| /* |
| * Copyright (c) 2013 Johannes Berg <johannes@sipsolutions.net> |
| * |
| * This file is free software: you may copy, redistribute and/or modify it |
| * under the terms of the GNU General Public License as published by the |
| * Free Software Foundation, either version 2 of the License, or (at your |
| * option) any later version. |
| * |
| * This file is distributed in the hope that it will be useful, but |
| * WITHOUT ANY WARRANTY; without even the implied warranty of |
| * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU |
| * General Public License for more details. |
| * |
| * You should have received a copy of the GNU General Public License |
| * along with this program. If not, see <http://www.gnu.org/licenses/>. |
| * |
| * This file incorporates work covered by the following copyright and |
| * permission notice: |
| * |
| * Copyright (c) 2012 Qualcomm Atheros, Inc. |
| * |
| * Permission to use, copy, modify, and/or distribute this software for any |
| * purpose with or without fee is hereby granted, provided that the above |
| * copyright notice and this permission notice appear in all copies. |
| * |
| * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES |
| * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF |
| * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR |
| * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES |
| * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN |
| * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF |
| * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE. |
| */ |
| |
| #include <linux/module.h> |
| #include <linux/pci.h> |
| #include <linux/interrupt.h> |
| #include <linux/ip.h> |
| #include <linux/ipv6.h> |
| #include <linux/if_vlan.h> |
| #include <linux/mdio.h> |
| #include <linux/aer.h> |
| #include <linux/bitops.h> |
| #include <linux/netdevice.h> |
| #include <linux/etherdevice.h> |
| #include <net/ip6_checksum.h> |
| #include <linux/crc32.h> |
| #include "alx.h" |
| #include "hw.h" |
| #include "reg.h" |
| |
| const char alx_drv_name[] = "alx"; |
| |
| static void alx_free_txbuf(struct alx_tx_queue *txq, int entry) |
| { |
| struct alx_buffer *txb = &txq->bufs[entry]; |
| |
| if (dma_unmap_len(txb, size)) { |
| dma_unmap_single(txq->dev, |
| dma_unmap_addr(txb, dma), |
| dma_unmap_len(txb, size), |
| DMA_TO_DEVICE); |
| dma_unmap_len_set(txb, size, 0); |
| } |
| |
| if (txb->skb) { |
| dev_kfree_skb_any(txb->skb); |
| txb->skb = NULL; |
| } |
| } |
| |
| static int alx_refill_rx_ring(struct alx_priv *alx, gfp_t gfp) |
| { |
| struct alx_rx_queue *rxq = alx->qnapi[0]->rxq; |
| struct sk_buff *skb; |
| struct alx_buffer *cur_buf; |
| dma_addr_t dma; |
| u16 cur, next, count = 0; |
| |
| next = cur = rxq->write_idx; |
| if (++next == alx->rx_ringsz) |
| next = 0; |
| cur_buf = &rxq->bufs[cur]; |
| |
| while (!cur_buf->skb && next != rxq->read_idx) { |
| struct alx_rfd *rfd = &rxq->rfd[cur]; |
| |
| /* |
| * When DMA RX address is set to something like |
| * 0x....fc0, it will be very likely to cause DMA |
| * RFD overflow issue. |
| * |
| * To work around it, we apply rx skb with 64 bytes |
| * longer space, and offset the address whenever |
| * 0x....fc0 is detected. |
| */ |
| skb = __netdev_alloc_skb(alx->dev, alx->rxbuf_size + 64, gfp); |
| if (!skb) |
| break; |
| |
| if (((unsigned long)skb->data & 0xfff) == 0xfc0) |
| skb_reserve(skb, 64); |
| |
| dma = dma_map_single(&alx->hw.pdev->dev, |
| skb->data, alx->rxbuf_size, |
| DMA_FROM_DEVICE); |
| if (dma_mapping_error(&alx->hw.pdev->dev, dma)) { |
| dev_kfree_skb(skb); |
| break; |
| } |
| |
| /* Unfortunately, RX descriptor buffers must be 4-byte |
| * aligned, so we can't use IP alignment. |
| */ |
| if (WARN_ON(dma & 3)) { |
| dev_kfree_skb(skb); |
| break; |
| } |
| |
| cur_buf->skb = skb; |
| dma_unmap_len_set(cur_buf, size, alx->rxbuf_size); |
| dma_unmap_addr_set(cur_buf, dma, dma); |
| rfd->addr = cpu_to_le64(dma); |
| |
| cur = next; |
| if (++next == alx->rx_ringsz) |
| next = 0; |
| cur_buf = &rxq->bufs[cur]; |
| count++; |
| } |
| |
| if (count) { |
| /* flush all updates before updating hardware */ |
| wmb(); |
| rxq->write_idx = cur; |
| alx_write_mem16(&alx->hw, ALX_RFD_PIDX, cur); |
| } |
| |
| return count; |
| } |
| |
| static struct alx_tx_queue *alx_tx_queue_mapping(struct alx_priv *alx, |
| struct sk_buff *skb) |
| { |
| unsigned int r_idx = skb->queue_mapping; |
| |
| if (r_idx >= alx->num_txq) |
| r_idx = r_idx % alx->num_txq; |
| |
| return alx->qnapi[r_idx]->txq; |
| } |
| |
| static struct netdev_queue *alx_get_tx_queue(const struct alx_tx_queue *txq) |
| { |
| return netdev_get_tx_queue(txq->netdev, txq->queue_idx); |
| } |
| |
| static inline int alx_tpd_avail(struct alx_tx_queue *txq) |
| { |
| if (txq->write_idx >= txq->read_idx) |
| return txq->count + txq->read_idx - txq->write_idx - 1; |
| return txq->read_idx - txq->write_idx - 1; |
| } |
| |
| static bool alx_clean_tx_irq(struct alx_tx_queue *txq) |
| { |
| struct alx_priv *alx; |
| struct netdev_queue *tx_queue; |
| u16 hw_read_idx, sw_read_idx; |
| unsigned int total_bytes = 0, total_packets = 0; |
| int budget = ALX_DEFAULT_TX_WORK; |
| |
| alx = netdev_priv(txq->netdev); |
| tx_queue = alx_get_tx_queue(txq); |
| |
| sw_read_idx = txq->read_idx; |
| hw_read_idx = alx_read_mem16(&alx->hw, txq->c_reg); |
| |
| if (sw_read_idx != hw_read_idx) { |
| while (sw_read_idx != hw_read_idx && budget > 0) { |
| struct sk_buff *skb; |
| |
| skb = txq->bufs[sw_read_idx].skb; |
| if (skb) { |
| total_bytes += skb->len; |
| total_packets++; |
| budget--; |
| } |
| |
| alx_free_txbuf(txq, sw_read_idx); |
| |
| if (++sw_read_idx == txq->count) |
| sw_read_idx = 0; |
| } |
| txq->read_idx = sw_read_idx; |
| |
| netdev_tx_completed_queue(tx_queue, total_packets, total_bytes); |
| } |
| |
| if (netif_tx_queue_stopped(tx_queue) && netif_carrier_ok(alx->dev) && |
| alx_tpd_avail(txq) > txq->count / 4) |
| netif_tx_wake_queue(tx_queue); |
| |
| return sw_read_idx == hw_read_idx; |
| } |
| |
| static void alx_schedule_link_check(struct alx_priv *alx) |
| { |
| schedule_work(&alx->link_check_wk); |
| } |
| |
| static void alx_schedule_reset(struct alx_priv *alx) |
| { |
| schedule_work(&alx->reset_wk); |
| } |
| |
| static int alx_clean_rx_irq(struct alx_rx_queue *rxq, int budget) |
| { |
| struct alx_priv *alx; |
| struct alx_rrd *rrd; |
| struct alx_buffer *rxb; |
| struct sk_buff *skb; |
| u16 length, rfd_cleaned = 0; |
| int work = 0; |
| |
| alx = netdev_priv(rxq->netdev); |
| |
| while (work < budget) { |
| rrd = &rxq->rrd[rxq->rrd_read_idx]; |
| if (!(rrd->word3 & cpu_to_le32(1 << RRD_UPDATED_SHIFT))) |
