| // SPDX-License-Identifier: GPL-2.0-only |
| /* |
| * Copyright (C) 2015 Linaro Ltd. |
| * Author: Shannon Zhao <shannon.zhao@linaro.org> |
| */ |
| |
| #include <linux/cpu.h> |
| #include <linux/kvm.h> |
| #include <linux/kvm_host.h> |
| #include <linux/perf_event.h> |
| #include <linux/perf/arm_pmu.h> |
| #include <linux/uaccess.h> |
| #include <asm/kvm_emulate.h> |
| #include <kvm/arm_pmu.h> |
| #include <kvm/arm_vgic.h> |
| |
| static void kvm_pmu_create_perf_event(struct kvm_vcpu *vcpu, u64 select_idx); |
| static void kvm_pmu_update_pmc_chained(struct kvm_vcpu *vcpu, u64 select_idx); |
| static void kvm_pmu_stop_counter(struct kvm_vcpu *vcpu, struct kvm_pmc *pmc); |
| |
| #define PERF_ATTR_CFG1_KVM_PMU_CHAINED 0x1 |
| |
| static u32 kvm_pmu_event_mask(struct kvm *kvm) |
| { |
| switch (kvm->arch.pmuver) { |
| case 1: /* ARMv8.0 */ |
| return GENMASK(9, 0); |
| case 4: /* ARMv8.1 */ |
| case 5: /* ARMv8.4 */ |
| case 6: /* ARMv8.5 */ |
| return GENMASK(15, 0); |
| default: /* Shouldn't be here, just for sanity */ |
| WARN_ONCE(1, "Unknown PMU version %d\n", kvm->arch.pmuver); |
| return 0; |
| } |
| } |
| |
| /** |
| * kvm_pmu_idx_is_64bit - determine if select_idx is a 64bit counter |
| * @vcpu: The vcpu pointer |
| * @select_idx: The counter index |
| */ |
| static bool kvm_pmu_idx_is_64bit(struct kvm_vcpu *vcpu, u64 select_idx) |
| { |
| return (select_idx == ARMV8_PMU_CYCLE_IDX && |
| __vcpu_sys_reg(vcpu, PMCR_EL0) & ARMV8_PMU_PMCR_LC); |
| } |
| |
| static struct kvm_vcpu *kvm_pmc_to_vcpu(struct kvm_pmc *pmc) |
| { |
| struct kvm_pmu *pmu; |
| struct kvm_vcpu_arch *vcpu_arch; |
| |
| pmc -= pmc->idx; |
| pmu = container_of(pmc, struct kvm_pmu, pmc[0]); |
| vcpu_arch = container_of(pmu, struct kvm_vcpu_arch, pmu); |
| return container_of(vcpu_arch, struct kvm_vcpu, arch); |
| } |
| |
| /** |
| * kvm_pmu_pmc_is_chained - determine if the pmc is chained |
| * @pmc: The PMU counter pointer |
| */ |
| static bool kvm_pmu_pmc_is_chained(struct kvm_pmc *pmc) |
| { |
| struct kvm_vcpu *vcpu = kvm_pmc_to_vcpu(pmc); |
| |
| return test_bit(pmc->idx >> 1, vcpu->arch.pmu.chained); |
| } |
| |
| /** |
| * kvm_pmu_idx_is_high_counter - determine if select_idx is a high/low counter |
| * @select_idx: The counter index |
| */ |
| static bool kvm_pmu_idx_is_high_counter(u64 select_idx) |
| { |
| return select_idx & 0x1; |
| } |
| |
| /** |
| * kvm_pmu_get_canonical_pmc - obtain the canonical pmc |
| * @pmc: The PMU counter pointer |
| * |
| * When a pair of PMCs are chained together we use the low counter (canonical) |
| * to hold the underlying perf event. |
| */ |
| static struct kvm_pmc *kvm_pmu_get_canonical_pmc(struct kvm_pmc *pmc) |
| { |
| if (kvm_pmu_pmc_is_chained(pmc) && |
| kvm_pmu_idx_is_high_counter(pmc->idx)) |
| return pmc - 1; |
| |
| return pmc; |
| } |
| static struct kvm_pmc *kvm_pmu_get_alternate_pmc(struct kvm_pmc *pmc) |
| { |
| if (kvm_pmu_idx_is_high_counter(pmc->idx)) |
| return pmc - 1; |
| else |
| return pmc + 1; |
| } |
| |
| /** |
| * kvm_pmu_idx_has_chain_evtype - determine if the event type is chain |
| * @vcpu: The vcpu pointer |
| * @select_idx: The counter index |
| */ |
| static bool kvm_pmu_idx_has_chain_evtype(struct kvm_vcpu *vcpu, u64 select_idx) |
| { |
| u64 eventsel, reg; |
| |
| select_idx |= 0x1; |
| |
| if (select_idx == ARMV8_PMU_CYCLE_IDX) |
| return false; |
| |
| reg = PMEVTYPER0_EL0 + select_idx; |
| eventsel = __vcpu_sys_reg(vcpu, reg) & kvm_pmu_event_mask(vcpu->kvm); |
| |
| return eventsel == ARMV8_PMUV3_PERFCTR_CHAIN; |
| } |
| |
| /** |
| * kvm_pmu_get_pair_counter_value - get PMU counter value |
| * @vcpu: The vcpu pointer |
| * @pmc: The PMU counter pointer |
| */ |
