| /* |
| * Kernel-based Virtual Machine driver for Linux |
| * |
| * This module enables machines with Intel VT-x extensions to run virtual |
| * machines without emulation or binary translation. |
| * |
| * Copyright (C) 2006 Qumranet, Inc. |
| * |
| * Authors: |
| * Avi Kivity <avi@qumranet.com> |
| * Yaniv Kamay <yaniv@qumranet.com> |
| * |
| * This work is licensed under the terms of the GNU GPL, version 2. See |
| * the COPYING file in the top-level directory. |
| * |
| */ |
| |
| #include "kvm.h" |
| #include "x86.h" |
| #include "x86_emulate.h" |
| #include "irq.h" |
| |
| #include <linux/kvm.h> |
| #include <linux/module.h> |
| #include <linux/errno.h> |
| #include <linux/percpu.h> |
| #include <linux/gfp.h> |
| #include <linux/mm.h> |
| #include <linux/miscdevice.h> |
| #include <linux/vmalloc.h> |
| #include <linux/reboot.h> |
| #include <linux/debugfs.h> |
| #include <linux/highmem.h> |
| #include <linux/file.h> |
| #include <linux/sysdev.h> |
| #include <linux/cpu.h> |
| #include <linux/sched.h> |
| #include <linux/cpumask.h> |
| #include <linux/smp.h> |
| #include <linux/anon_inodes.h> |
| #include <linux/profile.h> |
| #include <linux/kvm_para.h> |
| #include <linux/pagemap.h> |
| #include <linux/mman.h> |
| |
| #include <asm/processor.h> |
| #include <asm/msr.h> |
| #include <asm/io.h> |
| #include <asm/uaccess.h> |
| #include <asm/desc.h> |
| |
| MODULE_AUTHOR("Qumranet"); |
| MODULE_LICENSE("GPL"); |
| |
| static DEFINE_SPINLOCK(kvm_lock); |
| static LIST_HEAD(vm_list); |
| |
| static cpumask_t cpus_hardware_enabled; |
| |
| struct kvm_x86_ops *kvm_x86_ops; |
| struct kmem_cache *kvm_vcpu_cache; |
| EXPORT_SYMBOL_GPL(kvm_vcpu_cache); |
| |
| static __read_mostly struct preempt_ops kvm_preempt_ops; |
| |
| static struct dentry *debugfs_dir; |
| |
| static long kvm_vcpu_ioctl(struct file *file, unsigned int ioctl, |
| unsigned long arg); |
| |
| static inline int valid_vcpu(int n) |
| { |
| return likely(n >= 0 && n < KVM_MAX_VCPUS); |
| } |
| |
| void kvm_load_guest_fpu(struct kvm_vcpu *vcpu) |
| { |
| if (!vcpu->fpu_active || vcpu->guest_fpu_loaded) |
| return; |
| |
| vcpu->guest_fpu_loaded = 1; |
| fx_save(&vcpu->host_fx_image); |
| fx_restore(&vcpu->guest_fx_image); |
| } |
| EXPORT_SYMBOL_GPL(kvm_load_guest_fpu); |
| |
| void kvm_put_guest_fpu(struct kvm_vcpu *vcpu) |
| { |
| if (!vcpu->guest_fpu_loaded) |
| return; |
| |
| vcpu->guest_fpu_loaded = 0; |
| fx_save(&vcpu->guest_fx_image); |
| fx_restore(&vcpu->host_fx_image); |
| } |
| EXPORT_SYMBOL_GPL(kvm_put_guest_fpu); |
| |
| /* |
| * Switches to specified vcpu, until a matching vcpu_put() |
| */ |
| void vcpu_load(struct kvm_vcpu *vcpu) |
| { |
| int cpu; |
| |
| mutex_lock(&vcpu->mutex); |
| cpu = get_cpu(); |
| preempt_notifier_register(&vcpu->preempt_notifier); |
| kvm_arch_vcpu_load(vcpu, cpu); |
| put_cpu(); |
| } |
| |
| void vcpu_put(struct kvm_vcpu *vcpu) |
| { |
| preempt_disable(); |
| kvm_arch_vcpu_put(vcpu); |
| preempt_notifier_unregister(&vcpu->preempt_notifier); |
| preempt_enable(); |
| mutex_unlock(&vcpu->mutex); |
| } |
| |
| static void ack_flush(void *_completed) |
| { |
| } |
| |
| void kvm_flush_remote_tlbs(struct kvm *kvm) |
| { |
| int i, cpu; |
| cpumask_t cpus; |
| struct kvm_vcpu *vcpu; |
| |
| cpus_clear(cpus); |
| for (i = 0; i < KVM_MAX_VCPUS; ++i) { |
| vcpu = kvm->vcpus[i]; |
| if (!vcpu) |
| continue; |
| if (test_and_set_bit(KVM_REQ_TLB_FLUSH, &vcpu->requests)) |
| continue; |
| cpu = vcpu->cpu; |
| if (cpu != -1 && cpu != raw_smp_processor_id()) |
| cpu_set(cpu, cpus); |