| break; |
| rrd->word3 &= ~cpu_to_le32(1 << RRD_UPDATED_SHIFT); |
| |
| if (ALX_GET_FIELD(le32_to_cpu(rrd->word0), |
| RRD_SI) != rxq->read_idx || |
| ALX_GET_FIELD(le32_to_cpu(rrd->word0), |
| RRD_NOR) != 1) { |
| alx_schedule_reset(alx); |
| return work; |
| } |
| |
| rxb = &rxq->bufs[rxq->read_idx]; |
| dma_unmap_single(rxq->dev, |
| dma_unmap_addr(rxb, dma), |
| dma_unmap_len(rxb, size), |
| DMA_FROM_DEVICE); |
| dma_unmap_len_set(rxb, size, 0); |
| skb = rxb->skb; |
| rxb->skb = NULL; |
| |
| if (rrd->word3 & cpu_to_le32(1 << RRD_ERR_RES_SHIFT) || |
| rrd->word3 & cpu_to_le32(1 << RRD_ERR_LEN_SHIFT)) { |
| rrd->word3 = 0; |
| dev_kfree_skb_any(skb); |
| goto next_pkt; |
| } |
| |
| length = ALX_GET_FIELD(le32_to_cpu(rrd->word3), |
| RRD_PKTLEN) - ETH_FCS_LEN; |
| skb_put(skb, length); |
| skb->protocol = eth_type_trans(skb, rxq->netdev); |
| |
| skb_checksum_none_assert(skb); |
| if (alx->dev->features & NETIF_F_RXCSUM && |
| !(rrd->word3 & (cpu_to_le32(1 << RRD_ERR_L4_SHIFT) | |
| cpu_to_le32(1 << RRD_ERR_IPV4_SHIFT)))) { |
| switch (ALX_GET_FIELD(le32_to_cpu(rrd->word2), |
| RRD_PID)) { |
| case RRD_PID_IPV6UDP: |
| case RRD_PID_IPV4UDP: |
| case RRD_PID_IPV4TCP: |
| case RRD_PID_IPV6TCP: |
| skb->ip_summed = CHECKSUM_UNNECESSARY; |
| break; |
| } |
| } |
| |
| napi_gro_receive(&rxq->np->napi, skb); |
| work++; |
| |
| next_pkt: |
| if (++rxq->read_idx == rxq->count) |
| rxq->read_idx = 0; |
| if (++rxq->rrd_read_idx == rxq->count) |
| rxq->rrd_read_idx = 0; |
| |
| if (++rfd_cleaned > ALX_RX_ALLOC_THRESH) |
| rfd_cleaned -= alx_refill_rx_ring(alx, GFP_ATOMIC); |
| } |
| |
| if (rfd_cleaned) |
| alx_refill_rx_ring(alx, GFP_ATOMIC); |
| |
| return work; |
| } |
| |
| static int alx_poll(struct napi_struct *napi, int budget) |
| { |
| struct alx_napi *np = container_of(napi, struct alx_napi, napi); |
| struct alx_priv *alx = np->alx; |
| struct alx_hw *hw = &alx->hw; |
| unsigned long flags; |
| bool tx_complete = true; |
| int work = 0; |
| |
| if (np->txq) |
| tx_complete = alx_clean_tx_irq(np->txq); |
| if (np->rxq) |
| work = alx_clean_rx_irq(np->rxq, budget); |
| |
| if (!tx_complete || work == budget) |
| return budget; |
| |
| napi_complete_done(&np->napi, work); |
| |
| /* enable interrupt */ |
| if (alx->hw.pdev->msix_enabled) { |
| alx_mask_msix(hw, np->vec_idx, false); |
| } else { |
| spin_lock_irqsave(&alx->irq_lock, flags); |
| alx->int_mask |= ALX_ISR_TX_Q0 | ALX_ISR_RX_Q0; |
| alx_write_mem32(hw, ALX_IMR, alx->int_mask); |
| spin_unlock_irqrestore(&alx->irq_lock, flags); |
| } |
| |
| alx_post_write(hw); |
| |
| return work; |
| } |
| |
| static bool alx_intr_handle_misc(struct alx_priv *alx, u32 intr) |
| { |
| struct alx_hw *hw = &alx->hw; |
| |
| if (intr & ALX_ISR_FATAL) { |
| netif_warn(alx, hw, alx->dev, |
| "fatal interrupt 0x%x, resetting\n", intr); |
| alx_schedule_reset(alx); |
| return true; |
| } |
| |
| if (intr & ALX_ISR_ALERT) |
| netdev_warn(alx->dev, "alert interrupt: 0x%x\n", intr); |
| |
| if (intr & ALX_ISR_PHY) { |
| /* suppress PHY interrupt, because the source |
| * is from PHY internal. only the internal status |
| * is cleared, the interrupt status could be cleared. |
| */ |
| alx->int_mask &= ~ALX_ISR_PHY; |
| alx_write_mem32(hw, ALX_IMR, alx->int_mask); |
| alx_schedule_link_check(alx); |
| } |
| |
| return false; |
| } |
| |
| static irqreturn_t alx_intr_handle(struct alx_priv *alx, u32 intr) |
| { |
| struct alx_hw *hw = &alx->hw; |
| |
| spin_lock(&alx->irq_lock); |
| |
| /* ACK interrupt */ |
| alx_write_mem32(hw, ALX_ISR, intr | ALX_ISR_DIS); |
| intr &= alx->int_mask; |
| |
| if (alx_intr_handle_misc(alx, intr)) |
| goto out; |
| |
| if (intr & (ALX_ISR_TX_Q0 | ALX_ISR_RX_Q0)) { |
| napi_schedule(&alx->qnapi[0]->napi); |
| /* mask rx/tx interrupt, enable them when napi complete */ |
| alx->int_mask &= ~ALX_ISR_ALL_QUEUES; |
| alx_write_mem32(hw, ALX_IMR, alx->int_mask); |
| } |
| |
| alx_write_mem32(hw, ALX_ISR, 0); |
| |
| out: |
| spin_unlock(&alx->irq_lock); |
| return IRQ_HANDLED; |
| } |
| |
| static irqreturn_t alx_intr_msix_ring(int irq, void *data) |
| { |
| struct alx_napi *np = data; |
| struct alx_hw *hw = &np->alx->hw; |
| |
| /* mask interrupt to ACK chip */ |
| alx_mask_msix(hw, np->vec_idx, true); |
| /* clear interrupt status */ |
| alx_write_mem32(hw, ALX_ISR, np->vec_mask); |
| |
| napi_schedule(&np->napi); |
| |
| return IRQ_HANDLED; |
| } |
| |
| static irqreturn_t alx_intr_msix_misc(int irq, void *data) |
| { |
| struct alx_priv *alx = data; |
| struct alx_hw *hw = &alx->hw; |
| u32 intr; |
| |
| /* mask interrupt to ACK chip */ |
| alx_mask_msix(hw, 0, true); |
| |
| /* read interrupt status */ |
| intr = alx_read_mem32(hw, ALX_ISR); |
| intr &= (alx->int_mask & ~ALX_ISR_ALL_QUEUES); |
| |
| if (alx_intr_handle_misc(alx, intr)) |
| return IRQ_HANDLED; |
| |
| /* clear interrupt status */ |
| alx_write_mem32(hw, ALX_ISR, intr); |
| |
| /* enable interrupt again */ |
| alx_mask_msix(hw, 0, false); |
| |
| return IRQ_HANDLED; |
| } |
| |
| static irqreturn_t alx_intr_msi(int irq, void *data) |
| { |
| struct alx_priv *alx = data; |
| |
| return alx_intr_handle(alx, alx_read_mem32(&alx->hw, ALX_ISR)); |
| } |
| |
| static irqreturn_t alx_intr_legacy(int irq, void *data) |
| { |
| struct alx_priv *alx = data; |
| struct alx_hw *hw = &alx->hw; |
| u32 intr; |
| |
| intr = alx_read_mem32(hw, ALX_ISR); |
| |
| if (intr & ALX_ISR_DIS || !(intr & alx->int_mask)) |
| return IRQ_NONE; |
| |
| return alx_intr_handle(alx, intr); |
| } |
| |
| static const u16 txring_header_reg[] = {ALX_TPD_PRI0_ADDR_LO, |
| ALX_TPD_PRI1_ADDR_LO, |
| ALX_TPD_PRI2_ADDR_LO, |
| ALX_TPD_PRI3_ADDR_LO}; |
| |
| static void alx_init_ring_ptrs(struct alx_priv *alx) |
| { |
| struct alx_hw *hw = &alx->hw; |
| u32 addr_hi = ((u64)alx->descmem.dma) >> 32; |
| struct alx_napi *np; |
| int i; |
| |
| for (i = 0; i < alx->num_napi; i++) { |
| np = alx->qnapi[i]; |
| if (np->txq) { |
| np->txq->read_idx = 0; |
| np->txq->write_idx = 0; |
| alx_write_mem32(hw, |
| txring_header_reg[np->txq->queue_idx], |
| np->txq->tpd_dma); |
| } |
| |
| if (np->rxq) { |
| np->rxq->read_idx = 0; |
| np->rxq->write_idx = 0; |
| np->rxq->rrd_read_idx = 0; |
| alx_write_mem32(hw, ALX_RRD_ADDR_LO, np->rxq->rrd_dma); |
| alx_write_mem32(hw, ALX_RFD_ADDR_LO, np->rxq->rfd_dma); |
| } |
| } |
| |
| alx_write_mem32(hw, ALX_TX_BASE_ADDR_HI, addr_hi); |
| alx_write_mem32(hw, ALX_TPD_RING_SZ, alx->tx_ringsz); |
| |
| alx_write_mem32(hw, ALX_RX_BASE_ADDR_HI, addr_hi); |
| alx_write_mem32(hw, ALX_RRD_RING_SZ, alx->rx_ringsz); |
| alx_write_mem32(hw, ALX_RFD_RING_SZ, alx->rx_ringsz); |
