| /* |
| * "splice": joining two ropes together by interweaving their strands. |
| * |
| * This is the "extended pipe" functionality, where a pipe is used as |
| * an arbitrary in-memory buffer. Think of a pipe as a small kernel |
| * buffer that you can use to transfer data from one end to the other. |
| * |
| * The traditional unix read/write is extended with a "splice()" operation |
| * that transfers data buffers to or from a pipe buffer. |
| * |
| * Named by Larry McVoy, original implementation from Linus, extended by |
| * Jens to support splicing to files, network, direct splicing, etc and |
| * fixing lots of bugs. |
| * |
| * Copyright (C) 2005-2006 Jens Axboe <axboe@suse.de> |
| * Copyright (C) 2005-2006 Linus Torvalds <torvalds@osdl.org> |
| * Copyright (C) 2006 Ingo Molnar <mingo@elte.hu> |
| * |
| */ |
| #include <linux/fs.h> |
| #include <linux/file.h> |
| #include <linux/pagemap.h> |
| #include <linux/pipe_fs_i.h> |
| #include <linux/mm_inline.h> |
| #include <linux/swap.h> |
| #include <linux/writeback.h> |
| #include <linux/buffer_head.h> |
| #include <linux/module.h> |
| #include <linux/syscalls.h> |
| #include <linux/uio.h> |
| |
| struct partial_page { |
| unsigned int offset; |
| unsigned int len; |
| }; |
| |
| /* |
| * Passed to splice_to_pipe |
| */ |
| struct splice_pipe_desc { |
| struct page **pages; /* page map */ |
| struct partial_page *partial; /* pages[] may not be contig */ |
| int nr_pages; /* number of pages in map */ |
| unsigned int flags; /* splice flags */ |
| struct pipe_buf_operations *ops;/* ops associated with output pipe */ |
| }; |
| |
| /* |
| * Attempt to steal a page from a pipe buffer. This should perhaps go into |
| * a vm helper function, it's already simplified quite a bit by the |
| * addition of remove_mapping(). If success is returned, the caller may |
| * attempt to reuse this page for another destination. |
| */ |
| static int page_cache_pipe_buf_steal(struct pipe_inode_info *info, |
| struct pipe_buffer *buf) |
| { |
| struct page *page = buf->page; |
| struct address_space *mapping = page_mapping(page); |
| |
| lock_page(page); |
| |
| WARN_ON(!PageUptodate(page)); |
| |
| /* |
| * At least for ext2 with nobh option, we need to wait on writeback |
| * completing on this page, since we'll remove it from the pagecache. |
| * Otherwise truncate wont wait on the page, allowing the disk |
| * blocks to be reused by someone else before we actually wrote our |
| * data to them. fs corruption ensues. |
| */ |
| wait_on_page_writeback(page); |
| |
| if (PagePrivate(page)) |
| try_to_release_page(page, mapping_gfp_mask(mapping)); |
| |
| if (!remove_mapping(mapping, page)) { |
| unlock_page(page); |
| return 1; |
| } |
| |
| buf->flags |= PIPE_BUF_FLAG_STOLEN | PIPE_BUF_FLAG_LRU; |
| return 0; |
| } |
| |
| static void page_cache_pipe_buf_release(struct pipe_inode_info *info, |
| struct pipe_buffer *buf) |
| { |
| page_cache_release(buf->page); |
| buf->page = NULL; |
| buf->flags &= ~(PIPE_BUF_FLAG_STOLEN | PIPE_BUF_FLAG_LRU); |
| } |
| |
| static void *page_cache_pipe_buf_map(struct file *file, |
| struct pipe_inode_info *info, |
| struct pipe_buffer *buf) |
| { |
| struct page *page = buf->page; |
| int err; |
| |
| if (!PageUptodate(page)) { |
| lock_page(page); |
| |
| /* |
| * Page got truncated/unhashed. This will cause a 0-byte |
| * splice, if this is the first page. |
| */ |
| if (!page->mapping) { |
| err = -ENODATA; |
| goto error; |
| } |
| |
| /* |
| * Uh oh, read-error from disk. |
| */ |
| if (!PageUptodate(page)) { |
| err = -EIO; |
| goto error; |
| } |
| |
| /* |
| * Page is ok afterall, fall through to mapping. |
| */ |
| unlock_page(page); |
| } |
| |
| return kmap(page); |
| error: |
| unlock_page(page); |
| return ERR_PTR(err); |
| } |
| |
| static void page_cache_pipe_buf_unmap(struct pipe_inode_info *info, |
| struct pipe_buffer *buf) |
| { |
| kunmap(buf->page); |
| } |
| |
| static void *user_page_pipe_buf_map(struct file *file, |
| struct pipe_inode_info *pipe, |
| struct pipe_buffer *buf) |
| { |
| return kmap(buf->page); |
| } |
| |
| static void user_page_pipe_buf_unmap(struct pipe_inode_info *pipe, |
| struct pipe_buffer *buf) |
| { |
| kunmap(buf->page); |
| } |
| |
| static void page_cache_pipe_buf_get(struct pipe_inode_info *info, |
| struct pipe_buffer *buf) |
| { |
| page_cache_get(buf->page); |
| } |
| |
| static struct pipe_buf_operations page_cache_pipe_buf_ops = { |
| .can_merge = 0, |
| .map = page_cache_pipe_buf_map, |
| .unmap = page_cache_pipe_buf_unmap, |
| .release = page_cache_pipe_buf_release, |
| .steal = page_cache_pipe_buf_steal, |
| .get = page_cache_pipe_buf_get, |
| }; |
