| /* |
| * Copyright (C) 2011 STRATO. All rights reserved. |
| * |
| * This program is free software; you can redistribute it and/or |
| * modify it under the terms of the GNU General Public |
| * License v2 as published by the Free Software Foundation. |
| * |
| * This program is distributed in the hope that it will be useful, |
| * but WITHOUT ANY WARRANTY; without even the implied warranty of |
| * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU |
| * General Public License for more details. |
| * |
| * You should have received a copy of the GNU General Public |
| * License along with this program; if not, write to the |
| * Free Software Foundation, Inc., 59 Temple Place - Suite 330, |
| * Boston, MA 021110-1307, USA. |
| */ |
| |
| #include "ctree.h" |
| #include "disk-io.h" |
| #include "backref.h" |
| #include "ulist.h" |
| #include "transaction.h" |
| #include "delayed-ref.h" |
| |
| /* |
| * this structure records all encountered refs on the way up to the root |
| */ |
| struct __prelim_ref { |
| struct list_head list; |
| u64 root_id; |
| struct btrfs_key key; |
| int level; |
| int count; |
| u64 parent; |
| u64 wanted_disk_byte; |
| }; |
| |
| static int __add_prelim_ref(struct list_head *head, u64 root_id, |
| struct btrfs_key *key, int level, u64 parent, |
| u64 wanted_disk_byte, int count) |
| { |
| struct __prelim_ref *ref; |
| |
| /* in case we're adding delayed refs, we're holding the refs spinlock */ |
| ref = kmalloc(sizeof(*ref), GFP_ATOMIC); |
| if (!ref) |
| return -ENOMEM; |
| |
| ref->root_id = root_id; |
| if (key) |
| ref->key = *key; |
| else |
| memset(&ref->key, 0, sizeof(ref->key)); |
| |
| ref->level = level; |
| ref->count = count; |
| ref->parent = parent; |
| ref->wanted_disk_byte = wanted_disk_byte; |
| list_add_tail(&ref->list, head); |
| |
| return 0; |
| } |
| |
| static int add_all_parents(struct btrfs_root *root, struct btrfs_path *path, |
| struct ulist *parents, |
| struct extent_buffer *eb, int level, |
| u64 wanted_objectid, u64 wanted_disk_byte) |
| { |
| int ret; |
| int slot; |
| struct btrfs_file_extent_item *fi; |
| struct btrfs_key key; |
| u64 disk_byte; |
| |
| add_parent: |
| ret = ulist_add(parents, eb->start, 0, GFP_NOFS); |
| if (ret < 0) |
| return ret; |
| |
| if (level != 0) |
| return 0; |
| |
| /* |
| * if the current leaf is full with EXTENT_DATA items, we must |
| * check the next one if that holds a reference as well. |
| * ref->count cannot be used to skip this check. |
| * repeat this until we don't find any additional EXTENT_DATA items. |
| */ |
| while (1) { |
| ret = btrfs_next_leaf(root, path); |
| if (ret < 0) |
| return ret; |
| if (ret) |
| return 0; |
| |
| eb = path->nodes[0]; |
| for (slot = 0; slot < btrfs_header_nritems(eb); ++slot) { |
| btrfs_item_key_to_cpu(eb, &key, slot); |
| if (key.objectid != wanted_objectid || |
| key.type != BTRFS_EXTENT_DATA_KEY) |
| return 0; |
| fi = btrfs_item_ptr(eb, slot, |
| struct btrfs_file_extent_item); |
| disk_byte = btrfs_file_extent_disk_bytenr(eb, fi); |
| if (disk_byte == wanted_disk_byte) |
| goto add_parent; |
| } |
| } |
| |
| return 0; |
| } |
| |
| /* |
| * resolve an indirect backref in the form (root_id, key, level) |
| * to a logical address |
| */ |
| static int __resolve_indirect_ref(struct btrfs_fs_info *fs_info, |
| int search_commit_root, |
| struct __prelim_ref *ref, |
| struct ulist *parents) |
| { |
| struct btrfs_path *path; |
| struct btrfs_root *root; |
| struct btrfs_key root_key; |
| struct btrfs_key key = {0}; |
| struct extent_buffer *eb; |
| int ret = 0; |
| int root_level; |
| int level = ref->level; |
| |
| path = btrfs_alloc_path(); |
| if (!path) |
| return -ENOMEM; |
| path->search_commit_root = !!search_commit_root; |
| |
| root_key.objectid = ref->root_id; |
| root_key.type = BTRFS_ROOT_ITEM_KEY; |
| root_key.offset = (u64)-1; |
| root = btrfs_read_fs_root_no_name(fs_info, &root_key); |
| if (IS_ERR(root)) { |
| ret = PTR_ERR(root); |
| goto out; |
| } |
| |
| rcu_read_lock(); |
| root_level = btrfs_header_level(root->node); |
| rcu_read_unlock(); |
| |
| if (root_level + 1 == level) |
| goto out; |
| |
| path->lowest_level = level; |
| ret = btrfs_search_slot(NULL, root, &ref->key, path, 0, 0); |
| pr_debug("search slot in root %llu (level %d, ref count %d) returned " |
| "%d for key (%llu %u %llu)\n", |
| (unsigned long long)ref->root_id, level, ref->count, ret, |
| (unsigned long long)ref->key.objectid, ref->key.type, |
| (unsigned long long)ref->key.offset); |
| if (ret < 0) |
| goto out; |
| |
| eb = path->nodes[level]; |
| if (!eb) { |
| WARN_ON(1); |
| ret = 1; |
| goto out; |
| } |
| |
| if (level == 0) { |
| if (ret == 1 && path->slots[0] >= btrfs_header_nritems(eb)) { |
| ret = btrfs_next_leaf(root, path); |
| if (ret) |
| goto out; |
| eb = path->nodes[0]; |
| } |
| |
| btrfs_item_key_to_cpu(eb, &key, path->slots[0]); |
| } |
| |
| /* the last two parameters will only be used for level == 0 */ |
| ret = add_all_parents(root, path, parents, eb, level, key.objectid, |