| alx_write_mem32(hw, ALX_RFD_BUF_SZ, alx->rxbuf_size); |
| |
| /* load these pointers into the chip */ |
| alx_write_mem32(hw, ALX_SRAM9, ALX_SRAM_LOAD_PTR); |
| } |
| |
| static void alx_free_txring_buf(struct alx_tx_queue *txq) |
| { |
| int i; |
| |
| if (!txq->bufs) |
| return; |
| |
| for (i = 0; i < txq->count; i++) |
| alx_free_txbuf(txq, i); |
| |
| memset(txq->bufs, 0, txq->count * sizeof(struct alx_buffer)); |
| memset(txq->tpd, 0, txq->count * sizeof(struct alx_txd)); |
| txq->write_idx = 0; |
| txq->read_idx = 0; |
| |
| netdev_tx_reset_queue(alx_get_tx_queue(txq)); |
| } |
| |
| static void alx_free_rxring_buf(struct alx_rx_queue *rxq) |
| { |
| struct alx_buffer *cur_buf; |
| u16 i; |
| |
| if (!rxq->bufs) |
| return; |
| |
| for (i = 0; i < rxq->count; i++) { |
| cur_buf = rxq->bufs + i; |
| if (cur_buf->skb) { |
| dma_unmap_single(rxq->dev, |
| dma_unmap_addr(cur_buf, dma), |
| dma_unmap_len(cur_buf, size), |
| DMA_FROM_DEVICE); |
| dev_kfree_skb(cur_buf->skb); |
| cur_buf->skb = NULL; |
| dma_unmap_len_set(cur_buf, size, 0); |
| dma_unmap_addr_set(cur_buf, dma, 0); |
| } |
| } |
| |
| rxq->write_idx = 0; |
| rxq->read_idx = 0; |
| rxq->rrd_read_idx = 0; |
| } |
| |
| static void alx_free_buffers(struct alx_priv *alx) |
| { |
| int i; |
| |
| for (i = 0; i < alx->num_txq; i++) |
| if (alx->qnapi[i] && alx->qnapi[i]->txq) |
| alx_free_txring_buf(alx->qnapi[i]->txq); |
| |
| if (alx->qnapi[0] && alx->qnapi[0]->rxq) |
| alx_free_rxring_buf(alx->qnapi[0]->rxq); |
| } |
| |
| static int alx_reinit_rings(struct alx_priv *alx) |
| { |
| alx_free_buffers(alx); |
| |
| alx_init_ring_ptrs(alx); |
| |
| if (!alx_refill_rx_ring(alx, GFP_KERNEL)) |
| return -ENOMEM; |
| |
| return 0; |
| } |
| |
| static void alx_add_mc_addr(struct alx_hw *hw, const u8 *addr, u32 *mc_hash) |
| { |
| u32 crc32, bit, reg; |
| |
| crc32 = ether_crc(ETH_ALEN, addr); |
| reg = (crc32 >> 31) & 0x1; |
| bit = (crc32 >> 26) & 0x1F; |
| |
| mc_hash[reg] |= BIT(bit); |
| } |
| |
| static void __alx_set_rx_mode(struct net_device *netdev) |
| { |
| struct alx_priv *alx = netdev_priv(netdev); |
| struct alx_hw *hw = &alx->hw; |
| struct netdev_hw_addr *ha; |
| u32 mc_hash[2] = {}; |
| |
| if (!(netdev->flags & IFF_ALLMULTI)) { |
| netdev_for_each_mc_addr(ha, netdev) |
| alx_add_mc_addr(hw, ha->addr, mc_hash); |
| |
| alx_write_mem32(hw, ALX_HASH_TBL0, mc_hash[0]); |
| alx_write_mem32(hw, ALX_HASH_TBL1, mc_hash[1]); |
| } |
| |
| hw->rx_ctrl &= ~(ALX_MAC_CTRL_MULTIALL_EN | ALX_MAC_CTRL_PROMISC_EN); |
| if (netdev->flags & IFF_PROMISC) |
| hw->rx_ctrl |= ALX_MAC_CTRL_PROMISC_EN; |
| if (netdev->flags & IFF_ALLMULTI) |
| hw->rx_ctrl |= ALX_MAC_CTRL_MULTIALL_EN; |
| |
| alx_write_mem32(hw, ALX_MAC_CTRL, hw->rx_ctrl); |
| } |
| |
| static void alx_set_rx_mode(struct net_device *netdev) |
| { |
| __alx_set_rx_mode(netdev); |
| } |
| |
| static int alx_set_mac_address(struct net_device *netdev, void *data) |
| { |
| struct alx_priv *alx = netdev_priv(netdev); |
| struct alx_hw *hw = &alx->hw; |
| struct sockaddr *addr = data; |
| |
| if (!is_valid_ether_addr(addr->sa_data)) |
| return -EADDRNOTAVAIL; |
| |
| if (netdev->addr_assign_type & NET_ADDR_RANDOM) |
| netdev->addr_assign_type ^= NET_ADDR_RANDOM; |
| |
| memcpy(netdev->dev_addr, addr->sa_data, netdev->addr_len); |
| memcpy(hw->mac_addr, addr->sa_data, netdev->addr_len); |
| alx_set_macaddr(hw, hw->mac_addr); |
| |
| return 0; |
| } |
| |
| static int alx_alloc_tx_ring(struct alx_priv *alx, struct alx_tx_queue *txq, |
| int offset) |
| { |
| txq->bufs = kcalloc(txq->count, sizeof(struct alx_buffer), GFP_KERNEL); |
| if (!txq->bufs) |
| return -ENOMEM; |
| |
| txq->tpd = alx->descmem.virt + offset; |
| txq->tpd_dma = alx->descmem.dma + offset; |
| offset += sizeof(struct alx_txd) * txq->count; |
| |
| return offset; |
| } |
| |
| static int alx_alloc_rx_ring(struct alx_priv *alx, struct alx_rx_queue *rxq, |
| int offset) |
| { |
| rxq->bufs = kcalloc(rxq->count, sizeof(struct alx_buffer), GFP_KERNEL); |
| if (!rxq->bufs) |
| return -ENOMEM; |
| |
| rxq->rrd = alx->descmem.virt + offset; |
| rxq->rrd_dma = alx->descmem.dma + offset; |
| offset += sizeof(struct alx_rrd) * rxq->count; |
| |
| rxq->rfd = alx->descmem.virt + offset; |
| rxq->rfd_dma = alx->descmem.dma + offset; |
| offset += sizeof(struct alx_rfd) * rxq->count; |
| |
| return offset; |
| } |
| |
| static int alx_alloc_rings(struct alx_priv *alx) |
| { |
| int i, offset = 0; |
| |
| /* physical tx/rx ring descriptors |
| * |
| * Allocate them as a single chunk because they must not cross a |
| * 4G boundary (hardware has a single register for high 32 bits |
| * of addresses only) |
| */ |
| alx->descmem.size = sizeof(struct alx_txd) * alx->tx_ringsz * |
| alx->num_txq + |
| sizeof(struct alx_rrd) * alx->rx_ringsz + |
| sizeof(struct alx_rfd) * alx->rx_ringsz; |
| alx->descmem.virt = dma_zalloc_coherent(&alx->hw.pdev->dev, |
| alx->descmem.size, |
| &alx->descmem.dma, |
| GFP_KERNEL); |
| if (!alx->descmem.virt) |
| return -ENOMEM; |
| |
| /* alignment requirements */ |
| BUILD_BUG_ON(sizeof(struct alx_txd) % 8); |
| BUILD_BUG_ON(sizeof(struct alx_rrd) % 8); |
| |
| for (i = 0; i < alx->num_txq; i++) { |
| offset = alx_alloc_tx_ring(alx, alx->qnapi[i]->txq, offset); |
| if (offset < 0) { |
| netdev_err(alx->dev, "Allocation of tx buffer failed!\n"); |
| return -ENOMEM; |
| } |
| } |
| |
| offset = alx_alloc_rx_ring(alx, alx->qnapi[0]->rxq, offset); |
| if (offset < 0) { |
| netdev_err(alx->dev, "Allocation of rx buffer failed!\n"); |
| return -ENOMEM; |
| } |
| |
| return 0; |
| } |
| |
| static void alx_free_rings(struct alx_priv *alx) |
| { |
| int i; |
| |
| alx_free_buffers(alx); |
| |
| for (i = 0; i < alx->num_txq; i++) |
| if (alx->qnapi[i] && alx->qnapi[i]->txq) |
| kfree(alx->qnapi[i]->txq->bufs); |
| |
| if (alx->qnapi[0] && alx->qnapi[0]->rxq) |
| kfree(alx->qnapi[0]->rxq->bufs); |
| |
| if (alx->descmem.virt) |
| dma_free_coherent(&alx->hw.pdev->dev, |
| alx->descmem.size, |
| alx->descmem.virt, |
| alx->descmem.dma); |
| } |
| |
| static void alx_free_napis(struct alx_priv *alx) |
| { |
| struct alx_napi *np; |
| int i; |
| |
| for (i = 0; i < alx->num_napi; i++) { |
| np = alx->qnapi[i]; |
| if (!np) |
| continue; |
| |
| netif_napi_del(&np->napi); |
| kfree(np->txq); |
| kfree(np->rxq); |
| kfree(np); |
| alx->qnapi[i] = NULL; |
| } |
| } |
| |
| static const u16 tx_pidx_reg[] = {ALX_TPD_PRI0_PIDX, ALX_TPD_PRI1_PIDX, |
| ALX_TPD_PRI2_PIDX, ALX_TPD_PRI3_PIDX}; |
| static const u16 tx_cidx_reg[] = {ALX_TPD_PRI0_CIDX, ALX_TPD_PRI1_CIDX, |
| ALX_TPD_PRI2_CIDX, ALX_TPD_PRI3_CIDX}; |
| static const u32 tx_vect_mask[] = {ALX_ISR_TX_Q0, ALX_ISR_TX_Q1, |
