |
| if (tmr->cancel) |
| goto done; |
| |
| ihost->power_control.phys_granted_power = 0; |
| |
| if (ihost->power_control.phys_waiting == 0) { |
| ihost->power_control.timer_started = false; |
| goto done; |
| } |
| |
| for (i = 0; i < SCI_MAX_PHYS; i++) { |
| |
| if (ihost->power_control.phys_waiting == 0) |
| break; |
| |
| iphy = ihost->power_control.requesters[i]; |
| if (iphy == NULL) |
| continue; |
| |
| if (ihost->power_control.phys_granted_power >= max_spin_up(ihost)) |
| break; |
| |
| ihost->power_control.requesters[i] = NULL; |
| ihost->power_control.phys_waiting--; |
| ihost->power_control.phys_granted_power++; |
| sci_phy_consume_power_handler(iphy); |
| |
| if (iphy->protocol == SAS_PROTOCOL_SSP) { |
| u8 j; |
| |
| for (j = 0; j < SCI_MAX_PHYS; j++) { |
| struct isci_phy *requester = ihost->power_control.requesters[j]; |
| |
| /* |
| * Search the power_control queue to see if there are other phys |
| * attached to the same remote device. If found, take all of |
| * them out of await_sas_power state. |
| */ |
| if (requester != NULL && requester != iphy) { |
| u8 other = memcmp(requester->frame_rcvd.iaf.sas_addr, |
| iphy->frame_rcvd.iaf.sas_addr, |
| sizeof(requester->frame_rcvd.iaf.sas_addr)); |
| |
| if (other == 0) { |
| ihost->power_control.requesters[j] = NULL; |
| ihost->power_control.phys_waiting--; |
| sci_phy_consume_power_handler(requester); |
| } |
| } |
| } |
| } |
| } |
| |
| /* |
| * It doesn't matter if the power list is empty, we need to start the |
| * timer in case another phy becomes ready. |
| */ |
| sci_mod_timer(tmr, SCIC_SDS_CONTROLLER_POWER_CONTROL_INTERVAL); |
| ihost->power_control.timer_started = true; |
| |
| done: |
| spin_unlock_irqrestore(&ihost->scic_lock, flags); |
| } |
| |
| void sci_controller_power_control_queue_insert(struct isci_host *ihost, |
| struct isci_phy *iphy) |
| { |
| BUG_ON(iphy == NULL); |
| |
| if (ihost->power_control.phys_granted_power < max_spin_up(ihost)) { |
| ihost->power_control.phys_granted_power++; |
| sci_phy_consume_power_handler(iphy); |
| |
| /* |
| * stop and start the power_control timer. When the timer fires, the |
| * no_of_phys_granted_power will be set to 0 |
| */ |
| if (ihost->power_control.timer_started) |
| sci_del_timer(&ihost->power_control.timer); |
| |
| sci_mod_timer(&ihost->power_control.timer, |
| SCIC_SDS_CONTROLLER_POWER_CONTROL_INTERVAL); |
| ihost->power_control.timer_started = true; |
| |
| } else { |
| /* |
| * There are phys, attached to the same sas address as this phy, are |
| * already in READY state, this phy don't need wait. |
| */ |
| u8 i; |
| struct isci_phy *current_phy; |
| |
| for (i = 0; i < SCI_MAX_PHYS; i++) { |
| u8 other; |
| current_phy = &ihost->phys[i]; |
| |
| other = memcmp(current_phy->frame_rcvd.iaf.sas_addr, |
| iphy->frame_rcvd.iaf.sas_addr, |
| sizeof(current_phy->frame_rcvd.iaf.sas_addr)); |
| |
| if (current_phy->sm.current_state_id == SCI_PHY_READY && |
| current_phy->protocol == SAS_PROTOCOL_SSP && |
| other == 0) { |
| sci_phy_consume_power_handler(iphy); |
| break; |
| } |
| } |
| |
| if (i == SCI_MAX_PHYS) { |
| /* Add the phy in the waiting list */ |
| ihost->power_control.requesters[iphy->phy_index] = iphy; |
| ihost->power_control.phys_waiting++; |
| } |
| } |
| } |
| |
| void sci_controller_power_control_queue_remove(struct isci_host *ihost, |
| struct isci_phy *iphy) |
| { |
| BUG_ON(iphy == NULL); |
| |
| if (ihost->power_control.requesters[iphy->phy_index]) |
| ihost->power_control.phys_waiting--; |
| |
| ihost->power_control.requesters[iphy->phy_index] = NULL; |
| } |
| |
| static int is_long_cable(int phy, unsigned char selection_byte) |
| { |
| return !!(selection_byte & (1 << phy)); |
| } |
| |
| static int is_medium_cable(int phy, unsigned char selection_byte) |
| { |
| return !!(selection_byte & (1 << (phy + 4))); |
| } |
| |
| static enum cable_selections decode_selection_byte( |
| int phy, |
| unsigned char selection_byte) |
| { |
| return ((selection_byte & (1 << phy)) ? 1 : 0) |
| + (selection_byte & (1 << (phy + 4)) ? 2 : 0); |
| } |
| |