| ref->wanted_disk_byte); |
| out: |
| btrfs_free_path(path); |
| return ret; |
| } |
| |
| /* |
| * resolve all indirect backrefs from the list |
| */ |
| static int __resolve_indirect_refs(struct btrfs_fs_info *fs_info, |
| int search_commit_root, |
| struct list_head *head) |
| { |
| int err; |
| int ret = 0; |
| struct __prelim_ref *ref; |
| struct __prelim_ref *ref_safe; |
| struct __prelim_ref *new_ref; |
| struct ulist *parents; |
| struct ulist_node *node; |
| |
| parents = ulist_alloc(GFP_NOFS); |
| if (!parents) |
| return -ENOMEM; |
| |
| /* |
| * _safe allows us to insert directly after the current item without |
| * iterating over the newly inserted items. |
| * we're also allowed to re-assign ref during iteration. |
| */ |
| list_for_each_entry_safe(ref, ref_safe, head, list) { |
| if (ref->parent) /* already direct */ |
| continue; |
| if (ref->count == 0) |
| continue; |
| err = __resolve_indirect_ref(fs_info, search_commit_root, |
| ref, parents); |
| if (err) { |
| if (ret == 0) |
| ret = err; |
| continue; |
| } |
| |
| /* we put the first parent into the ref at hand */ |
| node = ulist_next(parents, NULL); |
| ref->parent = node ? node->val : 0; |
| |
| /* additional parents require new refs being added here */ |
| while ((node = ulist_next(parents, node))) { |
| new_ref = kmalloc(sizeof(*new_ref), GFP_NOFS); |
| if (!new_ref) { |
| ret = -ENOMEM; |
| break; |
| } |
| memcpy(new_ref, ref, sizeof(*ref)); |
| new_ref->parent = node->val; |
| list_add(&new_ref->list, &ref->list); |
| } |
| ulist_reinit(parents); |
| } |
| |
| ulist_free(parents); |
| return ret; |
| } |
| |
| /* |
| * merge two lists of backrefs and adjust counts accordingly |
| * |
| * mode = 1: merge identical keys, if key is set |
| * mode = 2: merge identical parents |
| */ |
| static int __merge_refs(struct list_head *head, int mode) |
| { |
| struct list_head *pos1; |
| |
| list_for_each(pos1, head) { |
| struct list_head *n2; |
| struct list_head *pos2; |
| struct __prelim_ref *ref1; |
| |
| ref1 = list_entry(pos1, struct __prelim_ref, list); |
| |
| if (mode == 1 && ref1->key.type == 0) |
| continue; |
| for (pos2 = pos1->next, n2 = pos2->next; pos2 != head; |
| pos2 = n2, n2 = pos2->next) { |
| struct __prelim_ref *ref2; |
| |
| ref2 = list_entry(pos2, struct __prelim_ref, list); |
| |
| if (mode == 1) { |
| if (memcmp(&ref1->key, &ref2->key, |
| sizeof(ref1->key)) || |
| ref1->level != ref2->level || |
| ref1->root_id != ref2->root_id) |
| continue; |
| ref1->count += ref2->count; |
| } else { |
| if (ref1->parent != ref2->parent) |
| continue; |
| ref1->count += ref2->count; |
| } |
| list_del(&ref2->list); |
| kfree(ref2); |
| } |
| |
| } |
| return 0; |
| } |
| |
| /* |
| * add all currently queued delayed refs from this head whose seq nr is |
| * smaller or equal that seq to the list |
| */ |
| static int __add_delayed_refs(struct btrfs_delayed_ref_head *head, u64 seq, |
| struct btrfs_key *info_key, |
| struct list_head *prefs) |
| { |
| struct btrfs_delayed_extent_op *extent_op = head->extent_op; |
| struct rb_node *n = &head->node.rb_node; |
| int sgn; |
| int ret = 0; |
| |
| if (extent_op && extent_op->update_key) |
| btrfs_disk_key_to_cpu(info_key, &extent_op->key); |
| |
| while ((n = rb_prev(n))) { |
| struct btrfs_delayed_ref_node *node; |
| node = rb_entry(n, struct btrfs_delayed_ref_node, |
| rb_node); |
| if (node->bytenr != head->node.bytenr) |
| break; |
| WARN_ON(node->is_head); |
| |
| if (node->seq > seq) |
| continue; |
| |
| switch (node->action) { |
| case BTRFS_ADD_DELAYED_EXTENT: |
| case BTRFS_UPDATE_DELAYED_HEAD: |
| WARN_ON(1); |
| continue; |
| case BTRFS_ADD_DELAYED_REF: |
| sgn = 1; |
| break; |
| case BTRFS_DROP_DELAYED_REF: |
| sgn = -1; |
| break; |
| default: |
| BUG_ON(1); |
| } |
| switch (node->type) { |
| case BTRFS_TREE_BLOCK_REF_KEY: { |
| struct btrfs_delayed_tree_ref *ref; |
| |
| ref = btrfs_delayed_node_to_tree_ref(node); |
| ret = __add_prelim_ref(prefs, ref->root, info_key, |
| ref->level + 1, 0, node->bytenr, |
| node->ref_mod * sgn); |
| break; |
| } |
| case BTRFS_SHARED_BLOCK_REF_KEY: { |
| struct btrfs_delayed_tree_ref *ref; |
| |
| ref = btrfs_delayed_node_to_tree_ref(node); |
| ret = __add_prelim_ref(prefs, ref->root, info_key, |
| ref->level + 1, ref->parent, |
| node->bytenr, |
| node->ref_mod * sgn); |
| break; |
| } |
| case BTRFS_EXTENT_DATA_REF_KEY: { |
| struct btrfs_delayed_data_ref *ref; |
| struct btrfs_key key; |
| |
| ref = btrfs_delayed_node_to_data_ref(node); |
| |
| key.objectid = ref->objectid; |
| key.type = BTRFS_EXTENT_DATA_KEY; |
| key.offset = ref->offset; |
| ret = __add_prelim_ref(prefs, ref->root, &key, 0, 0, |
| node->bytenr, |
| node->ref_mod * sgn); |
| break; |
| } |
| case BTRFS_SHARED_DATA_REF_KEY: { |
| struct btrfs_delayed_data_ref *ref; |
| struct btrfs_key key; |
| |
| ref = btrfs_delayed_node_to_data_ref(node); |
| |
| key.objectid = ref->objectid; |
| key.type = BTRFS_EXTENT_DATA_KEY; |
| key.offset = ref->offset; |
