| /* |
| * Copyright © 2015 Intel Corporation |
| * |
| * Permission is hereby granted, free of charge, to any person obtaining a |
| * copy of this software and associated documentation files (the "Software"), |
| * to deal in the Software without restriction, including without limitation |
| * the rights to use, copy, modify, merge, publish, distribute, sublicense, |
| * and/or sell copies of the Software, and to permit persons to whom the |
| * Software is furnished to do so, subject to the following conditions: |
| * |
| * The above copyright notice and this permission notice (including the next |
| * paragraph) shall be included in all copies or substantial portions of the |
| * Software. |
| * |
| * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR |
| * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, |
| * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL |
| * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER |
| * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING |
| * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS |
| * IN THE SOFTWARE. |
| * |
| */ |
| |
| #include <linux/kthread.h> |
| |
| #include "i915_drv.h" |
| |
| static void intel_breadcrumbs_hangcheck(unsigned long data) |
| { |
| struct intel_engine_cs *engine = (struct intel_engine_cs *)data; |
| struct intel_breadcrumbs *b = &engine->breadcrumbs; |
| |
| if (!b->irq_enabled) |
| return; |
| |
| if (time_before(jiffies, b->timeout)) { |
| mod_timer(&b->hangcheck, b->timeout); |
| return; |
| } |
| |
| DRM_DEBUG("Hangcheck timer elapsed... %s idle\n", engine->name); |
| set_bit(engine->id, &engine->i915->gpu_error.missed_irq_rings); |
| mod_timer(&engine->breadcrumbs.fake_irq, jiffies + 1); |
| |
| /* Ensure that even if the GPU hangs, we get woken up. |
| * |
| * However, note that if no one is waiting, we never notice |
| * a gpu hang. Eventually, we will have to wait for a resource |
| * held by the GPU and so trigger a hangcheck. In the most |
| * pathological case, this will be upon memory starvation! To |
| * prevent this, we also queue the hangcheck from the retire |
| * worker. |
| */ |
| i915_queue_hangcheck(engine->i915); |
| } |
| |
| static unsigned long wait_timeout(void) |
| { |
| return round_jiffies_up(jiffies + DRM_I915_HANGCHECK_JIFFIES); |
| } |
| |
| static void intel_breadcrumbs_fake_irq(unsigned long data) |
| { |
| struct intel_engine_cs *engine = (struct intel_engine_cs *)data; |
| |
| /* |
| * The timer persists in case we cannot enable interrupts, |
| * or if we have previously seen seqno/interrupt incoherency |
| * ("missed interrupt" syndrome). Here the worker will wake up |
| * every jiffie in order to kick the oldest waiter to do the |
| * coherent seqno check. |
| */ |
| if (intel_engine_wakeup(engine)) |
| mod_timer(&engine->breadcrumbs.fake_irq, jiffies + 1); |
| } |
| |
| static void irq_enable(struct intel_engine_cs *engine) |
| { |
| /* Enabling the IRQ may miss the generation of the interrupt, but |
| * we still need to force the barrier before reading the seqno, |
| * just in case. |
| */ |
| engine->breadcrumbs.irq_posted = true; |
| |
| /* Caller disables interrupts */ |
| spin_lock(&engine->i915->irq_lock); |
| engine->irq_enable(engine); |
| spin_unlock(&engine->i915->irq_lock); |
| } |
| |
| static void irq_disable(struct intel_engine_cs *engine) |
| { |
| /* Caller disables interrupts */ |
| spin_lock(&engine->i915->irq_lock); |
| engine->irq_disable(engine); |
| spin_unlock(&engine->i915->irq_lock); |
| |
| engine->breadcrumbs.irq_posted = false; |