| } |
| smp_call_function_mask(cpus, ack_flush, NULL, 1); |
| } |
| |
| int kvm_vcpu_init(struct kvm_vcpu *vcpu, struct kvm *kvm, unsigned id) |
| { |
| struct page *page; |
| int r; |
| |
| mutex_init(&vcpu->mutex); |
| vcpu->cpu = -1; |
| vcpu->mmu.root_hpa = INVALID_PAGE; |
| vcpu->kvm = kvm; |
| vcpu->vcpu_id = id; |
| if (!irqchip_in_kernel(kvm) || id == 0) |
| vcpu->mp_state = VCPU_MP_STATE_RUNNABLE; |
| else |
| vcpu->mp_state = VCPU_MP_STATE_UNINITIALIZED; |
| init_waitqueue_head(&vcpu->wq); |
| |
| page = alloc_page(GFP_KERNEL | __GFP_ZERO); |
| if (!page) { |
| r = -ENOMEM; |
| goto fail; |
| } |
| vcpu->run = page_address(page); |
| |
| page = alloc_page(GFP_KERNEL | __GFP_ZERO); |
| if (!page) { |
| r = -ENOMEM; |
| goto fail_free_run; |
| } |
| vcpu->pio_data = page_address(page); |
| |
| r = kvm_mmu_create(vcpu); |
| if (r < 0) |
| goto fail_free_pio_data; |
| |
| if (irqchip_in_kernel(kvm)) { |
| r = kvm_create_lapic(vcpu); |
| if (r < 0) |
| goto fail_mmu_destroy; |
| } |
| |
| return 0; |
| |
| fail_mmu_destroy: |
| kvm_mmu_destroy(vcpu); |
| fail_free_pio_data: |
| free_page((unsigned long)vcpu->pio_data); |
| fail_free_run: |
| free_page((unsigned long)vcpu->run); |
| fail: |
| return r; |
| } |
| EXPORT_SYMBOL_GPL(kvm_vcpu_init); |
| |
| void kvm_vcpu_uninit(struct kvm_vcpu *vcpu) |
| { |
| kvm_free_lapic(vcpu); |
| kvm_mmu_destroy(vcpu); |
| free_page((unsigned long)vcpu->pio_data); |
| free_page((unsigned long)vcpu->run); |
| } |
| EXPORT_SYMBOL_GPL(kvm_vcpu_uninit); |
| |
| static struct kvm *kvm_create_vm(void) |
| { |
| struct kvm *kvm = kzalloc(sizeof(struct kvm), GFP_KERNEL); |
| |
| if (!kvm) |
| return ERR_PTR(-ENOMEM); |
| |
| kvm_io_bus_init(&kvm->pio_bus); |
| mutex_init(&kvm->lock); |
| INIT_LIST_HEAD(&kvm->active_mmu_pages); |
| kvm_io_bus_init(&kvm->mmio_bus); |
| spin_lock(&kvm_lock); |
| list_add(&kvm->vm_list, &vm_list); |
| spin_unlock(&kvm_lock); |
| return kvm; |
| } |
| |
| /* |
| * Free any memory in @free but not in @dont. |
| */ |
| static void kvm_free_physmem_slot(struct kvm_memory_slot *free, |
| struct kvm_memory_slot *dont) |
| { |
| if (!dont || free->rmap != dont->rmap) |
| vfree(free->rmap); |
| |
| if (!dont || free->dirty_bitmap != dont->dirty_bitmap) |
| vfree(free->dirty_bitmap); |
| |
| free->npages = 0; |
| free->dirty_bitmap = NULL; |
| free->rmap = NULL; |
| } |
| |
| static void kvm_free_physmem(struct kvm *kvm) |
| { |
| int i; |
| |
| for (i = 0; i < kvm->nmemslots; ++i) |
| kvm_free_physmem_slot(&kvm->memslots[i], NULL); |
| } |
| |
| static void kvm_unload_vcpu_mmu(struct kvm_vcpu *vcpu) |
| { |
| vcpu_load(vcpu); |
| kvm_mmu_unload(vcpu); |
| vcpu_put(vcpu); |
| } |
| |
| static void kvm_free_vcpus(struct kvm *kvm) |
| { |
| unsigned int i; |
| |
| /* |
| * Unpin any mmu pages first. |
| */ |
| for (i = 0; i < KVM_MAX_VCPUS; ++i) |
| if (kvm->vcpus[i]) |
| kvm_unload_vcpu_mmu(kvm->vcpus[i]); |
| for (i = 0; i < KVM_MAX_VCPUS; ++i) { |
| if (kvm->vcpus[i]) { |
| kvm_x86_ops->vcpu_free(kvm->vcpus[i]); |
| kvm->vcpus[i] = NULL; |
| } |
| } |
| |
| } |
| |
| static void kvm_destroy_vm(struct kvm *kvm) |
| { |
| spin_lock(&kvm_lock); |
| list_del(&kvm->vm_list); |
| spin_unlock(&kvm_lock); |
| kvm_io_bus_destroy(&kvm->pio_bus); |
| kvm_io_bus_destroy(&kvm->mmio_bus); |
| kfree(kvm->vpic); |
| kfree(kvm->vioapic); |
| kvm_free_vcpus(kvm); |
| kvm_free_physmem(kvm); |
| kfree(kvm); |
| } |
| |
| static int kvm_vm_release(struct inode *inode, struct file *filp) |
| { |
| struct kvm *kvm = filp->private_data; |
| |