| ret = __add_prelim_ref(prefs, ref->root, &key, 0, |
| ref->parent, node->bytenr, |
| node->ref_mod * sgn); |
| break; |
| } |
| default: |
| WARN_ON(1); |
| } |
| BUG_ON(ret); |
| } |
| |
| return 0; |
| } |
| |
| /* |
| * add all inline backrefs for bytenr to the list |
| */ |
| static int __add_inline_refs(struct btrfs_fs_info *fs_info, |
| struct btrfs_path *path, u64 bytenr, |
| struct btrfs_key *info_key, int *info_level, |
| struct list_head *prefs) |
| { |
| int ret = 0; |
| int slot; |
| struct extent_buffer *leaf; |
| struct btrfs_key key; |
| unsigned long ptr; |
| unsigned long end; |
| struct btrfs_extent_item *ei; |
| u64 flags; |
| u64 item_size; |
| |
| /* |
| * enumerate all inline refs |
| */ |
| leaf = path->nodes[0]; |
| slot = path->slots[0] - 1; |
| |
| item_size = btrfs_item_size_nr(leaf, slot); |
| BUG_ON(item_size < sizeof(*ei)); |
| |
| ei = btrfs_item_ptr(leaf, slot, struct btrfs_extent_item); |
| flags = btrfs_extent_flags(leaf, ei); |
| |
| ptr = (unsigned long)(ei + 1); |
| end = (unsigned long)ei + item_size; |
| |
| if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK) { |
| struct btrfs_tree_block_info *info; |
| struct btrfs_disk_key disk_key; |
| |
| info = (struct btrfs_tree_block_info *)ptr; |
| *info_level = btrfs_tree_block_level(leaf, info); |
| btrfs_tree_block_key(leaf, info, &disk_key); |
| btrfs_disk_key_to_cpu(info_key, &disk_key); |
| ptr += sizeof(struct btrfs_tree_block_info); |
| BUG_ON(ptr > end); |
| } else { |
| BUG_ON(!(flags & BTRFS_EXTENT_FLAG_DATA)); |
| } |
| |
| while (ptr < end) { |
| struct btrfs_extent_inline_ref *iref; |
| u64 offset; |
| int type; |
| |
| iref = (struct btrfs_extent_inline_ref *)ptr; |
| type = btrfs_extent_inline_ref_type(leaf, iref); |
| offset = btrfs_extent_inline_ref_offset(leaf, iref); |
| |
| switch (type) { |
| case BTRFS_SHARED_BLOCK_REF_KEY: |
| ret = __add_prelim_ref(prefs, 0, info_key, |
| *info_level + 1, offset, |
| bytenr, 1); |
| break; |
| case BTRFS_SHARED_DATA_REF_KEY: { |
| struct btrfs_shared_data_ref *sdref; |
| int count; |
| |
| sdref = (struct btrfs_shared_data_ref *)(iref + 1); |
| count = btrfs_shared_data_ref_count(leaf, sdref); |
| ret = __add_prelim_ref(prefs, 0, NULL, 0, offset, |
| bytenr, count); |
| break; |
| } |
| case BTRFS_TREE_BLOCK_REF_KEY: |
| ret = __add_prelim_ref(prefs, offset, info_key, |
| *info_level + 1, 0, bytenr, 1); |
| break; |
| case BTRFS_EXTENT_DATA_REF_KEY: { |
| struct btrfs_extent_data_ref *dref; |
| int count; |
| u64 root; |
| |
| dref = (struct btrfs_extent_data_ref *)(&iref->offset); |
| count = btrfs_extent_data_ref_count(leaf, dref); |
| key.objectid = btrfs_extent_data_ref_objectid(leaf, |
| dref); |
| key.type = BTRFS_EXTENT_DATA_KEY; |
| key.offset = btrfs_extent_data_ref_offset(leaf, dref); |
| root = btrfs_extent_data_ref_root(leaf, dref); |
| ret = __add_prelim_ref(prefs, root, &key, 0, 0, bytenr, |
| count); |
| break; |
| } |
| default: |
| WARN_ON(1); |
| } |
| BUG_ON(ret); |
| ptr += btrfs_extent_inline_ref_size(type); |
| } |
| |
| return 0; |
| } |
| |
| /* |
| * add all non-inline backrefs for bytenr to the list |
| */ |
| static int __add_keyed_refs(struct btrfs_fs_info *fs_info, |
| struct btrfs_path *path, u64 bytenr, |
| struct btrfs_key *info_key, int info_level, |
| struct list_head *prefs) |
| { |
| struct btrfs_root *extent_root = fs_info->extent_root; |
| int ret; |
| int slot; |
| struct extent_buffer *leaf; |
| struct btrfs_key key; |
| |
| while (1) { |
| ret = btrfs_next_item(extent_root, path); |
| if (ret < 0) |
| break; |
| if (ret) { |
| ret = 0; |
| break; |
| } |
| |
| slot = path->slots[0]; |
| leaf = path->nodes[0]; |
| btrfs_item_key_to_cpu(leaf, &key, slot); |
| |
| if (key.objectid != bytenr) |
| break; |
| if (key.type < BTRFS_TREE_BLOCK_REF_KEY) |
| continue; |
| if (key.type > BTRFS_SHARED_DATA_REF_KEY) |
| break; |
| |
| switch (key.type) { |
| case BTRFS_SHARED_BLOCK_REF_KEY: |
| ret = __add_prelim_ref(prefs, 0, info_key, |
| info_level + 1, key.offset, |
| bytenr, 1); |
| break; |
| case BTRFS_SHARED_DATA_REF_KEY: { |
| struct btrfs_shared_data_ref *sdref; |
| int count; |
| |
| sdref = btrfs_item_ptr(leaf, slot, |
| struct btrfs_shared_data_ref); |
| count = btrfs_shared_data_ref_count(leaf, sdref); |
| ret = __add_prelim_ref(prefs, 0, NULL, 0, key.offset, |
| bytenr, count); |
| break; |
| } |
| case BTRFS_TREE_BLOCK_REF_KEY: |
| ret = __add_prelim_ref(prefs, key.offset, info_key, |
| info_level + 1, 0, bytenr, 1); |
| break; |
| case BTRFS_EXTENT_DATA_REF_KEY: { |
| struct btrfs_extent_data_ref *dref; |
| int count; |
| u64 root; |
| |
| dref = btrfs_item_ptr(leaf, slot, |
| struct btrfs_extent_data_ref); |
| count = btrfs_extent_data_ref_count(leaf, dref); |
| key.objectid = btrfs_extent_data_ref_objectid(leaf, |
| dref); |
| key.type = BTRFS_EXTENT_DATA_KEY; |
| key.offset = btrfs_extent_data_ref_offset(leaf, dref); |
| root = btrfs_extent_data_ref_root(leaf, dref); |
| ret = __add_prelim_ref(prefs, root, &key, 0, 0, |
| bytenr, count); |
| break; |
| } |