| |
| static int user_page_pipe_buf_steal(struct pipe_inode_info *pipe, |
| struct pipe_buffer *buf) |
| { |
| return 1; |
| } |
| |
| static struct pipe_buf_operations user_page_pipe_buf_ops = { |
| .can_merge = 0, |
| .map = user_page_pipe_buf_map, |
| .unmap = user_page_pipe_buf_unmap, |
| .release = page_cache_pipe_buf_release, |
| .steal = user_page_pipe_buf_steal, |
| .get = page_cache_pipe_buf_get, |
| }; |
| |
| /* |
| * Pipe output worker. This sets up our pipe format with the page cache |
| * pipe buffer operations. Otherwise very similar to the regular pipe_writev(). |
| */ |
| static ssize_t splice_to_pipe(struct pipe_inode_info *pipe, |
| struct splice_pipe_desc *spd) |
| { |
| int ret, do_wakeup, page_nr; |
| |
| ret = 0; |
| do_wakeup = 0; |
| page_nr = 0; |
| |
| if (pipe->inode) |
| mutex_lock(&pipe->inode->i_mutex); |
| |
| for (;;) { |
| if (!pipe->readers) { |
| send_sig(SIGPIPE, current, 0); |
| if (!ret) |
| ret = -EPIPE; |
| break; |
| } |
| |
| if (pipe->nrbufs < PIPE_BUFFERS) { |
| int newbuf = (pipe->curbuf + pipe->nrbufs) & (PIPE_BUFFERS - 1); |
| struct pipe_buffer *buf = pipe->bufs + newbuf; |
| |
| buf->page = spd->pages[page_nr]; |
| buf->offset = spd->partial[page_nr].offset; |
| buf->len = spd->partial[page_nr].len; |
| buf->ops = spd->ops; |
| pipe->nrbufs++; |
| page_nr++; |
| ret += buf->len; |
| |
| if (pipe->inode) |
| do_wakeup = 1; |
| |
| if (!--spd->nr_pages) |
| break; |
| if (pipe->nrbufs < PIPE_BUFFERS) |
| continue; |
| |
| break; |
| } |
| |
| if (spd->flags & SPLICE_F_NONBLOCK) { |
| if (!ret) |
| ret = -EAGAIN; |
| break; |
| } |
| |
| if (signal_pending(current)) { |
| if (!ret) |
| ret = -ERESTARTSYS; |
| break; |
| } |
| |
| if (do_wakeup) { |
| smp_mb(); |
| if (waitqueue_active(&pipe->wait)) |
| wake_up_interruptible_sync(&pipe->wait); |
| kill_fasync(&pipe->fasync_readers, SIGIO, POLL_IN); |
| do_wakeup = 0; |
| } |
| |
| pipe->waiting_writers++; |
| pipe_wait(pipe); |
| pipe->waiting_writers--; |
| } |
| |
| if (pipe->inode) |
| mutex_unlock(&pipe->inode->i_mutex); |
| |
| if (do_wakeup) { |
| smp_mb(); |
| if (waitqueue_active(&pipe->wait)) |
| wake_up_interruptible(&pipe->wait); |
| kill_fasync(&pipe->fasync_readers, SIGIO, POLL_IN); |
| } |
| |
| while (page_nr < spd->nr_pages) |
| page_cache_release(spd->pages[page_nr++]); |
| |
| return ret; |
| } |
| |
| static int |
| __generic_file_splice_read(struct file *in, loff_t *ppos, |
| struct pipe_inode_info *pipe, size_t len, |
| unsigned int flags) |
| { |
| struct address_space *mapping = in->f_mapping; |
| unsigned int loff, nr_pages; |
| struct page *pages[PIPE_BUFFERS]; |
| struct partial_page partial[PIPE_BUFFERS]; |
| struct page *page; |
| pgoff_t index, end_index; |
| loff_t isize; |
| size_t total_len; |
| int error, page_nr; |
| struct splice_pipe_desc spd = { |
| .pages = pages, |
| .partial = partial, |
| .flags = flags, |
| .ops = &page_cache_pipe_buf_ops, |
| }; |
| |
| index = *ppos >> PAGE_CACHE_SHIFT; |
| loff = *ppos & ~PAGE_CACHE_MASK; |
| nr_pages = (len + loff + PAGE_CACHE_SIZE - 1) >> PAGE_CACHE_SHIFT; |
| |
| if (nr_pages > PIPE_BUFFERS) |
| nr_pages = PIPE_BUFFERS; |
| |
| /* |
| * Initiate read-ahead on this page range. however, don't call into |
| * read-ahead if this is a non-zero offset (we are likely doing small |
| * chunk splice and the page is already there) for a single page. |
| */ |
| if (!loff || nr_pages > 1) |
| page_cache_readahead(mapping, &in->f_ra, in, index, nr_pages); |
| |
| /* |
| * Now fill in the holes: |
| */ |
| error = 0; |
| total_len = 0; |
| |
| /* |
| * Lookup the (hopefully) full range of pages we need. |
| */ |
| spd.nr_pages = find_get_pages_contig(mapping, index, nr_pages, pages); |
| |
| /* |
| * If find_get_pages_contig() returned fewer pages than we needed, |
| * allocate the rest. |
| */ |
| index += spd.nr_pages; |
| while (spd.nr_pages < nr_pages) { |
| /* |
| * Page could be there, find_get_pages_contig() breaks on |
| * the first hole. |
| */ |
| page = find_get_page(mapping, index); |
| if (!page) { |
| /* |
| * page didn't exist, allocate one. |
| */ |
| page = page_cache_alloc_cold(mapping); |
| if (!page) |
| break; |
| |
| error = add_to_page_cache_lru(page, mapping, index, |
| mapping_gfp_mask(mapping)); |
| if (unlikely(error)) { |
| page_cache_release(page); |
| break; |
| } |
| /* |
| * add_to_page_cache() locks the page, unlock it |
| * to avoid convoluting the logic below even more. |
| */ |
| unlock_page(page); |
| } |
| |
| pages[spd.nr_pages++] = page; |
| index++; |
| } |
| |
| /* |
| * Now loop over the map and see if we need to start IO on any |
| * pages, fill in the partial map, etc. |