| kvm_destroy_vm(kvm); |
| return 0; |
| } |
| |
| void fx_init(struct kvm_vcpu *vcpu) |
| { |
| unsigned after_mxcsr_mask; |
| |
| /* Initialize guest FPU by resetting ours and saving into guest's */ |
| preempt_disable(); |
| fx_save(&vcpu->host_fx_image); |
| fpu_init(); |
| fx_save(&vcpu->guest_fx_image); |
| fx_restore(&vcpu->host_fx_image); |
| preempt_enable(); |
| |
| vcpu->cr0 |= X86_CR0_ET; |
| after_mxcsr_mask = offsetof(struct i387_fxsave_struct, st_space); |
| vcpu->guest_fx_image.mxcsr = 0x1f80; |
| memset((void *)&vcpu->guest_fx_image + after_mxcsr_mask, |
| 0, sizeof(struct i387_fxsave_struct) - after_mxcsr_mask); |
| } |
| EXPORT_SYMBOL_GPL(fx_init); |
| |
| /* |
| * Allocate some memory and give it an address in the guest physical address |
| * space. |
| * |
| * Discontiguous memory is allowed, mostly for framebuffers. |
| * |
| * Must be called holding kvm->lock. |
| */ |
| int __kvm_set_memory_region(struct kvm *kvm, |
| struct kvm_userspace_memory_region *mem, |
| int user_alloc) |
| { |
| int r; |
| gfn_t base_gfn; |
| unsigned long npages; |
| unsigned long i; |
| struct kvm_memory_slot *memslot; |
| struct kvm_memory_slot old, new; |
| |
| r = -EINVAL; |
| /* General sanity checks */ |
| if (mem->memory_size & (PAGE_SIZE - 1)) |
| goto out; |
| if (mem->guest_phys_addr & (PAGE_SIZE - 1)) |
| goto out; |
| if (mem->slot >= KVM_MEMORY_SLOTS + KVM_PRIVATE_MEM_SLOTS) |
| goto out; |
| if (mem->guest_phys_addr + mem->memory_size < mem->guest_phys_addr) |
| goto out; |
| |
| memslot = &kvm->memslots[mem->slot]; |
| base_gfn = mem->guest_phys_addr >> PAGE_SHIFT; |
| npages = mem->memory_size >> PAGE_SHIFT; |
| |
| if (!npages) |
| mem->flags &= ~KVM_MEM_LOG_DIRTY_PAGES; |
| |
| new = old = *memslot; |
| |
| new.base_gfn = base_gfn; |
| new.npages = npages; |
| new.flags = mem->flags; |
| |
| /* Disallow changing a memory slot's size. */ |
| r = -EINVAL; |
| if (npages && old.npages && npages != old.npages) |
| goto out_free; |
| |
| /* Check for overlaps */ |
| r = -EEXIST; |
| for (i = 0; i < KVM_MEMORY_SLOTS; ++i) { |
| struct kvm_memory_slot *s = &kvm->memslots[i]; |
| |
| if (s == memslot) |
| continue; |
| if (!((base_gfn + npages <= s->base_gfn) || |
| (base_gfn >= s->base_gfn + s->npages))) |
| goto out_free; |
| } |
| |
| /* Free page dirty bitmap if unneeded */ |
| if (!(new.flags & KVM_MEM_LOG_DIRTY_PAGES)) |
| new.dirty_bitmap = NULL; |
| |
| r = -ENOMEM; |
| |
| /* Allocate if a slot is being created */ |
| if (npages && !new.rmap) { |
| new.rmap = vmalloc(npages * sizeof(struct page *)); |
| |
| if (!new.rmap) |
| goto out_free; |
| |
| memset(new.rmap, 0, npages * sizeof(*new.rmap)); |
| |
| new.user_alloc = user_alloc; |
| if (user_alloc) |
| new.userspace_addr = mem->userspace_addr; |
| else { |
| down_write(¤t->mm->mmap_sem); |
| new.userspace_addr = do_mmap(NULL, 0, |
| npages * PAGE_SIZE, |
| PROT_READ | PROT_WRITE, |
| MAP_SHARED | MAP_ANONYMOUS, |
| 0); |
| up_write(¤t->mm->mmap_sem); |
| |
| if (IS_ERR((void *)new.userspace_addr)) |
| goto out_free; |
| } |
| } else { |
| if (!old.user_alloc && old.rmap) { |
| int ret; |
| |
| down_write(¤t->mm->mmap_sem); |
| ret = do_munmap(current->mm, old.userspace_addr, |
| old.npages * PAGE_SIZE); |
| up_write(¤t->mm->mmap_sem); |
| if (ret < 0) |
| printk(KERN_WARNING |
| "kvm_vm_ioctl_set_memory_region: " |
| "failed to munmap memory\n"); |
| } |
| } |
| |
| /* Allocate page dirty bitmap if needed */ |
| if ((new.flags & KVM_MEM_LOG_DIRTY_PAGES) && !new.dirty_bitmap) { |
| unsigned dirty_bytes = ALIGN(npages, BITS_PER_LONG) / 8; |