| default: |
| WARN_ON(1); |
| } |
| BUG_ON(ret); |
| } |
| |
| return ret; |
| } |
| |
| /* |
| * this adds all existing backrefs (inline backrefs, backrefs and delayed |
| * refs) for the given bytenr to the refs list, merges duplicates and resolves |
| * indirect refs to their parent bytenr. |
| * When roots are found, they're added to the roots list |
| * |
| * FIXME some caching might speed things up |
| */ |
| static int find_parent_nodes(struct btrfs_trans_handle *trans, |
| struct btrfs_fs_info *fs_info, u64 bytenr, |
| u64 seq, struct ulist *refs, struct ulist *roots) |
| { |
| struct btrfs_key key; |
| struct btrfs_path *path; |
| struct btrfs_key info_key = { 0 }; |
| struct btrfs_delayed_ref_root *delayed_refs = NULL; |
| struct btrfs_delayed_ref_head *head; |
| int info_level = 0; |
| int ret; |
| int search_commit_root = (trans == BTRFS_BACKREF_SEARCH_COMMIT_ROOT); |
| struct list_head prefs_delayed; |
| struct list_head prefs; |
| struct __prelim_ref *ref; |
| |
| INIT_LIST_HEAD(&prefs); |
| INIT_LIST_HEAD(&prefs_delayed); |
| |
| key.objectid = bytenr; |
| key.type = BTRFS_EXTENT_ITEM_KEY; |
| key.offset = (u64)-1; |
| |
| path = btrfs_alloc_path(); |
| if (!path) |
| return -ENOMEM; |
| path->search_commit_root = !!search_commit_root; |
| |
| /* |
| * grab both a lock on the path and a lock on the delayed ref head. |
| * We need both to get a consistent picture of how the refs look |
| * at a specified point in time |
| */ |
| again: |
| head = NULL; |
| |
| ret = btrfs_search_slot(trans, fs_info->extent_root, &key, path, 0, 0); |
| if (ret < 0) |
| goto out; |
| BUG_ON(ret == 0); |
| |
| if (trans != BTRFS_BACKREF_SEARCH_COMMIT_ROOT) { |
| /* |
| * look if there are updates for this ref queued and lock the |
| * head |
| */ |
| delayed_refs = &trans->transaction->delayed_refs; |
| spin_lock(&delayed_refs->lock); |
| head = btrfs_find_delayed_ref_head(trans, bytenr); |
| if (head) { |
| if (!mutex_trylock(&head->mutex)) { |
| atomic_inc(&head->node.refs); |
| spin_unlock(&delayed_refs->lock); |
| |
| btrfs_release_path(path); |
| |
| /* |
| * Mutex was contended, block until it's |
| * released and try again |
| */ |
| mutex_lock(&head->mutex); |
| mutex_unlock(&head->mutex); |
| btrfs_put_delayed_ref(&head->node); |
| goto again; |
| } |
| ret = __add_delayed_refs(head, seq, &info_key, |
| &prefs_delayed); |
| if (ret) { |
| spin_unlock(&delayed_refs->lock); |
| goto out; |
| } |
| } |
| spin_unlock(&delayed_refs->lock); |
| } |
| |
| if (path->slots[0]) { |
| struct extent_buffer *leaf; |
| int slot; |
| |
| leaf = path->nodes[0]; |
| slot = path->slots[0] - 1; |
| btrfs_item_key_to_cpu(leaf, &key, slot); |
| if (key.objectid == bytenr && |
| key.type == BTRFS_EXTENT_ITEM_KEY) { |
| ret = __add_inline_refs(fs_info, path, bytenr, |
| &info_key, &info_level, &prefs); |
| if (ret) |
| goto out; |
| ret = __add_keyed_refs(fs_info, path, bytenr, &info_key, |
| info_level, &prefs); |
| if (ret) |
| goto out; |
| } |
| } |
| btrfs_release_path(path); |
| |
| /* |
| * when adding the delayed refs above, the info_key might not have |
| * been known yet. Go over the list and replace the missing keys |
| */ |
| list_for_each_entry(ref, &prefs_delayed, list) { |
| if ((ref->key.offset | ref->key.type | ref->key.objectid) == 0) |
| memcpy(&ref->key, &info_key, sizeof(ref->key)); |
| } |
| list_splice_init(&prefs_delayed, &prefs); |
| |
| ret = __merge_refs(&prefs, 1); |
| if (ret) |
| goto out; |
| |
| ret = __resolve_indirect_refs(fs_info, search_commit_root, &prefs); |
| if (ret) |
| goto out; |
| |
| ret = __merge_refs(&prefs, 2); |
| if (ret) |
| goto out; |
| |
| while (!list_empty(&prefs)) { |
| ref = list_first_entry(&prefs, struct __prelim_ref, list); |
| list_del(&ref->list); |
| if (ref->count < 0) |
| WARN_ON(1); |
| if (ref->count && ref->root_id && ref->parent == 0) { |
| /* no parent == root of tree */ |
| ret = ulist_add(roots, ref->root_id, 0, GFP_NOFS); |
| BUG_ON(ret < 0); |
| } |
| if (ref->count && ref->parent) { |
| ret = ulist_add(refs, ref->parent, 0, GFP_NOFS); |
| BUG_ON(ret < 0); |
| } |
| kfree(ref); |
| } |
| |
| out: |
| if (head) |
| mutex_unlock(&head->mutex); |
| btrfs_free_path(path); |
| while (!list_empty(&prefs)) { |
| ref = list_first_entry(&prefs, struct __prelim_ref, list); |
| list_del(&ref->list); |
| kfree(ref); |
| } |
| while (!list_empty(&prefs_delayed)) { |
| ref = list_first_entry(&prefs_delayed, struct __prelim_ref, |
| list); |
| list_del(&ref->list); |
| kfree(ref); |
| } |
| |
| return ret; |
| } |
| |
| /* |
| * Finds all leafs with a reference to the specified combination of bytenr and |
| * offset. key_list_head will point to a list of corresponding keys (caller must |
| * free each list element). The leafs will be stored in the leafs ulist, which |
| * must be freed with ulist_free. |
| * |
| * returns 0 on success, <0 on error |
| */ |
| static int btrfs_find_all_leafs(struct btrfs_trans_handle *trans, |
| struct btrfs_fs_info *fs_info, u64 bytenr, |