| static u64 kvm_pmu_get_pair_counter_value(struct kvm_vcpu *vcpu, |
| struct kvm_pmc *pmc) |
| { |
| u64 counter, counter_high, reg, enabled, running; |
| |
| if (kvm_pmu_pmc_is_chained(pmc)) { |
| pmc = kvm_pmu_get_canonical_pmc(pmc); |
| reg = PMEVCNTR0_EL0 + pmc->idx; |
| |
| counter = __vcpu_sys_reg(vcpu, reg); |
| counter_high = __vcpu_sys_reg(vcpu, reg + 1); |
| |
| counter = lower_32_bits(counter) | (counter_high << 32); |
| } else { |
| reg = (pmc->idx == ARMV8_PMU_CYCLE_IDX) |
| ? PMCCNTR_EL0 : PMEVCNTR0_EL0 + pmc->idx; |
| counter = __vcpu_sys_reg(vcpu, reg); |
| } |
| |
| /* |
| * The real counter value is equal to the value of counter register plus |
| * the value perf event counts. |
| */ |
| if (pmc->perf_event) |
| counter += perf_event_read_value(pmc->perf_event, &enabled, |
| &running); |
| |
| return counter; |
| } |
| |
| /** |
| * kvm_pmu_get_counter_value - get PMU counter value |
| * @vcpu: The vcpu pointer |
| * @select_idx: The counter index |
| */ |
| u64 kvm_pmu_get_counter_value(struct kvm_vcpu *vcpu, u64 select_idx) |
| { |
| u64 counter; |
| struct kvm_pmu *pmu = &vcpu->arch.pmu; |
| struct kvm_pmc *pmc = &pmu->pmc[select_idx]; |
| |
| counter = kvm_pmu_get_pair_counter_value(vcpu, pmc); |
| |
| if (kvm_pmu_pmc_is_chained(pmc) && |
| kvm_pmu_idx_is_high_counter(select_idx)) |
| counter = upper_32_bits(counter); |
| else if (select_idx != ARMV8_PMU_CYCLE_IDX) |
| counter = lower_32_bits(counter); |
| |
| return counter; |
| } |
| |
| /** |
| * kvm_pmu_set_counter_value - set PMU counter value |
| * @vcpu: The vcpu pointer |
| * @select_idx: The counter index |
| * @val: The counter value |
| */ |
| void kvm_pmu_set_counter_value(struct kvm_vcpu *vcpu, u64 select_idx, u64 val) |
| { |
| u64 reg; |
| |
| reg = (select_idx == ARMV8_PMU_CYCLE_IDX) |
| ? PMCCNTR_EL0 : PMEVCNTR0_EL0 + select_idx; |
| __vcpu_sys_reg(vcpu, reg) += (s64)val - kvm_pmu_get_counter_value(vcpu, select_idx); |
| |
| /* Recreate the perf event to reflect the updated sample_period */ |
| kvm_pmu_create_perf_event(vcpu, select_idx); |
| } |
| |
| /** |
| * kvm_pmu_release_perf_event - remove the perf event |
| * @pmc: The PMU counter pointer |
| */ |
| static void kvm_pmu_release_perf_event(struct kvm_pmc *pmc) |
| { |
| pmc = kvm_pmu_get_canonical_pmc(pmc); |
| if (pmc->perf_event) { |
| perf_event_disable(pmc->perf_event); |
| perf_event_release_kernel(pmc->perf_event); |
| pmc->perf_event = NULL; |
| } |
| } |
| |
| /** |
| * kvm_pmu_stop_counter - stop PMU counter |
| * @pmc: The PMU counter pointer |
| * |
| * If this counter has been configured to monitor some event, release it here. |
| */ |
| static void kvm_pmu_stop_counter(struct kvm_vcpu *vcpu, struct kvm_pmc *pmc) |
| { |
| u64 counter, reg, val; |
| |
| pmc = kvm_pmu_get_canonical_pmc(pmc); |
| if (!pmc->perf_event) |
| return; |
| |
| counter = kvm_pmu_get_pair_counter_value(vcpu, pmc); |
| |
| if (pmc->idx == ARMV8_PMU_CYCLE_IDX) { |
| reg = PMCCNTR_EL0; |
| val = counter; |
| } else { |
| reg = PMEVCNTR0_EL0 + pmc->idx; |
| val = lower_32_bits(counter); |
| } |
| |
| __vcpu_sys_reg(vcpu, reg) = val; |
| |
| if (kvm_pmu_pmc_is_chained(pmc)) |
| __vcpu_sys_reg(vcpu, reg + 1) = upper_32_bits(counter); |
| |
| kvm_pmu_release_perf_event(pmc); |
| } |
| |
| /** |
| * kvm_pmu_vcpu_init - assign pmu counter idx for cpu |
| * @vcpu: The vcpu pointer |
| * |
| */ |
| void kvm_pmu_vcpu_init(struct kvm_vcpu *vcpu) |
| { |
| int i; |
| struct kvm_pmu *pmu = &vcpu->arch.pmu; |
| |
| for (i = 0; i < ARMV8_PMU_MAX_COUNTERS; i++) |
| pmu->pmc[i].idx = i; |
| } |
| |
| /** |
| * kvm_pmu_vcpu_reset - reset pmu state for cpu |
| * @vcpu: The vcpu pointer |
| * |
| */ |
| void kvm_pmu_vcpu_reset(struct kvm_vcpu *vcpu) |