| } |
| |
| static void __intel_breadcrumbs_enable_irq(struct intel_breadcrumbs *b) |
| { |
| struct intel_engine_cs *engine = |
| container_of(b, struct intel_engine_cs, breadcrumbs); |
| struct drm_i915_private *i915 = engine->i915; |
| |
| assert_spin_locked(&b->lock); |
| if (b->rpm_wakelock) |
| return; |
| |
| /* Since we are waiting on a request, the GPU should be busy |
| * and should have its own rpm reference. For completeness, |
| * record an rpm reference for ourselves to cover the |
| * interrupt we unmask. |
| */ |
| intel_runtime_pm_get_noresume(i915); |
| b->rpm_wakelock = true; |
| |
| /* No interrupts? Kick the waiter every jiffie! */ |
| if (intel_irqs_enabled(i915)) { |
| if (!test_bit(engine->id, &i915->gpu_error.test_irq_rings)) |
| irq_enable(engine); |
| b->irq_enabled = true; |
| } |
| |
| if (!b->irq_enabled || |
| test_bit(engine->id, &i915->gpu_error.missed_irq_rings)) { |
| mod_timer(&b->fake_irq, jiffies + 1); |
| } else { |
| /* Ensure we never sleep indefinitely */ |
| GEM_BUG_ON(!time_after(b->timeout, jiffies)); |
| mod_timer(&b->hangcheck, b->timeout); |
| } |
| } |
| |
| static void __intel_breadcrumbs_disable_irq(struct intel_breadcrumbs *b) |
| { |
| struct intel_engine_cs *engine = |
| container_of(b, struct intel_engine_cs, breadcrumbs); |
| |
| assert_spin_locked(&b->lock); |
| if (!b->rpm_wakelock) |
| return; |
| |
| if (b->irq_enabled) { |
| irq_disable(engine); |
| b->irq_enabled = false; |
| } |
| |
| intel_runtime_pm_put(engine->i915); |
| b->rpm_wakelock = false; |
| } |
| |
| static inline struct intel_wait *to_wait(struct rb_node *node) |
| { |
| return container_of(node, struct intel_wait, node); |
| } |
| |
| static inline void __intel_breadcrumbs_finish(struct intel_breadcrumbs *b, |
| struct intel_wait *wait) |
| { |
| assert_spin_locked(&b->lock); |
| |
| /* This request is completed, so remove it from the tree, mark it as |
| * complete, and *then* wake up the associated task. |
| */ |
| rb_erase(&wait->node, &b->waiters); |
| RB_CLEAR_NODE(&wait->node); |
| |
| wake_up_process(wait->tsk); /* implicit smp_wmb() */ |
| } |
| |
| static bool __intel_engine_add_wait(struct intel_engine_cs *engine, |
| struct intel_wait *wait) |
| { |
| struct intel_breadcrumbs *b = &engine->breadcrumbs; |
| struct rb_node **p, *parent, *completed; |
| bool first; |
| u32 seqno; |
| |
| /* Insert the request into the retirement ordered list |
| * of waiters by walking the rbtree. If we are the oldest |
| * seqno in the tree (the first to be retired), then |
| * set ourselves as the bottom-half. |
| * |
| * As we descend the tree, prune completed branches since we hold the |
| * spinlock we know that the first_waiter must be delayed and can |
| * reduce some of the sequential wake up latency if we take action |
| * ourselves and wake up the completed tasks in parallel. Also, by |
| * removing stale elements in the tree, we may be able to reduce the |
| * ping-pong between the old bottom-half and ourselves as first-waiter. |
| */ |
| first = true; |
| parent = NULL; |
| completed = NULL; |
| seqno = intel_engine_get_seqno(engine); |
| |
| /* If the request completed before we managed to grab the spinlock, |
| * return now before adding ourselves to the rbtree. We let the |
| * current bottom-half handle any pending wakeups and instead |
| * try and get out of the way quickly. |
| */ |
| if (i915_seqno_passed(seqno, wait->seqno)) { |
| RB_CLEAR_NODE(&wait->node); |
| return first; |
| } |
| |
| p = &b->waiters.rb_node; |
| while (*p) { |
| parent = *p; |