| u64 num_bytes, u64 seq, struct ulist **leafs) |
| { |
| struct ulist *tmp; |
| int ret; |
| |
| tmp = ulist_alloc(GFP_NOFS); |
| if (!tmp) |
| return -ENOMEM; |
| *leafs = ulist_alloc(GFP_NOFS); |
| if (!*leafs) { |
| ulist_free(tmp); |
| return -ENOMEM; |
| } |
| |
| ret = find_parent_nodes(trans, fs_info, bytenr, seq, *leafs, tmp); |
| ulist_free(tmp); |
| |
| if (ret < 0 && ret != -ENOENT) { |
| ulist_free(*leafs); |
| return ret; |
| } |
| |
| return 0; |
| } |
| |
| /* |
| * walk all backrefs for a given extent to find all roots that reference this |
| * extent. Walking a backref means finding all extents that reference this |
| * extent and in turn walk the backrefs of those, too. Naturally this is a |
| * recursive process, but here it is implemented in an iterative fashion: We |
| * find all referencing extents for the extent in question and put them on a |
| * list. In turn, we find all referencing extents for those, further appending |
| * to the list. The way we iterate the list allows adding more elements after |
| * the current while iterating. The process stops when we reach the end of the |
| * list. Found roots are added to the roots list. |
| * |
| * returns 0 on success, < 0 on error. |
| */ |
| int btrfs_find_all_roots(struct btrfs_trans_handle *trans, |
| struct btrfs_fs_info *fs_info, u64 bytenr, |
| u64 num_bytes, u64 seq, struct ulist **roots) |
| { |
| struct ulist *tmp; |
| struct ulist_node *node = NULL; |
| int ret; |
| |
| tmp = ulist_alloc(GFP_NOFS); |
| if (!tmp) |
| return -ENOMEM; |
| *roots = ulist_alloc(GFP_NOFS); |
| if (!*roots) { |
| ulist_free(tmp); |
| return -ENOMEM; |
| } |
| |
| while (1) { |
| ret = find_parent_nodes(trans, fs_info, bytenr, seq, |
| tmp, *roots); |
| if (ret < 0 && ret != -ENOENT) { |
| ulist_free(tmp); |
| ulist_free(*roots); |
| return ret; |
| } |
| node = ulist_next(tmp, node); |
| if (!node) |
| break; |
| bytenr = node->val; |
| } |
| |
| ulist_free(tmp); |
| return 0; |
| } |
| |
| |
| static int __inode_info(u64 inum, u64 ioff, u8 key_type, |
| struct btrfs_root *fs_root, struct btrfs_path *path, |
| struct btrfs_key *found_key) |
| { |
| int ret; |
| struct btrfs_key key; |
| struct extent_buffer *eb; |
| |
| key.type = key_type; |
| key.objectid = inum; |
| key.offset = ioff; |
| |
| ret = btrfs_search_slot(NULL, fs_root, &key, path, 0, 0); |
| if (ret < 0) |
| return ret; |
| |
| eb = path->nodes[0]; |
| if (ret && path->slots[0] >= btrfs_header_nritems(eb)) { |
| ret = btrfs_next_leaf(fs_root, path); |
| if (ret) |
| return ret; |
| eb = path->nodes[0]; |
| } |
| |
| btrfs_item_key_to_cpu(eb, found_key, path->slots[0]); |
| if (found_key->type != key.type || found_key->objectid != key.objectid) |
| return 1; |
| |
| return 0; |
| } |
| |
| /* |
| * this makes the path point to (inum INODE_ITEM ioff) |
| */ |
| int inode_item_info(u64 inum, u64 ioff, struct btrfs_root *fs_root, |
| struct btrfs_path *path) |
| { |
| struct btrfs_key key; |
| return __inode_info(inum, ioff, BTRFS_INODE_ITEM_KEY, fs_root, path, |
| &key); |
| } |
| |
| static int inode_ref_info(u64 inum, u64 ioff, struct btrfs_root *fs_root, |
| struct btrfs_path *path, |
| struct btrfs_key *found_key) |
| { |
| return __inode_info(inum, ioff, BTRFS_INODE_REF_KEY, fs_root, path, |
| found_key); |
| } |
| |
| /* |
| * this iterates to turn a btrfs_inode_ref into a full filesystem path. elements |
| * of the path are separated by '/' and the path is guaranteed to be |
| * 0-terminated. the path is only given within the current file system. |
| * Therefore, it never starts with a '/'. the caller is responsible to provide |
| * "size" bytes in "dest". the dest buffer will be filled backwards. finally, |
| * the start point of the resulting string is returned. this pointer is within |
| * dest, normally. |
| * in case the path buffer would overflow, the pointer is decremented further |
| * as if output was written to the buffer, though no more output is actually |
| * generated. that way, the caller can determine how much space would be |
| * required for the path to fit into the buffer. in that case, the returned |
| * value will be smaller than dest. callers must check this! |
| */ |
| static char *iref_to_path(struct btrfs_root *fs_root, struct btrfs_path *path, |
| struct btrfs_inode_ref *iref, |
| struct extent_buffer *eb_in, u64 parent, |
| char *dest, u32 size) |
| { |
| u32 len; |
| int slot; |
| u64 next_inum; |
| int ret; |
| s64 bytes_left = size - 1; |
| struct extent_buffer *eb = eb_in; |
| struct btrfs_key found_key; |
| |
| if (bytes_left >= 0) |
| dest[bytes_left] = '\0'; |
| |
| while (1) { |
| len = btrfs_inode_ref_name_len(eb, iref); |
| bytes_left -= len; |
| if (bytes_left >= 0) |
| read_extent_buffer(eb, dest + bytes_left, |
| (unsigned long)(iref + 1), len); |
| if (eb != eb_in) |
| free_extent_buffer(eb); |
| ret = inode_ref_info(parent, 0, fs_root, path, &found_key); |
| if (ret > 0) |
| ret = -ENOENT; |
| if (ret) |
| break; |
| next_inum = found_key.offset; |
| |
| /* regular exit ahead */ |