| { |
| unsigned long mask = kvm_pmu_valid_counter_mask(vcpu); |
| struct kvm_pmu *pmu = &vcpu->arch.pmu; |
| int i; |
| |
| for_each_set_bit(i, &mask, 32) |
| kvm_pmu_stop_counter(vcpu, &pmu->pmc[i]); |
| |
| bitmap_zero(vcpu->arch.pmu.chained, ARMV8_PMU_MAX_COUNTER_PAIRS); |
| } |
| |
| /** |
| * kvm_pmu_vcpu_destroy - free perf event of PMU for cpu |
| * @vcpu: The vcpu pointer |
| * |
| */ |
| void kvm_pmu_vcpu_destroy(struct kvm_vcpu *vcpu) |
| { |
| int i; |
| struct kvm_pmu *pmu = &vcpu->arch.pmu; |
| |
| for (i = 0; i < ARMV8_PMU_MAX_COUNTERS; i++) |
| kvm_pmu_release_perf_event(&pmu->pmc[i]); |
| irq_work_sync(&vcpu->arch.pmu.overflow_work); |
| } |
| |
| u64 kvm_pmu_valid_counter_mask(struct kvm_vcpu *vcpu) |
| { |
| u64 val = __vcpu_sys_reg(vcpu, PMCR_EL0) >> ARMV8_PMU_PMCR_N_SHIFT; |
| |
| val &= ARMV8_PMU_PMCR_N_MASK; |
| if (val == 0) |
| return BIT(ARMV8_PMU_CYCLE_IDX); |
| else |
| return GENMASK(val - 1, 0) | BIT(ARMV8_PMU_CYCLE_IDX); |
| } |
| |
| /** |
| * kvm_pmu_enable_counter_mask - enable selected PMU counters |
| * @vcpu: The vcpu pointer |
| * @val: the value guest writes to PMCNTENSET register |
| * |
| * Call perf_event_enable to start counting the perf event |
| */ |
| void kvm_pmu_enable_counter_mask(struct kvm_vcpu *vcpu, u64 val) |
| { |
| int i; |
| struct kvm_pmu *pmu = &vcpu->arch.pmu; |
| struct kvm_pmc *pmc; |
| |
| if (!(__vcpu_sys_reg(vcpu, PMCR_EL0) & ARMV8_PMU_PMCR_E) || !val) |
| return; |
| |
| for (i = 0; i < ARMV8_PMU_MAX_COUNTERS; i++) { |
| if (!(val & BIT(i))) |
| continue; |
| |
| pmc = &pmu->pmc[i]; |
| |
| /* A change in the enable state may affect the chain state */ |
| kvm_pmu_update_pmc_chained(vcpu, i); |
| kvm_pmu_create_perf_event(vcpu, i); |
| |
| /* At this point, pmc must be the canonical */ |
| if (pmc->perf_event) { |
| perf_event_enable(pmc->perf_event); |
| if (pmc->perf_event->state != PERF_EVENT_STATE_ACTIVE) |
| kvm_debug("fail to enable perf event\n"); |
| } |
| } |
| } |
| |
| /** |
| * kvm_pmu_disable_counter_mask - disable selected PMU counters |
| * @vcpu: The vcpu pointer |
| * @val: the value guest writes to PMCNTENCLR register |
| * |
| * Call perf_event_disable to stop counting the perf event |
| */ |
| void kvm_pmu_disable_counter_mask(struct kvm_vcpu *vcpu, u64 val) |
| { |
| int i; |
| struct kvm_pmu *pmu = &vcpu->arch.pmu; |
| struct kvm_pmc *pmc; |
| |
| if (!val) |
| return; |
| |
| for (i = 0; i < ARMV8_PMU_MAX_COUNTERS; i++) { |
| if (!(val & BIT(i))) |
| continue; |
| |
| pmc = &pmu->pmc[i]; |
| |
| /* A change in the enable state may affect the chain state */ |
| kvm_pmu_update_pmc_chained(vcpu, i); |
| kvm_pmu_create_perf_event(vcpu, i); |
| |
| /* At this point, pmc must be the canonical */ |
| if (pmc->perf_event) |
| perf_event_disable(pmc->perf_event); |
| } |
| } |
| |
| static u64 kvm_pmu_overflow_status(struct kvm_vcpu *vcpu) |
| { |
| u64 reg = 0; |
| |
| if ((__vcpu_sys_reg(vcpu, PMCR_EL0) & ARMV8_PMU_PMCR_E)) { |
| reg = __vcpu_sys_reg(vcpu, PMOVSSET_EL0); |
| reg &= __vcpu_sys_reg(vcpu, PMCNTENSET_EL0); |
| reg &= __vcpu_sys_reg(vcpu, PMINTENSET_EL1); |
| reg &= kvm_pmu_valid_counter_mask(vcpu); |
| } |
| |
| return reg; |
| } |
| |
| static void kvm_pmu_update_state(struct kvm_vcpu *vcpu) |
| { |
| struct kvm_pmu *pmu = &vcpu->arch.pmu; |
| bool overflow; |
| |
| if (!kvm_arm_pmu_v3_ready(vcpu)) |
| return; |
| |
| overflow = !!kvm_pmu_overflow_status(vcpu); |
| if (pmu->irq_level == overflow) |
| return; |
| |
| pmu->irq_level = overflow; |
| |
| if (likely(irqchip_in_kernel(vcpu->kvm))) { |
| int ret = kvm_vgic_inject_irq(vcpu->kvm, vcpu->vcpu_id, |
| pmu->irq_num, overflow, pmu); |
| WARN_ON(ret); |
| } |
| } |
| |