| if (wait->seqno == to_wait(parent)->seqno) { |
| /* We have multiple waiters on the same seqno, select |
| * the highest priority task (that with the smallest |
| * task->prio) to serve as the bottom-half for this |
| * group. |
| */ |
| if (wait->tsk->prio > to_wait(parent)->tsk->prio) { |
| p = &parent->rb_right; |
| first = false; |
| } else { |
| p = &parent->rb_left; |
| } |
| } else if (i915_seqno_passed(wait->seqno, |
| to_wait(parent)->seqno)) { |
| p = &parent->rb_right; |
| if (i915_seqno_passed(seqno, to_wait(parent)->seqno)) |
| completed = parent; |
| else |
| first = false; |
| } else { |
| p = &parent->rb_left; |
| } |
| } |
| rb_link_node(&wait->node, parent, p); |
| rb_insert_color(&wait->node, &b->waiters); |
| GEM_BUG_ON(!first && !rcu_access_pointer(b->irq_seqno_bh)); |
| |
| if (completed) { |
| struct rb_node *next = rb_next(completed); |
| |
| GEM_BUG_ON(!next && !first); |
| if (next && next != &wait->node) { |
| GEM_BUG_ON(first); |
| b->timeout = wait_timeout(); |
| b->first_wait = to_wait(next); |
| rcu_assign_pointer(b->irq_seqno_bh, b->first_wait->tsk); |
| /* As there is a delay between reading the current |
| * seqno, processing the completed tasks and selecting |
| * the next waiter, we may have missed the interrupt |
| * and so need for the next bottom-half to wakeup. |
| * |
| * Also as we enable the IRQ, we may miss the |
| * interrupt for that seqno, so we have to wake up |
| * the next bottom-half in order to do a coherent check |
| * in case the seqno passed. |
| */ |
| __intel_breadcrumbs_enable_irq(b); |
| if (READ_ONCE(b->irq_posted)) |
| wake_up_process(to_wait(next)->tsk); |
| } |
| |
| do { |
| struct intel_wait *crumb = to_wait(completed); |
| completed = rb_prev(completed); |
| __intel_breadcrumbs_finish(b, crumb); |
| } while (completed); |
| } |
| |
| if (first) { |
| GEM_BUG_ON(rb_first(&b->waiters) != &wait->node); |
| b->timeout = wait_timeout(); |
| b->first_wait = wait; |
| rcu_assign_pointer(b->irq_seqno_bh, wait->tsk); |
| /* After assigning ourselves as the new bottom-half, we must |
| * perform a cursory check to prevent a missed interrupt. |
| * Either we miss the interrupt whilst programming the hardware, |
| * or if there was a previous waiter (for a later seqno) they |
| * may be woken instead of us (due to the inherent race |
| * in the unlocked read of b->irq_seqno_bh in the irq handler) |
| * and so we miss the wake up. |
| */ |
| __intel_breadcrumbs_enable_irq(b); |
| } |
| GEM_BUG_ON(!rcu_access_pointer(b->irq_seqno_bh)); |
| GEM_BUG_ON(!b->first_wait); |
| GEM_BUG_ON(rb_first(&b->waiters) != &b->first_wait->node); |
| |
| return first; |
| } |
| |
| bool intel_engine_add_wait(struct intel_engine_cs *engine, |
| struct intel_wait *wait) |
| { |
| struct intel_breadcrumbs *b = &engine->breadcrumbs; |
| bool first; |
| |
| spin_lock_irq(&b->lock); |
| first = __intel_engine_add_wait(engine, wait); |
| spin_unlock_irq(&b->lock); |
| |
| return first; |
| } |
| |
| static inline bool chain_wakeup(struct rb_node *rb, int priority) |
| { |
| return rb && to_wait(rb)->tsk->prio <= priority; |
| } |
| |
| static inline int wakeup_priority(struct intel_breadcrumbs *b, |
| struct task_struct *tsk) |
| { |
| if (tsk == b->signaler) |
| return INT_MIN; |
| else |
| return tsk->prio; |
| } |
| |
| void intel_engine_remove_wait(struct intel_engine_cs *engine, |
| struct intel_wait *wait) |
| { |
| struct intel_breadcrumbs *b = &engine->breadcrumbs; |
| |
| /* Quick check to see if this waiter was already decoupled from |