| */ |
| index = *ppos >> PAGE_CACHE_SHIFT; |
| nr_pages = spd.nr_pages; |
| spd.nr_pages = 0; |
| for (page_nr = 0; page_nr < nr_pages; page_nr++) { |
| unsigned int this_len; |
| |
| if (!len) |
| break; |
| |
| /* |
| * this_len is the max we'll use from this page |
| */ |
| this_len = min_t(unsigned long, len, PAGE_CACHE_SIZE - loff); |
| page = pages[page_nr]; |
| |
| /* |
| * If the page isn't uptodate, we may need to start io on it |
| */ |
| if (!PageUptodate(page)) { |
| /* |
| * If in nonblock mode then dont block on waiting |
| * for an in-flight io page |
| */ |
| if (flags & SPLICE_F_NONBLOCK) |
| break; |
| |
| lock_page(page); |
| |
| /* |
| * page was truncated, stop here. if this isn't the |
| * first page, we'll just complete what we already |
| * added |
| */ |
| if (!page->mapping) { |
| unlock_page(page); |
| break; |
| } |
| /* |
| * page was already under io and is now done, great |
| */ |
| if (PageUptodate(page)) { |
| unlock_page(page); |
| goto fill_it; |
| } |
| |
| /* |
| * need to read in the page |
| */ |
| error = mapping->a_ops->readpage(in, page); |
| if (unlikely(error)) { |
| /* |
| * We really should re-lookup the page here, |
| * but it complicates things a lot. Instead |
| * lets just do what we already stored, and |
| * we'll get it the next time we are called. |
| */ |
| if (error == AOP_TRUNCATED_PAGE) |
| error = 0; |
| |
| break; |
| } |
| |
| /* |
| * i_size must be checked after ->readpage(). |
| */ |
| isize = i_size_read(mapping->host); |
| end_index = (isize - 1) >> PAGE_CACHE_SHIFT; |
| if (unlikely(!isize || index > end_index)) |
| break; |
| |
| /* |
| * if this is the last page, see if we need to shrink |
| * the length and stop |
| */ |
| if (end_index == index) { |
| loff = PAGE_CACHE_SIZE - (isize & ~PAGE_CACHE_MASK); |
| if (total_len + loff > isize) |
| break; |
| /* |
| * force quit after adding this page |
| */ |
| len = this_len; |
| this_len = min(this_len, loff); |
| loff = 0; |
| } |
| } |
| fill_it: |
| partial[page_nr].offset = loff; |
| partial[page_nr].len = this_len; |
| len -= this_len; |
| total_len += this_len; |
| loff = 0; |
| spd.nr_pages++; |
| index++; |
| } |
| |
| /* |
| * Release any pages at the end, if we quit early. 'i' is how far |
| * we got, 'nr_pages' is how many pages are in the map. |
| */ |
| while (page_nr < nr_pages) |
| page_cache_release(pages[page_nr++]); |
| |
| if (spd.nr_pages) |
| return splice_to_pipe(pipe, &spd); |
| |
| return error; |
| } |
| |
| /** |
| * generic_file_splice_read - splice data from file to a pipe |
| * @in: file to splice from |
| * @pipe: pipe to splice to |
| * @len: number of bytes to splice |
| * @flags: splice modifier flags |
| * |
| * Will read pages from given file and fill them into a pipe. |
| */ |
| ssize_t generic_file_splice_read(struct file *in, loff_t *ppos, |
| struct pipe_inode_info *pipe, size_t len, |
| unsigned int flags) |
| { |
| ssize_t spliced; |
| int ret; |
| |
| ret = 0; |
| spliced = 0; |
| |
| while (len) { |
| ret = __generic_file_splice_read(in, ppos, pipe, len, flags); |
| |
| if (ret < 0) |
| break; |
| else if (!ret) { |
| if (spliced) |
| break; |
| if (flags & SPLICE_F_NONBLOCK) { |
| ret = -EAGAIN; |
| break; |
| } |
| } |
| |
| *ppos += ret; |
| len -= ret; |
| spliced += ret; |
| } |
| |
| if (spliced) |
| return spliced; |
| |
| return ret; |
| } |
| |
| EXPORT_SYMBOL(generic_file_splice_read); |
| |
| /* |
| * Send 'sd->len' bytes to socket from 'sd->file' at position 'sd->pos' |
| * using sendpage(). Return the number of bytes sent. |
| */ |
| static int pipe_to_sendpage(struct pipe_inode_info *info, |
| struct pipe_buffer *buf, struct splice_desc *sd) |
| { |
| struct file *file = sd->file; |
| loff_t pos = sd->pos; |
| ssize_t ret; |
| void *ptr; |
| int more; |
| |
| /* |
| * Sub-optimal, but we are limited by the pipe ->map. We don't |
| * need a kmap'ed buffer here, we just want to make sure we |
| * have the page pinned if the pipe page originates from the |
| * page cache. |
| */ |
| ptr = buf->ops->map(file, info, buf); |
| if (IS_ERR(ptr)) |
| return PTR_ERR(ptr); |
| |
| more = (sd->flags & SPLICE_F_MORE) || sd->len < sd->total_len; |
| |
| ret = file->f_op->sendpage(file, buf->page, buf->offset, sd->len, |
| &pos, more); |
| |
| buf->ops->unmap(info, buf); |
| return ret; |
| } |
| |
| /* |
| * This is a little more tricky than the file -> pipe splicing. There are |
| * basically three cases: |
| * |
| * - Destination page already exists in the address space and there |
| * are users of it. For that case we have no other option that |
| * copying the data. Tough luck. |