| bool kvm_pmu_should_notify_user(struct kvm_vcpu *vcpu) |
| { |
| struct kvm_pmu *pmu = &vcpu->arch.pmu; |
| struct kvm_sync_regs *sregs = &vcpu->run->s.regs; |
| bool run_level = sregs->device_irq_level & KVM_ARM_DEV_PMU; |
| |
| if (likely(irqchip_in_kernel(vcpu->kvm))) |
| return false; |
| |
| return pmu->irq_level != run_level; |
| } |
| |
| /* |
| * Reflect the PMU overflow interrupt output level into the kvm_run structure |
| */ |
| void kvm_pmu_update_run(struct kvm_vcpu *vcpu) |
| { |
| struct kvm_sync_regs *regs = &vcpu->run->s.regs; |
| |
| /* Populate the timer bitmap for user space */ |
| regs->device_irq_level &= ~KVM_ARM_DEV_PMU; |
| if (vcpu->arch.pmu.irq_level) |
| regs->device_irq_level |= KVM_ARM_DEV_PMU; |
| } |
| |
| /** |
| * kvm_pmu_flush_hwstate - flush pmu state to cpu |
| * @vcpu: The vcpu pointer |
| * |
| * Check if the PMU has overflowed while we were running in the host, and inject |
| * an interrupt if that was the case. |
| */ |
| void kvm_pmu_flush_hwstate(struct kvm_vcpu *vcpu) |
| { |
| kvm_pmu_update_state(vcpu); |
| } |
| |
| /** |
| * kvm_pmu_sync_hwstate - sync pmu state from cpu |
| * @vcpu: The vcpu pointer |
| * |
| * Check if the PMU has overflowed while we were running in the guest, and |
| * inject an interrupt if that was the case. |
| */ |
| void kvm_pmu_sync_hwstate(struct kvm_vcpu *vcpu) |
| { |
| kvm_pmu_update_state(vcpu); |
| } |
| |
| /** |
| * When perf interrupt is an NMI, we cannot safely notify the vcpu corresponding |
| * to the event. |
| * This is why we need a callback to do it once outside of the NMI context. |
| */ |
| static void kvm_pmu_perf_overflow_notify_vcpu(struct irq_work *work) |
| { |
| struct kvm_vcpu *vcpu; |
| struct kvm_pmu *pmu; |
| |
| pmu = container_of(work, struct kvm_pmu, overflow_work); |
| vcpu = kvm_pmc_to_vcpu(pmu->pmc); |
| |
| kvm_vcpu_kick(vcpu); |
| } |
| |
| /** |
| * When the perf event overflows, set the overflow status and inform the vcpu. |
| */ |
| static void kvm_pmu_perf_overflow(struct perf_event *perf_event, |
| struct perf_sample_data *data, |
| struct pt_regs *regs) |
| { |
| struct kvm_pmc *pmc = perf_event->overflow_handler_context; |
| struct arm_pmu *cpu_pmu = to_arm_pmu(perf_event->pmu); |
| struct kvm_vcpu *vcpu = kvm_pmc_to_vcpu(pmc); |
| int idx = pmc->idx; |
| u64 period; |
| |
| cpu_pmu->pmu.stop(perf_event, PERF_EF_UPDATE); |
| |
| /* |
| * Reset the sample period to the architectural limit, |
| * i.e. the point where the counter overflows. |
| */ |
| period = -(local64_read(&perf_event->count)); |
| |
| if (!kvm_pmu_idx_is_64bit(vcpu, pmc->idx)) |
| period &= GENMASK(31, 0); |
| |
| local64_set(&perf_event->hw.period_left, 0); |
| perf_event->attr.sample_period = period; |
| perf_event->hw.sample_period = period; |
| |
| __vcpu_sys_reg(vcpu, PMOVSSET_EL0) |= BIT(idx); |
| |
| if (kvm_pmu_overflow_status(vcpu)) { |
| kvm_make_request(KVM_REQ_IRQ_PENDING, vcpu); |
| |
| if (!in_nmi()) |
| kvm_vcpu_kick(vcpu); |
| else |
| irq_work_queue(&vcpu->arch.pmu.overflow_work); |
| } |
| |
| cpu_pmu->pmu.start(perf_event, PERF_EF_RELOAD); |
| } |
| |
| /** |
| * kvm_pmu_software_increment - do software increment |
| * @vcpu: The vcpu pointer |
| * @val: the value guest writes to PMSWINC register |
| */ |
| void kvm_pmu_software_increment(struct kvm_vcpu *vcpu, u64 val) |
| { |
| struct kvm_pmu *pmu = &vcpu->arch.pmu; |
| int i; |
| |
| if (!(__vcpu_sys_reg(vcpu, PMCR_EL0) & ARMV8_PMU_PMCR_E)) |
| return; |
| |
| /* Weed out disabled counters */ |
| val &= __vcpu_sys_reg(vcpu, PMCNTENSET_EL0); |
| |
| for (i = 0; i < ARMV8_PMU_CYCLE_IDX; i++) { |
| u64 type, reg; |
| |
| if (!(val & BIT(i))) |
| continue; |
| |