| static unsigned char *to_cable_select(struct isci_host *ihost) |
| { |
| if (is_cable_select_overridden()) |
| return ((unsigned char *)&cable_selection_override) |
| + ihost->id; |
| else |
| return &ihost->oem_parameters.controller.cable_selection_mask; |
| } |
| |
| enum cable_selections decode_cable_selection(struct isci_host *ihost, int phy) |
| { |
| return decode_selection_byte(phy, *to_cable_select(ihost)); |
| } |
| |
| char *lookup_cable_names(enum cable_selections selection) |
| { |
| static char *cable_names[] = { |
| [short_cable] = "short", |
| [long_cable] = "long", |
| [medium_cable] = "medium", |
| [undefined_cable] = "<undefined, assumed long>" /* bit 0==1 */ |
| }; |
| return (selection <= undefined_cable) ? cable_names[selection] |
| : cable_names[undefined_cable]; |
| } |
| |
| #define AFE_REGISTER_WRITE_DELAY 10 |
| |
| static void sci_controller_afe_initialization(struct isci_host *ihost) |
| { |
| struct scu_afe_registers __iomem *afe = &ihost->scu_registers->afe; |
| const struct sci_oem_params *oem = &ihost->oem_parameters; |
| struct pci_dev *pdev = ihost->pdev; |
| u32 afe_status; |
| u32 phy_id; |
| unsigned char cable_selection_mask = *to_cable_select(ihost); |
| |
| /* Clear DFX Status registers */ |
| writel(0x0081000f, &afe->afe_dfx_master_control0); |
| udelay(AFE_REGISTER_WRITE_DELAY); |
| |
| if (is_b0(pdev) || is_c0(pdev) || is_c1(pdev)) { |
| /* PM Rx Equalization Save, PM SPhy Rx Acknowledgement |
| * Timer, PM Stagger Timer |
| */ |
| writel(0x0007FFFF, &afe->afe_pmsn_master_control2); |
| udelay(AFE_REGISTER_WRITE_DELAY); |
| } |
| |
| /* Configure bias currents to normal */ |
| if (is_a2(pdev)) |
| writel(0x00005A00, &afe->afe_bias_control); |
| else if (is_b0(pdev) || is_c0(pdev)) |
| writel(0x00005F00, &afe->afe_bias_control); |
| else if (is_c1(pdev)) |
| writel(0x00005500, &afe->afe_bias_control); |
| |
| udelay(AFE_REGISTER_WRITE_DELAY); |
| |
| /* Enable PLL */ |
| if (is_a2(pdev)) |
| writel(0x80040908, &afe->afe_pll_control0); |
| else if (is_b0(pdev) || is_c0(pdev)) |
| writel(0x80040A08, &afe->afe_pll_control0); |
| else if (is_c1(pdev)) { |
| writel(0x80000B08, &afe->afe_pll_control0); |
| udelay(AFE_REGISTER_WRITE_DELAY); |
| writel(0x00000B08, &afe->afe_pll_control0); |
| udelay(AFE_REGISTER_WRITE_DELAY); |
| writel(0x80000B08, &afe->afe_pll_control0); |
| } |
| |
| udelay(AFE_REGISTER_WRITE_DELAY); |
| |
| /* Wait for the PLL to lock */ |
| do { |
| afe_status = readl(&afe->afe_common_block_status); |
| udelay(AFE_REGISTER_WRITE_DELAY); |
| } while ((afe_status & 0x00001000) == 0); |
| |
| if (is_a2(pdev)) { |
| /* Shorten SAS SNW lock time (RxLock timer value from 76 |
| * us to 50 us) |
| */ |
| writel(0x7bcc96ad, &afe->afe_pmsn_master_control0); |
| udelay(AFE_REGISTER_WRITE_DELAY); |
| } |
| |
| for (phy_id = 0; phy_id < SCI_MAX_PHYS; phy_id++) { |
| struct scu_afe_transceiver *xcvr = &afe->scu_afe_xcvr[phy_id]; |
| const struct sci_phy_oem_params *oem_phy = &oem->phys[phy_id]; |
| int cable_length_long = |
| is_long_cable(phy_id, cable_selection_mask); |
| int cable_length_medium = |
| is_medium_cable(phy_id, cable_selection_mask); |
| |
| if (is_a2(pdev)) { |
| /* All defaults, except the Receive Word |
| * Alignament/Comma Detect Enable....(0xe800) |
| */ |
| writel(0x00004512, &xcvr->afe_xcvr_control0); |
| udelay(AFE_REGISTER_WRITE_DELAY); |
| |
| writel(0x0050100F, &xcvr->afe_xcvr_control1); |
| udelay(AFE_REGISTER_WRITE_DELAY); |
| } else if (is_b0(pdev)) { |
| /* Configure transmitter SSC parameters */ |
| writel(0x00030000, &xcvr->afe_tx_ssc_control); |
| udelay(AFE_REGISTER_WRITE_DELAY); |
| } else if (is_c0(pdev)) { |
| /* Configure transmitter SSC parameters */ |
| writel(0x00010202, &xcvr->afe_tx_ssc_control); |
| udelay(AFE_REGISTER_WRITE_DELAY); |
| |
| /* All defaults, except the Receive Word |
| * Alignament/Comma Detect Enable....(0xe800) |
| */ |
| writel(0x00014500, &xcvr->afe_xcvr_control0); |
| udelay(AFE_REGISTER_WRITE_DELAY); |
| } else if (is_c1(pdev)) { |
| /* Configure transmitter SSC parameters */ |
| writel(0x00010202, &xcvr->afe_tx_ssc_control); |