| * - Destination page already exists in the address space, but there |
| * are no users of it. Make sure it's uptodate, then drop it. Fall |
| * through to last case. |
| * - Destination page does not exist, we can add the pipe page to |
| * the page cache and avoid the copy. |
| * |
| * If asked to move pages to the output file (SPLICE_F_MOVE is set in |
| * sd->flags), we attempt to migrate pages from the pipe to the output |
| * file address space page cache. This is possible if no one else has |
| * the pipe page referenced outside of the pipe and page cache. If |
| * SPLICE_F_MOVE isn't set, or we cannot move the page, we simply create |
| * a new page in the output file page cache and fill/dirty that. |
| */ |
| static int pipe_to_file(struct pipe_inode_info *info, struct pipe_buffer *buf, |
| struct splice_desc *sd) |
| { |
| struct file *file = sd->file; |
| struct address_space *mapping = file->f_mapping; |
| gfp_t gfp_mask = mapping_gfp_mask(mapping); |
| unsigned int offset, this_len; |
| struct page *page; |
| pgoff_t index; |
| char *src; |
| int ret; |
| |
| /* |
| * make sure the data in this buffer is uptodate |
| */ |
| src = buf->ops->map(file, info, buf); |
| if (IS_ERR(src)) |
| return PTR_ERR(src); |
| |
| index = sd->pos >> PAGE_CACHE_SHIFT; |
| offset = sd->pos & ~PAGE_CACHE_MASK; |
| |
| this_len = sd->len; |
| if (this_len + offset > PAGE_CACHE_SIZE) |
| this_len = PAGE_CACHE_SIZE - offset; |
| |
| /* |
| * Reuse buf page, if SPLICE_F_MOVE is set. |
| */ |
| if (sd->flags & SPLICE_F_MOVE) { |
| /* |
| * If steal succeeds, buf->page is now pruned from the vm |
| * side (LRU and page cache) and we can reuse it. The page |
| * will also be looked on successful return. |
| */ |
| if (buf->ops->steal(info, buf)) |
| goto find_page; |
| |
| page = buf->page; |
| if (add_to_page_cache(page, mapping, index, gfp_mask)) { |
| unlock_page(page); |
| goto find_page; |
| } |
| |
| if (!(buf->flags & PIPE_BUF_FLAG_LRU)) |
| lru_cache_add(page); |
| } else { |
| find_page: |
| page = find_lock_page(mapping, index); |
| if (!page) { |
| ret = -ENOMEM; |
| page = page_cache_alloc_cold(mapping); |
| if (unlikely(!page)) |
| goto out_nomem; |
| |
| /* |
| * This will also lock the page |
| */ |
| ret = add_to_page_cache_lru(page, mapping, index, |
| gfp_mask); |
| if (unlikely(ret)) |
| goto out; |
| } |
| |
| /* |
| * We get here with the page locked. If the page is also |
| * uptodate, we don't need to do more. If it isn't, we |
| * may need to bring it in if we are not going to overwrite |
| * the full page. |
| */ |
| if (!PageUptodate(page)) { |
| if (this_len < PAGE_CACHE_SIZE) { |
| ret = mapping->a_ops->readpage(file, page); |
| if (unlikely(ret)) |
| goto out; |
| |
| lock_page(page); |
| |
| if (!PageUptodate(page)) { |
| /* |
| * Page got invalidated, repeat. |
| */ |
| if (!page->mapping) { |
| unlock_page(page); |
| page_cache_release(page); |
| goto find_page; |
| } |
| ret = -EIO; |
| goto out; |
| } |
| } else |
| SetPageUptodate(page); |
| } |
| } |
| |
| ret = mapping->a_ops->prepare_write(file, page, offset, offset+this_len); |
| if (ret == AOP_TRUNCATED_PAGE) { |
| page_cache_release(page); |
| goto find_page; |
| } else if (ret) |
| goto out; |
| |
| if (!(buf->flags & PIPE_BUF_FLAG_STOLEN)) { |
| char *dst = kmap_atomic(page, KM_USER0); |
| |
| memcpy(dst + offset, src + buf->offset, this_len); |
| flush_dcache_page(page); |
| kunmap_atomic(dst, KM_USER0); |
| } |
| |
| ret = mapping->a_ops->commit_write(file, page, offset, offset+this_len); |
| if (ret == AOP_TRUNCATED_PAGE) { |
| page_cache_release(page); |
| goto find_page; |
| } else if (ret) |
| goto out; |
| |
| /* |
| * Return the number of bytes written. |
| */ |
| ret = this_len; |
| mark_page_accessed(page); |
| balance_dirty_pages_ratelimited(mapping); |
| out: |
| if (!(buf->flags & PIPE_BUF_FLAG_STOLEN)) |
| page_cache_release(page); |
| |
| unlock_page(page); |
| out_nomem: |
| buf->ops->unmap(info, buf); |
| return ret; |
| } |
| |
| /* |
| * Pipe input worker. Most of this logic works like a regular pipe, the |
| * key here is the 'actor' worker passed in that actually moves the data |
| * to the wanted destination. See pipe_to_file/pipe_to_sendpage above. |
| */ |
| ssize_t splice_from_pipe(struct pipe_inode_info *pipe, struct file *out, |
| loff_t *ppos, size_t len, unsigned int flags, |
| splice_actor *actor) |
| { |
| int ret, do_wakeup, err; |
| struct splice_desc sd; |
| |
| ret = 0; |
| do_wakeup = 0; |
| |
| sd.total_len = len; |
| sd.flags = flags; |
| sd.file = out; |
| sd.pos = *ppos; |
| |
| if (pipe->inode) |
| mutex_lock(&pipe->inode->i_mutex); |
| |
| for (;;) { |
| if (pipe->nrbufs) { |