| ALX_ISR_TX_Q2, ALX_ISR_TX_Q3}; |
| static const u32 rx_vect_mask[] = {ALX_ISR_RX_Q0, ALX_ISR_RX_Q1, |
| ALX_ISR_RX_Q2, ALX_ISR_RX_Q3, |
| ALX_ISR_RX_Q4, ALX_ISR_RX_Q5, |
| ALX_ISR_RX_Q6, ALX_ISR_RX_Q7}; |
| |
| static int alx_alloc_napis(struct alx_priv *alx) |
| { |
| struct alx_napi *np; |
| struct alx_rx_queue *rxq; |
| struct alx_tx_queue *txq; |
| int i; |
| |
| alx->int_mask &= ~ALX_ISR_ALL_QUEUES; |
| |
| /* allocate alx_napi structures */ |
| for (i = 0; i < alx->num_napi; i++) { |
| np = kzalloc(sizeof(struct alx_napi), GFP_KERNEL); |
| if (!np) |
| goto err_out; |
| |
| np->alx = alx; |
| netif_napi_add(alx->dev, &np->napi, alx_poll, 64); |
| alx->qnapi[i] = np; |
| } |
| |
| /* allocate tx queues */ |
| for (i = 0; i < alx->num_txq; i++) { |
| np = alx->qnapi[i]; |
| txq = kzalloc(sizeof(*txq), GFP_KERNEL); |
| if (!txq) |
| goto err_out; |
| |
| np->txq = txq; |
| txq->p_reg = tx_pidx_reg[i]; |
| txq->c_reg = tx_cidx_reg[i]; |
| txq->queue_idx = i; |
| txq->count = alx->tx_ringsz; |
| txq->netdev = alx->dev; |
| txq->dev = &alx->hw.pdev->dev; |
| np->vec_mask |= tx_vect_mask[i]; |
| alx->int_mask |= tx_vect_mask[i]; |
| } |
| |
| /* allocate rx queues */ |
| np = alx->qnapi[0]; |
| rxq = kzalloc(sizeof(*rxq), GFP_KERNEL); |
| if (!rxq) |
| goto err_out; |
| |
| np->rxq = rxq; |
| rxq->np = alx->qnapi[0]; |
| rxq->queue_idx = 0; |
| rxq->count = alx->rx_ringsz; |
| rxq->netdev = alx->dev; |
| rxq->dev = &alx->hw.pdev->dev; |
| np->vec_mask |= rx_vect_mask[0]; |
| alx->int_mask |= rx_vect_mask[0]; |
| |
| return 0; |
| |
| err_out: |
| netdev_err(alx->dev, "error allocating internal structures\n"); |
| alx_free_napis(alx); |
| return -ENOMEM; |
| } |
| |
| static const int txq_vec_mapping_shift[] = { |
| 0, ALX_MSI_MAP_TBL1_TXQ0_SHIFT, |
| 0, ALX_MSI_MAP_TBL1_TXQ1_SHIFT, |
| 1, ALX_MSI_MAP_TBL2_TXQ2_SHIFT, |
| 1, ALX_MSI_MAP_TBL2_TXQ3_SHIFT, |
| }; |
| |
| static void alx_config_vector_mapping(struct alx_priv *alx) |
| { |
| struct alx_hw *hw = &alx->hw; |
| u32 tbl[2] = {0, 0}; |
| int i, vector, idx, shift; |
| |
| if (alx->hw.pdev->msix_enabled) { |
| /* tx mappings */ |
| for (i = 0, vector = 1; i < alx->num_txq; i++, vector++) { |
| idx = txq_vec_mapping_shift[i * 2]; |
| shift = txq_vec_mapping_shift[i * 2 + 1]; |
| tbl[idx] |= vector << shift; |
| } |
| |
| /* rx mapping */ |
| tbl[0] |= 1 << ALX_MSI_MAP_TBL1_RXQ0_SHIFT; |
| } |
| |
| alx_write_mem32(hw, ALX_MSI_MAP_TBL1, tbl[0]); |
| alx_write_mem32(hw, ALX_MSI_MAP_TBL2, tbl[1]); |
| alx_write_mem32(hw, ALX_MSI_ID_MAP, 0); |
| } |
| |
| static int alx_enable_msix(struct alx_priv *alx) |
| { |
| int err, num_vec, num_txq, num_rxq; |
| |
| num_txq = min_t(int, num_online_cpus(), ALX_MAX_TX_QUEUES); |
| num_rxq = 1; |
| num_vec = max_t(int, num_txq, num_rxq) + 1; |
| |
| err = pci_alloc_irq_vectors(alx->hw.pdev, num_vec, num_vec, |
| PCI_IRQ_MSIX); |
| if (err < 0) { |
| netdev_warn(alx->dev, "Enabling MSI-X interrupts failed!\n"); |
| return err; |
| } |
| |
| alx->num_vec = num_vec; |
| alx->num_napi = num_vec - 1; |
| alx->num_txq = num_txq; |
| alx->num_rxq = num_rxq; |
| |
| return err; |
| } |
| |
| static int alx_request_msix(struct alx_priv *alx) |
| { |
| struct net_device *netdev = alx->dev; |
| int i, err, vector = 0, free_vector = 0; |
| |
| err = request_irq(pci_irq_vector(alx->hw.pdev, 0), alx_intr_msix_misc, |
| 0, netdev->name, alx); |
| if (err) |
| goto out_err; |
| |
| for (i = 0; i < alx->num_napi; i++) { |
| struct alx_napi *np = alx->qnapi[i]; |
| |
| vector++; |
| |
| if (np->txq && np->rxq) |
| sprintf(np->irq_lbl, "%s-TxRx-%u", netdev->name, |
| np->txq->queue_idx); |
| else if (np->txq) |
| sprintf(np->irq_lbl, "%s-tx-%u", netdev->name, |
| np->txq->queue_idx); |
| else if (np->rxq) |
| sprintf(np->irq_lbl, "%s-rx-%u", netdev->name, |
| np->rxq->queue_idx); |
| else |
| sprintf(np->irq_lbl, "%s-unused", netdev->name); |
| |
| np->vec_idx = vector; |
| err = request_irq(pci_irq_vector(alx->hw.pdev, vector), |
| alx_intr_msix_ring, 0, np->irq_lbl, np); |
| if (err) |
| goto out_free; |
| } |
| return 0; |
| |
| out_free: |
| free_irq(pci_irq_vector(alx->hw.pdev, free_vector++), alx); |
| |
| vector--; |
| for (i = 0; i < vector; i++) |
| free_irq(pci_irq_vector(alx->hw.pdev,free_vector++), |
| alx->qnapi[i]); |
| |
| out_err: |
| return err; |
| } |
| |
| static int alx_init_intr(struct alx_priv *alx) |
| { |
| int ret; |
| |
| ret = pci_alloc_irq_vectors(alx->hw.pdev, 1, 1, |
| PCI_IRQ_MSI | PCI_IRQ_LEGACY); |
| if (ret < 0) |
| return ret; |
| |
| alx->num_vec = 1; |
| alx->num_napi = 1; |
| alx->num_txq = 1; |
| alx->num_rxq = 1; |
| return 0; |
| } |
| |
| static void alx_irq_enable(struct alx_priv *alx) |
| { |
| struct alx_hw *hw = &alx->hw; |
| int i; |
| |
| /* level-1 interrupt switch */ |
| alx_write_mem32(hw, ALX_ISR, 0); |
| alx_write_mem32(hw, ALX_IMR, alx->int_mask); |
| alx_post_write(hw); |
| |
| if (alx->hw.pdev->msix_enabled) { |
| /* enable all msix irqs */ |
| for (i = 0; i < alx->num_vec; i++) |
| alx_mask_msix(hw, i, false); |
| } |
| } |
| |
| static void alx_irq_disable(struct alx_priv *alx) |
| { |
| struct alx_hw *hw = &alx->hw; |
| int i; |
| |
| alx_write_mem32(hw, ALX_ISR, ALX_ISR_DIS); |
| alx_write_mem32(hw, ALX_IMR, 0); |
| alx_post_write(hw); |
| |
| if (alx->hw.pdev->msix_enabled) { |
| for (i = 0; i < alx->num_vec; i++) { |
| alx_mask_msix(hw, i, true); |
| synchronize_irq(pci_irq_vector(alx->hw.pdev, i)); |
| } |
| } else { |
| synchronize_irq(pci_irq_vector(alx->hw.pdev, 0)); |
| } |
| } |
| |
| static int alx_realloc_resources(struct alx_priv *alx) |
| { |
| int err; |
| |
| alx_free_rings(alx); |
| alx_free_napis(alx); |
| pci_free_irq_vectors(alx->hw.pdev); |
| |
| err = alx_init_intr(alx); |
| if (err) |
| return err; |
| |
| err = alx_alloc_napis(alx); |
| if (err) |
| return err; |
| |
| err = alx_alloc_rings(alx); |
| if (err) |
| return err; |
| |
| return 0; |
| } |
| |
| static int alx_request_irq(struct alx_priv *alx) |
| { |
| struct pci_dev *pdev = alx->hw.pdev; |
| struct alx_hw *hw = &alx->hw; |
| int err; |
| u32 msi_ctrl; |
| |
| msi_ctrl = (hw->imt >> 1) << ALX_MSI_RETRANS_TM_SHIFT; |
| |
| if (alx->hw.pdev->msix_enabled) { |
| alx_write_mem32(hw, ALX_MSI_RETRANS_TIMER, msi_ctrl); |
| err = alx_request_msix(alx); |
| if (!err) |
| goto out; |
| |
| /* msix request failed, realloc resources */ |
| err = alx_realloc_resources(alx); |
| if (err) |
| goto out; |
| } |
| |
| if (alx->hw.pdev->msi_enabled) { |
| alx_write_mem32(hw, ALX_MSI_RETRANS_TIMER, |
| msi_ctrl | ALX_MSI_MASK_SEL_LINE); |
| err = request_irq(pci_irq_vector(pdev, 0), alx_intr_msi, 0, |
| alx->dev->name, alx); |