| /* PMSWINC only applies to ... SW_INC! */ |
| type = __vcpu_sys_reg(vcpu, PMEVTYPER0_EL0 + i); |
| type &= kvm_pmu_event_mask(vcpu->kvm); |
| if (type != ARMV8_PMUV3_PERFCTR_SW_INCR) |
| continue; |
| |
| /* increment this even SW_INC counter */ |
| reg = __vcpu_sys_reg(vcpu, PMEVCNTR0_EL0 + i) + 1; |
| reg = lower_32_bits(reg); |
| __vcpu_sys_reg(vcpu, PMEVCNTR0_EL0 + i) = reg; |
| |
| if (reg) /* no overflow on the low part */ |
| continue; |
| |
| if (kvm_pmu_pmc_is_chained(&pmu->pmc[i])) { |
| /* increment the high counter */ |
| reg = __vcpu_sys_reg(vcpu, PMEVCNTR0_EL0 + i + 1) + 1; |
| reg = lower_32_bits(reg); |
| __vcpu_sys_reg(vcpu, PMEVCNTR0_EL0 + i + 1) = reg; |
| if (!reg) /* mark overflow on the high counter */ |
| __vcpu_sys_reg(vcpu, PMOVSSET_EL0) |= BIT(i + 1); |
| } else { |
| /* mark overflow on low counter */ |
| __vcpu_sys_reg(vcpu, PMOVSSET_EL0) |= BIT(i); |
| } |
| } |
| } |
| |
| /** |
| * kvm_pmu_handle_pmcr - handle PMCR register |
| * @vcpu: The vcpu pointer |
| * @val: the value guest writes to PMCR register |
| */ |
| void kvm_pmu_handle_pmcr(struct kvm_vcpu *vcpu, u64 val) |
| { |
| unsigned long mask = kvm_pmu_valid_counter_mask(vcpu); |
| int i; |
| |
| if (val & ARMV8_PMU_PMCR_E) { |
| kvm_pmu_enable_counter_mask(vcpu, |
| __vcpu_sys_reg(vcpu, PMCNTENSET_EL0) & mask); |
| } else { |
| kvm_pmu_disable_counter_mask(vcpu, mask); |
| } |
| |
| if (val & ARMV8_PMU_PMCR_C) |
| kvm_pmu_set_counter_value(vcpu, ARMV8_PMU_CYCLE_IDX, 0); |
| |
| if (val & ARMV8_PMU_PMCR_P) { |
| for_each_set_bit(i, &mask, 32) |
| kvm_pmu_set_counter_value(vcpu, i, 0); |
| } |
| } |
| |
| static bool kvm_pmu_counter_is_enabled(struct kvm_vcpu *vcpu, u64 select_idx) |
| { |
| return (__vcpu_sys_reg(vcpu, PMCR_EL0) & ARMV8_PMU_PMCR_E) && |
| (__vcpu_sys_reg(vcpu, PMCNTENSET_EL0) & BIT(select_idx)); |
| } |
| |
| /** |
| * kvm_pmu_create_perf_event - create a perf event for a counter |
| * @vcpu: The vcpu pointer |
| * @select_idx: The number of selected counter |
| */ |
| static void kvm_pmu_create_perf_event(struct kvm_vcpu *vcpu, u64 select_idx) |
| { |
| struct kvm_pmu *pmu = &vcpu->arch.pmu; |
| struct kvm_pmc *pmc; |
| struct perf_event *event; |
| struct perf_event_attr attr; |
| u64 eventsel, counter, reg, data; |
| |
| /* |
| * For chained counters the event type and filtering attributes are |
| * obtained from the low/even counter. We also use this counter to |
| * determine if the event is enabled/disabled. |
| */ |
| pmc = kvm_pmu_get_canonical_pmc(&pmu->pmc[select_idx]); |
| |
| reg = (pmc->idx == ARMV8_PMU_CYCLE_IDX) |
| ? PMCCFILTR_EL0 : PMEVTYPER0_EL0 + pmc->idx; |
| data = __vcpu_sys_reg(vcpu, reg); |
| |
| kvm_pmu_stop_counter(vcpu, pmc); |
| if (pmc->idx == ARMV8_PMU_CYCLE_IDX) |
| eventsel = ARMV8_PMUV3_PERFCTR_CPU_CYCLES; |
| else |
| eventsel = data & kvm_pmu_event_mask(vcpu->kvm); |
| |
| /* Software increment event doesn't need to be backed by a perf event */ |
| if (eventsel == ARMV8_PMUV3_PERFCTR_SW_INCR) |
| return; |
| |
| /* |
| * If we have a filter in place and that the event isn't allowed, do |
| * not install a perf event either. |
| */ |
| if (vcpu->kvm->arch.pmu_filter && |
| !test_bit(eventsel, vcpu->kvm->arch.pmu_filter)) |
| return; |
| |
| memset(&attr, 0, sizeof(struct perf_event_attr)); |
| attr.type = PERF_TYPE_RAW; |
| attr.size = sizeof(attr); |
| attr.pinned = 1; |
| attr.disabled = !kvm_pmu_counter_is_enabled(vcpu, pmc->idx); |
| attr.exclude_user = data & ARMV8_PMU_EXCLUDE_EL0 ? 1 : 0; |
| attr.exclude_kernel = data & ARMV8_PMU_EXCLUDE_EL1 ? 1 : 0; |
| attr.exclude_hv = 1; /* Don't count EL2 events */ |
| attr.exclude_host = 1; /* Don't count host events */ |
| attr.config = eventsel; |
| |