| struct pipe_buffer *buf = pipe->bufs + pipe->curbuf; |
| struct pipe_buf_operations *ops = buf->ops; |
| |
| sd.len = buf->len; |
| if (sd.len > sd.total_len) |
| sd.len = sd.total_len; |
| |
| err = actor(pipe, buf, &sd); |
| if (err <= 0) { |
| if (!ret && err != -ENODATA) |
| ret = err; |
| |
| break; |
| } |
| |
| ret += err; |
| buf->offset += err; |
| buf->len -= err; |
| |
| sd.len -= err; |
| sd.pos += err; |
| sd.total_len -= err; |
| if (sd.len) |
| continue; |
| |
| if (!buf->len) { |
| buf->ops = NULL; |
| ops->release(pipe, buf); |
| pipe->curbuf = (pipe->curbuf + 1) & (PIPE_BUFFERS - 1); |
| pipe->nrbufs--; |
| if (pipe->inode) |
| do_wakeup = 1; |
| } |
| |
| if (!sd.total_len) |
| break; |
| } |
| |
| if (pipe->nrbufs) |
| continue; |
| if (!pipe->writers) |
| break; |
| if (!pipe->waiting_writers) { |
| if (ret) |
| break; |
| } |
| |
| if (flags & SPLICE_F_NONBLOCK) { |
| if (!ret) |
| ret = -EAGAIN; |
| break; |
| } |
| |
| if (signal_pending(current)) { |
| if (!ret) |
| ret = -ERESTARTSYS; |
| break; |
| } |
| |
| if (do_wakeup) { |
| smp_mb(); |
| if (waitqueue_active(&pipe->wait)) |
| wake_up_interruptible_sync(&pipe->wait); |
| kill_fasync(&pipe->fasync_writers, SIGIO, POLL_OUT); |
| do_wakeup = 0; |
| } |
| |
| pipe_wait(pipe); |
| } |
| |
| if (pipe->inode) |
| mutex_unlock(&pipe->inode->i_mutex); |
| |
| if (do_wakeup) { |
| smp_mb(); |
| if (waitqueue_active(&pipe->wait)) |
| wake_up_interruptible(&pipe->wait); |
| kill_fasync(&pipe->fasync_writers, SIGIO, POLL_OUT); |
| } |
| |
| return ret; |
| } |
| |
| /** |
| * generic_file_splice_write - splice data from a pipe to a file |
| * @pipe: pipe info |
| * @out: file to write to |
| * @len: number of bytes to splice |
| * @flags: splice modifier flags |
| * |
| * Will either move or copy pages (determined by @flags options) from |
| * the given pipe inode to the given file. |
| * |
| */ |
| ssize_t |
| generic_file_splice_write(struct pipe_inode_info *pipe, struct file *out, |
| loff_t *ppos, size_t len, unsigned int flags) |
| { |
| struct address_space *mapping = out->f_mapping; |
| ssize_t ret; |
| |
| ret = splice_from_pipe(pipe, out, ppos, len, flags, pipe_to_file); |
| if (ret > 0) { |
| struct inode *inode = mapping->host; |
| |
| *ppos += ret; |
| |
| /* |
| * If file or inode is SYNC and we actually wrote some data, |
| * sync it. |
| */ |
| if (unlikely((out->f_flags & O_SYNC) || IS_SYNC(inode))) { |
| int err; |
| |
| mutex_lock(&inode->i_mutex); |
| err = generic_osync_inode(inode, mapping, |
| OSYNC_METADATA|OSYNC_DATA); |
| mutex_unlock(&inode->i_mutex); |
| |
| if (err) |
| ret = err; |
| } |
| } |
| |
| return ret; |
| } |
| |
| EXPORT_SYMBOL(generic_file_splice_write); |
| |
| /** |
| * generic_splice_sendpage - splice data from a pipe to a socket |
| * @inode: pipe inode |
| * @out: socket to write to |
| * @len: number of bytes to splice |
| * @flags: splice modifier flags |
| * |
| * Will send @len bytes from the pipe to a network socket. No data copying |
| * is involved. |
| * |
| */ |
| ssize_t generic_splice_sendpage(struct pipe_inode_info *pipe, struct file *out, |
| loff_t *ppos, size_t len, unsigned int flags) |
| { |
| return splice_from_pipe(pipe, out, ppos, len, flags, pipe_to_sendpage); |
| } |
| |
| EXPORT_SYMBOL(generic_splice_sendpage); |
| |
| /* |
| * Attempt to initiate a splice from pipe to file. |
| */ |
| static long do_splice_from(struct pipe_inode_info *pipe, struct file *out, |
| loff_t *ppos, size_t len, unsigned int flags) |
| { |
| int ret; |
| |
| if (unlikely(!out->f_op || !out->f_op->splice_write)) |
| return -EINVAL; |
| |
| if (unlikely(!(out->f_mode & FMODE_WRITE))) |
| return -EBADF; |
| |
| ret = rw_verify_area(WRITE, out, ppos, len); |
| if (unlikely(ret < 0)) |
| return ret; |
| |
| return out->f_op->splice_write(pipe, out, ppos, len, flags); |
| } |
| |
| /* |
| * Attempt to initiate a splice from a file to a pipe. |
| */ |
| static long do_splice_to(struct file *in, loff_t *ppos, |
| struct pipe_inode_info *pipe, size_t len, |
| unsigned int flags) |
| { |
| loff_t isize, left; |
| int ret; |
| |
| if (unlikely(!in->f_op || !in->f_op->splice_read)) |
| return -EINVAL; |
| |
| if (unlikely(!(in->f_mode & FMODE_READ))) |
| return -EBADF; |
| |
| ret = rw_verify_area(READ, in, ppos, len); |
| if (unlikely(ret < 0)) |
| return ret; |
| |
| isize = i_size_read(in->f_mapping->host); |
| if (unlikely(*ppos >= isize)) |
| return 0; |
| |
| left = isize - *ppos; |
| if (unlikely(left < len)) |
| len = left; |
| |
| return in->f_op->splice_read(in, ppos, pipe, len, flags); |
| } |
| |
| long do_splice_direct(struct file *in, loff_t *ppos, struct file *out, |