| if (parent == next_inum) |
| break; |
| |
| slot = path->slots[0]; |
| eb = path->nodes[0]; |
| /* make sure we can use eb after releasing the path */ |
| if (eb != eb_in) |
| atomic_inc(&eb->refs); |
| btrfs_release_path(path); |
| |
| iref = btrfs_item_ptr(eb, slot, struct btrfs_inode_ref); |
| parent = next_inum; |
| --bytes_left; |
| if (bytes_left >= 0) |
| dest[bytes_left] = '/'; |
| } |
| |
| btrfs_release_path(path); |
| |
| if (ret) |
| return ERR_PTR(ret); |
| |
| return dest + bytes_left; |
| } |
| |
| /* |
| * this makes the path point to (logical EXTENT_ITEM *) |
| * returns BTRFS_EXTENT_FLAG_DATA for data, BTRFS_EXTENT_FLAG_TREE_BLOCK for |
| * tree blocks and <0 on error. |
| */ |
| int extent_from_logical(struct btrfs_fs_info *fs_info, u64 logical, |
| struct btrfs_path *path, struct btrfs_key *found_key) |
| { |
| int ret; |
| u64 flags; |
| u32 item_size; |
| struct extent_buffer *eb; |
| struct btrfs_extent_item *ei; |
| struct btrfs_key key; |
| |
| key.type = BTRFS_EXTENT_ITEM_KEY; |
| key.objectid = logical; |
| key.offset = (u64)-1; |
| |
| ret = btrfs_search_slot(NULL, fs_info->extent_root, &key, path, 0, 0); |
| if (ret < 0) |
| return ret; |
| ret = btrfs_previous_item(fs_info->extent_root, path, |
| 0, BTRFS_EXTENT_ITEM_KEY); |
| if (ret < 0) |
| return ret; |
| |
| btrfs_item_key_to_cpu(path->nodes[0], found_key, path->slots[0]); |
| if (found_key->type != BTRFS_EXTENT_ITEM_KEY || |
| found_key->objectid > logical || |
| found_key->objectid + found_key->offset <= logical) { |
| pr_debug("logical %llu is not within any extent\n", |
| (unsigned long long)logical); |
| return -ENOENT; |
| } |
| |
| eb = path->nodes[0]; |
| item_size = btrfs_item_size_nr(eb, path->slots[0]); |
| BUG_ON(item_size < sizeof(*ei)); |
| |
| ei = btrfs_item_ptr(eb, path->slots[0], struct btrfs_extent_item); |
| flags = btrfs_extent_flags(eb, ei); |
| |
| pr_debug("logical %llu is at position %llu within the extent (%llu " |
| "EXTENT_ITEM %llu) flags %#llx size %u\n", |
| (unsigned long long)logical, |
| (unsigned long long)(logical - found_key->objectid), |
| (unsigned long long)found_key->objectid, |
| (unsigned long long)found_key->offset, |
| (unsigned long long)flags, item_size); |
| if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK) |
| return BTRFS_EXTENT_FLAG_TREE_BLOCK; |
| if (flags & BTRFS_EXTENT_FLAG_DATA) |
| return BTRFS_EXTENT_FLAG_DATA; |
| |
| return -EIO; |
| } |
| |
| /* |
| * helper function to iterate extent inline refs. ptr must point to a 0 value |
| * for the first call and may be modified. it is used to track state. |
| * if more refs exist, 0 is returned and the next call to |
| * __get_extent_inline_ref must pass the modified ptr parameter to get the |
| * next ref. after the last ref was processed, 1 is returned. |
| * returns <0 on error |
| */ |
| static int __get_extent_inline_ref(unsigned long *ptr, struct extent_buffer *eb, |
| struct btrfs_extent_item *ei, u32 item_size, |
| struct btrfs_extent_inline_ref **out_eiref, |
| int *out_type) |
| { |
| unsigned long end; |
| u64 flags; |
| struct btrfs_tree_block_info *info; |
| |
| if (!*ptr) { |
| /* first call */ |
| flags = btrfs_extent_flags(eb, ei); |
| if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK) { |
| info = (struct btrfs_tree_block_info *)(ei + 1); |
| *out_eiref = |
| (struct btrfs_extent_inline_ref *)(info + 1); |
| } else { |
| *out_eiref = (struct btrfs_extent_inline_ref *)(ei + 1); |
| } |
| *ptr = (unsigned long)*out_eiref; |
| if ((void *)*ptr >= (void *)ei + item_size) |
| return -ENOENT; |
| } |
| |
| end = (unsigned long)ei + item_size; |
| *out_eiref = (struct btrfs_extent_inline_ref *)*ptr; |
| *out_type = btrfs_extent_inline_ref_type(eb, *out_eiref); |
| |
| *ptr += btrfs_extent_inline_ref_size(*out_type); |
| WARN_ON(*ptr > end); |
| if (*ptr == end) |
| return 1; /* last */ |
| |
| return 0; |
| } |
| |
| /* |
| * reads the tree block backref for an extent. tree level and root are returned |
| * through out_level and out_root. ptr must point to a 0 value for the first |
| * call and may be modified (see __get_extent_inline_ref comment). |
| * returns 0 if data was provided, 1 if there was no more data to provide or |
| * <0 on error. |
| */ |
| int tree_backref_for_extent(unsigned long *ptr, struct extent_buffer *eb, |
| struct btrfs_extent_item *ei, u32 item_size, |
| u64 *out_root, u8 *out_level) |
| { |
| int ret; |
| int type; |
| struct btrfs_tree_block_info *info; |
| struct btrfs_extent_inline_ref *eiref; |
| |
| if (*ptr == (unsigned long)-1) |
| return 1; |
| |
| while (1) { |
| ret = __get_extent_inline_ref(ptr, eb, ei, item_size, |
| &eiref, &type); |
| if (ret < 0) |
| return ret; |
| |
| if (type == BTRFS_TREE_BLOCK_REF_KEY || |
| type == BTRFS_SHARED_BLOCK_REF_KEY) |
| break; |
| |
| if (ret == 1) |
| return 1; |
| } |
| |
| /* we can treat both ref types equally here */ |
| info = (struct btrfs_tree_block_info *)(ei + 1); |
| *out_root = btrfs_extent_inline_ref_offset(eb, eiref); |
