blob: b369dd112df6b93906d22a939a55416b73669089 [file] [log] [blame]
/*
drbd_nl.c
This file is part of DRBD by Philipp Reisner and Lars Ellenberg.
Copyright (C) 2001-2008, LINBIT Information Technologies GmbH.
Copyright (C) 1999-2008, Philipp Reisner <philipp.reisner@linbit.com>.
Copyright (C) 2002-2008, Lars Ellenberg <lars.ellenberg@linbit.com>.
drbd is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2, or (at your option)
any later version.
drbd is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with drbd; see the file COPYING. If not, write to
the Free Software Foundation, 675 Mass Ave, Cambridge, MA 02139, USA.
*/
#include <linux/module.h>
#include <linux/drbd.h>
#include <linux/in.h>
#include <linux/fs.h>
#include <linux/file.h>
#include <linux/slab.h>
#include <linux/blkpg.h>
#include <linux/cpumask.h>
#include "drbd_int.h"
#include "drbd_req.h"
#include "drbd_wrappers.h"
#include <asm/unaligned.h>
#include <linux/drbd_limits.h>
#include <linux/kthread.h>
#include <net/genetlink.h>
/* .doit */
// int drbd_adm_create_resource(struct sk_buff *skb, struct genl_info *info);
// int drbd_adm_delete_resource(struct sk_buff *skb, struct genl_info *info);
int drbd_adm_add_minor(struct sk_buff *skb, struct genl_info *info);
int drbd_adm_delete_minor(struct sk_buff *skb, struct genl_info *info);
int drbd_adm_new_resource(struct sk_buff *skb, struct genl_info *info);
int drbd_adm_del_resource(struct sk_buff *skb, struct genl_info *info);
int drbd_adm_down(struct sk_buff *skb, struct genl_info *info);
int drbd_adm_set_role(struct sk_buff *skb, struct genl_info *info);
int drbd_adm_attach(struct sk_buff *skb, struct genl_info *info);
int drbd_adm_disk_opts(struct sk_buff *skb, struct genl_info *info);
int drbd_adm_detach(struct sk_buff *skb, struct genl_info *info);
int drbd_adm_connect(struct sk_buff *skb, struct genl_info *info);
int drbd_adm_net_opts(struct sk_buff *skb, struct genl_info *info);
int drbd_adm_resize(struct sk_buff *skb, struct genl_info *info);
int drbd_adm_start_ov(struct sk_buff *skb, struct genl_info *info);
int drbd_adm_new_c_uuid(struct sk_buff *skb, struct genl_info *info);
int drbd_adm_disconnect(struct sk_buff *skb, struct genl_info *info);
int drbd_adm_invalidate(struct sk_buff *skb, struct genl_info *info);
int drbd_adm_invalidate_peer(struct sk_buff *skb, struct genl_info *info);
int drbd_adm_pause_sync(struct sk_buff *skb, struct genl_info *info);
int drbd_adm_resume_sync(struct sk_buff *skb, struct genl_info *info);
int drbd_adm_suspend_io(struct sk_buff *skb, struct genl_info *info);
int drbd_adm_resume_io(struct sk_buff *skb, struct genl_info *info);
int drbd_adm_outdate(struct sk_buff *skb, struct genl_info *info);
int drbd_adm_resource_opts(struct sk_buff *skb, struct genl_info *info);
int drbd_adm_get_status(struct sk_buff *skb, struct genl_info *info);
int drbd_adm_get_timeout_type(struct sk_buff *skb, struct genl_info *info);
/* .dumpit */
int drbd_adm_get_status_all(struct sk_buff *skb, struct netlink_callback *cb);
#include <linux/drbd_genl_api.h>
#include "drbd_nla.h"
#include <linux/genl_magic_func.h>
/* used blkdev_get_by_path, to claim our meta data device(s) */
static char *drbd_m_holder = "Hands off! this is DRBD's meta data device.";
/* Configuration is strictly serialized, because generic netlink message
* processing is strictly serialized by the genl_lock().
* Which means we can use one static global drbd_config_context struct.
*/
static struct drbd_config_context {
/* assigned from drbd_genlmsghdr */
unsigned int minor;
/* assigned from request attributes, if present */
unsigned int volume;
#define VOLUME_UNSPECIFIED (-1U)
/* pointer into the request skb,
* limited lifetime! */
char *resource_name;
struct nlattr *my_addr;
struct nlattr *peer_addr;
/* reply buffer */
struct sk_buff *reply_skb;
/* pointer into reply buffer */
struct drbd_genlmsghdr *reply_dh;
/* resolved from attributes, if possible */
struct drbd_conf *mdev;
struct drbd_tconn *tconn;
} adm_ctx;
static void drbd_adm_send_reply(struct sk_buff *skb, struct genl_info *info)
{
genlmsg_end(skb, genlmsg_data(nlmsg_data(nlmsg_hdr(skb))));
if (genlmsg_reply(skb, info))
printk(KERN_ERR "drbd: error sending genl reply\n");
}
/* Used on a fresh "drbd_adm_prepare"d reply_skb, this cannot fail: The only
* reason it could fail was no space in skb, and there are 4k available. */
int drbd_msg_put_info(const char *info)
{
struct sk_buff *skb = adm_ctx.reply_skb;
struct nlattr *nla;
int err = -EMSGSIZE;
if (!info || !info[0])
return 0;
nla = nla_nest_start(skb, DRBD_NLA_CFG_REPLY);
if (!nla)
return err;
err = nla_put_string(skb, T_info_text, info);
if (err) {
nla_nest_cancel(skb, nla);
return err;
} else
nla_nest_end(skb, nla);
return 0;
}
/* This would be a good candidate for a "pre_doit" hook,
* and per-family private info->pointers.
* But we need to stay compatible with older kernels.
* If it returns successfully, adm_ctx members are valid.
*/
#define DRBD_ADM_NEED_MINOR 1
#define DRBD_ADM_NEED_RESOURCE 2
#define DRBD_ADM_NEED_CONNECTION 4
static int drbd_adm_prepare(struct sk_buff *skb, struct genl_info *info,
unsigned flags)
{
struct drbd_genlmsghdr *d_in = info->userhdr;
const u8 cmd = info->genlhdr->cmd;
int err;
memset(&adm_ctx, 0, sizeof(adm_ctx));
/* genl_rcv_msg only checks for CAP_NET_ADMIN on "GENL_ADMIN_PERM" :( */
if (cmd != DRBD_ADM_GET_STATUS
&& security_netlink_recv(skb, CAP_SYS_ADMIN))
return -EPERM;
adm_ctx.reply_skb = genlmsg_new(NLMSG_GOODSIZE, GFP_KERNEL);
if (!adm_ctx.reply_skb) {
err = -ENOMEM;
goto fail;
}
adm_ctx.reply_dh = genlmsg_put_reply(adm_ctx.reply_skb,
info, &drbd_genl_family, 0, cmd);
/* put of a few bytes into a fresh skb of >= 4k will always succeed.
* but anyways */
if (!adm_ctx.reply_dh) {
err = -ENOMEM;
goto fail;
}
adm_ctx.reply_dh->minor = d_in->minor;
adm_ctx.reply_dh->ret_code = NO_ERROR;
adm_ctx.volume = VOLUME_UNSPECIFIED;
if (info->attrs[DRBD_NLA_CFG_CONTEXT]) {
struct nlattr *nla;
/* parse and validate only */
err = drbd_cfg_context_from_attrs(NULL, info);
if (err)
goto fail;
/* It was present, and valid,
* copy it over to the reply skb. */
err = nla_put_nohdr(adm_ctx.reply_skb,
info->attrs[DRBD_NLA_CFG_CONTEXT]->nla_len,
info->attrs[DRBD_NLA_CFG_CONTEXT]);
if (err)
goto fail;
/* and assign stuff to the global adm_ctx */
nla = nested_attr_tb[__nla_type(T_ctx_volume)];
if (nla)
adm_ctx.volume = nla_get_u32(nla);
nla = nested_attr_tb[__nla_type(T_ctx_resource_name)];
if (nla)
adm_ctx.resource_name = nla_data(nla);
adm_ctx.my_addr = nested_attr_tb[__nla_type(T_ctx_my_addr)];
adm_ctx.peer_addr = nested_attr_tb[__nla_type(T_ctx_peer_addr)];
if ((adm_ctx.my_addr &&
nla_len(adm_ctx.my_addr) > sizeof(adm_ctx.tconn->my_addr)) ||
(adm_ctx.peer_addr &&
nla_len(adm_ctx.peer_addr) > sizeof(adm_ctx.tconn->peer_addr))) {
err = -EINVAL;
goto fail;
}
}
adm_ctx.minor = d_in->minor;
adm_ctx.mdev = minor_to_mdev(d_in->minor);
adm_ctx.tconn = conn_get_by_name(adm_ctx.resource_name);
if (!adm_ctx.mdev && (flags & DRBD_ADM_NEED_MINOR)) {
drbd_msg_put_info("unknown minor");
return ERR_MINOR_INVALID;
}
if (!adm_ctx.tconn && (flags & DRBD_ADM_NEED_RESOURCE)) {
drbd_msg_put_info("unknown resource");
return ERR_INVALID_REQUEST;
}
if (flags & DRBD_ADM_NEED_CONNECTION) {
if (adm_ctx.tconn && !(flags & DRBD_ADM_NEED_RESOURCE)) {
drbd_msg_put_info("no resource name expected");
return ERR_INVALID_REQUEST;
}
if (adm_ctx.mdev) {
drbd_msg_put_info("no minor number expected");
return ERR_INVALID_REQUEST;
}
if (adm_ctx.my_addr && adm_ctx.peer_addr)
adm_ctx.tconn = conn_get_by_addrs(nla_data(adm_ctx.my_addr),
nla_len(adm_ctx.my_addr),
nla_data(adm_ctx.peer_addr),
nla_len(adm_ctx.peer_addr));
if (!adm_ctx.tconn) {
drbd_msg_put_info("unknown connection");
return ERR_INVALID_REQUEST;
}
}
/* some more paranoia, if the request was over-determined */
if (adm_ctx.mdev && adm_ctx.tconn &&
adm_ctx.mdev->tconn != adm_ctx.tconn) {
pr_warning("request: minor=%u, resource=%s; but that minor belongs to connection %s\n",
adm_ctx.minor, adm_ctx.resource_name,
adm_ctx.mdev->tconn->name);
drbd_msg_put_info("minor exists in different resource");
return ERR_INVALID_REQUEST;
}
if (adm_ctx.mdev &&
adm_ctx.volume != VOLUME_UNSPECIFIED &&
adm_ctx.volume != adm_ctx.mdev->vnr) {
pr_warning("request: minor=%u, volume=%u; but that minor is volume %u in %s\n",
adm_ctx.minor, adm_ctx.volume,
adm_ctx.mdev->vnr, adm_ctx.mdev->tconn->name);
drbd_msg_put_info("minor exists as different volume");
return ERR_INVALID_REQUEST;
}
return NO_ERROR;
fail:
nlmsg_free(adm_ctx.reply_skb);
adm_ctx.reply_skb = NULL;
return err;
}
static int drbd_adm_finish(struct genl_info *info, int retcode)
{
if (adm_ctx.tconn) {
kref_put(&adm_ctx.tconn->kref, &conn_destroy);
adm_ctx.tconn = NULL;
}
if (!adm_ctx.reply_skb)
return -ENOMEM;
adm_ctx.reply_dh->ret_code = retcode;
drbd_adm_send_reply(adm_ctx.reply_skb, info);
return 0;
}
static void setup_khelper_env(struct drbd_tconn *tconn, char **envp)
{
char *afs;
/* FIXME: A future version will not allow this case. */
if (tconn->my_addr_len == 0 || tconn->peer_addr_len == 0)
return;
switch (((struct sockaddr *)&tconn->peer_addr)->sa_family) {
case AF_INET6:
afs = "ipv6";
snprintf(envp[4], 60, "DRBD_PEER_ADDRESS=%pI6",
&((struct sockaddr_in6 *)&tconn->peer_addr)->sin6_addr);
break;
case AF_INET:
afs = "ipv4";
snprintf(envp[4], 60, "DRBD_PEER_ADDRESS=%pI4",
&((struct sockaddr_in *)&tconn->peer_addr)->sin_addr);
break;
default:
afs = "ssocks";
snprintf(envp[4], 60, "DRBD_PEER_ADDRESS=%pI4",
&((struct sockaddr_in *)&tconn->peer_addr)->sin_addr);
}
snprintf(envp[3], 20, "DRBD_PEER_AF=%s", afs);
}
int drbd_khelper(struct drbd_conf *mdev, char *cmd)
{
char *envp[] = { "HOME=/",
"TERM=linux",
"PATH=/sbin:/usr/sbin:/bin:/usr/bin",
(char[20]) { }, /* address family */
(char[60]) { }, /* address */
NULL };
char mb[12];
char *argv[] = {usermode_helper, cmd, mb, NULL };
struct sib_info sib;
int ret;
snprintf(mb, 12, "minor-%d", mdev_to_minor(mdev));
setup_khelper_env(mdev->tconn, envp);
/* The helper may take some time.