| counter = kvm_pmu_get_pair_counter_value(vcpu, pmc); |
| |
| if (kvm_pmu_pmc_is_chained(pmc)) { |
| /** |
| * The initial sample period (overflow count) of an event. For |
| * chained counters we only support overflow interrupts on the |
| * high counter. |
| */ |
| attr.sample_period = (-counter) & GENMASK(63, 0); |
| attr.config1 |= PERF_ATTR_CFG1_KVM_PMU_CHAINED; |
| |
| event = perf_event_create_kernel_counter(&attr, -1, current, |
| kvm_pmu_perf_overflow, |
| pmc + 1); |
| } else { |
| /* The initial sample period (overflow count) of an event. */ |
| if (kvm_pmu_idx_is_64bit(vcpu, pmc->idx)) |
| attr.sample_period = (-counter) & GENMASK(63, 0); |
| else |
| attr.sample_period = (-counter) & GENMASK(31, 0); |
| |
| event = perf_event_create_kernel_counter(&attr, -1, current, |
| kvm_pmu_perf_overflow, pmc); |
| } |
| |
| if (IS_ERR(event)) { |
| pr_err_once("kvm: pmu event creation failed %ld\n", |
| PTR_ERR(event)); |
| return; |
| } |
| |
| pmc->perf_event = event; |
| } |
| |
| /** |
| * kvm_pmu_update_pmc_chained - update chained bitmap |
| * @vcpu: The vcpu pointer |
| * @select_idx: The number of selected counter |
| * |
| * Update the chained bitmap based on the event type written in the |
| * typer register and the enable state of the odd register. |
| */ |
| static void kvm_pmu_update_pmc_chained(struct kvm_vcpu *vcpu, u64 select_idx) |
| { |
| struct kvm_pmu *pmu = &vcpu->arch.pmu; |
| struct kvm_pmc *pmc = &pmu->pmc[select_idx], *canonical_pmc; |
| bool new_state, old_state; |
| |
| old_state = kvm_pmu_pmc_is_chained(pmc); |
| new_state = kvm_pmu_idx_has_chain_evtype(vcpu, pmc->idx) && |
| kvm_pmu_counter_is_enabled(vcpu, pmc->idx | 0x1); |
| |
| if (old_state == new_state) |
| return; |
| |
| canonical_pmc = kvm_pmu_get_canonical_pmc(pmc); |
| kvm_pmu_stop_counter(vcpu, canonical_pmc); |
| if (new_state) { |
| /* |
| * During promotion from !chained to chained we must ensure |
| * the adjacent counter is stopped and its event destroyed |
| */ |
| kvm_pmu_stop_counter(vcpu, kvm_pmu_get_alternate_pmc(pmc)); |
| set_bit(pmc->idx >> 1, vcpu->arch.pmu.chained); |
| return; |
| } |
| clear_bit(pmc->idx >> 1, vcpu->arch.pmu.chained); |
| } |
| |
| /** |
| * kvm_pmu_set_counter_event_type - set selected counter to monitor some event |
| * @vcpu: The vcpu pointer |
| * @data: The data guest writes to PMXEVTYPER_EL0 |
| * @select_idx: The number of selected counter |
| * |
| * When OS accesses PMXEVTYPER_EL0, that means it wants to set a PMC to count an |
| * event with given hardware event number. Here we call perf_event API to |
| * emulate this action and create a kernel perf event for it. |
| */ |
| void kvm_pmu_set_counter_event_type(struct kvm_vcpu *vcpu, u64 data, |
| u64 select_idx) |
| { |
| u64 reg, mask; |
| |
| mask = ARMV8_PMU_EVTYPE_MASK; |
| mask &= ~ARMV8_PMU_EVTYPE_EVENT; |
| mask |= kvm_pmu_event_mask(vcpu->kvm); |
| |
| reg = (select_idx == ARMV8_PMU_CYCLE_IDX) |
| ? PMCCFILTR_EL0 : PMEVTYPER0_EL0 + select_idx; |
| |
| __vcpu_sys_reg(vcpu, reg) = data & mask; |
| |
| kvm_pmu_update_pmc_chained(vcpu, select_idx); |
| kvm_pmu_create_perf_event(vcpu, select_idx); |
| } |
| |
| static int kvm_pmu_probe_pmuver(void) |
| { |
| struct perf_event_attr attr = { }; |
| struct perf_event *event; |
| struct arm_pmu *pmu; |
| int pmuver = 0xf; |
| |
| /* |
| * Create a dummy event that only counts user cycles. As we'll never |
| * leave this function with the event being live, it will never |
| * count anything. But it allows us to probe some of the PMU |
| * details. Yes, this is terrible. |
| */ |
| attr.type = PERF_TYPE_RAW; |
| attr.size = sizeof(attr); |
| attr.pinned = 1; |
| attr.disabled = 0; |
| attr.exclude_user = 0; |