| size_t len, unsigned int flags) |
| { |
| struct pipe_inode_info *pipe; |
| long ret, bytes; |
| loff_t out_off; |
| umode_t i_mode; |
| int i; |
| |
| /* |
| * We require the input being a regular file, as we don't want to |
| * randomly drop data for eg socket -> socket splicing. Use the |
| * piped splicing for that! |
| */ |
| i_mode = in->f_dentry->d_inode->i_mode; |
| if (unlikely(!S_ISREG(i_mode) && !S_ISBLK(i_mode))) |
| return -EINVAL; |
| |
| /* |
| * neither in nor out is a pipe, setup an internal pipe attached to |
| * 'out' and transfer the wanted data from 'in' to 'out' through that |
| */ |
| pipe = current->splice_pipe; |
| if (unlikely(!pipe)) { |
| pipe = alloc_pipe_info(NULL); |
| if (!pipe) |
| return -ENOMEM; |
| |
| /* |
| * We don't have an immediate reader, but we'll read the stuff |
| * out of the pipe right after the splice_to_pipe(). So set |
| * PIPE_READERS appropriately. |
| */ |
| pipe->readers = 1; |
| |
| current->splice_pipe = pipe; |
| } |
| |
| /* |
| * Do the splice. |
| */ |
| ret = 0; |
| bytes = 0; |
| out_off = 0; |
| |
| while (len) { |
| size_t read_len, max_read_len; |
| |
| /* |
| * Do at most PIPE_BUFFERS pages worth of transfer: |
| */ |
| max_read_len = min(len, (size_t)(PIPE_BUFFERS*PAGE_SIZE)); |
| |
| ret = do_splice_to(in, ppos, pipe, max_read_len, flags); |
| if (unlikely(ret < 0)) |
| goto out_release; |
| |
| read_len = ret; |
| |
| /* |
| * NOTE: nonblocking mode only applies to the input. We |
| * must not do the output in nonblocking mode as then we |
| * could get stuck data in the internal pipe: |
| */ |
| ret = do_splice_from(pipe, out, &out_off, read_len, |
| flags & ~SPLICE_F_NONBLOCK); |
| if (unlikely(ret < 0)) |
| goto out_release; |
| |
| bytes += ret; |
| len -= ret; |
| |
| /* |
| * In nonblocking mode, if we got back a short read then |
| * that was due to either an IO error or due to the |
| * pagecache entry not being there. In the IO error case |
| * the _next_ splice attempt will produce a clean IO error |
| * return value (not a short read), so in both cases it's |
| * correct to break out of the loop here: |
| */ |
| if ((flags & SPLICE_F_NONBLOCK) && (read_len < max_read_len)) |
| break; |
| } |
| |
| pipe->nrbufs = pipe->curbuf = 0; |
| |
| return bytes; |
| |
| out_release: |
| /* |
| * If we did an incomplete transfer we must release |
| * the pipe buffers in question: |
| */ |
| for (i = 0; i < PIPE_BUFFERS; i++) { |
| struct pipe_buffer *buf = pipe->bufs + i; |
| |
| if (buf->ops) { |
| buf->ops->release(pipe, buf); |
| buf->ops = NULL; |
| } |
| } |
| pipe->nrbufs = pipe->curbuf = 0; |
| |
| /* |
| * If we transferred some data, return the number of bytes: |
| */ |
| if (bytes > 0) |
| return bytes; |
| |
| return ret; |
| } |
| |
| EXPORT_SYMBOL(do_splice_direct); |
| |
| /* |
| * Determine where to splice to/from. |
| */ |
| static long do_splice(struct file *in, loff_t __user *off_in, |
| struct file *out, loff_t __user *off_out, |
| size_t len, unsigned int flags) |
| { |
| struct pipe_inode_info *pipe; |
| loff_t offset, *off; |
| long ret; |
| |
| pipe = in->f_dentry->d_inode->i_pipe; |
| if (pipe) { |
| if (off_in) |
| return -ESPIPE; |
| if (off_out) { |
| if (out->f_op->llseek == no_llseek) |
| return -EINVAL; |
| if (copy_from_user(&offset, off_out, sizeof(loff_t))) |
| return -EFAULT; |
| off = &offset; |
| } else |
| off = &out->f_pos; |
| |
| ret = do_splice_from(pipe, out, off, len, flags); |
| |
| if (off_out && copy_to_user(off_out, off, sizeof(loff_t))) |
| ret = -EFAULT; |
| |
| return ret; |
| } |
| |
| pipe = out->f_dentry->d_inode->i_pipe; |
| if (pipe) { |
| if (off_out) |
| return -ESPIPE; |
| if (off_in) { |
| if (in->f_op->llseek == no_llseek) |
| return -EINVAL; |
| if (copy_from_user(&offset, off_in, sizeof(loff_t))) |
| return -EFAULT; |
| off = &offset; |
| } else |
| off = &in->f_pos; |
| |
| ret = do_splice_to(in, off, pipe, len, flags); |
| |
| if (off_in && copy_to_user(off_in, off, sizeof(loff_t))) |
| ret = -EFAULT; |
| |
| return ret; |
| } |
| |
| return -EINVAL; |
| } |
| |
| /* |
| * Map an iov into an array of pages and offset/length tupples. With the |
| * partial_page structure, we can map several non-contiguous ranges into |
| * our ones pages[] map instead of splitting that operation into pieces. |
| * Could easily be exported as a generic helper for other users, in which |
| * case one would probably want to add a 'max_nr_pages' parameter as well. |
| */ |
| static int get_iovec_page_array(const struct iovec __user *iov, |
| unsigned int nr_vecs, struct page **pages, |
| struct partial_page *partial) |
| { |
| int buffers = 0, error = 0; |