* write out any unsynced meta data changes now */
drbd_md_sync(mdev);
dev_info(DEV, "helper command: %s %s %s\n", usermode_helper, cmd, mb);
sib.sib_reason = SIB_HELPER_PRE;
sib.helper_name = cmd;
drbd_bcast_event(mdev, &sib);
ret = call_usermodehelper(usermode_helper, argv, envp, 1);
if (ret)
dev_warn(DEV, "helper command: %s %s %s exit code %u (0x%x)\n",
usermode_helper, cmd, mb,
(ret >> 8) & 0xff, ret);
else
dev_info(DEV, "helper command: %s %s %s exit code %u (0x%x)\n",
usermode_helper, cmd, mb,
(ret >> 8) & 0xff, ret);
sib.sib_reason = SIB_HELPER_POST;
sib.helper_exit_code = ret;
drbd_bcast_event(mdev, &sib);
if (ret < 0) /* Ignore any ERRNOs we got. */
ret = 0;
return ret;
}
static void conn_md_sync(struct drbd_tconn *tconn)
{
struct drbd_conf *mdev;
int vnr;
rcu_read_lock();
idr_for_each_entry(&tconn->volumes, mdev, vnr) {
kref_get(&mdev->kref);
rcu_read_unlock();
drbd_md_sync(mdev);
kref_put(&mdev->kref, &drbd_minor_destroy);
rcu_read_lock();
}
rcu_read_unlock();
}
int conn_khelper(struct drbd_tconn *tconn, char *cmd)
{
char *envp[] = { "HOME=/",
"TERM=linux",
"PATH=/sbin:/usr/sbin:/bin:/usr/bin",
(char[20]) { }, /* address family */
(char[60]) { }, /* address */
NULL };
char *argv[] = {usermode_helper, cmd, tconn->name, NULL };
int ret;
setup_khelper_env(tconn, envp);
conn_md_sync(tconn);
conn_info(tconn, "helper command: %s %s %s\n", usermode_helper, cmd, tconn->name);
/* TODO: conn_bcast_event() ?? */
ret = call_usermodehelper(usermode_helper, argv, envp, 1);
if (ret)
conn_warn(tconn, "helper command: %s %s %s exit code %u (0x%x)\n",
usermode_helper, cmd, tconn->name,
(ret >> 8) & 0xff, ret);
else
conn_info(tconn, "helper command: %s %s %s exit code %u (0x%x)\n",
usermode_helper, cmd, tconn->name,
(ret >> 8) & 0xff, ret);
/* TODO: conn_bcast_event() ?? */
if (ret < 0) /* Ignore any ERRNOs we got. */
ret = 0;
return ret;
}
static enum drbd_fencing_p highest_fencing_policy(struct drbd_tconn *tconn)
{
enum drbd_fencing_p fp = FP_NOT_AVAIL;
struct drbd_conf *mdev;
int vnr;
rcu_read_lock();
idr_for_each_entry(&tconn->volumes, mdev, vnr) {
if (get_ldev_if_state(mdev, D_CONSISTENT)) {
fp = max_t(enum drbd_fencing_p, fp,
rcu_dereference(mdev->ldev->disk_conf)->fencing);
put_ldev(mdev);
}
}
rcu_read_unlock();
return fp;
}
bool conn_try_outdate_peer(struct drbd_tconn *tconn)
{
union drbd_state mask = { };
union drbd_state val = { };
enum drbd_fencing_p fp;
char *ex_to_string;
int r;
if (tconn->cstate >= C_WF_REPORT_PARAMS) {
conn_err(tconn, "Expected cstate < C_WF_REPORT_PARAMS\n");
return false;
}
fp = highest_fencing_policy(tconn);
switch (fp) {
case FP_NOT_AVAIL:
conn_warn(tconn, "Not fencing peer, I'm not even Consistent myself.\n");
goto out;
case FP_DONT_CARE:
return true;
default: ;
}
r = conn_khelper(tconn, "fence-peer");
switch ((r>>8) & 0xff) {
case 3: /* peer is inconsistent */
ex_to_string = "peer is inconsistent or worse";
mask.pdsk = D_MASK;
val.pdsk = D_INCONSISTENT;
break;
case 4: /* peer got outdated, or was already outdated */
ex_to_string = "peer was fenced";
mask.pdsk = D_MASK;
val.pdsk = D_OUTDATED;
break;
case 5: /* peer was down */
if (conn_highest_disk(tconn) == D_UP_TO_DATE) {
/* we will(have) create(d) a new UUID anyways... */
ex_to_string = "peer is unreachable, assumed to be dead";
mask.pdsk = D_MASK;
val.pdsk = D_OUTDATED;
} else {
ex_to_string = "peer unreachable, doing nothing since disk != UpToDate";
}
break;
case 6: /* Peer is primary, voluntarily outdate myself.
* This is useful when an unconnected R_SECONDARY is asked to
* become R_PRIMARY, but finds the other peer being active. */
ex_to_string = "peer is active";
conn_warn(tconn, "Peer is primary, outdating myself.\n");
mask.disk = D_MASK;
val.disk = D_OUTDATED;
break;
case 7:
if (fp != FP_STONITH)
conn_err(tconn, "fence-peer() = 7 && fencing != Stonith !!!\n");
ex_to_string = "peer was stonithed";
mask.pdsk = D_MASK;
val.pdsk = D_OUTDATED;
break;
default:
/* The script is broken ... */
conn_err(tconn, "fence-peer helper broken, returned %d\n", (r>>8)&0xff);
return false; /* Eventually leave IO frozen */
}
conn_info(tconn, "fence-peer helper returned %d (%s)\n",
(r>>8) & 0xff, ex_to_string);
out:
/* Not using
conn_request_state(tconn, mask, val, CS_VERBOSE);
here, because we might were able to re-establish the connection in the
meantime. */
spin_lock_irq(&tconn->req_lock);
if (tconn->cstate < C_WF_REPORT_PARAMS)
_conn_request_state(tconn, mask, val, CS_VERBOSE);
spin_unlock_irq(&tconn->req_lock);
return conn_highest_pdsk(tconn) <= D_OUTDATED;
}
static int _try_outdate_peer_async(void *data)
{
struct drbd_tconn *tconn = (struct drbd_tconn *)data;
conn_try_outdate_peer(tconn);
kref_put(&tconn->kref, &conn_destroy);
return 0;
}
void conn_try_outdate_peer_async(struct drbd_tconn *tconn)
{
struct task_struct *opa;
kref_get(&tconn->kref);
opa = kthread_run(_try_outdate_peer_async, tconn, "drbd_async_h");
if (IS_ERR(opa)) {
conn_err(tconn, "out of mem, failed to invoke fence-peer helper\n");
kref_put(&tconn->kref, &conn_destroy);
}
}
enum drbd_state_rv
drbd_set_role(struct drbd_conf *mdev, enum drbd_role new_role, int force)
{
const int max_tries = 4;
enum drbd_state_rv rv = SS_UNKNOWN_ERROR;
struct net_conf *nc;
int try = 0;
int forced = 0;
union drbd_state mask, val;
if (new_role == R_PRIMARY)
request_ping(mdev->tconn); /* Detect a dead peer ASAP */
mutex_lock(mdev->state_mutex);
mask.i = 0; mask.role = R_MASK;
val.i = 0; val.role = new_role;
while (try++ < max_tries) {
rv = _drbd_request_state(mdev, mask, val, CS_WAIT_COMPLETE);
/* in case we first succeeded to outdate,
* but now suddenly could establish a connection */
if (rv == SS_CW_FAILED_BY_PEER && mask.pdsk != 0) {
val.pdsk = 0;
mask.pdsk = 0;
continue;
}
if (rv == SS_NO_UP_TO_DATE_DISK && force &&
(mdev->state.disk < D_UP_TO_DATE &&
mdev->state.disk >= D_INCONSISTENT)) {
mask.disk = D_MASK;
val.disk = D_UP_TO_DATE;
forced = 1;
continue;
}
if (rv == SS_NO_UP_TO_DATE_DISK &&
mdev->state.disk == D_CONSISTENT && mask.pdsk == 0) {
D_ASSERT(mdev->state.pdsk == D_UNKNOWN);
if (conn_try_outdate_peer(mdev->tconn)) {
val.disk = D_UP_TO_DATE;
mask.disk = D_MASK;
}
continue;
}
if (rv == SS_NOTHING_TO_DO)
goto out;
if (rv == SS_PRIMARY_NOP && mask.pdsk == 0) {
if (!conn_try_outdate_peer(mdev->tconn) && force) {
dev_warn(DEV, "Forced into split brain situation!\n");
mask.pdsk = D_MASK;
val.pdsk = D_OUTDATED;
}
continue;
}
if (rv == SS_TWO_PRIMARIES) {
/* Maybe the peer is detected as dead very soon...
retry at most once more in this case. */
int timeo;
rcu_read_lock();
nc = rcu_dereference(mdev->tconn->net_conf);
timeo = nc ? (nc->ping_timeo + 1) * HZ / 10 : 1;
rcu_read_unlock();
schedule_timeout_interruptible(timeo);
if (try < max_tries)
try = max_tries - 1;
continue;
}
if (rv < SS_SUCCESS) {
rv = _drbd_request_state(mdev, mask, val,
CS_VERBOSE + CS_WAIT_COMPLETE);
if (rv < SS_SUCCESS)
goto out;
}
break;
}
if (rv < SS_SUCCESS)
goto out;
if (forced)
dev_warn(DEV, "Forced to consider local data as UpToDate!\n");
/* Wait until nothing is on the fly :) */
wait_event(mdev->misc_wait, atomic_read(&mdev->ap_pending_cnt) == 0);
if (new_role == R_SECONDARY) {
set_disk_ro(mdev->vdisk, true);
if (get_ldev(mdev)) {
mdev->ldev->md.uuid[UI_CURRENT] &= ~(u64)1;
put_ldev(mdev);
}
} else {
mutex_lock(&mdev->tconn->conf_update);
nc = mdev->tconn->net_conf;
if (nc)
nc->discard_my_data = 0; /* without copy; single bit op is atomic */
mutex_unlock(&mdev->tconn->conf_update);
set_disk_ro(mdev->vdisk, false);
if (get_ldev(mdev)) {
if (((mdev->state.conn < C_CONNECTED ||
mdev->state.pdsk <= D_FAILED)
&& mdev->ldev->md.uuid[UI_BITMAP] == 0) || forced)
drbd_uuid_new_current(mdev);
mdev->ldev->md.uuid[UI_CURRENT] |= (u64)1;
put_ldev(mdev);
}
}
/* writeout of activity log covered areas of the bitmap
* to stable storage done in after state change already */
if (mdev->state.conn >= C_WF_REPORT_PARAMS) {
/* if this was forced, we should consider sync */
if (forced)
drbd_send_uuids(mdev);
drbd_send_current_state(mdev);
}
drbd_md_sync(mdev);
kobject_uevent(&disk_to_dev(mdev->vdisk)->kobj, KOBJ_CHANGE);
out:
mutex_unlock(mdev->state_mutex);
return rv;
}
static const char *from_attrs_err_to_txt(int err)
{
return err == -ENOMSG ? "required attribute missing" :
err == -EOPNOTSUPP ? "unknown mandatory attribute" :
err == -EEXIST ? "can not change invariant setting" :
"invalid attribute value";
}
int drbd_adm_set_role(struct sk_buff *skb, struct genl_info *info)
{
struct set_role_parms parms;
int err;
enum drbd_ret_code retcode;
retcode = drbd_adm_prepare(skb, info, DRBD_ADM_NEED_MINOR);
if (!adm_ctx.reply_skb)
return retcode;
if (retcode != NO_ERROR)
goto out;
memset(&parms, 0, sizeof(parms));
if (info->attrs[DRBD_NLA_SET_ROLE_PARMS]) {
err = set_role_parms_from_attrs(&parms, info);
if (err) {
retcode = ERR_MANDATORY_TAG;
drbd_msg_put_info(from_attrs_err_to_txt(err));
goto out;
}
}
if (info->genlhdr->cmd == DRBD_ADM_PRIMARY)
retcode = drbd_set_role(adm_ctx.mdev, R_PRIMARY, parms.assume_uptodate);
else
retcode = drbd_set_role(adm_ctx.mdev, R_SECONDARY, 0);
out:
drbd_adm_finish(info, retcode);
return 0;
}
/* initializes the md.*_offset members, so we are able to find
* the on disk meta data */
static void drbd_md_set_sector_offsets(struct drbd_conf *mdev,
struct drbd_backing_dev *bdev)
{
sector_t md_size_sect = 0;
int meta_dev_idx;
rcu_read_lock();
meta_dev_idx = rcu_dereference(bdev->disk_conf)->meta_dev_idx;
switch (meta_dev_idx) {
default:
/* v07 style fixed size indexed meta data */
bdev->md.md_size_sect = MD_RESERVED_SECT;
bdev->md.md_offset = drbd_md_ss__(mdev, bdev);
bdev->md.al_offset = MD_AL_OFFSET;
bdev->md.bm_offset = MD_BM_OFFSET;
break;
case DRBD_MD_INDEX_FLEX_EXT:
/* just occupy the full device; unit: sectors */
bdev->md.md_size_sect = drbd_get_capacity(bdev->md_bdev);
bdev->md.md_offset = 0;
bdev->md.al_offset = MD_AL_OFFSET;
bdev->md.bm_offset = MD_BM_OFFSET;
break;
case DRBD_MD_INDEX_INTERNAL:
case DRBD_MD_INDEX_FLEX_INT:
bdev->md.md_offset = drbd_md_ss__(mdev, bdev);
/* al size is still fixed */
bdev->md.al_offset = -MD_AL_SECTORS;
/* we need (slightly less than) ~ this much bitmap sectors: */
md_size_sect = drbd_get_capacity(bdev->backing_bdev);
md_size_sect = ALIGN(md_size_sect, BM_SECT_PER_EXT);
md_size_sect = BM_SECT_TO_EXT(md_size_sect);
md_size_sect = ALIGN(md_size_sect, 8);
/* plus the "drbd meta data super block",
* and the activity log; */
md_size_sect += MD_BM_OFFSET;
bdev->md.md_size_sect = md_size_sect;
/* bitmap offset is adjusted by 'super' block size */
bdev->md.bm_offset = -md_size_sect + MD_AL_OFFSET;
break;
}
rcu_read_unlock();
}
/* input size is expected to be in KB */
char *ppsize(char *buf, unsigned long long size)
{
/* Needs 9 bytes at max including trailing NUL:
* -1ULL ==> "16384 EB" */
static char units[] = { 'K', 'M', 'G', 'T', 'P', 'E' };
int base = 0;
while (size >= 10000 && base < sizeof(units)-1) {
/* shift + round */
size = (size >> 10) + !!(size & (1<<9));
base++;
}
sprintf(buf, "%u %cB", (unsigned)size, units[base]);
return buf;
}
/* there is still a theoretical deadlock when called from receiver
* on an D_INCONSISTENT R_PRIMARY:
* remote READ does inc_ap_bio, receiver would need to receive answer
* packet from remote to dec_ap_bio again.