| attr.exclude_kernel = 1; |
| attr.exclude_hv = 1; |
| attr.exclude_host = 1; |
| attr.config = ARMV8_PMUV3_PERFCTR_CPU_CYCLES; |
| attr.sample_period = GENMASK(63, 0); |
| |
| event = perf_event_create_kernel_counter(&attr, -1, current, |
| kvm_pmu_perf_overflow, &attr); |
| |
| if (IS_ERR(event)) { |
| pr_err_once("kvm: pmu event creation failed %ld\n", |
| PTR_ERR(event)); |
| return 0xf; |
| } |
| |
| if (event->pmu) { |
| pmu = to_arm_pmu(event->pmu); |
| if (pmu->pmuver) |
| pmuver = pmu->pmuver; |
| } |
| |
| perf_event_disable(event); |
| perf_event_release_kernel(event); |
| |
| return pmuver; |
| } |
| |
| u64 kvm_pmu_get_pmceid(struct kvm_vcpu *vcpu, bool pmceid1) |
| { |
| unsigned long *bmap = vcpu->kvm->arch.pmu_filter; |
| u64 val, mask = 0; |
| int base, i, nr_events; |
| |
| if (!pmceid1) { |
| val = read_sysreg(pmceid0_el0); |
| base = 0; |
| } else { |
| val = read_sysreg(pmceid1_el0); |
| base = 32; |
| } |
| |
| if (!bmap) |
| return val; |
| |
| nr_events = kvm_pmu_event_mask(vcpu->kvm) + 1; |
| |
| for (i = 0; i < 32; i += 8) { |
| u64 byte; |
| |
| byte = bitmap_get_value8(bmap, base + i); |
| mask |= byte << i; |
| if (nr_events >= (0x4000 + base + 32)) { |
| byte = bitmap_get_value8(bmap, 0x4000 + base + i); |
| mask |= byte << (32 + i); |
| } |
| } |
| |
| return val & mask; |
| } |
| |
| bool kvm_arm_support_pmu_v3(void) |
| { |
| /* |
| * Check if HW_PERF_EVENTS are supported by checking the number of |
| * hardware performance counters. This could ensure the presence of |
| * a physical PMU and CONFIG_PERF_EVENT is selected. |
| */ |
| return (perf_num_counters() > 0); |
| } |
| |
| int kvm_arm_pmu_v3_enable(struct kvm_vcpu *vcpu) |
| { |
| if (!vcpu->arch.pmu.created) |
| return 0; |
| |
| /* |
| * A valid interrupt configuration for the PMU is either to have a |
| * properly configured interrupt number and using an in-kernel |
| * irqchip, or to not have an in-kernel GIC and not set an IRQ. |
| */ |
| if (irqchip_in_kernel(vcpu->kvm)) { |
| int irq = vcpu->arch.pmu.irq_num; |
| if (!kvm_arm_pmu_irq_initialized(vcpu)) |
| return -EINVAL; |
| |
| /* |
| * If we are using an in-kernel vgic, at this point we know |
| * the vgic will be initialized, so we can check the PMU irq |
| * number against the dimensions of the vgic and make sure |
| * it's valid. |
| */ |
| if (!irq_is_ppi(irq) && !vgic_valid_spi(vcpu->kvm, irq)) |
| return -EINVAL; |
| } else if (kvm_arm_pmu_irq_initialized(vcpu)) { |
| return -EINVAL; |
| } |
| |
| kvm_pmu_vcpu_reset(vcpu); |
| vcpu->arch.pmu.ready = true; |
| |
| return 0; |
| } |
| |
| static int kvm_arm_pmu_v3_init(struct kvm_vcpu *vcpu) |
| { |
| if (irqchip_in_kernel(vcpu->kvm)) { |
| int ret; |
| |
| /* |
| * If using the PMU with an in-kernel virtual GIC |
| * implementation, we require the GIC to be already |
| * initialized when initializing the PMU. |
| */ |
| if (!vgic_initialized(vcpu->kvm)) |
| return -ENODEV; |
| |
| if (!kvm_arm_pmu_irq_initialized(vcpu)) |
| return -ENXIO; |
| |
| ret = kvm_vgic_set_owner(vcpu, vcpu->arch.pmu.irq_num, |
| &vcpu->arch.pmu); |
| if (ret) |
| return ret; |
| } |
| |
| init_irq_work(&vcpu->arch.pmu.overflow_work, |
| kvm_pmu_perf_overflow_notify_vcpu); |
| |
| vcpu->arch.pmu.created = true; |
| return 0; |
| } |
| |
| /* |
| * For one VM the interrupt type must be same for each vcpu. |
| * As a PPI, the interrupt number is the same for all vcpus, |
| * while as an SPI it must be a separate number per vcpu. |
| */ |
| static bool pmu_irq_is_valid(struct kvm *kvm, int irq) |
| { |
| int i; |
| struct kvm_vcpu *vcpu; |
| |
| kvm_for_each_vcpu(i, vcpu, kvm) { |
| if (!kvm_arm_pmu_irq_initialized(vcpu)) |
| continue; |
| |
| if (irq_is_ppi(irq)) { |