| udelay(AFE_REGISTER_WRITE_DELAY); |
| |
| /* All defaults, except the Receive Word |
| * Alignament/Comma Detect Enable....(0xe800) |
| */ |
| writel(0x0001C500, &xcvr->afe_xcvr_control0); |
| udelay(AFE_REGISTER_WRITE_DELAY); |
| } |
| |
| /* Power up TX and RX out from power down (PWRDNTX and |
| * PWRDNRX) & increase TX int & ext bias 20%....(0xe85c) |
| */ |
| if (is_a2(pdev)) |
| writel(0x000003F0, &xcvr->afe_channel_control); |
| else if (is_b0(pdev)) { |
| writel(0x000003D7, &xcvr->afe_channel_control); |
| udelay(AFE_REGISTER_WRITE_DELAY); |
| |
| writel(0x000003D4, &xcvr->afe_channel_control); |
| } else if (is_c0(pdev)) { |
| writel(0x000001E7, &xcvr->afe_channel_control); |
| udelay(AFE_REGISTER_WRITE_DELAY); |
| |
| writel(0x000001E4, &xcvr->afe_channel_control); |
| } else if (is_c1(pdev)) { |
| writel(cable_length_long ? 0x000002F7 : 0x000001F7, |
| &xcvr->afe_channel_control); |
| udelay(AFE_REGISTER_WRITE_DELAY); |
| |
| writel(cable_length_long ? 0x000002F4 : 0x000001F4, |
| &xcvr->afe_channel_control); |
| } |
| udelay(AFE_REGISTER_WRITE_DELAY); |
| |
| if (is_a2(pdev)) { |
| /* Enable TX equalization (0xe824) */ |
| writel(0x00040000, &xcvr->afe_tx_control); |
| udelay(AFE_REGISTER_WRITE_DELAY); |
| } |
| |
| if (is_a2(pdev) || is_b0(pdev)) |
| /* RDPI=0x0(RX Power On), RXOOBDETPDNC=0x0, |
| * TPD=0x0(TX Power On), RDD=0x0(RX Detect |
| * Enabled) ....(0xe800) |
| */ |
| writel(0x00004100, &xcvr->afe_xcvr_control0); |
| else if (is_c0(pdev)) |
| writel(0x00014100, &xcvr->afe_xcvr_control0); |
| else if (is_c1(pdev)) |
| writel(0x0001C100, &xcvr->afe_xcvr_control0); |
| udelay(AFE_REGISTER_WRITE_DELAY); |
| |
| /* Leave DFE/FFE on */ |
| if (is_a2(pdev)) |
| writel(0x3F11103F, &xcvr->afe_rx_ssc_control0); |
| else if (is_b0(pdev)) { |
| writel(0x3F11103F, &xcvr->afe_rx_ssc_control0); |
| udelay(AFE_REGISTER_WRITE_DELAY); |
| /* Enable TX equalization (0xe824) */ |
| writel(0x00040000, &xcvr->afe_tx_control); |
| } else if (is_c0(pdev)) { |
| writel(0x01400C0F, &xcvr->afe_rx_ssc_control1); |
| udelay(AFE_REGISTER_WRITE_DELAY); |
| |
| writel(0x3F6F103F, &xcvr->afe_rx_ssc_control0); |
| udelay(AFE_REGISTER_WRITE_DELAY); |
| |
| /* Enable TX equalization (0xe824) */ |
| writel(0x00040000, &xcvr->afe_tx_control); |
| } else if (is_c1(pdev)) { |
| writel(cable_length_long ? 0x01500C0C : |
| cable_length_medium ? 0x01400C0D : 0x02400C0D, |
| &xcvr->afe_xcvr_control1); |
| udelay(AFE_REGISTER_WRITE_DELAY); |
| |
| writel(0x000003E0, &xcvr->afe_dfx_rx_control1); |
| udelay(AFE_REGISTER_WRITE_DELAY); |
| |
| writel(cable_length_long ? 0x33091C1F : |
| cable_length_medium ? 0x3315181F : 0x2B17161F, |
| &xcvr->afe_rx_ssc_control0); |
| udelay(AFE_REGISTER_WRITE_DELAY); |
| |
| /* Enable TX equalization (0xe824) */ |
| writel(0x00040000, &xcvr->afe_tx_control); |
| } |
| |
| udelay(AFE_REGISTER_WRITE_DELAY); |
| |
| writel(oem_phy->afe_tx_amp_control0, &xcvr->afe_tx_amp_control0); |
| udelay(AFE_REGISTER_WRITE_DELAY); |
| |
| writel(oem_phy->afe_tx_amp_control1, &xcvr->afe_tx_amp_control1); |
| udelay(AFE_REGISTER_WRITE_DELAY); |
| |
| writel(oem_phy->afe_tx_amp_control2, &xcvr->afe_tx_amp_control2); |
| udelay(AFE_REGISTER_WRITE_DELAY); |
| |
| writel(oem_phy->afe_tx_amp_control3, &xcvr->afe_tx_amp_control3); |
| udelay(AFE_REGISTER_WRITE_DELAY); |
| } |
| |
| /* Transfer control to the PEs */ |
| writel(0x00010f00, &afe->afe_dfx_master_control0); |
| udelay(AFE_REGISTER_WRITE_DELAY); |
| } |
| |
| static void sci_controller_initialize_power_control(struct isci_host *ihost) |
| { |
| sci_init_timer(&ihost->power_control.timer, power_control_timeout); |
| |
| memset(ihost->power_control.requesters, 0, |
| sizeof(ihost->power_control.requesters)); |
| |
| ihost->power_control.phys_waiting = 0; |
| ihost->power_control.phys_granted_power = 0; |
| } |
| |
| static enum sci_status sci_controller_initialize(struct isci_host *ihost) |
| { |
| struct sci_base_state_machine *sm = &ihost->sm; |
| enum sci_status result = SCI_FAILURE; |
| unsigned long i, state, val; |
| |
| if (ihost->sm.current_state_id != SCIC_RESET) { |