| |
| new.dirty_bitmap = vmalloc(dirty_bytes); |
| if (!new.dirty_bitmap) |
| goto out_free; |
| memset(new.dirty_bitmap, 0, dirty_bytes); |
| } |
| |
| if (mem->slot >= kvm->nmemslots) |
| kvm->nmemslots = mem->slot + 1; |
| |
| if (!kvm->n_requested_mmu_pages) { |
| unsigned int n_pages; |
| |
| if (npages) { |
| n_pages = npages * KVM_PERMILLE_MMU_PAGES / 1000; |
| kvm_mmu_change_mmu_pages(kvm, kvm->n_alloc_mmu_pages + |
| n_pages); |
| } else { |
| unsigned int nr_mmu_pages; |
| |
| n_pages = old.npages * KVM_PERMILLE_MMU_PAGES / 1000; |
| nr_mmu_pages = kvm->n_alloc_mmu_pages - n_pages; |
| nr_mmu_pages = max(nr_mmu_pages, |
| (unsigned int) KVM_MIN_ALLOC_MMU_PAGES); |
| kvm_mmu_change_mmu_pages(kvm, nr_mmu_pages); |
| } |
| } |
| |
| *memslot = new; |
| |
| kvm_mmu_slot_remove_write_access(kvm, mem->slot); |
| kvm_flush_remote_tlbs(kvm); |
| |
| kvm_free_physmem_slot(&old, &new); |
| return 0; |
| |
| out_free: |
| kvm_free_physmem_slot(&new, &old); |
| out: |
| return r; |
| |
| } |
| EXPORT_SYMBOL_GPL(__kvm_set_memory_region); |
| |
| int kvm_set_memory_region(struct kvm *kvm, |
| struct kvm_userspace_memory_region *mem, |
| int user_alloc) |
| { |
| int r; |
| |
| mutex_lock(&kvm->lock); |
| r = __kvm_set_memory_region(kvm, mem, user_alloc); |
| mutex_unlock(&kvm->lock); |
| return r; |
| } |
| EXPORT_SYMBOL_GPL(kvm_set_memory_region); |
| |
| int kvm_vm_ioctl_set_memory_region(struct kvm *kvm, |
| struct |
| kvm_userspace_memory_region *mem, |
| int user_alloc) |
| { |
| if (mem->slot >= KVM_MEMORY_SLOTS) |
| return -EINVAL; |
| return kvm_set_memory_region(kvm, mem, user_alloc); |
| } |
| |
| /* |
| * Get (and clear) the dirty memory log for a memory slot. |
| */ |
| static int kvm_vm_ioctl_get_dirty_log(struct kvm *kvm, |
| struct kvm_dirty_log *log) |
| { |
| struct kvm_memory_slot *memslot; |
| int r, i; |
| int n; |
| unsigned long any = 0; |
| |
| mutex_lock(&kvm->lock); |
| |
| r = -EINVAL; |
| if (log->slot >= KVM_MEMORY_SLOTS) |
| goto out; |
| |
| memslot = &kvm->memslots[log->slot]; |
| r = -ENOENT; |
| if (!memslot->dirty_bitmap) |
| goto out; |
| |
| n = ALIGN(memslot->npages, BITS_PER_LONG) / 8; |
| |
| for (i = 0; !any && i < n/sizeof(long); ++i) |
| any = memslot->dirty_bitmap[i]; |
| |
| r = -EFAULT; |
| if (copy_to_user(log->dirty_bitmap, memslot->dirty_bitmap, n)) |
| goto out; |
| |
| /* If nothing is dirty, don't bother messing with page tables. */ |
| if (any) { |
| kvm_mmu_slot_remove_write_access(kvm, log->slot); |
| kvm_flush_remote_tlbs(kvm); |
| memset(memslot->dirty_bitmap, 0, n); |
| } |
| |
| r = 0; |
| |
| out: |
| mutex_unlock(&kvm->lock); |
| return r; |
| } |
| |
| int is_error_page(struct page *page) |
| { |
| return page == bad_page; |
| } |
| EXPORT_SYMBOL_GPL(is_error_page); |
| |
| gfn_t unalias_gfn(struct kvm *kvm, gfn_t gfn) |
| { |
| int i; |
| struct kvm_mem_alias *alias; |
| |
| for (i = 0; i < kvm->naliases; ++i) { |
| alias = &kvm->aliases[i]; |
| if (gfn >= alias->base_gfn |
| && gfn < alias->base_gfn + alias->npages) |
| return alias->target_gfn + gfn - alias->base_gfn; |
| } |
| return gfn; |
| } |
| |
| static struct kvm_memory_slot *__gfn_to_memslot(struct kvm *kvm, gfn_t gfn) |
| { |
| int i; |
| |
| for (i = 0; i < kvm->nmemslots; ++i) { |
| struct kvm_memory_slot *memslot = &kvm->memslots[i]; |
| |
| if (gfn >= memslot->base_gfn |
| && gfn < memslot->base_gfn + memslot->npages) |
| return memslot; |
| } |
| return NULL; |
| } |
| |
| struct kvm_memory_slot *gfn_to_memslot(struct kvm *kvm, gfn_t gfn) |