| if (!err) |
| goto out; |
| |
| /* fall back to legacy interrupt */ |
| pci_free_irq_vectors(alx->hw.pdev); |
| } |
| |
| alx_write_mem32(hw, ALX_MSI_RETRANS_TIMER, 0); |
| err = request_irq(pci_irq_vector(pdev, 0), alx_intr_legacy, IRQF_SHARED, |
| alx->dev->name, alx); |
| out: |
| if (!err) |
| alx_config_vector_mapping(alx); |
| else |
| netdev_err(alx->dev, "IRQ registration failed!\n"); |
| return err; |
| } |
| |
| static void alx_free_irq(struct alx_priv *alx) |
| { |
| struct pci_dev *pdev = alx->hw.pdev; |
| int i; |
| |
| free_irq(pci_irq_vector(pdev, 0), alx); |
| if (alx->hw.pdev->msix_enabled) { |
| for (i = 0; i < alx->num_napi; i++) |
| free_irq(pci_irq_vector(pdev, i + 1), alx->qnapi[i]); |
| } |
| |
| pci_free_irq_vectors(pdev); |
| } |
| |
| static int alx_identify_hw(struct alx_priv *alx) |
| { |
| struct alx_hw *hw = &alx->hw; |
| int rev = alx_hw_revision(hw); |
| |
| if (rev > ALX_REV_C0) |
| return -EINVAL; |
| |
| hw->max_dma_chnl = rev >= ALX_REV_B0 ? 4 : 2; |
| |
| return 0; |
| } |
| |
| static int alx_init_sw(struct alx_priv *alx) |
| { |
| struct pci_dev *pdev = alx->hw.pdev; |
| struct alx_hw *hw = &alx->hw; |
| int err; |
| |
| err = alx_identify_hw(alx); |
| if (err) { |
| dev_err(&pdev->dev, "unrecognized chip, aborting\n"); |
| return err; |
| } |
| |
| alx->hw.lnk_patch = |
| pdev->device == ALX_DEV_ID_AR8161 && |
| pdev->subsystem_vendor == PCI_VENDOR_ID_ATTANSIC && |
| pdev->subsystem_device == 0x0091 && |
| pdev->revision == 0; |
| |
| hw->smb_timer = 400; |
| hw->mtu = alx->dev->mtu; |
| alx->rxbuf_size = ALX_MAX_FRAME_LEN(hw->mtu); |
| /* MTU range: 34 - 9256 */ |
| alx->dev->min_mtu = 34; |
| alx->dev->max_mtu = ALX_MAX_FRAME_LEN(ALX_MAX_FRAME_SIZE); |
| alx->tx_ringsz = 256; |
| alx->rx_ringsz = 512; |
| hw->imt = 200; |
| alx->int_mask = ALX_ISR_MISC; |
| hw->dma_chnl = hw->max_dma_chnl; |
| hw->ith_tpd = alx->tx_ringsz / 3; |
| hw->link_speed = SPEED_UNKNOWN; |
| hw->duplex = DUPLEX_UNKNOWN; |
| hw->adv_cfg = ADVERTISED_Autoneg | |
| ADVERTISED_10baseT_Half | |
| ADVERTISED_10baseT_Full | |
| ADVERTISED_100baseT_Full | |
| ADVERTISED_100baseT_Half | |
| ADVERTISED_1000baseT_Full; |
| hw->flowctrl = ALX_FC_ANEG | ALX_FC_RX | ALX_FC_TX; |
| |
| hw->rx_ctrl = ALX_MAC_CTRL_WOLSPED_SWEN | |
| ALX_MAC_CTRL_MHASH_ALG_HI5B | |
| ALX_MAC_CTRL_BRD_EN | |
| ALX_MAC_CTRL_PCRCE | |
| ALX_MAC_CTRL_CRCE | |
| ALX_MAC_CTRL_RXFC_EN | |
| ALX_MAC_CTRL_TXFC_EN | |
| 7 << ALX_MAC_CTRL_PRMBLEN_SHIFT; |
| |
| return err; |
| } |
| |
| |
| static netdev_features_t alx_fix_features(struct net_device *netdev, |
| netdev_features_t features) |
| { |
| if (netdev->mtu > ALX_MAX_TSO_PKT_SIZE) |
| features &= ~(NETIF_F_TSO | NETIF_F_TSO6); |
| |
| return features; |
| } |
| |
| static void alx_netif_stop(struct alx_priv *alx) |
| { |
| int i; |
| |
| netif_trans_update(alx->dev); |
| if (netif_carrier_ok(alx->dev)) { |
| netif_carrier_off(alx->dev); |
| netif_tx_disable(alx->dev); |
| for (i = 0; i < alx->num_napi; i++) |
| napi_disable(&alx->qnapi[i]->napi); |
| } |
| } |
| |
| static void alx_halt(struct alx_priv *alx) |
| { |
| struct alx_hw *hw = &alx->hw; |
| |
| alx_netif_stop(alx); |
| hw->link_speed = SPEED_UNKNOWN; |
| hw->duplex = DUPLEX_UNKNOWN; |
| |
| alx_reset_mac(hw); |
| |
| /* disable l0s/l1 */ |
| alx_enable_aspm(hw, false, false); |
| alx_irq_disable(alx); |
| alx_free_buffers(alx); |
| } |
| |
| static void alx_configure(struct alx_priv *alx) |
| { |
| struct alx_hw *hw = &alx->hw; |
| |
| alx_configure_basic(hw); |
| alx_disable_rss(hw); |
| __alx_set_rx_mode(alx->dev); |
| |
| alx_write_mem32(hw, ALX_MAC_CTRL, hw->rx_ctrl); |
| } |
| |
| static void alx_activate(struct alx_priv *alx) |
| { |
| /* hardware setting lost, restore it */ |
| alx_reinit_rings(alx); |
| alx_configure(alx); |
| |
| /* clear old interrupts */ |
| alx_write_mem32(&alx->hw, ALX_ISR, ~(u32)ALX_ISR_DIS); |
| |
| alx_irq_enable(alx); |
| |
| alx_schedule_link_check(alx); |
| } |
| |
| static void alx_reinit(struct alx_priv *alx) |
| { |
| ASSERT_RTNL(); |
| |
| alx_halt(alx); |
| alx_activate(alx); |
| } |
| |
| static int alx_change_mtu(struct net_device *netdev, int mtu) |
| { |
| struct alx_priv *alx = netdev_priv(netdev); |
| int max_frame = ALX_MAX_FRAME_LEN(mtu); |
| |
| netdev->mtu = mtu; |
| alx->hw.mtu = mtu; |
| alx->rxbuf_size = max(max_frame, ALX_DEF_RXBUF_SIZE); |
| netdev_update_features(netdev); |
| if (netif_running(netdev)) |
| alx_reinit(alx); |
| return 0; |
| } |
| |
| static void alx_netif_start(struct alx_priv *alx) |
| { |
| int i; |
| |
| netif_tx_wake_all_queues(alx->dev); |
| for (i = 0; i < alx->num_napi; i++) |
| napi_enable(&alx->qnapi[i]->napi); |
| netif_carrier_on(alx->dev); |
| } |
| |
| static int __alx_open(struct alx_priv *alx, bool resume) |
| { |
| int err; |
| |
| err = alx_enable_msix(alx); |
| if (err < 0) { |
| err = alx_init_intr(alx); |
| if (err) |
| return err; |
| } |
| |
| if (!resume) |
| netif_carrier_off(alx->dev); |
| |
| err = alx_alloc_napis(alx); |
| if (err) |
| goto out_disable_adv_intr; |
| |
| err = alx_alloc_rings(alx); |
| if (err) |
| goto out_free_rings; |
| |
| alx_configure(alx); |
| |
| err = alx_request_irq(alx); |
| if (err) |
| goto out_free_rings; |
| |
| /* must be called after alx_request_irq because the chip stops working |
| * if we copy the dma addresses in alx_init_ring_ptrs twice when |
| * requesting msi-x interrupts failed |
| */ |
| alx_reinit_rings(alx); |
| |
| netif_set_real_num_tx_queues(alx->dev, alx->num_txq); |
| netif_set_real_num_rx_queues(alx->dev, alx->num_rxq); |
| |
| /* clear old interrupts */ |
| alx_write_mem32(&alx->hw, ALX_ISR, ~(u32)ALX_ISR_DIS); |
| |
| alx_irq_enable(alx); |
| |
| if (!resume) |
| netif_tx_start_all_queues(alx->dev); |
| |
| alx_schedule_link_check(alx); |
| return 0; |
| |
| out_free_rings: |
| alx_free_rings(alx); |
| alx_free_napis(alx); |
| out_disable_adv_intr: |
| pci_free_irq_vectors(alx->hw.pdev); |
| return err; |
| } |
| |
| static void __alx_stop(struct alx_priv *alx) |
| { |
| alx_halt(alx); |
| alx_free_irq(alx); |
| alx_free_rings(alx); |
| alx_free_napis(alx); |
| } |
| |
| static const char *alx_speed_desc(struct alx_hw *hw) |
| { |
| switch (alx_speed_to_ethadv(hw->link_speed, hw->duplex)) { |
| case ADVERTISED_1000baseT_Full: |
| return "1 Gbps Full"; |
| case ADVERTISED_100baseT_Full: |
| return "100 Mbps Full"; |
| case ADVERTISED_100baseT_Half: |
| return "100 Mbps Half"; |
| case ADVERTISED_10baseT_Full: |
| return "10 Mbps Full"; |
| case ADVERTISED_10baseT_Half: |
| return "10 Mbps Half"; |
| default: |
| return "Unknown speed"; |
| } |
| } |
| |