| * the tree by the bottom-half to avoid contention on the spinlock |
| * by the herd. |
| */ |
| if (RB_EMPTY_NODE(&wait->node)) |
| return; |
| |
| spin_lock_irq(&b->lock); |
| |
| if (RB_EMPTY_NODE(&wait->node)) |
| goto out_unlock; |
| |
| if (b->first_wait == wait) { |
| const int priority = wakeup_priority(b, wait->tsk); |
| struct rb_node *next; |
| |
| GEM_BUG_ON(rcu_access_pointer(b->irq_seqno_bh) != wait->tsk); |
| |
| /* We are the current bottom-half. Find the next candidate, |
| * the first waiter in the queue on the remaining oldest |
| * request. As multiple seqnos may complete in the time it |
| * takes us to wake up and find the next waiter, we have to |
| * wake up that waiter for it to perform its own coherent |
| * completion check. |
| */ |
| next = rb_next(&wait->node); |
| if (chain_wakeup(next, priority)) { |
| /* If the next waiter is already complete, |
| * wake it up and continue onto the next waiter. So |
| * if have a small herd, they will wake up in parallel |
| * rather than sequentially, which should reduce |
| * the overall latency in waking all the completed |
| * clients. |
| * |
| * However, waking up a chain adds extra latency to |
| * the first_waiter. This is undesirable if that |
| * waiter is a high priority task. |
| */ |
| u32 seqno = intel_engine_get_seqno(engine); |
| |
| while (i915_seqno_passed(seqno, to_wait(next)->seqno)) { |
| struct rb_node *n = rb_next(next); |
| |
| __intel_breadcrumbs_finish(b, to_wait(next)); |
| next = n; |
| if (!chain_wakeup(next, priority)) |
| break; |
| } |
| } |
| |
| if (next) { |
| /* In our haste, we may have completed the first waiter |
| * before we enabled the interrupt. Do so now as we |
| * have a second waiter for a future seqno. Afterwards, |
| * we have to wake up that waiter in case we missed |
| * the interrupt, or if we have to handle an |
| * exception rather than a seqno completion. |
| */ |
| b->timeout = wait_timeout(); |
| b->first_wait = to_wait(next); |
| rcu_assign_pointer(b->irq_seqno_bh, b->first_wait->tsk); |
| if (b->first_wait->seqno != wait->seqno) |
| __intel_breadcrumbs_enable_irq(b); |
| wake_up_process(b->first_wait->tsk); |
| } else { |
| b->first_wait = NULL; |
| rcu_assign_pointer(b->irq_seqno_bh, NULL); |
| __intel_breadcrumbs_disable_irq(b); |
| } |
| } else { |
| GEM_BUG_ON(rb_first(&b->waiters) == &wait->node); |
| } |
| |
| GEM_BUG_ON(RB_EMPTY_NODE(&wait->node)); |
| rb_erase(&wait->node, &b->waiters); |
| |
| out_unlock: |
| GEM_BUG_ON(b->first_wait == wait); |
| GEM_BUG_ON(rb_first(&b->waiters) != |
| (b->first_wait ? &b->first_wait->node : NULL)); |
| GEM_BUG_ON(!rcu_access_pointer(b->irq_seqno_bh) ^ RB_EMPTY_ROOT(&b->waiters)); |
| spin_unlock_irq(&b->lock); |
| } |
| |
| static bool signal_complete(struct drm_i915_gem_request *request) |
| { |
| if (!request) |
| return false; |
| |
| /* If another process served as the bottom-half it may have already |
| * signalled that this wait is already completed. |
| */ |
| if (intel_wait_complete(&request->signaling.wait)) |
| return true; |
| |
| /* Carefully check if the request is complete, giving time for the |
| * seqno to be visible or if the GPU hung. |
| */ |
| if (__i915_request_irq_complete(request)) |
| return true; |
| |
| return false; |
| } |
| |
| static struct drm_i915_gem_request *to_signaler(struct rb_node *rb) |
| { |
| return container_of(rb, struct drm_i915_gem_request, signaling.node); |
| } |
| |
| static void signaler_set_rtpriority(void) |
| { |
| struct sched_param param = { .sched_priority = 1 }; |
| |