| { |
| gfn = unalias_gfn(kvm, gfn); |
| return __gfn_to_memslot(kvm, gfn); |
| } |
| |
| int kvm_is_visible_gfn(struct kvm *kvm, gfn_t gfn) |
| { |
| int i; |
| |
| gfn = unalias_gfn(kvm, gfn); |
| for (i = 0; i < KVM_MEMORY_SLOTS; ++i) { |
| struct kvm_memory_slot *memslot = &kvm->memslots[i]; |
| |
| if (gfn >= memslot->base_gfn |
| && gfn < memslot->base_gfn + memslot->npages) |
| return 1; |
| } |
| return 0; |
| } |
| EXPORT_SYMBOL_GPL(kvm_is_visible_gfn); |
| |
| /* |
| * Requires current->mm->mmap_sem to be held |
| */ |
| static struct page *__gfn_to_page(struct kvm *kvm, gfn_t gfn) |
| { |
| struct kvm_memory_slot *slot; |
| struct page *page[1]; |
| int npages; |
| |
| might_sleep(); |
| |
| gfn = unalias_gfn(kvm, gfn); |
| slot = __gfn_to_memslot(kvm, gfn); |
| if (!slot) { |
| get_page(bad_page); |
| return bad_page; |
| } |
| |
| npages = get_user_pages(current, current->mm, |
| slot->userspace_addr |
| + (gfn - slot->base_gfn) * PAGE_SIZE, 1, |
| 1, 1, page, NULL); |
| if (npages != 1) { |
| get_page(bad_page); |
| return bad_page; |
| } |
| |
| return page[0]; |
| } |
| |
| struct page *gfn_to_page(struct kvm *kvm, gfn_t gfn) |
| { |
| struct page *page; |
| |
| down_read(¤t->mm->mmap_sem); |
| page = __gfn_to_page(kvm, gfn); |
| up_read(¤t->mm->mmap_sem); |
| |
| return page; |
| } |
| |
| EXPORT_SYMBOL_GPL(gfn_to_page); |
| |
| void kvm_release_page(struct page *page) |
| { |
| if (!PageReserved(page)) |
| SetPageDirty(page); |
| put_page(page); |
| } |
| EXPORT_SYMBOL_GPL(kvm_release_page); |
| |
| static int next_segment(unsigned long len, int offset) |
| { |
| if (len > PAGE_SIZE - offset) |
| return PAGE_SIZE - offset; |
| else |
| return len; |
| } |
| |
| int kvm_read_guest_page(struct kvm *kvm, gfn_t gfn, void *data, int offset, |
| int len) |
| { |
| void *page_virt; |
| struct page *page; |
| |
| page = gfn_to_page(kvm, gfn); |
| if (is_error_page(page)) { |
| kvm_release_page(page); |
| return -EFAULT; |
| } |
| page_virt = kmap_atomic(page, KM_USER0); |
| |
| memcpy(data, page_virt + offset, len); |
| |
| kunmap_atomic(page_virt, KM_USER0); |
| kvm_release_page(page); |
| return 0; |
| } |
| EXPORT_SYMBOL_GPL(kvm_read_guest_page); |
| |
| int kvm_read_guest(struct kvm *kvm, gpa_t gpa, void *data, unsigned long len) |
| { |
| gfn_t gfn = gpa >> PAGE_SHIFT; |
| int seg; |
| int offset = offset_in_page(gpa); |
| int ret; |
| |
| while ((seg = next_segment(len, offset)) != 0) { |
| ret = kvm_read_guest_page(kvm, gfn, data, offset, seg); |
| if (ret < 0) |
| return ret; |
| offset = 0; |
| len -= seg; |
| data += seg; |
| ++gfn; |
| } |
| return 0; |
| } |
| EXPORT_SYMBOL_GPL(kvm_read_guest); |
| |
| int kvm_write_guest_page(struct kvm *kvm, gfn_t gfn, const void *data, |
| int offset, int len) |
| { |
| void *page_virt; |
| struct page *page; |
| |
| page = gfn_to_page(kvm, gfn); |
| if (is_error_page(page)) { |
| kvm_release_page(page); |
| return -EFAULT; |
| } |
| page_virt = kmap_atomic(page, KM_USER0); |
| |
| memcpy(page_virt + offset, data, len); |
| |
| kunmap_atomic(page_virt, KM_USER0); |
| mark_page_dirty(kvm, gfn); |
| kvm_release_page(page); |
| return 0; |
| } |
| EXPORT_SYMBOL_GPL(kvm_write_guest_page); |
| |
| int kvm_write_guest(struct kvm *kvm, gpa_t gpa, const void *data, |
| unsigned long len) |
| { |
| gfn_t gfn = gpa >> PAGE_SHIFT; |
| int seg; |
| int offset = offset_in_page(gpa); |
| int ret; |
| |
| while ((seg = next_segment(len, offset)) != 0) { |
| ret = kvm_write_guest_page(kvm, gfn, data, offset, seg); |