| |
| /* |
| * It's ok to take the mmap_sem for reading, even |
| * across a "get_user()". |
| */ |
| down_read(¤t->mm->mmap_sem); |
| |
| while (nr_vecs) { |
| unsigned long off, npages; |
| void __user *base; |
| size_t len; |
| int i; |
| |
| /* |
| * Get user address base and length for this iovec. |
| */ |
| error = get_user(base, &iov->iov_base); |
| if (unlikely(error)) |
| break; |
| error = get_user(len, &iov->iov_len); |
| if (unlikely(error)) |
| break; |
| |
| /* |
| * Sanity check this iovec. 0 read succeeds. |
| */ |
| if (unlikely(!len)) |
| break; |
| error = -EFAULT; |
| if (unlikely(!base)) |
| break; |
| |
| /* |
| * Get this base offset and number of pages, then map |
| * in the user pages. |
| */ |
| off = (unsigned long) base & ~PAGE_MASK; |
| npages = (off + len + PAGE_SIZE - 1) >> PAGE_SHIFT; |
| if (npages > PIPE_BUFFERS - buffers) |
| npages = PIPE_BUFFERS - buffers; |
| |
| error = get_user_pages(current, current->mm, |
| (unsigned long) base, npages, 0, 0, |
| &pages[buffers], NULL); |
| |
| if (unlikely(error <= 0)) |
| break; |
| |
| /* |
| * Fill this contiguous range into the partial page map. |
| */ |
| for (i = 0; i < error; i++) { |
| const int plen = min_t(size_t, len, PAGE_SIZE) - off; |
| |
| partial[buffers].offset = off; |
| partial[buffers].len = plen; |
| |
| off = 0; |
| len -= plen; |
| buffers++; |
| } |
| |
| /* |
| * We didn't complete this iov, stop here since it probably |
| * means we have to move some of this into a pipe to |
| * be able to continue. |
| */ |
| if (len) |
| break; |
| |
| /* |
| * Don't continue if we mapped fewer pages than we asked for, |
| * or if we mapped the max number of pages that we have |
| * room for. |
| */ |
| if (error < npages || buffers == PIPE_BUFFERS) |
| break; |
| |
| nr_vecs--; |
| iov++; |
| } |
| |
| up_read(¤t->mm->mmap_sem); |
| |
| if (buffers) |
| return buffers; |
| |
| return error; |
| } |
| |
| /* |
| * vmsplice splices a user address range into a pipe. It can be thought of |
| * as splice-from-memory, where the regular splice is splice-from-file (or |
| * to file). In both cases the output is a pipe, naturally. |
| * |
| * Note that vmsplice only supports splicing _from_ user memory to a pipe, |
| * not the other way around. Splicing from user memory is a simple operation |
| * that can be supported without any funky alignment restrictions or nasty |
| * vm tricks. We simply map in the user memory and fill them into a pipe. |
| * The reverse isn't quite as easy, though. There are two possible solutions |
| * for that: |
| * |
| * - memcpy() the data internally, at which point we might as well just |
| * do a regular read() on the buffer anyway. |
| * - Lots of nasty vm tricks, that are neither fast nor flexible (it |
| * has restriction limitations on both ends of the pipe). |
| * |
| * Alas, it isn't here. |
| * |
| */ |
| static long do_vmsplice(struct file *file, const struct iovec __user *iov, |
| unsigned long nr_segs, unsigned int flags) |
| { |
| struct pipe_inode_info *pipe = file->f_dentry->d_inode->i_pipe; |
| struct page *pages[PIPE_BUFFERS]; |
| struct partial_page partial[PIPE_BUFFERS]; |
| struct splice_pipe_desc spd = { |
| .pages = pages, |
| .partial = partial, |
| .flags = flags, |
| .ops = &user_page_pipe_buf_ops, |
| }; |
| |
| if (unlikely(!pipe)) |
| return -EBADF; |
| if (unlikely(nr_segs > UIO_MAXIOV)) |
| return -EINVAL; |
| else if (unlikely(!nr_segs)) |
| return 0; |
| |
| spd.nr_pages = get_iovec_page_array(iov, nr_segs, pages, partial); |
| if (spd.nr_pages <= 0) |
| return spd.nr_pages; |
| |
| return splice_to_pipe(pipe, &spd); |
| } |
| |
| asmlinkage long sys_vmsplice(int fd, const struct iovec __user *iov, |
| unsigned long nr_segs, unsigned int flags) |
| { |
| struct file *file; |
| long error; |
| int fput; |
| |
| error = -EBADF; |
| file = fget_light(fd, &fput); |
| if (file) { |
| if (file->f_mode & FMODE_WRITE) |
| error = do_vmsplice(file, iov, nr_segs, flags); |
| |
| fput_light(file, fput); |
| } |
| |
| return error; |
| } |
| |
| asmlinkage long sys_splice(int fd_in, loff_t __user *off_in, |
| int fd_out, loff_t __user *off_out, |
| size_t len, unsigned int flags) |
| { |
| long error; |
| struct file *in, *out; |
| int fput_in, fput_out; |
| |
| if (unlikely(!len)) |
| return 0; |
| |
| error = -EBADF; |
| in = fget_light(fd_in, &fput_in); |
| if (in) { |
| if (in->f_mode & FMODE_READ) { |
| out = fget_light(fd_out, &fput_out); |
| if (out) { |
| if (out->f_mode & FMODE_WRITE) |
| error = do_splice(in, off_in, |
| out, off_out, |
| len, flags); |
| fput_light(out, fput_out); |
| } |
| } |
| |
| fput_light(in, fput_in); |