* receiver receive_sizes(), comes here,
* waits for ap_bio_cnt == 0. -> deadlock.
* but this cannot happen, actually, because:
* R_PRIMARY D_INCONSISTENT, and peer's disk is unreachable
* (not connected, or bad/no disk on peer):
* see drbd_fail_request_early, ap_bio_cnt is zero.
* R_PRIMARY D_INCONSISTENT, and C_SYNC_TARGET:
* peer may not initiate a resize.
*/
/* Note these are not to be confused with
* drbd_adm_suspend_io/drbd_adm_resume_io,
* which are (sub) state changes triggered by admin (drbdsetup),
* and can be long lived.
* This changes an mdev->flag, is triggered by drbd internals,
* and should be short-lived. */
void drbd_suspend_io(struct drbd_conf *mdev)
{
set_bit(SUSPEND_IO, &mdev->flags);
if (drbd_suspended(mdev))
return;
wait_event(mdev->misc_wait, !atomic_read(&mdev->ap_bio_cnt));
}
void drbd_resume_io(struct drbd_conf *mdev)
{
clear_bit(SUSPEND_IO, &mdev->flags);
wake_up(&mdev->misc_wait);
}
/**
* drbd_determine_dev_size() - Sets the right device size obeying all constraints
* @mdev: DRBD device.
*
* Returns 0 on success, negative return values indicate errors.
* You should call drbd_md_sync() after calling this function.
*/
enum determine_dev_size drbd_determine_dev_size(struct drbd_conf *mdev, enum dds_flags flags) __must_hold(local)
{
sector_t prev_first_sect, prev_size; /* previous meta location */
sector_t la_size, u_size;
sector_t size;
char ppb[10];
int md_moved, la_size_changed;
enum determine_dev_size rv = unchanged;
/* race:
* application request passes inc_ap_bio,
* but then cannot get an AL-reference.
* this function later may wait on ap_bio_cnt == 0. -> deadlock.
*
* to avoid that:
* Suspend IO right here.
* still lock the act_log to not trigger ASSERTs there.
*/
drbd_suspend_io(mdev);
/* no wait necessary anymore, actually we could assert that */
wait_event(mdev->al_wait, lc_try_lock(mdev->act_log));
prev_first_sect = drbd_md_first_sector(mdev->ldev);
prev_size = mdev->ldev->md.md_size_sect;
la_size = mdev->ldev->md.la_size_sect;
/* TODO: should only be some assert here, not (re)init... */
drbd_md_set_sector_offsets(mdev, mdev->ldev);
rcu_read_lock();
u_size = rcu_dereference(mdev->ldev->disk_conf)->disk_size;
rcu_read_unlock();
size = drbd_new_dev_size(mdev, mdev->ldev, u_size, flags & DDSF_FORCED);
if (drbd_get_capacity(mdev->this_bdev) != size ||
drbd_bm_capacity(mdev) != size) {
int err;
err = drbd_bm_resize(mdev, size, !(flags & DDSF_NO_RESYNC));
if (unlikely(err)) {
/* currently there is only one error: ENOMEM! */
size = drbd_bm_capacity(mdev)>>1;
if (size == 0) {
dev_err(DEV, "OUT OF MEMORY! "
"Could not allocate bitmap!\n");
} else {
dev_err(DEV, "BM resizing failed. "
"Leaving size unchanged at size = %lu KB\n",
(unsigned long)size);
}
rv = dev_size_error;
}
/* racy, see comments above. */
drbd_set_my_capacity(mdev, size);
mdev->ldev->md.la_size_sect = size;
dev_info(DEV, "size = %s (%llu KB)\n", ppsize(ppb, size>>1),
(unsigned long long)size>>1);
}
if (rv == dev_size_error)
goto out;
la_size_changed = (la_size != mdev->ldev->md.la_size_sect);
md_moved = prev_first_sect != drbd_md_first_sector(mdev->ldev)
|| prev_size != mdev->ldev->md.md_size_sect;
if (la_size_changed || md_moved) {
int err;
drbd_al_shrink(mdev); /* All extents inactive. */
dev_info(DEV, "Writing the whole bitmap, %s\n",
la_size_changed && md_moved ? "size changed and md moved" :
la_size_changed ? "size changed" : "md moved");
/* next line implicitly does drbd_suspend_io()+drbd_resume_io() */
err = drbd_bitmap_io(mdev, &drbd_bm_write,
"size changed", BM_LOCKED_MASK);
if (err) {
rv = dev_size_error;
goto out;
}
drbd_md_mark_dirty(mdev);
}
if (size > la_size)
rv = grew;
if (size < la_size)
rv = shrunk;
out:
lc_unlock(mdev->act_log);
wake_up(&mdev->al_wait);
drbd_resume_io(mdev);
return rv;
}
sector_t
drbd_new_dev_size(struct drbd_conf *mdev, struct drbd_backing_dev *bdev,
sector_t u_size, int assume_peer_has_space)
{
sector_t p_size = mdev->p_size; /* partner's disk size. */
sector_t la_size = bdev->md.la_size_sect; /* last agreed size. */
sector_t m_size; /* my size */
sector_t size = 0;
m_size = drbd_get_max_capacity(bdev);
if (mdev->state.conn < C_CONNECTED && assume_peer_has_space) {
dev_warn(DEV, "Resize while not connected was forced by the user!\n");
p_size = m_size;
}
if (p_size && m_size) {
size = min_t(sector_t, p_size, m_size);
} else {
if (la_size) {
size = la_size;
if (m_size && m_size < size)
size = m_size;
if (p_size && p_size < size)
size = p_size;
} else {
if (m_size)
size = m_size;
if (p_size)
size = p_size;
}
}
if (size == 0)
dev_err(DEV, "Both nodes diskless!\n");
if (u_size) {
if (u_size > size)
dev_err(DEV, "Requested disk size is too big (%lu > %lu)\n",
(unsigned long)u_size>>1, (unsigned long)size>>1);
else
size = u_size;
}
return size;
}
/**
* drbd_check_al_size() - Ensures that the AL is of the right size
* @mdev: DRBD device.
*
* Returns -EBUSY if current al lru is still used, -ENOMEM when allocation
* failed, and 0 on success. You should call drbd_md_sync() after you called
* this function.
*/
static int drbd_check_al_size(struct drbd_conf *mdev, struct disk_conf *dc)
{
struct lru_cache *n, *t;
struct lc_element *e;
unsigned int in_use;
int i;
if (mdev->act_log &&
mdev->act_log->nr_elements == dc->al_extents)
return 0;
in_use = 0;
t = mdev->act_log;
n = lc_create("act_log", drbd_al_ext_cache, AL_UPDATES_PER_TRANSACTION,
dc->al_extents, sizeof(struct lc_element), 0);
if (n == NULL) {
dev_err(DEV, "Cannot allocate act_log lru!\n");
return -ENOMEM;
}
spin_lock_irq(&mdev->al_lock);
if (t) {
for (i = 0; i < t->nr_elements; i++) {
e = lc_element_by_index(t, i);
if (e->refcnt)
dev_err(DEV, "refcnt(%d)==%d\n",
e->lc_number, e->refcnt);
in_use += e->refcnt;
}
}
if (!in_use)
mdev->act_log = n;
spin_unlock_irq(&mdev->al_lock);
if (in_use) {
dev_err(DEV, "Activity log still in use!\n");
lc_destroy(n);
return -EBUSY;
} else {
if (t)
lc_destroy(t);
}
drbd_md_mark_dirty(mdev); /* we changed mdev->act_log->nr_elemens */
return 0;
}
static void drbd_setup_queue_param(struct drbd_conf *mdev, unsigned int max_bio_size)
{
struct request_queue * const q = mdev->rq_queue;
int max_hw_sectors = max_bio_size >> 9;
int max_segments = 0;
if (get_ldev_if_state(mdev, D_ATTACHING)) {
struct request_queue * const b = mdev->ldev->backing_bdev->bd_disk->queue;
max_hw_sectors = min(queue_max_hw_sectors(b), max_bio_size >> 9);
rcu_read_lock();
max_segments = rcu_dereference(mdev->ldev->disk_conf)->max_bio_bvecs;
rcu_read_unlock();
put_ldev(mdev);
}
blk_queue_logical_block_size(q, 512);
blk_queue_max_hw_sectors(q, max_hw_sectors);
/* This is the workaround for "bio would need to, but cannot, be split" */
blk_queue_max_segments(q, max_segments ? max_segments : BLK_MAX_SEGMENTS);
blk_queue_segment_boundary(q, PAGE_CACHE_SIZE-1);
if (get_ldev_if_state(mdev, D_ATTACHING)) {
struct request_queue * const b = mdev->ldev->backing_bdev->bd_disk->queue;
blk_queue_stack_limits(q, b);
if (q->backing_dev_info.ra_pages != b->backing_dev_info.ra_pages) {
dev_info(DEV, "Adjusting my ra_pages to backing device's (%lu -> %lu)\n",
q->backing_dev_info.ra_pages,
b->backing_dev_info.ra_pages);
q->backing_dev_info.ra_pages = b->backing_dev_info.ra_pages;
}
put_ldev(mdev);
}
}
void drbd_reconsider_max_bio_size(struct drbd_conf *mdev)
{
int now, new, local, peer;
now = queue_max_hw_sectors(mdev->rq_queue) << 9;
local = mdev->local_max_bio_size; /* Eventually last known value, from volatile memory */
peer = mdev->peer_max_bio_size; /* Eventually last known value, from meta data */
if (get_ldev_if_state(mdev, D_ATTACHING)) {
local = queue_max_hw_sectors(mdev->ldev->backing_bdev->bd_disk->queue) << 9;
mdev->local_max_bio_size = local;
put_ldev(mdev);
}
/* We may ignore peer limits if the peer is modern enough.