| *out_level = btrfs_tree_block_level(eb, info); |
| |
| if (ret == 1) |
| *ptr = (unsigned long)-1; |
| |
| return 0; |
| } |
| |
| static int iterate_leaf_refs(struct btrfs_fs_info *fs_info, u64 logical, |
| u64 orig_extent_item_objectid, |
| u64 extent_item_pos, u64 root, |
| iterate_extent_inodes_t *iterate, void *ctx) |
| { |
| u64 disk_byte; |
| struct btrfs_key key; |
| struct btrfs_file_extent_item *fi; |
| struct extent_buffer *eb; |
| int slot; |
| int nritems; |
| int ret = 0; |
| int extent_type; |
| u64 data_offset; |
| u64 data_len; |
| |
| eb = read_tree_block(fs_info->tree_root, logical, |
| fs_info->tree_root->leafsize, 0); |
| if (!eb) |
| return -EIO; |
| |
| /* |
| * from the shared data ref, we only have the leaf but we need |
| * the key. thus, we must look into all items and see that we |
| * find one (some) with a reference to our extent item. |
| */ |
| nritems = btrfs_header_nritems(eb); |
| for (slot = 0; slot < nritems; ++slot) { |
| btrfs_item_key_to_cpu(eb, &key, slot); |
| if (key.type != BTRFS_EXTENT_DATA_KEY) |
| continue; |
| fi = btrfs_item_ptr(eb, slot, struct btrfs_file_extent_item); |
| extent_type = btrfs_file_extent_type(eb, fi); |
| if (extent_type == BTRFS_FILE_EXTENT_INLINE) |
| continue; |
| /* don't skip BTRFS_FILE_EXTENT_PREALLOC, we can handle that */ |
| disk_byte = btrfs_file_extent_disk_bytenr(eb, fi); |
| if (disk_byte != orig_extent_item_objectid) |
| continue; |
| |
| data_offset = btrfs_file_extent_offset(eb, fi); |
| data_len = btrfs_file_extent_num_bytes(eb, fi); |
| |
| if (extent_item_pos < data_offset || |
| extent_item_pos >= data_offset + data_len) |
| continue; |
| |
| pr_debug("ref for %llu resolved, key (%llu EXTEND_DATA %llu), " |
| "root %llu\n", orig_extent_item_objectid, |
| key.objectid, key.offset, root); |
| ret = iterate(key.objectid, |
| key.offset + (extent_item_pos - data_offset), |
| root, ctx); |
| if (ret) { |
| pr_debug("stopping iteration because ret=%d\n", ret); |
| break; |
| } |
| } |
| |
| free_extent_buffer(eb); |
| |
| return ret; |
| } |
| |
| /* |
| * calls iterate() for every inode that references the extent identified by |
| * the given parameters. |
| * when the iterator function returns a non-zero value, iteration stops. |
| */ |
| int iterate_extent_inodes(struct btrfs_fs_info *fs_info, |
| u64 extent_item_objectid, u64 extent_item_pos, |
| int search_commit_root, |
| iterate_extent_inodes_t *iterate, void *ctx) |
| { |
| int ret; |
| struct list_head data_refs = LIST_HEAD_INIT(data_refs); |
| struct list_head shared_refs = LIST_HEAD_INIT(shared_refs); |
| struct btrfs_trans_handle *trans; |
| struct ulist *refs = NULL; |
| struct ulist *roots = NULL; |
| struct ulist_node *ref_node = NULL; |
| struct ulist_node *root_node = NULL; |
| struct seq_list seq_elem; |
| struct btrfs_delayed_ref_root *delayed_refs = NULL; |
| |
| pr_debug("resolving all inodes for extent %llu\n", |
| extent_item_objectid); |
| |
| if (search_commit_root) { |
| trans = BTRFS_BACKREF_SEARCH_COMMIT_ROOT; |
| } else { |
| trans = btrfs_join_transaction(fs_info->extent_root); |
| if (IS_ERR(trans)) |
| return PTR_ERR(trans); |
| |
| delayed_refs = &trans->transaction->delayed_refs; |
| spin_lock(&delayed_refs->lock); |
| btrfs_get_delayed_seq(delayed_refs, &seq_elem); |
| spin_unlock(&delayed_refs->lock); |
| } |
| |
| ret = btrfs_find_all_leafs(trans, fs_info, extent_item_objectid, |
| extent_item_pos, seq_elem.seq, |
| &refs); |
| |
| if (ret) |
| goto out; |
| |
| while (!ret && (ref_node = ulist_next(refs, ref_node))) { |
| ret = btrfs_find_all_roots(trans, fs_info, ref_node->val, -1, |
| seq_elem.seq, &roots); |
| if (ret) |
| break; |
| while (!ret && (root_node = ulist_next(roots, root_node))) { |
| pr_debug("root %llu references leaf %llu\n", |
| root_node->val, ref_node->val); |
| ret = iterate_leaf_refs(fs_info, ref_node->val, |
| extent_item_objectid, |
| extent_item_pos, root_node->val, |
| iterate, ctx); |
| } |
| } |
| |
| ulist_free(refs); |
| ulist_free(roots); |
| out: |
| if (!search_commit_root) { |
| btrfs_put_delayed_seq(delayed_refs, &seq_elem); |
| btrfs_end_transaction(trans, fs_info->extent_root); |
| } |
| |
| return ret; |
| } |
| |
| int iterate_inodes_from_logical(u64 logical, struct btrfs_fs_info *fs_info, |
| struct btrfs_path *path, |
| iterate_extent_inodes_t *iterate, void *ctx) |
| { |
| int ret; |
| u64 extent_item_pos; |
| struct btrfs_key found_key; |
| int search_commit_root = path->search_commit_root; |
| |
| ret = extent_from_logical(fs_info, logical, path, |
| &found_key); |
| btrfs_release_path(path); |
| if (ret & BTRFS_EXTENT_FLAG_TREE_BLOCK) |
| ret = -EINVAL; |
| if (ret < 0) |
| return ret; |
| |
| extent_item_pos = logical - found_key.objectid; |
| ret = iterate_extent_inodes(fs_info, found_key.objectid, |
| extent_item_pos, search_commit_root, |
| iterate, ctx); |
| |
| return ret; |
| } |
| |
| static int iterate_irefs(u64 inum, struct btrfs_root *fs_root, |
| struct btrfs_path *path, |
| iterate_irefs_t *iterate, void *ctx) |