| } |
| |
| return error; |
| } |
| |
| /* |
| * Link contents of ipipe to opipe. |
| */ |
| static int link_pipe(struct pipe_inode_info *ipipe, |
| struct pipe_inode_info *opipe, |
| size_t len, unsigned int flags) |
| { |
| struct pipe_buffer *ibuf, *obuf; |
| int ret, do_wakeup, i, ipipe_first; |
| |
| ret = do_wakeup = ipipe_first = 0; |
| |
| /* |
| * Potential ABBA deadlock, work around it by ordering lock |
| * grabbing by inode address. Otherwise two different processes |
| * could deadlock (one doing tee from A -> B, the other from B -> A). |
| */ |
| if (ipipe->inode < opipe->inode) { |
| ipipe_first = 1; |
| mutex_lock(&ipipe->inode->i_mutex); |
| mutex_lock(&opipe->inode->i_mutex); |
| } else { |
| mutex_lock(&opipe->inode->i_mutex); |
| mutex_lock(&ipipe->inode->i_mutex); |
| } |
| |
| for (i = 0;; i++) { |
| if (!opipe->readers) { |
| send_sig(SIGPIPE, current, 0); |
| if (!ret) |
| ret = -EPIPE; |
| break; |
| } |
| if (ipipe->nrbufs - i) { |
| ibuf = ipipe->bufs + ((ipipe->curbuf + i) & (PIPE_BUFFERS - 1)); |
| |
| /* |
| * If we have room, fill this buffer |
| */ |
| if (opipe->nrbufs < PIPE_BUFFERS) { |
| int nbuf = (opipe->curbuf + opipe->nrbufs) & (PIPE_BUFFERS - 1); |
| |
| /* |
| * Get a reference to this pipe buffer, |
| * so we can copy the contents over. |
| */ |
| ibuf->ops->get(ipipe, ibuf); |
| |
| obuf = opipe->bufs + nbuf; |
| *obuf = *ibuf; |
| |
| if (obuf->len > len) |
| obuf->len = len; |
| |
| opipe->nrbufs++; |
| do_wakeup = 1; |
| ret += obuf->len; |
| len -= obuf->len; |
| |
| if (!len) |
| break; |
| if (opipe->nrbufs < PIPE_BUFFERS) |
| continue; |
| } |
| |
| /* |
| * We have input available, but no output room. |
| * If we already copied data, return that. If we |
| * need to drop the opipe lock, it must be ordered |
| * last to avoid deadlocks. |
| */ |
| if ((flags & SPLICE_F_NONBLOCK) || !ipipe_first) { |
| if (!ret) |
| ret = -EAGAIN; |
| break; |
| } |
| if (signal_pending(current)) { |
| if (!ret) |
| ret = -ERESTARTSYS; |
| break; |
| } |
| if (do_wakeup) { |
| smp_mb(); |
| if (waitqueue_active(&opipe->wait)) |
| wake_up_interruptible(&opipe->wait); |
| kill_fasync(&opipe->fasync_readers, SIGIO, POLL_IN); |
| do_wakeup = 0; |
| } |
| |
| opipe->waiting_writers++; |
| pipe_wait(opipe); |
| opipe->waiting_writers--; |
| continue; |
| } |
| |
| /* |
| * No input buffers, do the usual checks for available |
| * writers and blocking and wait if necessary |
| */ |
| if (!ipipe->writers) |
| break; |
| if (!ipipe->waiting_writers) { |
| if (ret) |
| break; |
| } |
| /* |
| * pipe_wait() drops the ipipe mutex. To avoid deadlocks |
| * with another process, we can only safely do that if |
| * the ipipe lock is ordered last. |
| */ |
| if ((flags & SPLICE_F_NONBLOCK) || ipipe_first) { |
| if (!ret) |
| ret = -EAGAIN; |
| break; |
| } |
| if (signal_pending(current)) { |
| if (!ret) |
| ret = -ERESTARTSYS; |
| break; |
| } |
| |
| if (waitqueue_active(&ipipe->wait)) |
| wake_up_interruptible_sync(&ipipe->wait); |
| kill_fasync(&ipipe->fasync_writers, SIGIO, POLL_OUT); |
| |
| pipe_wait(ipipe); |
| } |
| |
| mutex_unlock(&ipipe->inode->i_mutex); |
| mutex_unlock(&opipe->inode->i_mutex); |
| |
| if (do_wakeup) { |
| smp_mb(); |
| if (waitqueue_active(&opipe->wait)) |
| wake_up_interruptible(&opipe->wait); |
| kill_fasync(&opipe->fasync_readers, SIGIO, POLL_IN); |
| } |
| |
| return ret; |
| } |
| |
| /* |
| * This is a tee(1) implementation that works on pipes. It doesn't copy |
| * any data, it simply references the 'in' pages on the 'out' pipe. |
| * The 'flags' used are the SPLICE_F_* variants, currently the only |
| * applicable one is SPLICE_F_NONBLOCK. |
| */ |
| static long do_tee(struct file *in, struct file *out, size_t len, |
| unsigned int flags) |
| { |
| struct pipe_inode_info *ipipe = in->f_dentry->d_inode->i_pipe; |
| struct pipe_inode_info *opipe = out->f_dentry->d_inode->i_pipe; |
| |
| /* |
| * Link ipipe to the two output pipes, consuming as we go along. |
| */ |
| if (ipipe && opipe) |
| return link_pipe(ipipe, opipe, len, flags); |
| |
| return -EINVAL; |
| } |
| |
| asmlinkage long sys_tee(int fdin, int fdout, size_t len, unsigned int flags) |
| { |
| struct file *in; |
| int error, fput_in; |
| |
| if (unlikely(!len)) |
| return 0; |
| |
| error = -EBADF; |
| in = fget_light(fdin, &fput_in); |
| if (in) { |
| if (in->f_mode & FMODE_READ) { |
| int fput_out; |
| struct file *out = fget_light(fdout, &fput_out); |
| |
| if (out) { |
| if (out->f_mode & FMODE_WRITE) |
| error = do_tee(in, out, len, flags); |
| fput_light(out, fput_out); |
| } |
| } |
| fput_light(in, fput_in); |
| } |
| |
| return error; |
| } |