| if (ret < 0) |
| return ret; |
| offset = 0; |
| len -= seg; |
| data += seg; |
| ++gfn; |
| } |
| return 0; |
| } |
| |
| int kvm_clear_guest_page(struct kvm *kvm, gfn_t gfn, int offset, int len) |
| { |
| void *page_virt; |
| struct page *page; |
| |
| page = gfn_to_page(kvm, gfn); |
| if (is_error_page(page)) { |
| kvm_release_page(page); |
| return -EFAULT; |
| } |
| page_virt = kmap_atomic(page, KM_USER0); |
| |
| memset(page_virt + offset, 0, len); |
| |
| kunmap_atomic(page_virt, KM_USER0); |
| kvm_release_page(page); |
| return 0; |
| } |
| EXPORT_SYMBOL_GPL(kvm_clear_guest_page); |
| |
| int kvm_clear_guest(struct kvm *kvm, gpa_t gpa, unsigned long len) |
| { |
| gfn_t gfn = gpa >> PAGE_SHIFT; |
| int seg; |
| int offset = offset_in_page(gpa); |
| int ret; |
| |
| while ((seg = next_segment(len, offset)) != 0) { |
| ret = kvm_clear_guest_page(kvm, gfn, offset, seg); |
| if (ret < 0) |
| return ret; |
| offset = 0; |
| len -= seg; |
| ++gfn; |
| } |
| return 0; |
| } |
| EXPORT_SYMBOL_GPL(kvm_clear_guest); |
| |
| void mark_page_dirty(struct kvm *kvm, gfn_t gfn) |
| { |
| struct kvm_memory_slot *memslot; |
| |
| gfn = unalias_gfn(kvm, gfn); |
| memslot = __gfn_to_memslot(kvm, gfn); |
| if (memslot && memslot->dirty_bitmap) { |
| unsigned long rel_gfn = gfn - memslot->base_gfn; |
| |
| /* avoid RMW */ |
| if (!test_bit(rel_gfn, memslot->dirty_bitmap)) |
| set_bit(rel_gfn, memslot->dirty_bitmap); |
| } |
| } |
| |
| /* |
| * The vCPU has executed a HLT instruction with in-kernel mode enabled. |
| */ |
| static void kvm_vcpu_block(struct kvm_vcpu *vcpu) |
| { |
| DECLARE_WAITQUEUE(wait, current); |
| |
| add_wait_queue(&vcpu->wq, &wait); |
| |
| /* |
| * We will block until either an interrupt or a signal wakes us up |
| */ |
| while (!kvm_cpu_has_interrupt(vcpu) |
| && !signal_pending(current) |
| && vcpu->mp_state != VCPU_MP_STATE_RUNNABLE |
| && vcpu->mp_state != VCPU_MP_STATE_SIPI_RECEIVED) { |
| set_current_state(TASK_INTERRUPTIBLE); |
| vcpu_put(vcpu); |
| schedule(); |
| vcpu_load(vcpu); |
| } |
| |
| __set_current_state(TASK_RUNNING); |
| remove_wait_queue(&vcpu->wq, &wait); |
| } |
| |
| int kvm_emulate_halt(struct kvm_vcpu *vcpu) |
| { |
| ++vcpu->stat.halt_exits; |
| if (irqchip_in_kernel(vcpu->kvm)) { |
| vcpu->mp_state = VCPU_MP_STATE_HALTED; |
| kvm_vcpu_block(vcpu); |
| if (vcpu->mp_state != VCPU_MP_STATE_RUNNABLE) |
| return -EINTR; |
| return 1; |
| } else { |
| vcpu->run->exit_reason = KVM_EXIT_HLT; |
| return 0; |
| } |
| } |
| EXPORT_SYMBOL_GPL(kvm_emulate_halt); |
| |
| int kvm_emulate_hypercall(struct kvm_vcpu *vcpu) |
| { |
| unsigned long nr, a0, a1, a2, a3, ret; |
| |
| kvm_x86_ops->cache_regs(vcpu); |
| |
| nr = vcpu->regs[VCPU_REGS_RAX]; |
| a0 = vcpu->regs[VCPU_REGS_RBX]; |
| a1 = vcpu->regs[VCPU_REGS_RCX]; |
| a2 = vcpu->regs[VCPU_REGS_RDX]; |
| a3 = vcpu->regs[VCPU_REGS_RSI]; |
| |
| if (!is_long_mode(vcpu)) { |
| nr &= 0xFFFFFFFF; |
| a0 &= 0xFFFFFFFF; |
| a1 &= 0xFFFFFFFF; |
| a2 &= 0xFFFFFFFF; |
| a3 &= 0xFFFFFFFF; |
| } |
| |
| switch (nr) { |
| default: |
| ret = -KVM_ENOSYS; |
| break; |
| } |
| vcpu->regs[VCPU_REGS_RAX] = ret; |
| kvm_x86_ops->decache_regs(vcpu); |
| return 0; |
| } |
| EXPORT_SYMBOL_GPL(kvm_emulate_hypercall); |
| |
| int kvm_fix_hypercall(struct kvm_vcpu *vcpu) |
| { |
| char instruction[3]; |
| int ret = 0; |
| |
| mutex_lock(&vcpu->kvm->lock); |
| |
| /* |
| * Blow out the MMU to ensure that no other VCPU has an active mapping |
| * to ensure that the updated hypercall appears atomically across all |
| * VCPUs. |
| */ |