| dev_warn(&ihost->pdev->dev, "%s invalid state: %d\n", |
| __func__, ihost->sm.current_state_id); |
| return SCI_FAILURE_INVALID_STATE; |
| } |
| |
| sci_change_state(sm, SCIC_INITIALIZING); |
| |
| sci_init_timer(&ihost->phy_timer, phy_startup_timeout); |
| |
| ihost->next_phy_to_start = 0; |
| ihost->phy_startup_timer_pending = false; |
| |
| sci_controller_initialize_power_control(ihost); |
| |
| /* |
| * There is nothing to do here for B0 since we do not have to |
| * program the AFE registers. |
| * / @todo The AFE settings are supposed to be correct for the B0 but |
| * / presently they seem to be wrong. */ |
| sci_controller_afe_initialization(ihost); |
| |
| |
| /* Take the hardware out of reset */ |
| writel(0, &ihost->smu_registers->soft_reset_control); |
| |
| /* |
| * / @todo Provide meaningfull error code for hardware failure |
| * result = SCI_FAILURE_CONTROLLER_HARDWARE; */ |
| for (i = 100; i >= 1; i--) { |
| u32 status; |
| |
| /* Loop until the hardware reports success */ |
| udelay(SCU_CONTEXT_RAM_INIT_STALL_TIME); |
| status = readl(&ihost->smu_registers->control_status); |
| |
| if ((status & SCU_RAM_INIT_COMPLETED) == SCU_RAM_INIT_COMPLETED) |
| break; |
| } |
| if (i == 0) |
| goto out; |
| |
| /* |
| * Determine what are the actaul device capacities that the |
| * hardware will support */ |
| val = readl(&ihost->smu_registers->device_context_capacity); |
| |
| /* Record the smaller of the two capacity values */ |
| ihost->logical_port_entries = min(smu_max_ports(val), SCI_MAX_PORTS); |
| ihost->task_context_entries = min(smu_max_task_contexts(val), SCI_MAX_IO_REQUESTS); |
| ihost->remote_node_entries = min(smu_max_rncs(val), SCI_MAX_REMOTE_DEVICES); |
| |
| /* |
| * Make all PEs that are unassigned match up with the |
| * logical ports |
| */ |
| for (i = 0; i < ihost->logical_port_entries; i++) { |
| struct scu_port_task_scheduler_group_registers __iomem |
| *ptsg = &ihost->scu_registers->peg0.ptsg; |
| |
| writel(i, &ptsg->protocol_engine[i]); |
| } |
| |
| /* Initialize hardware PCI Relaxed ordering in DMA engines */ |
| val = readl(&ihost->scu_registers->sdma.pdma_configuration); |
| val |= SCU_PDMACR_GEN_BIT(PCI_RELAXED_ORDERING_ENABLE); |
| writel(val, &ihost->scu_registers->sdma.pdma_configuration); |
| |
| val = readl(&ihost->scu_registers->sdma.cdma_configuration); |
| val |= SCU_CDMACR_GEN_BIT(PCI_RELAXED_ORDERING_ENABLE); |
| writel(val, &ihost->scu_registers->sdma.cdma_configuration); |
| |
| /* |
| * Initialize the PHYs before the PORTs because the PHY registers |
| * are accessed during the port initialization. |
| */ |
| for (i = 0; i < SCI_MAX_PHYS; i++) { |
| result = sci_phy_initialize(&ihost->phys[i], |
| &ihost->scu_registers->peg0.pe[i].tl, |
| &ihost->scu_registers->peg0.pe[i].ll); |
| if (result != SCI_SUCCESS) |
| goto out; |
| } |
| |
| for (i = 0; i < ihost->logical_port_entries; i++) { |
| struct isci_port *iport = &ihost->ports[i]; |
| |
| iport->port_task_scheduler_registers = &ihost->scu_registers->peg0.ptsg.port[i]; |
| iport->port_pe_configuration_register = &ihost->scu_registers->peg0.ptsg.protocol_engine[0]; |
| iport->viit_registers = &ihost->scu_registers->peg0.viit[i]; |
| } |
| |
| result = sci_port_configuration_agent_initialize(ihost, &ihost->port_agent); |
| |
| out: |
| /* Advance the controller state machine */ |
| if (result == SCI_SUCCESS) |
| state = SCIC_INITIALIZED; |
| else |
| state = SCIC_FAILED; |
| sci_change_state(sm, state); |
| |
| return result; |
| } |
| |
| static int sci_controller_dma_alloc(struct isci_host *ihost) |
| { |
| struct device *dev = &ihost->pdev->dev; |
| size_t size; |
| int i; |
| |
| /* detect re-initialization */ |
| if (ihost->completion_queue) |
| return 0; |
| |
| size = SCU_MAX_COMPLETION_QUEUE_ENTRIES * sizeof(u32); |
| ihost->completion_queue = dmam_alloc_coherent(dev, size, &ihost->cq_dma, |
| GFP_KERNEL); |
| if (!ihost->completion_queue) |
| return -ENOMEM; |
| |
| size = ihost->remote_node_entries * sizeof(union scu_remote_node_context); |
| ihost->remote_node_context_table = dmam_alloc_coherent(dev, size, &ihost->rnc_dma, |