| if (vcpu->arch.pmu.irq_num != irq) |
| return false; |
| } else { |
| if (vcpu->arch.pmu.irq_num == irq) |
| return false; |
| } |
| } |
| |
| return true; |
| } |
| |
| int kvm_arm_pmu_v3_set_attr(struct kvm_vcpu *vcpu, struct kvm_device_attr *attr) |
| { |
| if (!kvm_arm_support_pmu_v3() || |
| !test_bit(KVM_ARM_VCPU_PMU_V3, vcpu->arch.features)) |
| return -ENODEV; |
| |
| if (vcpu->arch.pmu.created) |
| return -EBUSY; |
| |
| if (!vcpu->kvm->arch.pmuver) |
| vcpu->kvm->arch.pmuver = kvm_pmu_probe_pmuver(); |
| |
| if (vcpu->kvm->arch.pmuver == 0xf) |
| return -ENODEV; |
| |
| switch (attr->attr) { |
| case KVM_ARM_VCPU_PMU_V3_IRQ: { |
| int __user *uaddr = (int __user *)(long)attr->addr; |
| int irq; |
| |
| if (!irqchip_in_kernel(vcpu->kvm)) |
| return -EINVAL; |
| |
| if (get_user(irq, uaddr)) |
| return -EFAULT; |
| |
| /* The PMU overflow interrupt can be a PPI or a valid SPI. */ |
| if (!(irq_is_ppi(irq) || irq_is_spi(irq))) |
| return -EINVAL; |
| |
| if (!pmu_irq_is_valid(vcpu->kvm, irq)) |
| return -EINVAL; |
| |
| if (kvm_arm_pmu_irq_initialized(vcpu)) |
| return -EBUSY; |
| |
| kvm_debug("Set kvm ARM PMU irq: %d\n", irq); |
| vcpu->arch.pmu.irq_num = irq; |
| return 0; |
| } |
| case KVM_ARM_VCPU_PMU_V3_FILTER: { |
| struct kvm_pmu_event_filter __user *uaddr; |
| struct kvm_pmu_event_filter filter; |
| int nr_events; |
| |
| nr_events = kvm_pmu_event_mask(vcpu->kvm) + 1; |
| |
| uaddr = (struct kvm_pmu_event_filter __user *)(long)attr->addr; |
| |
| if (copy_from_user(&filter, uaddr, sizeof(filter))) |
| return -EFAULT; |
| |
| if (((u32)filter.base_event + filter.nevents) > nr_events || |
| (filter.action != KVM_PMU_EVENT_ALLOW && |
| filter.action != KVM_PMU_EVENT_DENY)) |
| return -EINVAL; |
| |
| mutex_lock(&vcpu->kvm->lock); |
| |
| if (!vcpu->kvm->arch.pmu_filter) { |
| vcpu->kvm->arch.pmu_filter = bitmap_alloc(nr_events, GFP_KERNEL); |
| if (!vcpu->kvm->arch.pmu_filter) { |
| mutex_unlock(&vcpu->kvm->lock); |
| return -ENOMEM; |
| } |
| |
| /* |
| * The default depends on the first applied filter. |
| * If it allows events, the default is to deny. |
| * Conversely, if the first filter denies a set of |
| * events, the default is to allow. |
| */ |
| if (filter.action == KVM_PMU_EVENT_ALLOW) |
| bitmap_zero(vcpu->kvm->arch.pmu_filter, nr_events); |
| else |
| bitmap_fill(vcpu->kvm->arch.pmu_filter, nr_events); |
| } |
| |
| if (filter.action == KVM_PMU_EVENT_ALLOW) |
| bitmap_set(vcpu->kvm->arch.pmu_filter, filter.base_event, filter.nevents); |
| else |
| bitmap_clear(vcpu->kvm->arch.pmu_filter, filter.base_event, filter.nevents); |
| |
| mutex_unlock(&vcpu->kvm->lock); |
| |
| return 0; |
| } |
| case KVM_ARM_VCPU_PMU_V3_INIT: |
| return kvm_arm_pmu_v3_init(vcpu); |
| } |
| |
| return -ENXIO; |
| } |
| |
| int kvm_arm_pmu_v3_get_attr(struct kvm_vcpu *vcpu, struct kvm_device_attr *attr) |
| { |
| switch (attr->attr) { |
| case KVM_ARM_VCPU_PMU_V3_IRQ: { |
| int __user *uaddr = (int __user *)(long)attr->addr; |
| int irq; |
| |
| if (!irqchip_in_kernel(vcpu->kvm)) |
| return -EINVAL; |
| |
| if (!test_bit(KVM_ARM_VCPU_PMU_V3, vcpu->arch.features)) |
| return -ENODEV; |
| |
| if (!kvm_arm_pmu_irq_initialized(vcpu)) |
| return -ENXIO; |
| |
| irq = vcpu->arch.pmu.irq_num; |
| return put_user(irq, uaddr); |
| } |
| } |
| |
| return -ENXIO; |
| } |
| |
| int kvm_arm_pmu_v3_has_attr(struct kvm_vcpu *vcpu, struct kvm_device_attr *attr) |
| { |
| switch (attr->attr) { |
| case KVM_ARM_VCPU_PMU_V3_IRQ: |
| case KVM_ARM_VCPU_PMU_V3_INIT: |
| case KVM_ARM_VCPU_PMU_V3_FILTER: |
| if (kvm_arm_support_pmu_v3() && |
| test_bit(KVM_ARM_VCPU_PMU_V3, vcpu->arch.features)) |
| return 0; |
| } |
| |
| return -ENXIO; |
| } |