| static void alx_check_link(struct alx_priv *alx) |
| { |
| struct alx_hw *hw = &alx->hw; |
| unsigned long flags; |
| int old_speed; |
| int err; |
| |
| /* clear PHY internal interrupt status, otherwise the main |
| * interrupt status will be asserted forever |
| */ |
| alx_clear_phy_intr(hw); |
| |
| old_speed = hw->link_speed; |
| err = alx_read_phy_link(hw); |
| if (err < 0) |
| goto reset; |
| |
| spin_lock_irqsave(&alx->irq_lock, flags); |
| alx->int_mask |= ALX_ISR_PHY; |
| alx_write_mem32(hw, ALX_IMR, alx->int_mask); |
| spin_unlock_irqrestore(&alx->irq_lock, flags); |
| |
| if (old_speed == hw->link_speed) |
| return; |
| |
| if (hw->link_speed != SPEED_UNKNOWN) { |
| netif_info(alx, link, alx->dev, |
| "NIC Up: %s\n", alx_speed_desc(hw)); |
| alx_post_phy_link(hw); |
| alx_enable_aspm(hw, true, true); |
| alx_start_mac(hw); |
| |
| if (old_speed == SPEED_UNKNOWN) |
| alx_netif_start(alx); |
| } else { |
| /* link is now down */ |
| alx_netif_stop(alx); |
| netif_info(alx, link, alx->dev, "Link Down\n"); |
| err = alx_reset_mac(hw); |
| if (err) |
| goto reset; |
| alx_irq_disable(alx); |
| |
| /* MAC reset causes all HW settings to be lost, restore all */ |
| err = alx_reinit_rings(alx); |
| if (err) |
| goto reset; |
| alx_configure(alx); |
| alx_enable_aspm(hw, false, true); |
| alx_post_phy_link(hw); |
| alx_irq_enable(alx); |
| } |
| |
| return; |
| |
| reset: |
| alx_schedule_reset(alx); |
| } |
| |
| static int alx_open(struct net_device *netdev) |
| { |
| return __alx_open(netdev_priv(netdev), false); |
| } |
| |
| static int alx_stop(struct net_device *netdev) |
| { |
| __alx_stop(netdev_priv(netdev)); |
| return 0; |
| } |
| |
| static void alx_link_check(struct work_struct *work) |
| { |
| struct alx_priv *alx; |
| |
| alx = container_of(work, struct alx_priv, link_check_wk); |
| |
| rtnl_lock(); |
| alx_check_link(alx); |
| rtnl_unlock(); |
| } |
| |
| static void alx_reset(struct work_struct *work) |
| { |
| struct alx_priv *alx = container_of(work, struct alx_priv, reset_wk); |
| |
| rtnl_lock(); |
| alx_reinit(alx); |
| rtnl_unlock(); |
| } |
| |
| static int alx_tpd_req(struct sk_buff *skb) |
| { |
| int num; |
| |
| num = skb_shinfo(skb)->nr_frags + 1; |
| /* we need one extra descriptor for LSOv2 */ |
| if (skb_is_gso(skb) && skb_shinfo(skb)->gso_type & SKB_GSO_TCPV6) |
| num++; |
| |
| return num; |
| } |
| |
| static int alx_tx_csum(struct sk_buff *skb, struct alx_txd *first) |
| { |
| u8 cso, css; |
| |
| if (skb->ip_summed != CHECKSUM_PARTIAL) |
| return 0; |
| |
| cso = skb_checksum_start_offset(skb); |
| if (cso & 1) |
| return -EINVAL; |
| |
| css = cso + skb->csum_offset; |
| first->word1 |= cpu_to_le32((cso >> 1) << TPD_CXSUMSTART_SHIFT); |
| first->word1 |= cpu_to_le32((css >> 1) << TPD_CXSUMOFFSET_SHIFT); |
| first->word1 |= cpu_to_le32(1 << TPD_CXSUM_EN_SHIFT); |
| |
| return 0; |
| } |
| |
| static int alx_tso(struct sk_buff *skb, struct alx_txd *first) |
| { |
| int err; |
| |
| if (skb->ip_summed != CHECKSUM_PARTIAL) |
| return 0; |
| |
| if (!skb_is_gso(skb)) |
| return 0; |
| |
| err = skb_cow_head(skb, 0); |
| if (err < 0) |
| return err; |
| |
| if (skb->protocol == htons(ETH_P_IP)) { |
| struct iphdr *iph = ip_hdr(skb); |
| |
| iph->check = 0; |
| tcp_hdr(skb)->check = ~csum_tcpudp_magic(iph->saddr, iph->daddr, |
| 0, IPPROTO_TCP, 0); |
| first->word1 |= 1 << TPD_IPV4_SHIFT; |
| } else if (skb_is_gso_v6(skb)) { |
| ipv6_hdr(skb)->payload_len = 0; |
| tcp_hdr(skb)->check = ~csum_ipv6_magic(&ipv6_hdr(skb)->saddr, |
| &ipv6_hdr(skb)->daddr, |
| 0, IPPROTO_TCP, 0); |
| /* LSOv2: the first TPD only provides the packet length */ |
| first->adrl.l.pkt_len = skb->len; |
| first->word1 |= 1 << TPD_LSO_V2_SHIFT; |
| } |
| |
| first->word1 |= 1 << TPD_LSO_EN_SHIFT; |
| first->word1 |= (skb_transport_offset(skb) & |
| TPD_L4HDROFFSET_MASK) << TPD_L4HDROFFSET_SHIFT; |
| first->word1 |= (skb_shinfo(skb)->gso_size & |
| TPD_MSS_MASK) << TPD_MSS_SHIFT; |
| return 1; |
| } |
| |
| static int alx_map_tx_skb(struct alx_tx_queue *txq, struct sk_buff *skb) |
| { |
| struct alx_txd *tpd, *first_tpd; |
| dma_addr_t dma; |
| int maplen, f, first_idx = txq->write_idx; |
| |
| first_tpd = &txq->tpd[txq->write_idx]; |
| tpd = first_tpd; |
| |
| if (tpd->word1 & (1 << TPD_LSO_V2_SHIFT)) { |
| if (++txq->write_idx == txq->count) |
| txq->write_idx = 0; |
| |
| tpd = &txq->tpd[txq->write_idx]; |
| tpd->len = first_tpd->len; |
| tpd->vlan_tag = first_tpd->vlan_tag; |
| tpd->word1 = first_tpd->word1; |
| } |
| |
| maplen = skb_headlen(skb); |
| dma = dma_map_single(txq->dev, skb->data, maplen, |
| DMA_TO_DEVICE); |
| if (dma_mapping_error(txq->dev, dma)) |
| goto err_dma; |
| |
| dma_unmap_len_set(&txq->bufs[txq->write_idx], size, maplen); |
| dma_unmap_addr_set(&txq->bufs[txq->write_idx], dma, dma); |
| |
| tpd->adrl.addr = cpu_to_le64(dma); |
| tpd->len = cpu_to_le16(maplen); |
| |
| for (f = 0; f < skb_shinfo(skb)->nr_frags; f++) { |
| struct skb_frag_struct *frag; |
| |
| frag = &skb_shinfo(skb)->frags[f]; |
| |
| if (++txq->write_idx == txq->count) |
| txq->write_idx = 0; |
| tpd = &txq->tpd[txq->write_idx]; |
| |
| tpd->word1 = first_tpd->word1; |
| |
| maplen = skb_frag_size(frag); |
| dma = skb_frag_dma_map(txq->dev, frag, 0, |
| maplen, DMA_TO_DEVICE); |
| if (dma_mapping_error(txq->dev, dma)) |
| goto err_dma; |
| dma_unmap_len_set(&txq->bufs[txq->write_idx], size, maplen); |
| dma_unmap_addr_set(&txq->bufs[txq->write_idx], dma, dma); |
| |
| tpd->adrl.addr = cpu_to_le64(dma); |
| tpd->len = cpu_to_le16(maplen); |
| } |
| |
| /* last TPD, set EOP flag and store skb */ |
| tpd->word1 |= cpu_to_le32(1 << TPD_EOP_SHIFT); |
| txq->bufs[txq->write_idx].skb = skb; |
| |
| if (++txq->write_idx == txq->count) |
| txq->write_idx = 0; |
| |
| return 0; |
| |
| err_dma: |
| f = first_idx; |
| while (f != txq->write_idx) { |
| alx_free_txbuf(txq, f); |
| if (++f == txq->count) |
| f = 0; |
| } |
| return -ENOMEM; |
| } |
| |
| static netdev_tx_t alx_start_xmit_ring(struct sk_buff *skb, |
| struct alx_tx_queue *txq) |
| { |
| struct alx_priv *alx; |
| struct alx_txd *first; |
| int tso; |
| |
| alx = netdev_priv(txq->netdev); |
| |
| if (alx_tpd_avail(txq) < alx_tpd_req(skb)) { |
| netif_tx_stop_queue(alx_get_tx_queue(txq)); |
| goto drop; |
| } |
| |
| first = &txq->tpd[txq->write_idx]; |
| memset(first, 0, sizeof(*first)); |
| |
| tso = alx_tso(skb, first); |
| if (tso < 0) |
| goto drop; |
| else if (!tso && alx_tx_csum(skb, first)) |
| goto drop; |
| |
| if (alx_map_tx_skb(txq, skb) < 0) |
| goto drop; |
| |
| netdev_tx_sent_queue(alx_get_tx_queue(txq), skb->len); |
| |
| /* flush updates before updating hardware */ |