| GFP_KERNEL); |
| |
| if (!ihost->remote_node_context_table) |
| return -ENOMEM; |
| |
| size = ihost->task_context_entries * sizeof(struct scu_task_context), |
| ihost->task_context_table = dmam_alloc_coherent(dev, size, &ihost->tc_dma, |
| GFP_KERNEL); |
| if (!ihost->task_context_table) |
| return -ENOMEM; |
| |
| size = SCI_UFI_TOTAL_SIZE; |
| ihost->ufi_buf = dmam_alloc_coherent(dev, size, &ihost->ufi_dma, GFP_KERNEL); |
| if (!ihost->ufi_buf) |
| return -ENOMEM; |
| |
| for (i = 0; i < SCI_MAX_IO_REQUESTS; i++) { |
| struct isci_request *ireq; |
| dma_addr_t dma; |
| |
| ireq = dmam_alloc_coherent(dev, sizeof(*ireq), &dma, GFP_KERNEL); |
| if (!ireq) |
| return -ENOMEM; |
| |
| ireq->tc = &ihost->task_context_table[i]; |
| ireq->owning_controller = ihost; |
| ireq->request_daddr = dma; |
| ireq->isci_host = ihost; |
| ihost->reqs[i] = ireq; |
| } |
| |
| return 0; |
| } |
| |
| static int sci_controller_mem_init(struct isci_host *ihost) |
| { |
| int err = sci_controller_dma_alloc(ihost); |
| |
| if (err) |
| return err; |
| |
| writel(lower_32_bits(ihost->cq_dma), &ihost->smu_registers->completion_queue_lower); |
| writel(upper_32_bits(ihost->cq_dma), &ihost->smu_registers->completion_queue_upper); |
| |
| writel(lower_32_bits(ihost->rnc_dma), &ihost->smu_registers->remote_node_context_lower); |
| writel(upper_32_bits(ihost->rnc_dma), &ihost->smu_registers->remote_node_context_upper); |
| |
| writel(lower_32_bits(ihost->tc_dma), &ihost->smu_registers->host_task_table_lower); |
| writel(upper_32_bits(ihost->tc_dma), &ihost->smu_registers->host_task_table_upper); |
| |
| sci_unsolicited_frame_control_construct(ihost); |
| |
| /* |
| * Inform the silicon as to the location of the UF headers and |
| * address table. |
| */ |
| writel(lower_32_bits(ihost->uf_control.headers.physical_address), |
| &ihost->scu_registers->sdma.uf_header_base_address_lower); |
| writel(upper_32_bits(ihost->uf_control.headers.physical_address), |
| &ihost->scu_registers->sdma.uf_header_base_address_upper); |
| |
| writel(lower_32_bits(ihost->uf_control.address_table.physical_address), |
| &ihost->scu_registers->sdma.uf_address_table_lower); |
| writel(upper_32_bits(ihost->uf_control.address_table.physical_address), |
| &ihost->scu_registers->sdma.uf_address_table_upper); |
| |
| return 0; |
| } |
| |
| /** |
| * isci_host_init - (re-)initialize hardware and internal (private) state |
| * @ihost: host to init |
| * |
| * Any public facing objects (like asd_sas_port, and asd_sas_phys), or |
| * one-time initialization objects like locks and waitqueues, are |
| * not touched (they are initialized in isci_host_alloc) |
| */ |
| int isci_host_init(struct isci_host *ihost) |
| { |
| int i, err; |
| enum sci_status status; |
| |
| spin_lock_irq(&ihost->scic_lock); |
| status = sci_controller_construct(ihost, scu_base(ihost), smu_base(ihost)); |
| spin_unlock_irq(&ihost->scic_lock); |
| if (status != SCI_SUCCESS) { |
| dev_err(&ihost->pdev->dev, |
| "%s: sci_controller_construct failed - status = %x\n", |
| __func__, |
| status); |
| return -ENODEV; |
| } |
| |
| spin_lock_irq(&ihost->scic_lock); |
| status = sci_controller_initialize(ihost); |
| spin_unlock_irq(&ihost->scic_lock); |
| if (status != SCI_SUCCESS) { |
| dev_warn(&ihost->pdev->dev, |
| "%s: sci_controller_initialize failed -" |
| " status = 0x%x\n", |
| __func__, status); |
| return -ENODEV; |
| } |
| |
| err = sci_controller_mem_init(ihost); |
| if (err) |
| return err; |
| |
| /* enable sgpio */ |
| writel(1, &ihost->scu_registers->peg0.sgpio.interface_control); |
| for (i = 0; i < isci_gpio_count(ihost); i++) |
| writel(SGPIO_HW_CONTROL, &ihost->scu_registers->peg0.sgpio.output_data_select[i]); |
| writel(0, &ihost->scu_registers->peg0.sgpio.vendor_specific_code); |
| |
| return 0; |
| } |
| |
| void sci_controller_link_up(struct isci_host *ihost, struct isci_port *iport, |
| struct isci_phy *iphy) |
| { |
| switch (ihost->sm.current_state_id) { |
| case SCIC_STARTING: |
| sci_del_timer(&ihost->phy_timer); |
| ihost->phy_startup_timer_pending = false; |