Because new from 8.3.8 onwards the peer can use multiple
BIOs for a single peer_request */
if (mdev->state.conn >= C_CONNECTED) {
if (mdev->tconn->agreed_pro_version < 94)
peer = min_t(int, mdev->peer_max_bio_size, DRBD_MAX_SIZE_H80_PACKET);
/* Correct old drbd (up to 8.3.7) if it believes it can do more than 32KiB */
else if (mdev->tconn->agreed_pro_version == 94)
peer = DRBD_MAX_SIZE_H80_PACKET;
else if (mdev->tconn->agreed_pro_version < 100)
peer = DRBD_MAX_BIO_SIZE_P95; /* drbd 8.3.8 onwards, before 8.4.0 */
else
peer = DRBD_MAX_BIO_SIZE;
}
new = min_t(int, local, peer);
if (mdev->state.role == R_PRIMARY && new < now)
dev_err(DEV, "ASSERT FAILED new < now; (%d < %d)\n", new, now);
if (new != now)
dev_info(DEV, "max BIO size = %u\n", new);
drbd_setup_queue_param(mdev, new);
}
/* Starts the worker thread */
static void conn_reconfig_start(struct drbd_tconn *tconn)
{
drbd_thread_start(&tconn->worker);
conn_flush_workqueue(tconn);
}
/* if still unconfigured, stops worker again. */
static void conn_reconfig_done(struct drbd_tconn *tconn)
{
bool stop_threads;
spin_lock_irq(&tconn->req_lock);
stop_threads = conn_all_vols_unconf(tconn) &&
tconn->cstate == C_STANDALONE;
spin_unlock_irq(&tconn->req_lock);
if (stop_threads) {
/* asender is implicitly stopped by receiver
* in conn_disconnect() */
drbd_thread_stop(&tconn->receiver);
drbd_thread_stop(&tconn->worker);
}
}
/* Make sure IO is suspended before calling this function(). */
static void drbd_suspend_al(struct drbd_conf *mdev)
{
int s = 0;
if (!lc_try_lock(mdev->act_log)) {
dev_warn(DEV, "Failed to lock al in drbd_suspend_al()\n");
return;
}
drbd_al_shrink(mdev);
spin_lock_irq(&mdev->tconn->req_lock);
if (mdev->state.conn < C_CONNECTED)
s = !test_and_set_bit(AL_SUSPENDED, &mdev->flags);
spin_unlock_irq(&mdev->tconn->req_lock);
lc_unlock(mdev->act_log);
if (s)
dev_info(DEV, "Suspended AL updates\n");
}
static bool should_set_defaults(struct genl_info *info)
{
unsigned flags = ((struct drbd_genlmsghdr*)info->userhdr)->flags;
return 0 != (flags & DRBD_GENL_F_SET_DEFAULTS);
}
static void enforce_disk_conf_limits(struct disk_conf *dc)
{
if (dc->al_extents < DRBD_AL_EXTENTS_MIN)
dc->al_extents = DRBD_AL_EXTENTS_MIN;
if (dc->al_extents > DRBD_AL_EXTENTS_MAX)
dc->al_extents = DRBD_AL_EXTENTS_MAX;
if (dc->c_plan_ahead > DRBD_C_PLAN_AHEAD_MAX)
dc->c_plan_ahead = DRBD_C_PLAN_AHEAD_MAX;
}
int drbd_adm_disk_opts(struct sk_buff *skb, struct genl_info *info)
{
enum drbd_ret_code retcode;
struct drbd_conf *mdev;
struct disk_conf *new_disk_conf, *old_disk_conf;
struct fifo_buffer *old_plan = NULL, *new_plan = NULL;
int err, fifo_size;
retcode = drbd_adm_prepare(skb, info, DRBD_ADM_NEED_MINOR);
if (!adm_ctx.reply_skb)
return retcode;
if (retcode != NO_ERROR)
goto out;
mdev = adm_ctx.mdev;
/* we also need a disk
* to change the options on */
if (!get_ldev(mdev)) {
retcode = ERR_NO_DISK;
goto out;
}
new_disk_conf = kmalloc(sizeof(struct disk_conf), GFP_KERNEL);
if (!new_disk_conf) {
retcode = ERR_NOMEM;
goto fail;
}
mutex_lock(&mdev->tconn->conf_update);
old_disk_conf = mdev->ldev->disk_conf;
*new_disk_conf = *old_disk_conf;
if (should_set_defaults(info))
set_disk_conf_defaults(new_disk_conf);
err = disk_conf_from_attrs_for_change(new_disk_conf, info);
if (err && err != -ENOMSG) {
retcode = ERR_MANDATORY_TAG;
drbd_msg_put_info(from_attrs_err_to_txt(err));
}
if (!expect(new_disk_conf->resync_rate >= 1))
new_disk_conf->resync_rate = 1;
enforce_disk_conf_limits(new_disk_conf);
fifo_size = (new_disk_conf->c_plan_ahead * 10 * SLEEP_TIME) / HZ;
if (fifo_size != mdev->rs_plan_s->size) {
new_plan = fifo_alloc(fifo_size);
if (!new_plan) {
dev_err(DEV, "kmalloc of fifo_buffer failed");
retcode = ERR_NOMEM;
goto fail_unlock;
}
}
wait_event(mdev->al_wait, lc_try_lock(mdev->act_log));
drbd_al_shrink(mdev);
err = drbd_check_al_size(mdev, new_disk_conf);
lc_unlock(mdev->act_log);
wake_up(&mdev->al_wait);
if (err) {
retcode = ERR_NOMEM;
goto fail_unlock;
}
write_lock_irq(&global_state_lock);
retcode = drbd_resync_after_valid(mdev, new_disk_conf->resync_after);
if (retcode == NO_ERROR) {
rcu_assign_pointer(mdev->ldev->disk_conf, new_disk_conf);
drbd_resync_after_changed(mdev);
}
write_unlock_irq(&global_state_lock);
if (retcode != NO_ERROR)
goto fail_unlock;
if (new_plan) {
old_plan = mdev->rs_plan_s;
rcu_assign_pointer(mdev->rs_plan_s, new_plan);
}
mutex_unlock(&mdev->tconn->conf_update);
drbd_md_sync(mdev);
if (mdev->state.conn >= C_CONNECTED)
drbd_send_sync_param(mdev);
synchronize_rcu();
kfree(old_disk_conf);
kfree(old_plan);
mod_timer(&mdev->request_timer, jiffies + HZ);
goto success;
fail_unlock:
mutex_unlock(&mdev->tconn->conf_update);
fail:
kfree(new_disk_conf);
kfree(new_plan);
success:
put_ldev(mdev);
out:
drbd_adm_finish(info, retcode);
return 0;
}
int drbd_adm_attach(struct sk_buff *skb, struct genl_info *info)
{
struct drbd_conf *mdev;
int err;
enum drbd_ret_code retcode;
enum determine_dev_size dd;
sector_t max_possible_sectors;
sector_t min_md_device_sectors;
struct drbd_backing_dev *nbc = NULL; /* new_backing_conf */
struct disk_conf *new_disk_conf = NULL;
struct block_device *bdev;
struct lru_cache *resync_lru = NULL;
struct fifo_buffer *new_plan = NULL;
union drbd_state ns, os;
enum drbd_state_rv rv;
struct net_conf *nc;
retcode = drbd_adm_prepare(skb, info, DRBD_ADM_NEED_MINOR);
if (!adm_ctx.reply_skb)
return retcode;
if (retcode != NO_ERROR)
goto finish;
mdev = adm_ctx.mdev;
conn_reconfig_start(mdev->tconn);
/* if you want to reconfigure, please tear down first */
if (mdev->state.disk > D_DISKLESS) {
retcode = ERR_DISK_CONFIGURED;
goto fail;
}
/* It may just now have detached because of IO error. Make sure
* drbd_ldev_destroy is done already, we may end up here very fast,
* e.g. if someone calls attach from the on-io-error handler,
* to realize a "hot spare" feature (not that I'd recommend that) */
wait_event(mdev->misc_wait, !atomic_read(&mdev->local_cnt));
/* allocation not in the IO path, drbdsetup context */
nbc = kzalloc(sizeof(struct drbd_backing_dev), GFP_KERNEL);
if (!nbc) {
retcode = ERR_NOMEM;
goto fail;
}
new_disk_conf = kzalloc(sizeof(struct disk_conf), GFP_KERNEL);
if (!new_disk_conf) {
retcode = ERR_NOMEM;
goto fail;
}
nbc->disk_conf = new_disk_conf;
set_disk_conf_defaults(new_disk_conf);
err = disk_conf_from_attrs(new_disk_conf, info);
if (err) {
retcode = ERR_MANDATORY_TAG;
drbd_msg_put_info(from_attrs_err_to_txt(err));
goto fail;
}
enforce_disk_conf_limits(new_disk_conf);
new_plan = fifo_alloc((new_disk_conf->c_plan_ahead * 10 * SLEEP_TIME) / HZ);
if (!new_plan) {
retcode = ERR_NOMEM;
goto fail;
}
if (new_disk_conf->meta_dev_idx < DRBD_MD_INDEX_FLEX_INT) {
retcode = ERR_MD_IDX_INVALID;
goto fail;
}
rcu_read_lock();
nc = rcu_dereference(mdev->tconn->net_conf);
if (nc) {
if (new_disk_conf->fencing == FP_STONITH && nc->wire_protocol == DRBD_PROT_A) {
rcu_read_unlock();
retcode = ERR_STONITH_AND_PROT_A;
goto fail;
}
}
rcu_read_unlock();
bdev = blkdev_get_by_path(new_disk_conf->backing_dev,
FMODE_READ | FMODE_WRITE | FMODE_EXCL, mdev);
if (IS_ERR(bdev)) {
dev_err(DEV, "open(\"%s\") failed with %ld\n", new_disk_conf->backing_dev,
PTR_ERR(bdev));
retcode = ERR_OPEN_DISK;
goto fail;
}
nbc->backing_bdev = bdev;
/*
* meta_dev_idx >= 0: external fixed size, possibly multiple
* drbd sharing one meta device. TODO in that case, paranoia
* check that [md_bdev, meta_dev_idx] is not yet used by some
* other drbd minor! (if you use drbd.conf + drbdadm, that
* should check it for you already; but if you don't, or
* someone fooled it, we need to double check here)
*/
bdev = blkdev_get_by_path(new_disk_conf->meta_dev,
FMODE_READ | FMODE_WRITE | FMODE_EXCL,
(new_disk_conf->meta_dev_idx < 0) ?
(void *)mdev : (void *)drbd_m_holder);
if (IS_ERR(bdev)) {
dev_err(DEV, "open(\"%s\") failed with %ld\n", new_disk_conf->meta_dev,
PTR_ERR(bdev));
retcode = ERR_OPEN_MD_DISK;
goto fail;
}
nbc->md_bdev = bdev;
if ((nbc->backing_bdev == nbc->md_bdev) !=
(new_disk_conf->meta_dev_idx == DRBD_MD_INDEX_INTERNAL ||
new_disk_conf->meta_dev_idx == DRBD_MD_INDEX_FLEX_INT)) {
retcode = ERR_MD_IDX_INVALID;
goto fail;
}
resync_lru = lc_create("resync", drbd_bm_ext_cache,
1, 61, sizeof(struct bm_extent),
offsetof(struct bm_extent, lce));
if (!resync_lru) {
retcode = ERR_NOMEM;
goto fail;
}
/* RT - for drbd_get_max_capacity() DRBD_MD_INDEX_FLEX_INT */
drbd_md_set_sector_offsets(mdev, nbc);
if (drbd_get_max_capacity(nbc) < new_disk_conf->disk_size) {
dev_err(DEV, "max capacity %llu smaller than disk size %llu\n",
(unsigned long long) drbd_get_max_capacity(nbc),
(unsigned long long) new_disk_conf->disk_size);
retcode = ERR_DISK_TOO_SMALL;
goto fail;
}
if (new_disk_conf->meta_dev_idx < 0) {
max_possible_sectors = DRBD_MAX_SECTORS_FLEX;
/* at least one MB, otherwise it does not make sense */
min_md_device_sectors = (2<<10);
} else {
max_possible_sectors = DRBD_MAX_SECTORS;
min_md_device_sectors = MD_RESERVED_SECT * (new_disk_conf->meta_dev_idx + 1);
}
if (drbd_get_capacity(nbc->md_bdev) < min_md_device_sectors) {
retcode = ERR_MD_DISK_TOO_SMALL;
dev_warn(DEV, "refusing attach: md-device too small, "
"at least %llu sectors needed for this meta-disk type\n",
(unsigned long long) min_md_device_sectors);
goto fail;
}
/* Make sure the new disk is big enough
* (we may currently be R_PRIMARY with no local disk...) */
if (drbd_get_max_capacity(nbc) <
drbd_get_capacity(mdev->this_bdev)) {
retcode = ERR_DISK_TOO_SMALL;
goto fail;
}
nbc->known_size = drbd_get_capacity(nbc->backing_bdev);
if (nbc->known_size > max_possible_sectors) {
dev_warn(DEV, "==> truncating very big lower level device "
"to currently maximum possible %llu sectors <==\n",
(unsigned long long) max_possible_sectors);
if (new_disk_conf->meta_dev_idx >= 0)
dev_warn(DEV, "==>> using internal or flexible "
"meta data may help <<==\n");
}
drbd_suspend_io(mdev);
/* also wait for the last barrier ack. */
wait_event(mdev->misc_wait, !atomic_read(&mdev->ap_pending_cnt) || drbd_suspended(mdev));
/* and for any other previously queued work */
drbd_flush_workqueue(mdev);
rv = _drbd_request_state(mdev, NS(disk, D_ATTACHING), CS_VERBOSE);
retcode = rv; /* FIXME: Type mismatch. */
drbd_resume_io(mdev);
if (rv < SS_SUCCESS)
goto fail;
if (!get_ldev_if_state(mdev, D_ATTACHING))
goto force_diskless;
drbd_md_set_sector_offsets(mdev, nbc);
if (!mdev->bitmap) {
if (drbd_bm_init(mdev)) {
retcode = ERR_NOMEM;
goto force_diskless_dec;
}
}
retcode = drbd_md_read(mdev, nbc);
if (retcode != NO_ERROR)
goto force_diskless_dec;
if (mdev->state.conn < C_CONNECTED &&
mdev->state.role == R_PRIMARY &&
(mdev->ed_uuid & ~((u64)1)) != (nbc->md.uuid[UI_CURRENT] & ~((u64)1))) {
dev_err(DEV, "Can only attach to data with current UUID=%016llX\n",
(unsigned long long)mdev->ed_uuid);
retcode = ERR_DATA_NOT_CURRENT;
goto force_diskless_dec;
}
/* Since we are diskless, fix the activity log first... */
if (drbd_check_al_size(mdev, new_disk_conf)) {
retcode = ERR_NOMEM;
goto force_diskless_dec;
}
/* Prevent shrinking of consistent devices ! */
if (drbd_md_test_flag(nbc, MDF_CONSISTENT) &&
drbd_new_dev_size(mdev, nbc, nbc->disk_conf->disk_size, 0) < nbc->md.la_size_sect) {
dev_warn(DEV, "refusing to truncate a consistent device\n");
retcode = ERR_DISK_TOO_SMALL;
goto force_diskless_dec;
}
/* Reset the "barriers don't work" bits here, then force meta data to
* be written, to ensure we determine if barriers are supported. */
if (new_disk_conf->md_flushes)
clear_bit(MD_NO_FUA, &mdev->flags);
else
set_bit(MD_NO_FUA, &mdev->flags);
/* Point of no return reached.
* Devices and memory are no longer released by error cleanup below.
* now mdev takes over responsibility, and the state engine should
* clean it up somewhere. */
D_ASSERT(mdev->ldev == NULL);
mdev->ldev = nbc;
mdev->resync = resync_lru;
mdev->rs_plan_s = new_plan;
nbc = NULL;
resync_lru = NULL;
new_disk_conf = NULL;
new_plan = NULL;
drbd_bump_write_ordering(mdev->tconn, WO_bdev_flush);
if (drbd_md_test_flag(mdev->ldev, MDF_CRASHED_PRIMARY))
set_bit(CRASHED_PRIMARY, &mdev->flags);
else
clear_bit(CRASHED_PRIMARY, &mdev->flags);
if (drbd_md_test_flag(mdev->ldev, MDF_PRIMARY_IND) &&
!(mdev->state.role == R_PRIMARY && mdev->tconn->susp_nod))
set_bit(CRASHED_PRIMARY, &mdev->flags);
mdev->send_cnt = 0;
mdev->recv_cnt = 0;
mdev->read_cnt = 0;
mdev->writ_cnt = 0;
drbd_reconsider_max_bio_size(mdev);
/* If I am currently not R_PRIMARY,
* but meta data primary indicator is set,
* I just now recover from a hard crash,
* and have been R_PRIMARY before that crash.
*
* Now, if I had no connection before that crash
* (have been degraded R_PRIMARY), chances are that
* I won't find my peer now either.
*
* In that case, and _only_ in that case,
* we use the degr-wfc-timeout instead of the default,
* so we can automatically recover from a crash of a
* degraded but active "cluster" after a certain timeout.