| sched_setscheduler_nocheck(current, SCHED_FIFO, ¶m); |
| } |
| |
| static int intel_breadcrumbs_signaler(void *arg) |
| { |
| struct intel_engine_cs *engine = arg; |
| struct intel_breadcrumbs *b = &engine->breadcrumbs; |
| struct drm_i915_gem_request *request; |
| |
| /* Install ourselves with high priority to reduce signalling latency */ |
| signaler_set_rtpriority(); |
| |
| do { |
| set_current_state(TASK_INTERRUPTIBLE); |
| |
| /* We are either woken up by the interrupt bottom-half, |
| * or by a client adding a new signaller. In both cases, |
| * the GPU seqno may have advanced beyond our oldest signal. |
| * If it has, propagate the signal, remove the waiter and |
| * check again with the next oldest signal. Otherwise we |
| * need to wait for a new interrupt from the GPU or for |
| * a new client. |
| */ |
| request = READ_ONCE(b->first_signal); |
| if (signal_complete(request)) { |
| /* Wake up all other completed waiters and select the |
| * next bottom-half for the next user interrupt. |
| */ |
| intel_engine_remove_wait(engine, |
| &request->signaling.wait); |
| |
| local_bh_disable(); |
| dma_fence_signal(&request->fence); |
| local_bh_enable(); /* kick start the tasklets */ |
| |
| /* Find the next oldest signal. Note that as we have |
| * not been holding the lock, another client may |
| * have installed an even older signal than the one |
| * we just completed - so double check we are still |
| * the oldest before picking the next one. |
| */ |
| spin_lock_irq(&b->lock); |
| if (request == b->first_signal) { |
| struct rb_node *rb = |
| rb_next(&request->signaling.node); |
| b->first_signal = rb ? to_signaler(rb) : NULL; |
| } |
| rb_erase(&request->signaling.node, &b->signals); |
| spin_unlock_irq(&b->lock); |
| |
| i915_gem_request_put(request); |
| } else { |
| if (kthread_should_stop()) |
| break; |
| |
| schedule(); |
| } |
| } while (1); |
| __set_current_state(TASK_RUNNING); |
| |
| return 0; |
| } |
| |
| void intel_engine_enable_signaling(struct drm_i915_gem_request *request) |
| { |
| struct intel_engine_cs *engine = request->engine; |
| struct intel_breadcrumbs *b = &engine->breadcrumbs; |
| struct rb_node *parent, **p; |
| bool first, wakeup; |
| |
| /* Note that we may be called from an interrupt handler on another |
| * device (e.g. nouveau signaling a fence completion causing us |
| * to submit a request, and so enable signaling). As such, |
| * we need to make sure that all other users of b->lock protect |
| * against interrupts, i.e. use spin_lock_irqsave. |
| */ |
| |
| /* locked by dma_fence_enable_sw_signaling() (irqsafe fence->lock) */ |
| assert_spin_locked(&request->lock); |
| if (!request->global_seqno) |
| return; |
| |
| request->signaling.wait.tsk = b->signaler; |
| request->signaling.wait.seqno = request->global_seqno; |
| i915_gem_request_get(request); |
| |
| spin_lock(&b->lock); |
| |
| /* First add ourselves into the list of waiters, but register our |
| * bottom-half as the signaller thread. As per usual, only the oldest |
| * waiter (not just signaller) is tasked as the bottom-half waking |
| * up all completed waiters after the user interrupt. |
| * |
| * If we are the oldest waiter, enable the irq (after which we |
| * must double check that the seqno did not complete). |
| */ |
| wakeup = __intel_engine_add_wait(engine, &request->signaling.wait); |
| |
| /* Now insert ourselves into the retirement ordered list of signals |
| * on this engine. We track the oldest seqno as that will be the |
| * first signal to complete. |
| */ |
| parent = NULL; |