| wmb(); |
| alx_write_mem16(&alx->hw, txq->p_reg, txq->write_idx); |
| |
| if (alx_tpd_avail(txq) < txq->count / 8) |
| netif_tx_stop_queue(alx_get_tx_queue(txq)); |
| |
| return NETDEV_TX_OK; |
| |
| drop: |
| dev_kfree_skb_any(skb); |
| return NETDEV_TX_OK; |
| } |
| |
| static netdev_tx_t alx_start_xmit(struct sk_buff *skb, |
| struct net_device *netdev) |
| { |
| struct alx_priv *alx = netdev_priv(netdev); |
| return alx_start_xmit_ring(skb, alx_tx_queue_mapping(alx, skb)); |
| } |
| |
| static void alx_tx_timeout(struct net_device *dev) |
| { |
| struct alx_priv *alx = netdev_priv(dev); |
| |
| alx_schedule_reset(alx); |
| } |
| |
| static int alx_mdio_read(struct net_device *netdev, |
| int prtad, int devad, u16 addr) |
| { |
| struct alx_priv *alx = netdev_priv(netdev); |
| struct alx_hw *hw = &alx->hw; |
| u16 val; |
| int err; |
| |
| if (prtad != hw->mdio.prtad) |
| return -EINVAL; |
| |
| if (devad == MDIO_DEVAD_NONE) |
| err = alx_read_phy_reg(hw, addr, &val); |
| else |
| err = alx_read_phy_ext(hw, devad, addr, &val); |
| |
| if (err) |
| return err; |
| return val; |
| } |
| |
| static int alx_mdio_write(struct net_device *netdev, |
| int prtad, int devad, u16 addr, u16 val) |
| { |
| struct alx_priv *alx = netdev_priv(netdev); |
| struct alx_hw *hw = &alx->hw; |
| |
| if (prtad != hw->mdio.prtad) |
| return -EINVAL; |
| |
| if (devad == MDIO_DEVAD_NONE) |
| return alx_write_phy_reg(hw, addr, val); |
| |
| return alx_write_phy_ext(hw, devad, addr, val); |
| } |
| |
| static int alx_ioctl(struct net_device *netdev, struct ifreq *ifr, int cmd) |
| { |
| struct alx_priv *alx = netdev_priv(netdev); |
| |
| if (!netif_running(netdev)) |
| return -EAGAIN; |
| |
| return mdio_mii_ioctl(&alx->hw.mdio, if_mii(ifr), cmd); |
| } |
| |
| #ifdef CONFIG_NET_POLL_CONTROLLER |
| static void alx_poll_controller(struct net_device *netdev) |
| { |
| struct alx_priv *alx = netdev_priv(netdev); |
| int i; |
| |
| if (alx->hw.pdev->msix_enabled) { |
| alx_intr_msix_misc(0, alx); |
| for (i = 0; i < alx->num_txq; i++) |
| alx_intr_msix_ring(0, alx->qnapi[i]); |
| } else if (alx->hw.pdev->msi_enabled) |
| alx_intr_msi(0, alx); |
| else |
| alx_intr_legacy(0, alx); |
| } |
| #endif |
| |
| static void alx_get_stats64(struct net_device *dev, |
| struct rtnl_link_stats64 *net_stats) |
| { |
| struct alx_priv *alx = netdev_priv(dev); |
| struct alx_hw_stats *hw_stats = &alx->hw.stats; |
| |
| spin_lock(&alx->stats_lock); |
| |
| alx_update_hw_stats(&alx->hw); |
| |
| net_stats->tx_bytes = hw_stats->tx_byte_cnt; |
| net_stats->rx_bytes = hw_stats->rx_byte_cnt; |
| net_stats->multicast = hw_stats->rx_mcast; |
| net_stats->collisions = hw_stats->tx_single_col + |
| hw_stats->tx_multi_col + |
| hw_stats->tx_late_col + |
| hw_stats->tx_abort_col; |
| |
| net_stats->rx_errors = hw_stats->rx_frag + |
| hw_stats->rx_fcs_err + |
| hw_stats->rx_len_err + |
| hw_stats->rx_ov_sz + |
| hw_stats->rx_ov_rrd + |
| hw_stats->rx_align_err + |
| hw_stats->rx_ov_rxf; |
| |
| net_stats->rx_fifo_errors = hw_stats->rx_ov_rxf; |
| net_stats->rx_length_errors = hw_stats->rx_len_err; |
| net_stats->rx_crc_errors = hw_stats->rx_fcs_err; |
| net_stats->rx_frame_errors = hw_stats->rx_align_err; |
| net_stats->rx_dropped = hw_stats->rx_ov_rrd; |
| |
| net_stats->tx_errors = hw_stats->tx_late_col + |
| hw_stats->tx_abort_col + |
| hw_stats->tx_underrun + |
| hw_stats->tx_trunc; |
| |
| net_stats->tx_aborted_errors = hw_stats->tx_abort_col; |
| net_stats->tx_fifo_errors = hw_stats->tx_underrun; |
| net_stats->tx_window_errors = hw_stats->tx_late_col; |
| |
| net_stats->tx_packets = hw_stats->tx_ok + net_stats->tx_errors; |
| net_stats->rx_packets = hw_stats->rx_ok + net_stats->rx_errors; |
| |
| spin_unlock(&alx->stats_lock); |
| } |
| |
| static const struct net_device_ops alx_netdev_ops = { |
| .ndo_open = alx_open, |
| .ndo_stop = alx_stop, |
| .ndo_start_xmit = alx_start_xmit, |
| .ndo_get_stats64 = alx_get_stats64, |
| .ndo_set_rx_mode = alx_set_rx_mode, |
| .ndo_validate_addr = eth_validate_addr, |
| .ndo_set_mac_address = alx_set_mac_address, |
| .ndo_change_mtu = alx_change_mtu, |
| .ndo_do_ioctl = alx_ioctl, |
| .ndo_tx_timeout = alx_tx_timeout, |
| .ndo_fix_features = alx_fix_features, |
| #ifdef CONFIG_NET_POLL_CONTROLLER |
| .ndo_poll_controller = alx_poll_controller, |
| #endif |
| }; |
| |
| static int alx_probe(struct pci_dev *pdev, const struct pci_device_id *ent) |
| { |
| struct net_device *netdev; |
| struct alx_priv *alx; |
| struct alx_hw *hw; |
| bool phy_configured; |
| int err; |
| |
| err = pci_enable_device_mem(pdev); |
| if (err) |
| return err; |
| |
| /* The alx chip can DMA to 64-bit addresses, but it uses a single |
| * shared register for the high 32 bits, so only a single, aligned, |
| * 4 GB physical address range can be used for descriptors. |
| */ |
| if (!dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(64))) { |
| dev_dbg(&pdev->dev, "DMA to 64-BIT addresses\n"); |
| } else { |
| err = dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(32)); |
| if (err) { |
| dev_err(&pdev->dev, "No usable DMA config, aborting\n"); |
| goto out_pci_disable; |
| } |
| } |
| |
| err = pci_request_mem_regions(pdev, alx_drv_name); |
| if (err) { |
| dev_err(&pdev->dev, |
| "pci_request_mem_regions failed\n"); |
| goto out_pci_disable; |
| } |
| |
| pci_enable_pcie_error_reporting(pdev); |
| pci_set_master(pdev); |
| |
| if (!pdev->pm_cap) { |
| dev_err(&pdev->dev, |
| "Can't find power management capability, aborting\n"); |
| err = -EIO; |
| goto out_pci_release; |
| } |
| |
| netdev = alloc_etherdev_mqs(sizeof(*alx), |
| ALX_MAX_TX_QUEUES, 1); |
| if (!netdev) { |
| err = -ENOMEM; |
| goto out_pci_release; |
| } |
| |
| SET_NETDEV_DEV(netdev, &pdev->dev); |
| alx = netdev_priv(netdev); |
| spin_lock_init(&alx->hw.mdio_lock); |
| spin_lock_init(&alx->irq_lock); |
| spin_lock_init(&alx->stats_lock); |
| alx->dev = netdev; |
| alx->hw.pdev = pdev; |
| alx->msg_enable = NETIF_MSG_LINK | NETIF_MSG_HW | NETIF_MSG_IFUP | |
| NETIF_MSG_TX_ERR | NETIF_MSG_RX_ERR | NETIF_MSG_WOL; |
| hw = &alx->hw; |
| pci_set_drvdata(pdev, alx); |
| |
| hw->hw_addr = pci_ioremap_bar(pdev, 0); |
| if (!hw->hw_addr) { |
| dev_err(&pdev->dev, "cannot map device registers\n"); |
| err = -EIO; |
| goto out_free_netdev; |
| } |
| |
| netdev->netdev_ops = &alx_netdev_ops; |
| netdev->ethtool_ops = &alx_ethtool_ops; |
| netdev->irq = pci_irq_vector(pdev, 0); |
| netdev->watchdog_timeo = ALX_WATCHDOG_TIME; |
| |
| if (ent->driver_data & ALX_DEV_QUIRK_MSI_INTX_DISABLE_BUG) |
| pdev->dev_flags |= PCI_DEV_FLAGS_MSI_INTX_DISABLE_BUG; |
| |
| err = alx_init_sw(alx); |