*/
clear_bit(USE_DEGR_WFC_T, &mdev->flags);
if (mdev->state.role != R_PRIMARY &&
drbd_md_test_flag(mdev->ldev, MDF_PRIMARY_IND) &&
!drbd_md_test_flag(mdev->ldev, MDF_CONNECTED_IND))
set_bit(USE_DEGR_WFC_T, &mdev->flags);
dd = drbd_determine_dev_size(mdev, 0);
if (dd == dev_size_error) {
retcode = ERR_NOMEM_BITMAP;
goto force_diskless_dec;
} else if (dd == grew)
set_bit(RESYNC_AFTER_NEG, &mdev->flags);
if (drbd_md_test_flag(mdev->ldev, MDF_FULL_SYNC)) {
dev_info(DEV, "Assuming that all blocks are out of sync "
"(aka FullSync)\n");
if (drbd_bitmap_io(mdev, &drbd_bmio_set_n_write,
"set_n_write from attaching", BM_LOCKED_MASK)) {
retcode = ERR_IO_MD_DISK;
goto force_diskless_dec;
}
} else {
if (drbd_bitmap_io(mdev, &drbd_bm_read,
"read from attaching", BM_LOCKED_MASK)) {
retcode = ERR_IO_MD_DISK;
goto force_diskless_dec;
}
}
if (_drbd_bm_total_weight(mdev) == drbd_bm_bits(mdev))
drbd_suspend_al(mdev); /* IO is still suspended here... */
spin_lock_irq(&mdev->tconn->req_lock);
os = drbd_read_state(mdev);
ns = os;
/* If MDF_CONSISTENT is not set go into inconsistent state,
otherwise investigate MDF_WasUpToDate...
If MDF_WAS_UP_TO_DATE is not set go into D_OUTDATED disk state,
otherwise into D_CONSISTENT state.
*/
if (drbd_md_test_flag(mdev->ldev, MDF_CONSISTENT)) {
if (drbd_md_test_flag(mdev->ldev, MDF_WAS_UP_TO_DATE))
ns.disk = D_CONSISTENT;
else
ns.disk = D_OUTDATED;
} else {
ns.disk = D_INCONSISTENT;
}
if (drbd_md_test_flag(mdev->ldev, MDF_PEER_OUT_DATED))
ns.pdsk = D_OUTDATED;
rcu_read_lock();
if (ns.disk == D_CONSISTENT &&
(ns.pdsk == D_OUTDATED || rcu_dereference(mdev->ldev->disk_conf)->fencing == FP_DONT_CARE))
ns.disk = D_UP_TO_DATE;
rcu_read_unlock();
/* All tests on MDF_PRIMARY_IND, MDF_CONNECTED_IND,
MDF_CONSISTENT and MDF_WAS_UP_TO_DATE must happen before
this point, because drbd_request_state() modifies these
flags. */
/* In case we are C_CONNECTED postpone any decision on the new disk
state after the negotiation phase. */
if (mdev->state.conn == C_CONNECTED) {
mdev->new_state_tmp.i = ns.i;
ns.i = os.i;
ns.disk = D_NEGOTIATING;
/* We expect to receive up-to-date UUIDs soon.
To avoid a race in receive_state, free p_uuid while
holding req_lock. I.e. atomic with the state change */
kfree(mdev->p_uuid);
mdev->p_uuid = NULL;
}
rv = _drbd_set_state(mdev, ns, CS_VERBOSE, NULL);
spin_unlock_irq(&mdev->tconn->req_lock);
if (rv < SS_SUCCESS)
goto force_diskless_dec;
mod_timer(&mdev->request_timer, jiffies + HZ);
if (mdev->state.role == R_PRIMARY)
mdev->ldev->md.uuid[UI_CURRENT] |= (u64)1;
else
mdev->ldev->md.uuid[UI_CURRENT] &= ~(u64)1;
drbd_md_mark_dirty(mdev);
drbd_md_sync(mdev);
kobject_uevent(&disk_to_dev(mdev->vdisk)->kobj, KOBJ_CHANGE);
put_ldev(mdev);
conn_reconfig_done(mdev->tconn);
drbd_adm_finish(info, retcode);
return 0;
force_diskless_dec:
put_ldev(mdev);
force_diskless:
drbd_force_state(mdev, NS(disk, D_DISKLESS));
drbd_md_sync(mdev);
fail:
conn_reconfig_done(mdev->tconn);
if (nbc) {
if (nbc->backing_bdev)
blkdev_put(nbc->backing_bdev,
FMODE_READ | FMODE_WRITE | FMODE_EXCL);
if (nbc->md_bdev)
blkdev_put(nbc->md_bdev,
FMODE_READ | FMODE_WRITE | FMODE_EXCL);
kfree(nbc);
}
kfree(new_disk_conf);
lc_destroy(resync_lru);
kfree(new_plan);
finish:
drbd_adm_finish(info, retcode);
return 0;
}
static int adm_detach(struct drbd_conf *mdev, int force)
{
enum drbd_state_rv retcode;
int ret;
if (force) {
drbd_force_state(mdev, NS(disk, D_FAILED));
retcode = SS_SUCCESS;
goto out;
}
drbd_suspend_io(mdev); /* so no-one is stuck in drbd_al_begin_io */
drbd_md_get_buffer(mdev); /* make sure there is no in-flight meta-data IO */
retcode = drbd_request_state(mdev, NS(disk, D_FAILED));
drbd_md_put_buffer(mdev);
/* D_FAILED will transition to DISKLESS. */
ret = wait_event_interruptible(mdev->misc_wait,
mdev->state.disk != D_FAILED);
drbd_resume_io(mdev);
if ((int)retcode == (int)SS_IS_DISKLESS)
retcode = SS_NOTHING_TO_DO;
if (ret)
retcode = ERR_INTR;
out:
return retcode;
}
/* Detaching the disk is a process in multiple stages. First we need to lock
* out application IO, in-flight IO, IO stuck in drbd_al_begin_io.
* Then we transition to D_DISKLESS, and wait for put_ldev() to return all
* internal references as well.
* Only then we have finally detached. */
int drbd_adm_detach(struct sk_buff *skb, struct genl_info *info)
{
enum drbd_ret_code retcode;
struct detach_parms parms = { };
int err;
retcode = drbd_adm_prepare(skb, info, DRBD_ADM_NEED_MINOR);
if (!adm_ctx.reply_skb)
return retcode;
if (retcode != NO_ERROR)
goto out;
if (info->attrs[DRBD_NLA_DETACH_PARMS]) {
err = detach_parms_from_attrs(&parms, info);
if (err) {
retcode = ERR_MANDATORY_TAG;
drbd_msg_put_info(from_attrs_err_to_txt(err));
goto out;
}
}
retcode = adm_detach(adm_ctx.mdev, parms.force_detach);
out:
drbd_adm_finish(info, retcode);
return 0;
}
static bool conn_resync_running(struct drbd_tconn *tconn)
{
struct drbd_conf *mdev;
bool rv = false;
int vnr;
rcu_read_lock();
idr_for_each_entry(&tconn->volumes, mdev, vnr) {
if (mdev->state.conn == C_SYNC_SOURCE ||
mdev->state.conn == C_SYNC_TARGET ||
mdev->state.conn == C_PAUSED_SYNC_S ||
mdev->state.conn == C_PAUSED_SYNC_T) {
rv = true;
break;
}
}
rcu_read_unlock();
return rv;
}
static bool conn_ov_running(struct drbd_tconn *tconn)
{
struct drbd_conf *mdev;
bool rv = false;
int vnr;
rcu_read_lock();
idr_for_each_entry(&tconn->volumes, mdev, vnr) {
if (mdev->state.conn == C_VERIFY_S ||
mdev->state.conn == C_VERIFY_T) {
rv = true;
break;
}
}
rcu_read_unlock();
return rv;
}
static enum drbd_ret_code
_check_net_options(struct drbd_tconn *tconn, struct net_conf *old_conf, struct net_conf *new_conf)
{
struct drbd_conf *mdev;
int i;
if (old_conf && tconn->cstate == C_WF_REPORT_PARAMS && tconn->agreed_pro_version < 100) {
if (new_conf->wire_protocol != old_conf->wire_protocol)
return ERR_NEED_APV_100;
if (new_conf->two_primaries != old_conf->two_primaries)
return ERR_NEED_APV_100;
if (!new_conf->integrity_alg != !old_conf->integrity_alg)
return ERR_NEED_APV_100;
if (strcmp(new_conf->integrity_alg, old_conf->integrity_alg))
return ERR_NEED_APV_100;
}
if (!new_conf->two_primaries &&
conn_highest_role(tconn) == R_PRIMARY &&
conn_highest_peer(tconn) == R_PRIMARY)
return ERR_NEED_ALLOW_TWO_PRI;
if (new_conf->two_primaries &&
(new_conf->wire_protocol != DRBD_PROT_C))
return ERR_NOT_PROTO_C;
idr_for_each_entry(&tconn->volumes, mdev, i) {
if (get_ldev(mdev)) {
enum drbd_fencing_p fp = rcu_dereference(mdev->ldev->disk_conf)->fencing;
put_ldev(mdev);
if (new_conf->wire_protocol == DRBD_PROT_A && fp == FP_STONITH)
return ERR_STONITH_AND_PROT_A;
}
if (mdev->state.role == R_PRIMARY && new_conf->discard_my_data)
return ERR_DISCARD;
}
if (new_conf->on_congestion != OC_BLOCK && new_conf->wire_protocol != DRBD_PROT_A)
return ERR_CONG_NOT_PROTO_A;
return NO_ERROR;
}
static enum drbd_ret_code
check_net_options(struct drbd_tconn *tconn, struct net_conf *new_conf)
{
static enum drbd_ret_code rv;
struct drbd_conf *mdev;
int i;
rcu_read_lock();
rv = _check_net_options(tconn, rcu_dereference(tconn->net_conf), new_conf);
rcu_read_unlock();
/* tconn->volumes protected by genl_lock() here */
idr_for_each_entry(&tconn->volumes, mdev, i) {
if (!mdev->bitmap) {
if(drbd_bm_init(mdev))
return ERR_NOMEM;
}
}
return rv;
}
struct crypto {
struct crypto_hash *verify_tfm;
struct crypto_hash *csums_tfm;
struct crypto_hash *cram_hmac_tfm;
struct crypto_hash *integrity_tfm;
};
static int
alloc_hash(struct crypto_hash **tfm, char *tfm_name, int err_alg)
{
if (!tfm_name[0])
return NO_ERROR;
*tfm = crypto_alloc_hash(tfm_name, 0, CRYPTO_ALG_ASYNC);
if (IS_ERR(*tfm)) {
*tfm = NULL;
return err_alg;
}
return NO_ERROR;
}
static enum drbd_ret_code
alloc_crypto(struct crypto *crypto, struct net_conf *new_conf)
{
char hmac_name[CRYPTO_MAX_ALG_NAME];
enum drbd_ret_code rv;
rv = alloc_hash(&crypto->csums_tfm, new_conf->csums_alg,
ERR_CSUMS_ALG);
if (rv != NO_ERROR)
return rv;
rv = alloc_hash(&crypto->verify_tfm, new_conf->verify_alg,
ERR_VERIFY_ALG);
if (rv != NO_ERROR)
return rv;
rv = alloc_hash(&crypto->integrity_tfm, new_conf->integrity_alg,
ERR_INTEGRITY_ALG);
if (rv != NO_ERROR)
return rv;
if (new_conf->cram_hmac_alg[0] != 0) {
snprintf(hmac_name, CRYPTO_MAX_ALG_NAME, "hmac(%s)",
new_conf->cram_hmac_alg);
rv = alloc_hash(&crypto->cram_hmac_tfm, hmac_name,
ERR_AUTH_ALG);
}
return rv;
}
static void free_crypto(struct crypto *crypto)
{
crypto_free_hash(crypto->cram_hmac_tfm);
crypto_free_hash(crypto->integrity_tfm);
crypto_free_hash(crypto->csums_tfm);
crypto_free_hash(crypto->verify_tfm);
}
int drbd_adm_net_opts(struct sk_buff *skb, struct genl_info *info)
{
enum drbd_ret_code retcode;
struct drbd_tconn *tconn;
struct net_conf *old_conf, *new_conf = NULL;
int err;
int ovr; /* online verify running */
int rsr; /* re-sync running */
struct crypto crypto = { };
retcode = drbd_adm_prepare(skb, info, DRBD_ADM_NEED_CONNECTION);
if (!adm_ctx.reply_skb)
return retcode;
if (retcode != NO_ERROR)
goto out;
tconn = adm_ctx.tconn;
new_conf = kzalloc(sizeof(struct net_conf), GFP_KERNEL);
if (!new_conf) {
retcode = ERR_NOMEM;
goto out;
}
conn_reconfig_start(tconn);
mutex_lock(&tconn->data.mutex);
mutex_lock(&tconn->conf_update);
old_conf = tconn->net_conf;
if (!old_conf) {
drbd_msg_put_info("net conf missing, try connect");
retcode = ERR_INVALID_REQUEST;
goto fail;
}
*new_conf = *old_conf;
if (should_set_defaults(info))
set_net_conf_defaults(new_conf);
err = net_conf_from_attrs_for_change(new_conf, info);
if (err && err != -ENOMSG) {
retcode = ERR_MANDATORY_TAG;
drbd_msg_put_info(from_attrs_err_to_txt(err));
goto fail;
}
retcode = check_net_options(tconn, new_conf);
if (retcode != NO_ERROR)
goto fail;
/* re-sync running */
rsr = conn_resync_running(tconn);
if (rsr && strcmp(new_conf->csums_alg, old_conf->csums_alg)) {
retcode = ERR_CSUMS_RESYNC_RUNNING;
goto fail;
}
/* online verify running */
ovr = conn_ov_running(tconn);
if (ovr && strcmp(new_conf->verify_alg, old_conf->verify_alg)) {
retcode = ERR_VERIFY_RUNNING;
goto fail;
}
retcode = alloc_crypto(&crypto, new_conf);
if (retcode != NO_ERROR)
goto fail;
rcu_assign_pointer(tconn->net_conf, new_conf);
if (!rsr) {