| first = true; |
| p = &b->signals.rb_node; |
| while (*p) { |
| parent = *p; |
| if (i915_seqno_passed(request->global_seqno, |
| to_signaler(parent)->global_seqno)) { |
| p = &parent->rb_right; |
| first = false; |
| } else { |
| p = &parent->rb_left; |
| } |
| } |
| rb_link_node(&request->signaling.node, parent, p); |
| rb_insert_color(&request->signaling.node, &b->signals); |
| if (first) |
| smp_store_mb(b->first_signal, request); |
| |
| spin_unlock(&b->lock); |
| |
| if (wakeup) |
| wake_up_process(b->signaler); |
| } |
| |
| int intel_engine_init_breadcrumbs(struct intel_engine_cs *engine) |
| { |
| struct intel_breadcrumbs *b = &engine->breadcrumbs; |
| struct task_struct *tsk; |
| |
| spin_lock_init(&b->lock); |
| setup_timer(&b->fake_irq, |
| intel_breadcrumbs_fake_irq, |
| (unsigned long)engine); |
| setup_timer(&b->hangcheck, |
| intel_breadcrumbs_hangcheck, |
| (unsigned long)engine); |
| |
| /* Spawn a thread to provide a common bottom-half for all signals. |
| * As this is an asynchronous interface we cannot steal the current |
| * task for handling the bottom-half to the user interrupt, therefore |
| * we create a thread to do the coherent seqno dance after the |
| * interrupt and then signal the waitqueue (via the dma-buf/fence). |
| */ |
| tsk = kthread_run(intel_breadcrumbs_signaler, engine, |
| "i915/signal:%d", engine->id); |
| if (IS_ERR(tsk)) |
| return PTR_ERR(tsk); |
| |
| b->signaler = tsk; |
| |
| return 0; |
| } |
| |
| static void cancel_fake_irq(struct intel_engine_cs *engine) |
| { |
| struct intel_breadcrumbs *b = &engine->breadcrumbs; |
| |
| del_timer_sync(&b->hangcheck); |
| del_timer_sync(&b->fake_irq); |
| clear_bit(engine->id, &engine->i915->gpu_error.missed_irq_rings); |
| } |
| |
| void intel_engine_reset_breadcrumbs(struct intel_engine_cs *engine) |
| { |
| struct intel_breadcrumbs *b = &engine->breadcrumbs; |
| |
| cancel_fake_irq(engine); |
| spin_lock_irq(&b->lock); |
| |
| __intel_breadcrumbs_disable_irq(b); |
| if (intel_engine_has_waiter(engine)) { |
| b->timeout = wait_timeout(); |
| __intel_breadcrumbs_enable_irq(b); |
| if (READ_ONCE(b->irq_posted)) |
| wake_up_process(b->first_wait->tsk); |
| } else { |
| /* sanitize the IMR and unmask any auxiliary interrupts */ |
| irq_disable(engine); |
| } |
| |
| spin_unlock_irq(&b->lock); |
| } |
| |
| void intel_engine_fini_breadcrumbs(struct intel_engine_cs *engine) |
| { |
| struct intel_breadcrumbs *b = &engine->breadcrumbs; |
| |
| if (!IS_ERR_OR_NULL(b->signaler)) |
| kthread_stop(b->signaler); |
| |
| cancel_fake_irq(engine); |
| } |
| |
| unsigned int intel_kick_waiters(struct drm_i915_private *i915) |
| { |
| struct intel_engine_cs *engine; |
| enum intel_engine_id id; |
| unsigned int mask = 0; |
| |
| /* To avoid the task_struct disappearing beneath us as we wake up |
| * the process, we must first inspect the task_struct->state under the |
| * RCU lock, i.e. as we call wake_up_process() we must be holding the |
| * rcu_read_lock(). |
| */ |
| for_each_engine(engine, i915, id) |
| if (unlikely(intel_engine_wakeup(engine))) |
| mask |= intel_engine_flag(engine); |
| |
| return mask; |
| } |
| |
| unsigned int intel_kick_signalers(struct drm_i915_private *i915) |
| { |
| struct intel_engine_cs *engine; |
| enum intel_engine_id id; |
| unsigned int mask = 0; |
| |
| for_each_engine(engine, i915, id) { |
| if (unlikely(READ_ONCE(engine->breadcrumbs.first_signal))) { |
| wake_up_process(engine->breadcrumbs.signaler); |
| mask |= intel_engine_flag(engine); |
| } |
| } |
| |
| return mask; |
| } |