| kvm_mmu_zap_all(vcpu->kvm); |
| |
| kvm_x86_ops->cache_regs(vcpu); |
| kvm_x86_ops->patch_hypercall(vcpu, instruction); |
| if (emulator_write_emulated(vcpu->rip, instruction, 3, vcpu) |
| != X86EMUL_CONTINUE) |
| ret = -EFAULT; |
| |
| mutex_unlock(&vcpu->kvm->lock); |
| |
| return ret; |
| } |
| |
| static u64 mk_cr_64(u64 curr_cr, u32 new_val) |
| { |
| return (curr_cr & ~((1ULL << 32) - 1)) | new_val; |
| } |
| |
| void realmode_lgdt(struct kvm_vcpu *vcpu, u16 limit, unsigned long base) |
| { |
| struct descriptor_table dt = { limit, base }; |
| |
| kvm_x86_ops->set_gdt(vcpu, &dt); |
| } |
| |
| void realmode_lidt(struct kvm_vcpu *vcpu, u16 limit, unsigned long base) |
| { |
| struct descriptor_table dt = { limit, base }; |
| |
| kvm_x86_ops->set_idt(vcpu, &dt); |
| } |
| |
| void realmode_lmsw(struct kvm_vcpu *vcpu, unsigned long msw, |
| unsigned long *rflags) |
| { |
| lmsw(vcpu, msw); |
| *rflags = kvm_x86_ops->get_rflags(vcpu); |
| } |
| |
| unsigned long realmode_get_cr(struct kvm_vcpu *vcpu, int cr) |
| { |
| kvm_x86_ops->decache_cr4_guest_bits(vcpu); |
| switch (cr) { |
| case 0: |
| return vcpu->cr0; |
| case 2: |
| return vcpu->cr2; |
| case 3: |
| return vcpu->cr3; |
| case 4: |
| return vcpu->cr4; |
| default: |
| vcpu_printf(vcpu, "%s: unexpected cr %u\n", __FUNCTION__, cr); |
| return 0; |
| } |
| } |
| |
| void realmode_set_cr(struct kvm_vcpu *vcpu, int cr, unsigned long val, |
| unsigned long *rflags) |
| { |
| switch (cr) { |
| case 0: |
| set_cr0(vcpu, mk_cr_64(vcpu->cr0, val)); |
| *rflags = kvm_x86_ops->get_rflags(vcpu); |
| break; |
| case 2: |
| vcpu->cr2 = val; |
| break; |
| case 3: |
| set_cr3(vcpu, val); |
| break; |
| case 4: |
| set_cr4(vcpu, mk_cr_64(vcpu->cr4, val)); |
| break; |
| default: |
| vcpu_printf(vcpu, "%s: unexpected cr %u\n", __FUNCTION__, cr); |
| } |
| } |
| |
| void kvm_resched(struct kvm_vcpu *vcpu) |
| { |
| if (!need_resched()) |
| return; |
| cond_resched(); |
| } |
| EXPORT_SYMBOL_GPL(kvm_resched); |
| |
| void kvm_emulate_cpuid(struct kvm_vcpu *vcpu) |
| { |
| int i; |
| u32 function; |
| struct kvm_cpuid_entry *e, *best; |
| |
| kvm_x86_ops->cache_regs(vcpu); |
| function = vcpu->regs[VCPU_REGS_RAX]; |
| vcpu->regs[VCPU_REGS_RAX] = 0; |
| vcpu->regs[VCPU_REGS_RBX] = 0; |
| vcpu->regs[VCPU_REGS_RCX] = 0; |
| vcpu->regs[VCPU_REGS_RDX] = 0; |
| best = NULL; |
| for (i = 0; i < vcpu->cpuid_nent; ++i) { |
| e = &vcpu->cpuid_entries[i]; |
| if (e->function == function) { |
| best = e; |
| break; |
| } |
| /* |
| * Both basic or both extended? |
| */ |
| if (((e->function ^ function) & 0x80000000) == 0) |
| if (!best || e->function > best->function) |
| best = e; |
| } |
| if (best) { |
| vcpu->regs[VCPU_REGS_RAX] = best->eax; |
| vcpu->regs[VCPU_REGS_RBX] = best->ebx; |
| vcpu->regs[VCPU_REGS_RCX] = best->ecx; |
| vcpu->regs[VCPU_REGS_RDX] = best->edx; |
| } |
| kvm_x86_ops->decache_regs(vcpu); |
| kvm_x86_ops->skip_emulated_instruction(vcpu); |
| } |
| EXPORT_SYMBOL_GPL(kvm_emulate_cpuid); |
| |
| /* |
| * Check if userspace requested an interrupt window, and that the |
| * interrupt window is open. |
| * |
| * No need to exit to userspace if we already have an interrupt queued. |
| */ |
| static int dm_request_for_irq_injection(struct kvm_vcpu *vcpu, |
| struct kvm_run *kvm_run) |
| { |
| return (!vcpu->irq_summary && |
| kvm_run->request_interrupt_window && |
| vcpu->interrupt_window_open && |
| (kvm_x86_ops->get_rflags(vcpu) & X86_EFLAGS_IF)); |
| } |
| |
| static void post_kvm_run_save(struct kvm_vcpu *vcpu, |