| ihost->port_agent.link_up_handler(ihost, &ihost->port_agent, |
| iport, iphy); |
| sci_controller_start_next_phy(ihost); |
| break; |
| case SCIC_READY: |
| ihost->port_agent.link_up_handler(ihost, &ihost->port_agent, |
| iport, iphy); |
| break; |
| default: |
| dev_dbg(&ihost->pdev->dev, |
| "%s: SCIC Controller linkup event from phy %d in " |
| "unexpected state %d\n", __func__, iphy->phy_index, |
| ihost->sm.current_state_id); |
| } |
| } |
| |
| void sci_controller_link_down(struct isci_host *ihost, struct isci_port *iport, |
| struct isci_phy *iphy) |
| { |
| switch (ihost->sm.current_state_id) { |
| case SCIC_STARTING: |
| case SCIC_READY: |
| ihost->port_agent.link_down_handler(ihost, &ihost->port_agent, |
| iport, iphy); |
| break; |
| default: |
| dev_dbg(&ihost->pdev->dev, |
| "%s: SCIC Controller linkdown event from phy %d in " |
| "unexpected state %d\n", |
| __func__, |
| iphy->phy_index, |
| ihost->sm.current_state_id); |
| } |
| } |
| |
| bool sci_controller_has_remote_devices_stopping(struct isci_host *ihost) |
| { |
| u32 index; |
| |
| for (index = 0; index < ihost->remote_node_entries; index++) { |
| if ((ihost->device_table[index] != NULL) && |
| (ihost->device_table[index]->sm.current_state_id == SCI_DEV_STOPPING)) |
| return true; |
| } |
| |
| return false; |
| } |
| |
| void sci_controller_remote_device_stopped(struct isci_host *ihost, |
| struct isci_remote_device *idev) |
| { |
| if (ihost->sm.current_state_id != SCIC_STOPPING) { |
| dev_dbg(&ihost->pdev->dev, |
| "SCIC Controller 0x%p remote device stopped event " |
| "from device 0x%p in unexpected state %d\n", |
| ihost, idev, |
| ihost->sm.current_state_id); |
| return; |
| } |
| |
| if (!sci_controller_has_remote_devices_stopping(ihost)) |
| isci_host_stop_complete(ihost); |
| } |
| |
| void sci_controller_post_request(struct isci_host *ihost, u32 request) |
| { |
| dev_dbg(&ihost->pdev->dev, "%s[%d]: %#x\n", |
| __func__, ihost->id, request); |
| |
| writel(request, &ihost->smu_registers->post_context_port); |
| } |
| |
| struct isci_request *sci_request_by_tag(struct isci_host *ihost, u16 io_tag) |
| { |
| u16 task_index; |
| u16 task_sequence; |
| |
| task_index = ISCI_TAG_TCI(io_tag); |
| |
| if (task_index < ihost->task_context_entries) { |
| struct isci_request *ireq = ihost->reqs[task_index]; |
| |
| if (test_bit(IREQ_ACTIVE, &ireq->flags)) { |
| task_sequence = ISCI_TAG_SEQ(io_tag); |
| |
| if (task_sequence == ihost->io_request_sequence[task_index]) |
| return ireq; |
| } |
| } |
| |
| return NULL; |
| } |
| |
| /** |
| * This method allocates remote node index and the reserves the remote node |
| * context space for use. This method can fail if there are no more remote |
| * node index available. |
| * @scic: This is the controller object which contains the set of |
| * free remote node ids |
| * @sci_dev: This is the device object which is requesting the a remote node |
| * id |
| * @node_id: This is the remote node id that is assinged to the device if one |
| * is available |
| * |
| * enum sci_status SCI_FAILURE_OUT_OF_RESOURCES if there are no available remote |
| * node index available. |
| */ |
| enum sci_status sci_controller_allocate_remote_node_context(struct isci_host *ihost, |
| struct isci_remote_device *idev, |
| u16 *node_id) |
| { |
| u16 node_index; |
| u32 remote_node_count = sci_remote_device_node_count(idev); |
| |
| node_index = sci_remote_node_table_allocate_remote_node( |
| &ihost->available_remote_nodes, remote_node_count |
| ); |
| |
| if (node_index != SCIC_SDS_REMOTE_NODE_CONTEXT_INVALID_INDEX) { |
| ihost->device_table[node_index] = idev; |
| |
| *node_id = node_index; |
| |
| return SCI_SUCCESS; |
| } |
| |
| return SCI_FAILURE_INSUFFICIENT_RESOURCES; |
| } |
| |
| void sci_controller_free_remote_node_context(struct isci_host *ihost, |
| struct isci_remote_device *idev, |
| u16 node_id) |
| { |
| u32 remote_node_count = sci_remote_device_node_count(idev); |
| |
| if (ihost->device_table[node_id] == idev) { |
| ihost->device_table[node_id] = NULL; |
| |
| sci_remote_node_table_release_remote_node_index( |