| { |
| int ret; |
| int slot; |
| u32 cur; |
| u32 len; |
| u32 name_len; |
| u64 parent = 0; |
| int found = 0; |
| struct extent_buffer *eb; |
| struct btrfs_item *item; |
| struct btrfs_inode_ref *iref; |
| struct btrfs_key found_key; |
| |
| while (1) { |
| ret = inode_ref_info(inum, parent ? parent+1 : 0, fs_root, path, |
| &found_key); |
| if (ret < 0) |
| break; |
| if (ret) { |
| ret = found ? 0 : -ENOENT; |
| break; |
| } |
| ++found; |
| |
| parent = found_key.offset; |
| slot = path->slots[0]; |
| eb = path->nodes[0]; |
| /* make sure we can use eb after releasing the path */ |
| atomic_inc(&eb->refs); |
| btrfs_release_path(path); |
| |
| item = btrfs_item_nr(eb, slot); |
| iref = btrfs_item_ptr(eb, slot, struct btrfs_inode_ref); |
| |
| for (cur = 0; cur < btrfs_item_size(eb, item); cur += len) { |
| name_len = btrfs_inode_ref_name_len(eb, iref); |
| /* path must be released before calling iterate()! */ |
| pr_debug("following ref at offset %u for inode %llu in " |
| "tree %llu\n", cur, |
| (unsigned long long)found_key.objectid, |
| (unsigned long long)fs_root->objectid); |
| ret = iterate(parent, iref, eb, ctx); |
| if (ret) { |
| free_extent_buffer(eb); |
| break; |
| } |
| len = sizeof(*iref) + name_len; |
| iref = (struct btrfs_inode_ref *)((char *)iref + len); |
| } |
| free_extent_buffer(eb); |
| } |
| |
| btrfs_release_path(path); |
| |
| return ret; |
| } |
| |
| /* |
| * returns 0 if the path could be dumped (probably truncated) |
| * returns <0 in case of an error |
| */ |
| static int inode_to_path(u64 inum, struct btrfs_inode_ref *iref, |
| struct extent_buffer *eb, void *ctx) |
| { |
| struct inode_fs_paths *ipath = ctx; |
| char *fspath; |
| char *fspath_min; |
| int i = ipath->fspath->elem_cnt; |
| const int s_ptr = sizeof(char *); |
| u32 bytes_left; |
| |
| bytes_left = ipath->fspath->bytes_left > s_ptr ? |
| ipath->fspath->bytes_left - s_ptr : 0; |
| |
| fspath_min = (char *)ipath->fspath->val + (i + 1) * s_ptr; |
| fspath = iref_to_path(ipath->fs_root, ipath->btrfs_path, iref, eb, |
| inum, fspath_min, bytes_left); |
| if (IS_ERR(fspath)) |
| return PTR_ERR(fspath); |
| |
| if (fspath > fspath_min) { |
| pr_debug("path resolved: %s\n", fspath); |
| ipath->fspath->val[i] = (u64)(unsigned long)fspath; |
| ++ipath->fspath->elem_cnt; |
| ipath->fspath->bytes_left = fspath - fspath_min; |
| } else { |
| pr_debug("missed path, not enough space. missing bytes: %lu, " |
| "constructed so far: %s\n", |
| (unsigned long)(fspath_min - fspath), fspath_min); |
| ++ipath->fspath->elem_missed; |
| ipath->fspath->bytes_missing += fspath_min - fspath; |
| ipath->fspath->bytes_left = 0; |
| } |
| |
| return 0; |
| } |
| |
| /* |
| * this dumps all file system paths to the inode into the ipath struct, provided |
| * is has been created large enough. each path is zero-terminated and accessed |
| * from ipath->fspath->val[i]. |
| * when it returns, there are ipath->fspath->elem_cnt number of paths available |
| * in ipath->fspath->val[]. when the allocated space wasn't sufficient, the |
| * number of missed paths in recored in ipath->fspath->elem_missed, otherwise, |
| * it's zero. ipath->fspath->bytes_missing holds the number of bytes that would |
| * have been needed to return all paths. |
| */ |
| int paths_from_inode(u64 inum, struct inode_fs_paths *ipath) |
| { |
| return iterate_irefs(inum, ipath->fs_root, ipath->btrfs_path, |
| inode_to_path, ipath); |
| } |
| |
| struct btrfs_data_container *init_data_container(u32 total_bytes) |
| { |
| struct btrfs_data_container *data; |
| size_t alloc_bytes; |
| |
| alloc_bytes = max_t(size_t, total_bytes, sizeof(*data)); |
| data = kmalloc(alloc_bytes, GFP_NOFS); |
| if (!data) |
| return ERR_PTR(-ENOMEM); |
| |
| if (total_bytes >= sizeof(*data)) { |
| data->bytes_left = total_bytes - sizeof(*data); |
| data->bytes_missing = 0; |
| } else { |
| data->bytes_missing = sizeof(*data) - total_bytes; |
| data->bytes_left = 0; |
| } |
| |
| data->elem_cnt = 0; |
| data->elem_missed = 0; |
| |
| return data; |
| } |
| |
| /* |
| * allocates space to return multiple file system paths for an inode. |
| * total_bytes to allocate are passed, note that space usable for actual path |
| * information will be total_bytes - sizeof(struct inode_fs_paths). |
| * the returned pointer must be freed with free_ipath() in the end. |
| */ |
| struct inode_fs_paths *init_ipath(s32 total_bytes, struct btrfs_root *fs_root, |
| struct btrfs_path *path) |
| { |
| struct inode_fs_paths *ifp; |
| struct btrfs_data_container *fspath; |
| |
| fspath = init_data_container(total_bytes); |
| if (IS_ERR(fspath)) |
| return (void *)fspath; |
| |
| ifp = kmalloc(sizeof(*ifp), GFP_NOFS); |
| if (!ifp) { |
| kfree(fspath); |
| return ERR_PTR(-ENOMEM); |
| } |
| |
| ifp->btrfs_path = path; |
| ifp->fspath = fspath; |
| ifp->fs_root = fs_root; |
| |
| return ifp; |
| } |
| |
| void free_ipath(struct inode_fs_paths *ipath) |
| { |
| if (!ipath) |
| return; |
| kfree(ipath->fspath); |
| kfree(ipath); |
| } |