crypto_free_hash(tconn->csums_tfm);
tconn->csums_tfm = crypto.csums_tfm;
crypto.csums_tfm = NULL;
}
if (!ovr) {
crypto_free_hash(tconn->verify_tfm);
tconn->verify_tfm = crypto.verify_tfm;
crypto.verify_tfm = NULL;
}
crypto_free_hash(tconn->integrity_tfm);
tconn->integrity_tfm = crypto.integrity_tfm;
if (tconn->cstate >= C_WF_REPORT_PARAMS && tconn->agreed_pro_version >= 100)
/* Do this without trying to take tconn->data.mutex again. */
__drbd_send_protocol(tconn, P_PROTOCOL_UPDATE);
crypto_free_hash(tconn->cram_hmac_tfm);
tconn->cram_hmac_tfm = crypto.cram_hmac_tfm;
mutex_unlock(&tconn->conf_update);
mutex_unlock(&tconn->data.mutex);
synchronize_rcu();
kfree(old_conf);
if (tconn->cstate >= C_WF_REPORT_PARAMS)
drbd_send_sync_param(minor_to_mdev(conn_lowest_minor(tconn)));
goto done;
fail:
mutex_unlock(&tconn->conf_update);
mutex_unlock(&tconn->data.mutex);
free_crypto(&crypto);
kfree(new_conf);
done:
conn_reconfig_done(tconn);
out:
drbd_adm_finish(info, retcode);
return 0;
}
int drbd_adm_connect(struct sk_buff *skb, struct genl_info *info)
{
struct drbd_conf *mdev;
struct net_conf *old_conf, *new_conf = NULL;
struct crypto crypto = { };
struct drbd_tconn *tconn;
enum drbd_ret_code retcode;
int i;
int err;
retcode = drbd_adm_prepare(skb, info, DRBD_ADM_NEED_RESOURCE);
if (!adm_ctx.reply_skb)
return retcode;
if (retcode != NO_ERROR)
goto out;
if (!(adm_ctx.my_addr && adm_ctx.peer_addr)) {
drbd_msg_put_info("connection endpoint(s) missing");
retcode = ERR_INVALID_REQUEST;
goto out;
}
/* No need for _rcu here. All reconfiguration is
* strictly serialized on genl_lock(). We are protected against
* concurrent reconfiguration/addition/deletion */
list_for_each_entry(tconn, &drbd_tconns, all_tconn) {
if (nla_len(adm_ctx.my_addr) == tconn->my_addr_len &&
!memcmp(nla_data(adm_ctx.my_addr), &tconn->my_addr, tconn->my_addr_len)) {
retcode = ERR_LOCAL_ADDR;
goto out;
}
if (nla_len(adm_ctx.peer_addr) == tconn->peer_addr_len &&
!memcmp(nla_data(adm_ctx.peer_addr), &tconn->peer_addr, tconn->peer_addr_len)) {
retcode = ERR_PEER_ADDR;
goto out;
}
}
tconn = adm_ctx.tconn;
conn_reconfig_start(tconn);
if (tconn->cstate > C_STANDALONE) {
retcode = ERR_NET_CONFIGURED;
goto fail;
}
/* allocation not in the IO path, drbdsetup / netlink process context */
new_conf = kzalloc(sizeof(*new_conf), GFP_KERNEL);
if (!new_conf) {
retcode = ERR_NOMEM;
goto fail;
}
set_net_conf_defaults(new_conf);
err = net_conf_from_attrs(new_conf, info);
if (err && err != -ENOMSG) {
retcode = ERR_MANDATORY_TAG;
drbd_msg_put_info(from_attrs_err_to_txt(err));
goto fail;
}
retcode = check_net_options(tconn, new_conf);
if (retcode != NO_ERROR)
goto fail;
retcode = alloc_crypto(&crypto, new_conf);
if (retcode != NO_ERROR)
goto fail;
((char *)new_conf->shared_secret)[SHARED_SECRET_MAX-1] = 0;
conn_flush_workqueue(tconn);
mutex_lock(&tconn->conf_update);
old_conf = tconn->net_conf;
if (old_conf) {
retcode = ERR_NET_CONFIGURED;
mutex_unlock(&tconn->conf_update);
goto fail;
}
rcu_assign_pointer(tconn->net_conf, new_conf);
conn_free_crypto(tconn);
tconn->cram_hmac_tfm = crypto.cram_hmac_tfm;
tconn->integrity_tfm = crypto.integrity_tfm;
tconn->csums_tfm = crypto.csums_tfm;
tconn->verify_tfm = crypto.verify_tfm;
tconn->my_addr_len = nla_len(adm_ctx.my_addr);
memcpy(&tconn->my_addr, nla_data(adm_ctx.my_addr), tconn->my_addr_len);
tconn->peer_addr_len = nla_len(adm_ctx.peer_addr);
memcpy(&tconn->peer_addr, nla_data(adm_ctx.peer_addr), tconn->peer_addr_len);
mutex_unlock(&tconn->conf_update);
rcu_read_lock();
idr_for_each_entry(&tconn->volumes, mdev, i) {
mdev->send_cnt = 0;
mdev->recv_cnt = 0;
}
rcu_read_unlock();
retcode = conn_request_state(tconn, NS(conn, C_UNCONNECTED), CS_VERBOSE);
conn_reconfig_done(tconn);
drbd_adm_finish(info, retcode);
return 0;
fail:
free_crypto(&crypto);
kfree(new_conf);
conn_reconfig_done(tconn);
out:
drbd_adm_finish(info, retcode);
return 0;
}
static enum drbd_state_rv conn_try_disconnect(struct drbd_tconn *tconn, bool force)
{
enum drbd_state_rv rv;
rv = conn_request_state(tconn, NS(conn, C_DISCONNECTING),
force ? CS_HARD : 0);
switch (rv) {
case SS_NOTHING_TO_DO:
break;
case SS_ALREADY_STANDALONE:
return SS_SUCCESS;
case SS_PRIMARY_NOP:
/* Our state checking code wants to see the peer outdated. */
rv = conn_request_state(tconn, NS2(conn, C_DISCONNECTING,
pdsk, D_OUTDATED), CS_VERBOSE);
break;
case SS_CW_FAILED_BY_PEER:
/* The peer probably wants to see us outdated. */
rv = conn_request_state(tconn, NS2(conn, C_DISCONNECTING,
disk, D_OUTDATED), 0);
if (rv == SS_IS_DISKLESS || rv == SS_LOWER_THAN_OUTDATED) {
rv = conn_request_state(tconn, NS(conn, C_DISCONNECTING),
CS_HARD);
}
break;
default:;
/* no special handling necessary */
}
if (rv >= SS_SUCCESS) {
enum drbd_state_rv rv2;
/* No one else can reconfigure the network while I am here.
* The state handling only uses drbd_thread_stop_nowait(),
* we want to really wait here until the receiver is no more.
*/
drbd_thread_stop(&adm_ctx.tconn->receiver);
/* Race breaker. This additional state change request may be
* necessary, if this was a forced disconnect during a receiver
* restart. We may have "killed" the receiver thread just
* after drbdd_init() returned. Typically, we should be
* C_STANDALONE already, now, and this becomes a no-op.
*/
rv2 = conn_request_state(tconn, NS(conn, C_STANDALONE),
CS_VERBOSE | CS_HARD);
if (rv2 < SS_SUCCESS)
conn_err(tconn,
"unexpected rv2=%d in conn_try_disconnect()\n",
rv2);
}
return rv;
}
int drbd_adm_disconnect(struct sk_buff *skb, struct genl_info *info)
{
struct disconnect_parms parms;
struct drbd_tconn *tconn;
enum drbd_state_rv rv;
enum drbd_ret_code retcode;
int err;
retcode = drbd_adm_prepare(skb, info, DRBD_ADM_NEED_CONNECTION);
if (!adm_ctx.reply_skb)
return retcode;
if (retcode != NO_ERROR)
goto fail;
tconn = adm_ctx.tconn;
memset(&parms, 0, sizeof(parms));
if (info->attrs[DRBD_NLA_DISCONNECT_PARMS]) {
err = disconnect_parms_from_attrs(&parms, info);
if (err) {
retcode = ERR_MANDATORY_TAG;
drbd_msg_put_info(from_attrs_err_to_txt(err));
goto fail;
}
}
rv = conn_try_disconnect(tconn, parms.force_disconnect);
if (rv < SS_SUCCESS)
retcode = rv; /* FIXME: Type mismatch. */
else
retcode = NO_ERROR;
fail:
drbd_adm_finish(info, retcode);
return 0;
}
void resync_after_online_grow(struct drbd_conf *mdev)
{
int iass; /* I am sync source */
dev_info(DEV, "Resync of new storage after online grow\n");
if (mdev->state.role != mdev->state.peer)
iass = (mdev->state.role == R_PRIMARY);
else
iass = test_bit(DISCARD_CONCURRENT, &mdev->tconn->flags);
if (iass)
drbd_start_resync(mdev, C_SYNC_SOURCE);
else
_drbd_request_state(mdev, NS(conn, C_WF_SYNC_UUID), CS_VERBOSE + CS_SERIALIZE);
}
int drbd_adm_resize(struct sk_buff *skb, struct genl_info *info)
{
struct disk_conf *old_disk_conf, *new_disk_conf = NULL;
struct resize_parms rs;
struct drbd_conf *mdev;
enum drbd_ret_code retcode;
enum determine_dev_size dd;
enum dds_flags ddsf;
sector_t u_size;
int err;
retcode = drbd_adm_prepare(skb, info, DRBD_ADM_NEED_MINOR);
if (!adm_ctx.reply_skb)
return retcode;
if (retcode != NO_ERROR)
goto fail;
memset(&rs, 0, sizeof(struct resize_parms));
if (info->attrs[DRBD_NLA_RESIZE_PARMS]) {
err = resize_parms_from_attrs(&rs, info);
if (err) {
retcode = ERR_MANDATORY_TAG;
drbd_msg_put_info(from_attrs_err_to_txt(err));
goto fail;
}
}
mdev = adm_ctx.mdev;
if (mdev->state.conn > C_CONNECTED) {
retcode = ERR_RESIZE_RESYNC;
goto fail;
}
if (mdev->state.role == R_SECONDARY &&
mdev->state.peer == R_SECONDARY) {
retcode = ERR_NO_PRIMARY;
goto fail;
}
if (!get_ldev(mdev)) {
retcode = ERR_NO_DISK;
goto fail;
}
if (rs.no_resync && mdev->tconn->agreed_pro_version < 93) {
retcode = ERR_NEED_APV_93;
goto fail_ldev;
}
rcu_read_lock();
u_size = rcu_dereference(mdev->ldev->disk_conf)->disk_size;
rcu_read_unlock();
if (u_size != (sector_t)rs.resize_size) {
new_disk_conf = kmalloc(sizeof(struct disk_conf), GFP_KERNEL);
if (!new_disk_conf) {
retcode = ERR_NOMEM;
goto fail_ldev;
}
}
if (mdev->ldev->known_size != drbd_get_capacity(mdev->ldev->backing_bdev))
mdev->ldev->known_size = drbd_get_capacity(mdev->ldev->backing_bdev);
if (new_disk_conf) {
mutex_lock(&mdev->tconn->conf_update);
old_disk_conf = mdev->ldev->disk_conf;
*new_disk_conf = *old_disk_conf;
new_disk_conf->disk_size = (sector_t)rs.resize_size;
rcu_assign_pointer(mdev->ldev->disk_conf, new_disk_conf);
mutex_unlock(&mdev->tconn->conf_update);
synchronize_rcu();
kfree(old_disk_conf);
}
ddsf = (rs.resize_force ? DDSF_FORCED : 0) | (rs.no_resync ? DDSF_NO_RESYNC : 0);
dd = drbd_determine_dev_size(mdev, ddsf);
drbd_md_sync(mdev);
put_ldev(mdev);
if (dd == dev_size_error) {
retcode = ERR_NOMEM_BITMAP;
goto fail;
}
if (mdev->state.conn == C_CONNECTED) {
if (dd == grew)
set_bit(RESIZE_PENDING, &mdev->flags);
drbd_send_uuids(mdev);
drbd_send_sizes(mdev, 1, ddsf);
}
fail:
drbd_adm_finish(info, retcode);
return 0;
fail_ldev:
put_ldev(mdev);
goto fail;
}
int drbd_adm_resource_opts(struct sk_buff *skb, struct genl_info *info)
{
enum drbd_ret_code retcode;
struct drbd_tconn *tconn;
struct res_opts res_opts;
int err;
retcode = drbd_adm_prepare(skb, info, DRBD_ADM_NEED_RESOURCE);
if (!adm_ctx.reply_skb)
return retcode;
if (retcode != NO_ERROR)
goto fail;
tconn = adm_ctx.tconn;
res_opts = tconn->res_opts;
if (should_set_defaults(info))
set_res_opts_defaults(&res_opts);
err = res_opts_from_attrs(&res_opts, info);
if (err && err != -ENOMSG) {
retcode = ERR_MANDATORY_TAG;
drbd_msg_put_info(from_attrs_err_to_txt(err));
goto fail;
}
err = set_resource_options(tconn, &res_opts);
if (err) {
retcode = ERR_INVALID_REQUEST;
if (err == -ENOMEM)
retcode = ERR_NOMEM;
}
fail:
drbd_adm_finish(info, retcode);
return 0;
}
int drbd_adm_invalidate(struct sk_buff *skb, struct genl_info *info)
{
struct drbd_conf *mdev;
int retcode; /* enum drbd_ret_code rsp. enum drbd_state_rv */
retcode = drbd_adm_prepare(skb, info, DRBD_ADM_NEED_MINOR);
if (!adm_ctx.reply_skb)
return retcode;
if (retcode != NO_ERROR)
goto out;
mdev = adm_ctx.mdev;
/* If there is still bitmap IO pending, probably because of a previous
* resync just being finished, wait for it before requesting a new resync. */