| &ihost->available_remote_nodes, remote_node_count, node_id |
| ); |
| } |
| } |
| |
| void sci_controller_copy_sata_response(void *response_buffer, |
| void *frame_header, |
| void *frame_buffer) |
| { |
| /* XXX type safety? */ |
| memcpy(response_buffer, frame_header, sizeof(u32)); |
| |
| memcpy(response_buffer + sizeof(u32), |
| frame_buffer, |
| sizeof(struct dev_to_host_fis) - sizeof(u32)); |
| } |
| |
| void sci_controller_release_frame(struct isci_host *ihost, u32 frame_index) |
| { |
| if (sci_unsolicited_frame_control_release_frame(&ihost->uf_control, frame_index)) |
| writel(ihost->uf_control.get, |
| &ihost->scu_registers->sdma.unsolicited_frame_get_pointer); |
| } |
| |
| void isci_tci_free(struct isci_host *ihost, u16 tci) |
| { |
| u16 tail = ihost->tci_tail & (SCI_MAX_IO_REQUESTS-1); |
| |
| ihost->tci_pool[tail] = tci; |
| ihost->tci_tail = tail + 1; |
| } |
| |
| static u16 isci_tci_alloc(struct isci_host *ihost) |
| { |
| u16 head = ihost->tci_head & (SCI_MAX_IO_REQUESTS-1); |
| u16 tci = ihost->tci_pool[head]; |
| |
| ihost->tci_head = head + 1; |
| return tci; |
| } |
| |
| static u16 isci_tci_space(struct isci_host *ihost) |
| { |
| return CIRC_SPACE(ihost->tci_head, ihost->tci_tail, SCI_MAX_IO_REQUESTS); |
| } |
| |
| u16 isci_alloc_tag(struct isci_host *ihost) |
| { |
| if (isci_tci_space(ihost)) { |
| u16 tci = isci_tci_alloc(ihost); |
| u8 seq = ihost->io_request_sequence[tci]; |
| |
| return ISCI_TAG(seq, tci); |
| } |
| |
| return SCI_CONTROLLER_INVALID_IO_TAG; |
| } |
| |
| enum sci_status isci_free_tag(struct isci_host *ihost, u16 io_tag) |
| { |
| u16 tci = ISCI_TAG_TCI(io_tag); |
| u16 seq = ISCI_TAG_SEQ(io_tag); |
| |
| /* prevent tail from passing head */ |
| if (isci_tci_active(ihost) == 0) |
| return SCI_FAILURE_INVALID_IO_TAG; |
| |
| if (seq == ihost->io_request_sequence[tci]) { |
| ihost->io_request_sequence[tci] = (seq+1) & (SCI_MAX_SEQ-1); |
| |
| isci_tci_free(ihost, tci); |
| |
| return SCI_SUCCESS; |
| } |
| return SCI_FAILURE_INVALID_IO_TAG; |
| } |
| |
| enum sci_status sci_controller_start_io(struct isci_host *ihost, |
| struct isci_remote_device *idev, |
| struct isci_request *ireq) |
| { |
| enum sci_status status; |
| |
| if (ihost->sm.current_state_id != SCIC_READY) { |
| dev_warn(&ihost->pdev->dev, "%s invalid state: %d\n", |
| __func__, ihost->sm.current_state_id); |
| return SCI_FAILURE_INVALID_STATE; |
| } |
| |
| status = sci_remote_device_start_io(ihost, idev, ireq); |
| if (status != SCI_SUCCESS) |
| return status; |
| |
| set_bit(IREQ_ACTIVE, &ireq->flags); |
| sci_controller_post_request(ihost, ireq->post_context); |
| return SCI_SUCCESS; |
| } |
| |
| enum sci_status sci_controller_terminate_request(struct isci_host *ihost, |
| struct isci_remote_device *idev, |
| struct isci_request *ireq) |
| { |
| /* terminate an ongoing (i.e. started) core IO request. This does not |
| * abort the IO request at the target, but rather removes the IO |
| * request from the host controller. |
| */ |
| enum sci_status status; |
| |
| if (ihost->sm.current_state_id != SCIC_READY) { |
| dev_warn(&ihost->pdev->dev, "%s invalid state: %d\n", |
| __func__, ihost->sm.current_state_id); |
| return SCI_FAILURE_INVALID_STATE; |
| } |
| status = sci_io_request_terminate(ireq); |
| |
| dev_dbg(&ihost->pdev->dev, "%s: status=%d; ireq=%p; flags=%lx\n", |
| __func__, status, ireq, ireq->flags); |
| |
| if ((status == SCI_SUCCESS) && |
| !test_bit(IREQ_PENDING_ABORT, &ireq->flags) && |
| !test_and_set_bit(IREQ_TC_ABORT_POSTED, &ireq->flags)) { |
| /* Utilize the original post context command and or in the |
| * POST_TC_ABORT request sub-type. |
| */ |
| sci_controller_post_request( |
| ihost, ireq->post_context | |
| SCU_CONTEXT_COMMAND_REQUEST_POST_TC_ABORT); |
| } |
| return status; |
| } |
| |
| /** |
| * sci_controller_complete_io() - This method will perform core specific |
| * completion operations for an IO request. After this method is invoked, |
| * the user should consider the IO request as invalid until it is properly |
| * reused (i.e. re-constructed). |
| * @ihost: The handle to the controller object for which to complete the |