| if (err) { |
| dev_err(&pdev->dev, "net device private data init failed\n"); |
| goto out_unmap; |
| } |
| |
| alx_reset_pcie(hw); |
| |
| phy_configured = alx_phy_configured(hw); |
| |
| if (!phy_configured) |
| alx_reset_phy(hw); |
| |
| err = alx_reset_mac(hw); |
| if (err) { |
| dev_err(&pdev->dev, "MAC Reset failed, error = %d\n", err); |
| goto out_unmap; |
| } |
| |
| /* setup link to put it in a known good starting state */ |
| if (!phy_configured) { |
| err = alx_setup_speed_duplex(hw, hw->adv_cfg, hw->flowctrl); |
| if (err) { |
| dev_err(&pdev->dev, |
| "failed to configure PHY speed/duplex (err=%d)\n", |
| err); |
| goto out_unmap; |
| } |
| } |
| |
| netdev->hw_features = NETIF_F_SG | |
| NETIF_F_HW_CSUM | |
| NETIF_F_RXCSUM | |
| NETIF_F_TSO | |
| NETIF_F_TSO6; |
| |
| if (alx_get_perm_macaddr(hw, hw->perm_addr)) { |
| dev_warn(&pdev->dev, |
| "Invalid permanent address programmed, using random one\n"); |
| eth_hw_addr_random(netdev); |
| memcpy(hw->perm_addr, netdev->dev_addr, netdev->addr_len); |
| } |
| |
| memcpy(hw->mac_addr, hw->perm_addr, ETH_ALEN); |
| memcpy(netdev->dev_addr, hw->mac_addr, ETH_ALEN); |
| memcpy(netdev->perm_addr, hw->perm_addr, ETH_ALEN); |
| |
| hw->mdio.prtad = 0; |
| hw->mdio.mmds = 0; |
| hw->mdio.dev = netdev; |
| hw->mdio.mode_support = MDIO_SUPPORTS_C45 | |
| MDIO_SUPPORTS_C22 | |
| MDIO_EMULATE_C22; |
| hw->mdio.mdio_read = alx_mdio_read; |
| hw->mdio.mdio_write = alx_mdio_write; |
| |
| if (!alx_get_phy_info(hw)) { |
| dev_err(&pdev->dev, "failed to identify PHY\n"); |
| err = -EIO; |
| goto out_unmap; |
| } |
| |
| INIT_WORK(&alx->link_check_wk, alx_link_check); |
| INIT_WORK(&alx->reset_wk, alx_reset); |
| netif_carrier_off(netdev); |
| |
| err = register_netdev(netdev); |
| if (err) { |
| dev_err(&pdev->dev, "register netdevice failed\n"); |
| goto out_unmap; |
| } |
| |
| netdev_info(netdev, |
| "Qualcomm Atheros AR816x/AR817x Ethernet [%pM]\n", |
| netdev->dev_addr); |
| |
| return 0; |
| |
| out_unmap: |
| iounmap(hw->hw_addr); |
| out_free_netdev: |
| free_netdev(netdev); |
| out_pci_release: |
| pci_release_mem_regions(pdev); |
| out_pci_disable: |
| pci_disable_device(pdev); |
| return err; |
| } |
| |
| static void alx_remove(struct pci_dev *pdev) |
| { |
| struct alx_priv *alx = pci_get_drvdata(pdev); |
| struct alx_hw *hw = &alx->hw; |
| |
| cancel_work_sync(&alx->link_check_wk); |
| cancel_work_sync(&alx->reset_wk); |
| |
| /* restore permanent mac address */ |
| alx_set_macaddr(hw, hw->perm_addr); |
| |
| unregister_netdev(alx->dev); |
| iounmap(hw->hw_addr); |
| pci_release_mem_regions(pdev); |
| |
| pci_disable_pcie_error_reporting(pdev); |
| pci_disable_device(pdev); |
| |
| free_netdev(alx->dev); |
| } |
| |
| #ifdef CONFIG_PM_SLEEP |
| static int alx_suspend(struct device *dev) |
| { |
| struct pci_dev *pdev = to_pci_dev(dev); |
| struct alx_priv *alx = pci_get_drvdata(pdev); |
| |
| if (!netif_running(alx->dev)) |
| return 0; |
| netif_device_detach(alx->dev); |
| __alx_stop(alx); |
| return 0; |
| } |
| |
| static int alx_resume(struct device *dev) |
| { |
| struct pci_dev *pdev = to_pci_dev(dev); |
| struct alx_priv *alx = pci_get_drvdata(pdev); |
| struct alx_hw *hw = &alx->hw; |
| int err; |
| |
| alx_reset_phy(hw); |
| |
| if (!netif_running(alx->dev)) |
| return 0; |
| netif_device_attach(alx->dev); |
| |
| rtnl_lock(); |
| err = __alx_open(alx, true); |
| rtnl_unlock(); |
| |
| return err; |
| } |
| |
| static SIMPLE_DEV_PM_OPS(alx_pm_ops, alx_suspend, alx_resume); |
| #define ALX_PM_OPS (&alx_pm_ops) |
| #else |
| #define ALX_PM_OPS NULL |
| #endif |
| |
| |
| static pci_ers_result_t alx_pci_error_detected(struct pci_dev *pdev, |
| pci_channel_state_t state) |
| { |
| struct alx_priv *alx = pci_get_drvdata(pdev); |
| struct net_device *netdev = alx->dev; |
| pci_ers_result_t rc = PCI_ERS_RESULT_NEED_RESET; |
| |
| dev_info(&pdev->dev, "pci error detected\n"); |
| |
| rtnl_lock(); |
| |
| if (netif_running(netdev)) { |
| netif_device_detach(netdev); |
| alx_halt(alx); |
| } |
| |
| if (state == pci_channel_io_perm_failure) |
| rc = PCI_ERS_RESULT_DISCONNECT; |
| else |
| pci_disable_device(pdev); |
| |
| rtnl_unlock(); |
| |
| return rc; |
| } |
| |
| static pci_ers_result_t alx_pci_error_slot_reset(struct pci_dev *pdev) |
| { |
| struct alx_priv *alx = pci_get_drvdata(pdev); |
| struct alx_hw *hw = &alx->hw; |
| pci_ers_result_t rc = PCI_ERS_RESULT_DISCONNECT; |
| |
| dev_info(&pdev->dev, "pci error slot reset\n"); |
| |
| rtnl_lock(); |
| |
| if (pci_enable_device(pdev)) { |
| dev_err(&pdev->dev, "Failed to re-enable PCI device after reset\n"); |
| goto out; |
| } |
| |
| pci_set_master(pdev); |
| |
| alx_reset_pcie(hw); |
| if (!alx_reset_mac(hw)) |
| rc = PCI_ERS_RESULT_RECOVERED; |
| out: |
| rtnl_unlock(); |
| |
| return rc; |
| } |
| |
| static void alx_pci_error_resume(struct pci_dev *pdev) |
| { |
| struct alx_priv *alx = pci_get_drvdata(pdev); |
| struct net_device *netdev = alx->dev; |
| |
| dev_info(&pdev->dev, "pci error resume\n"); |
| |
| rtnl_lock(); |
| |
| if (netif_running(netdev)) { |
| alx_activate(alx); |
| netif_device_attach(netdev); |
| } |
| |
| rtnl_unlock(); |
| } |
| |
| static const struct pci_error_handlers alx_err_handlers = { |
| .error_detected = alx_pci_error_detected, |
| .slot_reset = alx_pci_error_slot_reset, |
| .resume = alx_pci_error_resume, |
| }; |
| |
| static const struct pci_device_id alx_pci_tbl[] = { |
| { PCI_VDEVICE(ATTANSIC, ALX_DEV_ID_AR8161), |
| .driver_data = ALX_DEV_QUIRK_MSI_INTX_DISABLE_BUG }, |
| { PCI_VDEVICE(ATTANSIC, ALX_DEV_ID_E2200), |
| .driver_data = ALX_DEV_QUIRK_MSI_INTX_DISABLE_BUG }, |
| { PCI_VDEVICE(ATTANSIC, ALX_DEV_ID_E2400), |
| .driver_data = ALX_DEV_QUIRK_MSI_INTX_DISABLE_BUG }, |
| { PCI_VDEVICE(ATTANSIC, ALX_DEV_ID_E2500), |
| .driver_data = ALX_DEV_QUIRK_MSI_INTX_DISABLE_BUG }, |
| { PCI_VDEVICE(ATTANSIC, ALX_DEV_ID_AR8162), |
| .driver_data = ALX_DEV_QUIRK_MSI_INTX_DISABLE_BUG }, |
| { PCI_VDEVICE(ATTANSIC, ALX_DEV_ID_AR8171) }, |
| { PCI_VDEVICE(ATTANSIC, ALX_DEV_ID_AR8172) }, |
| {} |
| }; |
| |
| static struct pci_driver alx_driver = { |
| .name = alx_drv_name, |
| .id_table = alx_pci_tbl, |
| .probe = alx_probe, |
| .remove = alx_remove, |
| .err_handler = &alx_err_handlers, |
| .driver.pm = ALX_PM_OPS, |
| }; |
| |
| module_pci_driver(alx_driver); |
| MODULE_DEVICE_TABLE(pci, alx_pci_tbl); |
| MODULE_AUTHOR("Johannes Berg <johannes@sipsolutions.net>"); |
| MODULE_AUTHOR("Qualcomm Corporation, <nic-devel@qualcomm.com>"); |
| MODULE_DESCRIPTION( |
| "Qualcomm Atheros(R) AR816x/AR817x PCI-E Ethernet Network Driver"); |
| MODULE_LICENSE("GPL"); |