wait_event(mdev->misc_wait, !test_bit(BITMAP_IO, &mdev->flags));
retcode = _drbd_request_state(mdev, NS(conn, C_STARTING_SYNC_T), CS_ORDERED);
if (retcode < SS_SUCCESS && retcode != SS_NEED_CONNECTION)
retcode = drbd_request_state(mdev, NS(conn, C_STARTING_SYNC_T));
while (retcode == SS_NEED_CONNECTION) {
spin_lock_irq(&mdev->tconn->req_lock);
if (mdev->state.conn < C_CONNECTED)
retcode = _drbd_set_state(_NS(mdev, disk, D_INCONSISTENT), CS_VERBOSE, NULL);
spin_unlock_irq(&mdev->tconn->req_lock);
if (retcode != SS_NEED_CONNECTION)
break;
retcode = drbd_request_state(mdev, NS(conn, C_STARTING_SYNC_T));
}
out:
drbd_adm_finish(info, retcode);
return 0;
}
static int drbd_adm_simple_request_state(struct sk_buff *skb, struct genl_info *info,
union drbd_state mask, union drbd_state val)
{
enum drbd_ret_code retcode;
retcode = drbd_adm_prepare(skb, info, DRBD_ADM_NEED_MINOR);
if (!adm_ctx.reply_skb)
return retcode;
if (retcode != NO_ERROR)
goto out;
retcode = drbd_request_state(adm_ctx.mdev, mask, val);
out:
drbd_adm_finish(info, retcode);
return 0;
}
int drbd_adm_invalidate_peer(struct sk_buff *skb, struct genl_info *info)
{
return drbd_adm_simple_request_state(skb, info, NS(conn, C_STARTING_SYNC_S));
}
int drbd_adm_pause_sync(struct sk_buff *skb, struct genl_info *info)
{
enum drbd_ret_code retcode;
retcode = drbd_adm_prepare(skb, info, DRBD_ADM_NEED_MINOR);
if (!adm_ctx.reply_skb)
return retcode;
if (retcode != NO_ERROR)
goto out;
if (drbd_request_state(adm_ctx.mdev, NS(user_isp, 1)) == SS_NOTHING_TO_DO)
retcode = ERR_PAUSE_IS_SET;
out:
drbd_adm_finish(info, retcode);
return 0;
}
int drbd_adm_resume_sync(struct sk_buff *skb, struct genl_info *info)
{
union drbd_dev_state s;
enum drbd_ret_code retcode;
retcode = drbd_adm_prepare(skb, info, DRBD_ADM_NEED_MINOR);
if (!adm_ctx.reply_skb)
return retcode;
if (retcode != NO_ERROR)
goto out;
if (drbd_request_state(adm_ctx.mdev, NS(user_isp, 0)) == SS_NOTHING_TO_DO) {
s = adm_ctx.mdev->state;
if (s.conn == C_PAUSED_SYNC_S || s.conn == C_PAUSED_SYNC_T) {
retcode = s.aftr_isp ? ERR_PIC_AFTER_DEP :
s.peer_isp ? ERR_PIC_PEER_DEP : ERR_PAUSE_IS_CLEAR;
} else {
retcode = ERR_PAUSE_IS_CLEAR;
}
}
out:
drbd_adm_finish(info, retcode);
return 0;
}
int drbd_adm_suspend_io(struct sk_buff *skb, struct genl_info *info)
{
return drbd_adm_simple_request_state(skb, info, NS(susp, 1));
}
int drbd_adm_resume_io(struct sk_buff *skb, struct genl_info *info)
{
struct drbd_conf *mdev;
int retcode; /* enum drbd_ret_code rsp. enum drbd_state_rv */
retcode = drbd_adm_prepare(skb, info, DRBD_ADM_NEED_MINOR);
if (!adm_ctx.reply_skb)
return retcode;
if (retcode != NO_ERROR)
goto out;
mdev = adm_ctx.mdev;
if (test_bit(NEW_CUR_UUID, &mdev->flags)) {
drbd_uuid_new_current(mdev);
clear_bit(NEW_CUR_UUID, &mdev->flags);
}
drbd_suspend_io(mdev);
retcode = drbd_request_state(mdev, NS3(susp, 0, susp_nod, 0, susp_fen, 0));
if (retcode == SS_SUCCESS) {
if (mdev->state.conn < C_CONNECTED)
tl_clear(mdev->tconn);
if (mdev->state.disk == D_DISKLESS || mdev->state.disk == D_FAILED)
tl_restart(mdev->tconn, FAIL_FROZEN_DISK_IO);
}
drbd_resume_io(mdev);
out:
drbd_adm_finish(info, retcode);
return 0;
}
int drbd_adm_outdate(struct sk_buff *skb, struct genl_info *info)
{
return drbd_adm_simple_request_state(skb, info, NS(disk, D_OUTDATED));
}
int nla_put_drbd_cfg_context(struct sk_buff *skb, struct drbd_tconn *tconn, unsigned vnr)
{
struct nlattr *nla;
nla = nla_nest_start(skb, DRBD_NLA_CFG_CONTEXT);
if (!nla)
goto nla_put_failure;
if (vnr != VOLUME_UNSPECIFIED)
NLA_PUT_U32(skb, T_ctx_volume, vnr);
NLA_PUT_STRING(skb, T_ctx_resource_name, tconn->name);
if (tconn->my_addr_len)
NLA_PUT(skb, T_ctx_my_addr, tconn->my_addr_len, &tconn->my_addr);
if (tconn->peer_addr_len)
NLA_PUT(skb, T_ctx_peer_addr, tconn->peer_addr_len, &tconn->peer_addr);
nla_nest_end(skb, nla);
return 0;
nla_put_failure:
if (nla)
nla_nest_cancel(skb, nla);
return -EMSGSIZE;
}
int nla_put_status_info(struct sk_buff *skb, struct drbd_conf *mdev,
const struct sib_info *sib)
{
struct state_info *si = NULL; /* for sizeof(si->member); */
struct net_conf *nc;
struct nlattr *nla;
int got_ldev;
int err = 0;
int exclude_sensitive;
/* If sib != NULL, this is drbd_bcast_event, which anyone can listen
* to. So we better exclude_sensitive information.
*
* If sib == NULL, this is drbd_adm_get_status, executed synchronously
* in the context of the requesting user process. Exclude sensitive
* information, unless current has superuser.
*
* NOTE: for drbd_adm_get_status_all(), this is a netlink dump, and
* relies on the current implementation of netlink_dump(), which
* executes the dump callback successively from netlink_recvmsg(),
* always in the context of the receiving process */
exclude_sensitive = sib || !capable(CAP_SYS_ADMIN);
got_ldev = get_ldev(mdev);
/* We need to add connection name and volume number information still.
* Minor number is in drbd_genlmsghdr. */
if (nla_put_drbd_cfg_context(skb, mdev->tconn, mdev->vnr))
goto nla_put_failure;
if (res_opts_to_skb(skb, &mdev->tconn->res_opts, exclude_sensitive))
goto nla_put_failure;
rcu_read_lock();
if (got_ldev)
if (disk_conf_to_skb(skb, rcu_dereference(mdev->ldev->disk_conf), exclude_sensitive))
goto nla_put_failure;
nc = rcu_dereference(mdev->tconn->net_conf);
if (nc)
err = net_conf_to_skb(skb, nc, exclude_sensitive);
rcu_read_unlock();
if (err)
goto nla_put_failure;
nla = nla_nest_start(skb, DRBD_NLA_STATE_INFO);
if (!nla)
goto nla_put_failure;
NLA_PUT_U32(skb, T_sib_reason, sib ? sib->sib_reason : SIB_GET_STATUS_REPLY);
NLA_PUT_U32(skb, T_current_state, mdev->state.i);
NLA_PUT_U64(skb, T_ed_uuid, mdev->ed_uuid);
NLA_PUT_U64(skb, T_capacity, drbd_get_capacity(mdev->this_bdev));
if (got_ldev) {
NLA_PUT_U32(skb, T_disk_flags, mdev->ldev->md.flags);
NLA_PUT(skb, T_uuids, sizeof(si->uuids), mdev->ldev->md.uuid);
NLA_PUT_U64(skb, T_bits_total, drbd_bm_bits(mdev));
NLA_PUT_U64(skb, T_bits_oos, drbd_bm_total_weight(mdev));
if (C_SYNC_SOURCE <= mdev->state.conn &&
C_PAUSED_SYNC_T >= mdev->state.conn) {
NLA_PUT_U64(skb, T_bits_rs_total, mdev->rs_total);
NLA_PUT_U64(skb, T_bits_rs_failed, mdev->rs_failed);
}
}
if (sib) {
switch(sib->sib_reason) {
case SIB_SYNC_PROGRESS:
case SIB_GET_STATUS_REPLY:
break;
case SIB_STATE_CHANGE:
NLA_PUT_U32(skb, T_prev_state, sib->os.i);
NLA_PUT_U32(skb, T_new_state, sib->ns.i);
break;
case SIB_HELPER_POST:
NLA_PUT_U32(skb,
T_helper_exit_code, sib->helper_exit_code);
/* fall through */
case SIB_HELPER_PRE:
NLA_PUT_STRING(skb, T_helper, sib->helper_name);
break;
}
}
nla_nest_end(skb, nla);
if (0)
nla_put_failure:
err = -EMSGSIZE;
if (got_ldev)
put_ldev(mdev);
return err;
}
int drbd_adm_get_status(struct sk_buff *skb, struct genl_info *info)
{
enum drbd_ret_code retcode;
int err;
retcode = drbd_adm_prepare(skb, info, DRBD_ADM_NEED_MINOR);
if (!adm_ctx.reply_skb)
return retcode;
if (retcode != NO_ERROR)
goto out;
err = nla_put_status_info(adm_ctx.reply_skb, adm_ctx.mdev, NULL);
if (err) {
nlmsg_free(adm_ctx.reply_skb);
return err;
}
out:
drbd_adm_finish(info, retcode);
return 0;
}
int get_one_status(struct sk_buff *skb, struct netlink_callback *cb)
{
struct drbd_conf *mdev;
struct drbd_genlmsghdr *dh;
struct drbd_tconn *pos = (struct drbd_tconn*)cb->args[0];
struct drbd_tconn *tconn = NULL;
struct drbd_tconn *tmp;
unsigned volume = cb->args[1];
/* Open coded, deferred, iteration:
* list_for_each_entry_safe(tconn, tmp, &drbd_tconns, all_tconn) {
* idr_for_each_entry(&tconn->volumes, mdev, i) {
* ...
* }
* }
* where tconn is cb->args[0];
* and i is cb->args[1];
*
* cb->args[2] indicates if we shall loop over all resources,
* or just dump all volumes of a single resource.
*
* This may miss entries inserted after this dump started,
* or entries deleted before they are reached.
*
* We need to make sure the mdev won't disappear while
* we are looking at it, and revalidate our iterators
* on each iteration.
*/
/* synchronize with conn_create()/conn_destroy() */
rcu_read_lock();
/* revalidate iterator position */
list_for_each_entry_rcu(tmp, &drbd_tconns, all_tconn) {
if (pos == NULL) {
/* first iteration */
pos = tmp;
tconn = pos;
break;
}
if (tmp == pos) {
tconn = pos;
break;
}
}
if (tconn) {
next_tconn:
mdev = idr_get_next(&tconn->volumes, &volume);
if (!mdev) {
/* No more volumes to dump on this tconn.
* Advance tconn iterator. */
pos = list_entry_rcu(tconn->all_tconn.next,
struct drbd_tconn, all_tconn);
/* Did we dump any volume on this tconn yet? */
if (volume != 0) {
/* If we reached the end of the list,
* or only a single resource dump was requested,
* we are done. */
if (&pos->all_tconn == &drbd_tconns || cb->args[2])
goto out;
volume = 0;
tconn = pos;
goto next_tconn;
}
}
dh = genlmsg_put(skb, NETLINK_CB(cb->skb).pid,
cb->nlh->nlmsg_seq, &drbd_genl_family,
NLM_F_MULTI, DRBD_ADM_GET_STATUS);
if (!dh)
goto out;
if (!mdev) {
/* This is a tconn without a single volume.
* Suprisingly enough, it may have a network
* configuration. */
struct net_conf *nc;
dh->minor = -1U;
dh->ret_code = NO_ERROR;
if (nla_put_drbd_cfg_context(skb, tconn, VOLUME_UNSPECIFIED))
goto cancel;
nc = rcu_dereference(tconn->net_conf);
if (nc && net_conf_to_skb(skb, nc, 1) != 0)
goto cancel;
goto done;
}
D_ASSERT(mdev->vnr == volume);
D_ASSERT(mdev->tconn == tconn);
dh->minor = mdev_to_minor(mdev);
dh->ret_code = NO_ERROR;
if (nla_put_status_info(skb, mdev, NULL)) {
cancel:
genlmsg_cancel(skb, dh);
goto out;
}
done:
genlmsg_end(skb, dh);
}
out:
rcu_read_unlock();
/* where to start the next iteration */
cb->args[0] = (long)pos;
cb->args[1] = (pos == tconn) ? volume + 1 : 0;
/* No more tconns/volumes/minors found results in an empty skb.
* Which will terminate the dump. */
return skb->len;
}
/*
* Request status of all resources, or of all volumes within a single resource.
*
* This is a dump, as the answer may not fit in a single reply skb otherwise.
* Which means we cannot use the family->attrbuf or other such members, because
* dump is NOT protected by the genl_lock(). During dump, we only have access
* to the incoming skb, and need to opencode "parsing" of the nlattr payload.
*
* Once things are setup properly, we call into get_one_status().