| * IO request. |
| * @idev: The handle to the remote device object for which to complete |
| * the IO request. |
| * @ireq: the handle to the io request object to complete. |
| */ |
| enum sci_status sci_controller_complete_io(struct isci_host *ihost, |
| struct isci_remote_device *idev, |
| struct isci_request *ireq) |
| { |
| enum sci_status status; |
| u16 index; |
| |
| switch (ihost->sm.current_state_id) { |
| case SCIC_STOPPING: |
| /* XXX: Implement this function */ |
| return SCI_FAILURE; |
| case SCIC_READY: |
| status = sci_remote_device_complete_io(ihost, idev, ireq); |
| if (status != SCI_SUCCESS) |
| return status; |
| |
| index = ISCI_TAG_TCI(ireq->io_tag); |
| clear_bit(IREQ_ACTIVE, &ireq->flags); |
| return SCI_SUCCESS; |
| default: |
| dev_warn(&ihost->pdev->dev, "%s invalid state: %d\n", |
| __func__, ihost->sm.current_state_id); |
| return SCI_FAILURE_INVALID_STATE; |
| } |
| |
| } |
| |
| enum sci_status sci_controller_continue_io(struct isci_request *ireq) |
| { |
| struct isci_host *ihost = ireq->owning_controller; |
| |
| if (ihost->sm.current_state_id != SCIC_READY) { |
| dev_warn(&ihost->pdev->dev, "%s invalid state: %d\n", |
| __func__, ihost->sm.current_state_id); |
| return SCI_FAILURE_INVALID_STATE; |
| } |
| |
| set_bit(IREQ_ACTIVE, &ireq->flags); |
| sci_controller_post_request(ihost, ireq->post_context); |
| return SCI_SUCCESS; |
| } |
| |
| /** |
| * sci_controller_start_task() - This method is called by the SCIC user to |
| * send/start a framework task management request. |
| * @controller: the handle to the controller object for which to start the task |
| * management request. |
| * @remote_device: the handle to the remote device object for which to start |
| * the task management request. |
| * @task_request: the handle to the task request object to start. |
| */ |
| enum sci_task_status sci_controller_start_task(struct isci_host *ihost, |
| struct isci_remote_device *idev, |
| struct isci_request *ireq) |
| { |
| enum sci_status status; |
| |
| if (ihost->sm.current_state_id != SCIC_READY) { |
| dev_warn(&ihost->pdev->dev, |
| "%s: SCIC Controller starting task from invalid " |
| "state\n", |
| __func__); |
| return SCI_TASK_FAILURE_INVALID_STATE; |
| } |
| |
| status = sci_remote_device_start_task(ihost, idev, ireq); |
| switch (status) { |
| case SCI_FAILURE_RESET_DEVICE_PARTIAL_SUCCESS: |
| set_bit(IREQ_ACTIVE, &ireq->flags); |
| |
| /* |
| * We will let framework know this task request started successfully, |
| * although core is still woring on starting the request (to post tc when |
| * RNC is resumed.) |
| */ |
| return SCI_SUCCESS; |
| case SCI_SUCCESS: |
| set_bit(IREQ_ACTIVE, &ireq->flags); |
| sci_controller_post_request(ihost, ireq->post_context); |
| break; |
| default: |
| break; |
| } |
| |
| return status; |
| } |
| |
| static int sci_write_gpio_tx_gp(struct isci_host *ihost, u8 reg_index, u8 reg_count, u8 *write_data) |
| { |
| int d; |
| |
| /* no support for TX_GP_CFG */ |
| if (reg_index == 0) |
| return -EINVAL; |
| |
| for (d = 0; d < isci_gpio_count(ihost); d++) { |
| u32 val = 0x444; /* all ODx.n clear */ |
| int i; |
| |
| for (i = 0; i < 3; i++) { |
| int bit = (i << 2) + 2; |
| |
| bit = try_test_sas_gpio_gp_bit(to_sas_gpio_od(d, i), |
| write_data, reg_index, |
| reg_count); |
| if (bit < 0) |
| break; |
| |
| /* if od is set, clear the 'invert' bit */ |
| val &= ~(bit << ((i << 2) + 2)); |
| } |
| |
| if (i < 3) |
| break; |
| writel(val, &ihost->scu_registers->peg0.sgpio.output_data_select[d]); |
| } |
| |
| /* unless reg_index is > 1, we should always be able to write at |
| * least one register |
| */ |
| return d > 0; |
| } |
| |
| int isci_gpio_write(struct sas_ha_struct *sas_ha, u8 reg_type, u8 reg_index, |
| u8 reg_count, u8 *write_data) |
| { |
| struct isci_host *ihost = sas_ha->lldd_ha; |
| int written; |
| |
| switch (reg_type) { |
| case SAS_GPIO_REG_TX_GP: |
| written = sci_write_gpio_tx_gp(ihost, reg_index, reg_count, write_data); |
| break; |
| default: |
| written = -EINVAL; |
| } |
| |
| return written; |
| } |