*/
int drbd_adm_get_status_all(struct sk_buff *skb, struct netlink_callback *cb)
{
const unsigned hdrlen = GENL_HDRLEN + GENL_MAGIC_FAMILY_HDRSZ;
struct nlattr *nla;
const char *resource_name;
struct drbd_tconn *tconn;
int maxtype;
/* Is this a followup call? */
if (cb->args[0]) {
/* ... of a single resource dump,
* and the resource iterator has been advanced already? */
if (cb->args[2] && cb->args[2] != cb->args[0])
return 0; /* DONE. */
goto dump;
}
/* First call (from netlink_dump_start). We need to figure out
* which resource(s) the user wants us to dump. */
nla = nla_find(nlmsg_attrdata(cb->nlh, hdrlen),
nlmsg_attrlen(cb->nlh, hdrlen),
DRBD_NLA_CFG_CONTEXT);
/* No explicit context given. Dump all. */
if (!nla)
goto dump;
maxtype = ARRAY_SIZE(drbd_cfg_context_nl_policy) - 1;
nla = drbd_nla_find_nested(maxtype, nla, __nla_type(T_ctx_resource_name));
if (IS_ERR(nla))
return PTR_ERR(nla);
/* context given, but no name present? */
if (!nla)
return -EINVAL;
resource_name = nla_data(nla);
tconn = conn_get_by_name(resource_name);
if (!tconn)
return -ENODEV;
kref_put(&tconn->kref, &conn_destroy); /* get_one_status() (re)validates tconn by itself */
/* prime iterators, and set "filter" mode mark:
* only dump this tconn. */
cb->args[0] = (long)tconn;
/* cb->args[1] = 0; passed in this way. */
cb->args[2] = (long)tconn;
dump:
return get_one_status(skb, cb);
}
int drbd_adm_get_timeout_type(struct sk_buff *skb, struct genl_info *info)
{
enum drbd_ret_code retcode;
struct timeout_parms tp;
int err;
retcode = drbd_adm_prepare(skb, info, DRBD_ADM_NEED_MINOR);
if (!adm_ctx.reply_skb)
return retcode;
if (retcode != NO_ERROR)
goto out;
tp.timeout_type =
adm_ctx.mdev->state.pdsk == D_OUTDATED ? UT_PEER_OUTDATED :
test_bit(USE_DEGR_WFC_T, &adm_ctx.mdev->flags) ? UT_DEGRADED :
UT_DEFAULT;
err = timeout_parms_to_priv_skb(adm_ctx.reply_skb, &tp);
if (err) {
nlmsg_free(adm_ctx.reply_skb);
return err;
}
out:
drbd_adm_finish(info, retcode);
return 0;
}
int drbd_adm_start_ov(struct sk_buff *skb, struct genl_info *info)
{
struct drbd_conf *mdev;
enum drbd_ret_code retcode;
retcode = drbd_adm_prepare(skb, info, DRBD_ADM_NEED_MINOR);
if (!adm_ctx.reply_skb)
return retcode;
if (retcode != NO_ERROR)
goto out;
mdev = adm_ctx.mdev;
if (info->attrs[DRBD_NLA_START_OV_PARMS]) {
/* resume from last known position, if possible */
struct start_ov_parms parms =
{ .ov_start_sector = mdev->ov_start_sector };
int err = start_ov_parms_from_attrs(&parms, info);
if (err) {
retcode = ERR_MANDATORY_TAG;
drbd_msg_put_info(from_attrs_err_to_txt(err));
goto out;
}
/* w_make_ov_request expects position to be aligned */
mdev->ov_start_sector = parms.ov_start_sector & ~BM_SECT_PER_BIT;
}
/* If there is still bitmap IO pending, e.g. previous resync or verify
* just being finished, wait for it before requesting a new resync. */
wait_event(mdev->misc_wait, !test_bit(BITMAP_IO, &mdev->flags));
retcode = drbd_request_state(mdev,NS(conn,C_VERIFY_S));
out:
drbd_adm_finish(info, retcode);
return 0;
}
int drbd_adm_new_c_uuid(struct sk_buff *skb, struct genl_info *info)
{
struct drbd_conf *mdev;
enum drbd_ret_code retcode;
int skip_initial_sync = 0;
int err;
struct new_c_uuid_parms args;
retcode = drbd_adm_prepare(skb, info, DRBD_ADM_NEED_MINOR);
if (!adm_ctx.reply_skb)
return retcode;
if (retcode != NO_ERROR)
goto out_nolock;
mdev = adm_ctx.mdev;
memset(&args, 0, sizeof(args));
if (info->attrs[DRBD_NLA_NEW_C_UUID_PARMS]) {
err = new_c_uuid_parms_from_attrs(&args, info);
if (err) {
retcode = ERR_MANDATORY_TAG;
drbd_msg_put_info(from_attrs_err_to_txt(err));
goto out_nolock;
}
}
mutex_lock(mdev->state_mutex); /* Protects us against serialized state changes. */
if (!get_ldev(mdev)) {
retcode = ERR_NO_DISK;
goto out;
}
/* this is "skip initial sync", assume to be clean */
if (mdev->state.conn == C_CONNECTED && mdev->tconn->agreed_pro_version >= 90 &&
mdev->ldev->md.uuid[UI_CURRENT] == UUID_JUST_CREATED && args.clear_bm) {
dev_info(DEV, "Preparing to skip initial sync\n");
skip_initial_sync = 1;
} else if (mdev->state.conn != C_STANDALONE) {
retcode = ERR_CONNECTED;
goto out_dec;
}
drbd_uuid_set(mdev, UI_BITMAP, 0); /* Rotate UI_BITMAP to History 1, etc... */
drbd_uuid_new_current(mdev); /* New current, previous to UI_BITMAP */
if (args.clear_bm) {
err = drbd_bitmap_io(mdev, &drbd_bmio_clear_n_write,
"clear_n_write from new_c_uuid", BM_LOCKED_MASK);
if (err) {
dev_err(DEV, "Writing bitmap failed with %d\n",err);
retcode = ERR_IO_MD_DISK;
}
if (skip_initial_sync) {
drbd_send_uuids_skip_initial_sync(mdev);
_drbd_uuid_set(mdev, UI_BITMAP, 0);
drbd_print_uuids(mdev, "cleared bitmap UUID");
spin_lock_irq(&mdev->tconn->req_lock);
_drbd_set_state(_NS2(mdev, disk, D_UP_TO_DATE, pdsk, D_UP_TO_DATE),
CS_VERBOSE, NULL);
spin_unlock_irq(&mdev->tconn->req_lock);
}
}
drbd_md_sync(mdev);
out_dec:
put_ldev(mdev);
out:
mutex_unlock(mdev->state_mutex);
out_nolock:
drbd_adm_finish(info, retcode);
return 0;
}
static enum drbd_ret_code
drbd_check_resource_name(const char *name)
{
if (!name || !name[0]) {
drbd_msg_put_info("resource name missing");
return ERR_MANDATORY_TAG;
}
/* if we want to use these in sysfs/configfs/debugfs some day,
* we must not allow slashes */
if (strchr(name, '/')) {
drbd_msg_put_info("invalid resource name");
return ERR_INVALID_REQUEST;
}
return NO_ERROR;
}
int drbd_adm_new_resource(struct sk_buff *skb, struct genl_info *info)
{
enum drbd_ret_code retcode;
struct res_opts res_opts;
int err;
retcode = drbd_adm_prepare(skb, info, 0);
if (!adm_ctx.reply_skb)
return retcode;
if (retcode != NO_ERROR)
goto out;
set_res_opts_defaults(&res_opts);
err = res_opts_from_attrs(&res_opts, info);
if (err && err != -ENOMSG) {
retcode = ERR_MANDATORY_TAG;
drbd_msg_put_info(from_attrs_err_to_txt(err));
goto out;
}
retcode = drbd_check_resource_name(adm_ctx.resource_name);
if (retcode != NO_ERROR)
goto out;
if (adm_ctx.tconn) {
if (info->nlhdr->nlmsg_flags & NLM_F_EXCL) {
retcode = ERR_INVALID_REQUEST;
drbd_msg_put_info("resource exists");
}
/* else: still NO_ERROR */
goto out;
}
if (!conn_create(adm_ctx.resource_name, &res_opts))
retcode = ERR_NOMEM;
out:
drbd_adm_finish(info, retcode);
return 0;
}
int drbd_adm_add_minor(struct sk_buff *skb, struct genl_info *info)
{
struct drbd_genlmsghdr *dh = info->userhdr;
enum drbd_ret_code retcode;
retcode = drbd_adm_prepare(skb, info, DRBD_ADM_NEED_RESOURCE);
if (!adm_ctx.reply_skb)
return retcode;
if (retcode != NO_ERROR)
goto out;
if (dh->minor > MINORMASK) {
drbd_msg_put_info("requested minor out of range");
retcode = ERR_INVALID_REQUEST;
goto out;
}
if (adm_ctx.volume > DRBD_VOLUME_MAX) {
drbd_msg_put_info("requested volume id out of range");
retcode = ERR_INVALID_REQUEST;
goto out;
}
/* drbd_adm_prepare made sure already
* that mdev->tconn and mdev->vnr match the request. */
if (adm_ctx.mdev) {
if (info->nlhdr->nlmsg_flags & NLM_F_EXCL)
retcode = ERR_MINOR_EXISTS;
/* else: still NO_ERROR */
goto out;
}
retcode = conn_new_minor(adm_ctx.tconn, dh->minor, adm_ctx.volume);
out:
drbd_adm_finish(info, retcode);
return 0;
}
static enum drbd_ret_code adm_delete_minor(struct drbd_conf *mdev)
{
if (mdev->state.disk == D_DISKLESS &&
/* no need to be mdev->state.conn == C_STANDALONE &&
* we may want to delete a minor from a live replication group.
*/
mdev->state.role == R_SECONDARY) {
_drbd_request_state(mdev, NS(conn, C_WF_REPORT_PARAMS),
CS_VERBOSE + CS_WAIT_COMPLETE);
idr_remove(&mdev->tconn->volumes, mdev->vnr);
idr_remove(&minors, mdev_to_minor(mdev));
del_gendisk(mdev->vdisk);
synchronize_rcu();
kref_put(&mdev->kref, &drbd_minor_destroy);
return NO_ERROR;
} else
return ERR_MINOR_CONFIGURED;
}
int drbd_adm_delete_minor(struct sk_buff *skb, struct genl_info *info)
{
enum drbd_ret_code retcode;
retcode = drbd_adm_prepare(skb, info, DRBD_ADM_NEED_MINOR);
if (!adm_ctx.reply_skb)
return retcode;
if (retcode != NO_ERROR)
goto out;
retcode = adm_delete_minor(adm_ctx.mdev);
out:
drbd_adm_finish(info, retcode);
return 0;
}
int drbd_adm_down(struct sk_buff *skb, struct genl_info *info)
{
int retcode; /* enum drbd_ret_code rsp. enum drbd_state_rv */
struct drbd_conf *mdev;
unsigned i;
retcode = drbd_adm_prepare(skb, info, 0);
if (!adm_ctx.reply_skb)
return retcode;
if (retcode != NO_ERROR)
goto out;
if (!adm_ctx.tconn) {
retcode = ERR_RES_NOT_KNOWN;
goto out;
}
/* demote */
idr_for_each_entry(&adm_ctx.tconn->volumes, mdev, i) {
retcode = drbd_set_role(mdev, R_SECONDARY, 0);
if (retcode < SS_SUCCESS) {
drbd_msg_put_info("failed to demote");
goto out;
}
}
retcode = conn_try_disconnect(adm_ctx.tconn, 0);
if (retcode < SS_SUCCESS) {
drbd_msg_put_info("failed to disconnect");
goto out;
}
/* detach */
idr_for_each_entry(&adm_ctx.tconn->volumes, mdev, i) {
retcode = adm_detach(mdev, 0);
if (retcode < SS_SUCCESS) {
drbd_msg_put_info("failed to detach");
goto out;
}
}
/* If we reach this, all volumes (of this tconn) are Secondary,
* Disconnected, Diskless, aka Unconfigured. Make sure all threads have
* actually stopped, state handling only does drbd_thread_stop_nowait(). */
drbd_thread_stop(&adm_ctx.tconn->worker);
/* Now, nothing can fail anymore */
/* delete volumes */
idr_for_each_entry(&adm_ctx.tconn->volumes, mdev, i) {
retcode = adm_delete_minor(mdev);
if (retcode != NO_ERROR) {
/* "can not happen" */
drbd_msg_put_info("failed to delete volume");
goto out;
}
}
/* delete connection */
if (conn_lowest_minor(adm_ctx.tconn) < 0) {
list_del_rcu(&adm_ctx.tconn->all_tconn);
synchronize_rcu();
kref_put(&adm_ctx.tconn->kref, &conn_destroy);
retcode = NO_ERROR;
} else {
/* "can not happen" */
retcode = ERR_RES_IN_USE;
drbd_msg_put_info("failed to delete connection");
}
goto out;
out:
drbd_adm_finish(info, retcode);
return 0;
}
int drbd_adm_del_resource(struct sk_buff *skb, struct genl_info *info)
{
enum drbd_ret_code retcode;
retcode = drbd_adm_prepare(skb, info, DRBD_ADM_NEED_RESOURCE);
if (!adm_ctx.reply_skb)
return retcode;
if (retcode != NO_ERROR)
goto out;
if (conn_lowest_minor(adm_ctx.tconn) < 0) {
list_del_rcu(&adm_ctx.tconn->all_tconn);
synchronize_rcu();
kref_put(&adm_ctx.tconn->kref, &conn_destroy);
retcode = NO_ERROR;
} else {
retcode = ERR_RES_IN_USE;
}
if (retcode == NO_ERROR)
drbd_thread_stop(&adm_ctx.tconn->worker);
out:
drbd_adm_finish(info, retcode);
return 0;
}
void drbd_bcast_event(struct drbd_conf *mdev, const struct sib_info *sib)
{
static atomic_t drbd_genl_seq = ATOMIC_INIT(2); /* two. */
struct sk_buff *msg;
struct drbd_genlmsghdr *d_out;
unsigned seq;
int err = -ENOMEM;
seq = atomic_inc_return(&drbd_genl_seq);
msg = genlmsg_new(NLMSG_GOODSIZE, GFP_NOIO);
if (!msg)
goto failed;
err = -EMSGSIZE;
d_out = genlmsg_put(msg, 0, seq, &drbd_genl_family, 0, DRBD_EVENT);
if (!d_out) /* cannot happen, but anyways. */
goto nla_put_failure;
d_out->minor = mdev_to_minor(mdev);
d_out->ret_code = NO_ERROR;
if (nla_put_status_info(msg, mdev, sib))
goto nla_put_failure;
genlmsg_end(msg, d_out);
err = drbd_genl_multicast_events(msg, 0);
/* msg has been consumed or freed in netlink_broadcast() */
if (err && err != -ESRCH)
goto failed;
return;
nla_put_failure:
nlmsg_free(msg);
failed:
dev_err(DEV, "Error %d while broadcasting event. "
"Event seq:%u sib_reason:%u\n",
err, seq, sib->sib_reason);
}