| struct kvm_run *kvm_run) |
| { |
| kvm_run->if_flag = (kvm_x86_ops->get_rflags(vcpu) & X86_EFLAGS_IF) != 0; |
| kvm_run->cr8 = get_cr8(vcpu); |
| kvm_run->apic_base = kvm_get_apic_base(vcpu); |
| if (irqchip_in_kernel(vcpu->kvm)) |
| kvm_run->ready_for_interrupt_injection = 1; |
| else |
| kvm_run->ready_for_interrupt_injection = |
| (vcpu->interrupt_window_open && |
| vcpu->irq_summary == 0); |
| } |
| |
| static int __vcpu_run(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run) |
| { |
| int r; |
| |
| if (unlikely(vcpu->mp_state == VCPU_MP_STATE_SIPI_RECEIVED)) { |
| pr_debug("vcpu %d received sipi with vector # %x\n", |
| vcpu->vcpu_id, vcpu->sipi_vector); |
| kvm_lapic_reset(vcpu); |
| r = kvm_x86_ops->vcpu_reset(vcpu); |
| if (r) |
| return r; |
| vcpu->mp_state = VCPU_MP_STATE_RUNNABLE; |
| } |
| |
| preempted: |
| if (vcpu->guest_debug.enabled) |
| kvm_x86_ops->guest_debug_pre(vcpu); |
| |
| again: |
| r = kvm_mmu_reload(vcpu); |
| if (unlikely(r)) |
| goto out; |
| |
| kvm_inject_pending_timer_irqs(vcpu); |
| |
| preempt_disable(); |
| |
| kvm_x86_ops->prepare_guest_switch(vcpu); |
| kvm_load_guest_fpu(vcpu); |
| |
| local_irq_disable(); |
| |
| if (signal_pending(current)) { |
| local_irq_enable(); |
| preempt_enable(); |
| r = -EINTR; |
| kvm_run->exit_reason = KVM_EXIT_INTR; |
| ++vcpu->stat.signal_exits; |
| goto out; |
| } |
| |
| if (irqchip_in_kernel(vcpu->kvm)) |
| kvm_x86_ops->inject_pending_irq(vcpu); |
| else if (!vcpu->mmio_read_completed) |
| kvm_x86_ops->inject_pending_vectors(vcpu, kvm_run); |
| |
| vcpu->guest_mode = 1; |
| kvm_guest_enter(); |
| |
| if (vcpu->requests) |
| if (test_and_clear_bit(KVM_REQ_TLB_FLUSH, &vcpu->requests)) |
| kvm_x86_ops->tlb_flush(vcpu); |
| |
| kvm_x86_ops->run(vcpu, kvm_run); |
| |
| vcpu->guest_mode = 0; |
| local_irq_enable(); |
| |
| ++vcpu->stat.exits; |
| |
| /* |
| * We must have an instruction between local_irq_enable() and |
| * kvm_guest_exit(), so the timer interrupt isn't delayed by |
| * the interrupt shadow. The stat.exits increment will do nicely. |
| * But we need to prevent reordering, hence this barrier(): |
| */ |
| barrier(); |
| |
| kvm_guest_exit(); |
| |
| preempt_enable(); |
| |
| /* |
| * Profile KVM exit RIPs: |
| */ |
| if (unlikely(prof_on == KVM_PROFILING)) { |
| kvm_x86_ops->cache_regs(vcpu); |
| profile_hit(KVM_PROFILING, (void *)vcpu->rip); |
| } |
| |
| r = kvm_x86_ops->handle_exit(kvm_run, vcpu); |
| |
| if (r > 0) { |
| if (dm_request_for_irq_injection(vcpu, kvm_run)) { |
| r = -EINTR; |
| kvm_run->exit_reason = KVM_EXIT_INTR; |
| ++vcpu->stat.request_irq_exits; |
| goto out; |
| } |
| if (!need_resched()) { |
| ++vcpu->stat.light_exits; |
| goto again; |
| } |
| } |
| |
| out: |
| if (r > 0) { |
| kvm_resched(vcpu); |
| goto preempted; |
| } |
| |
| post_kvm_run_save(vcpu, kvm_run); |
| |
| return r; |
| } |
| |
| |
| static int kvm_vcpu_ioctl_run(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run) |
| { |
| int r; |
| sigset_t sigsaved; |
| |
| vcpu_load(vcpu); |
| |
| if (unlikely(vcpu->mp_state == VCPU_MP_STATE_UNINITIALIZED)) { |
| kvm_vcpu_block(vcpu); |
| vcpu_put(vcpu); |
| return -EAGAIN; |
| } |
| |
| if (vcpu->sigset_active) |
| sigprocmask(SIG_SETMASK, &vcpu->sigset, &sigsaved); |
| |
| /* re-sync apic's tpr */ |
| if (!irqchip_in_kernel(vcpu->kvm)) |
| set_cr8(vcpu, kvm_run->cr8); |
| |
| if (vcpu->pio.cur_count) { |
| r = complete_pio(vcpu); |
| if (r) |
| goto out; |
| } |
| #if CONFIG_HAS_IOMEM |
| if (vcpu->mmio_needed) { |
| memcpy(vcpu->mmio_data, kvm_run->mmio.data, 8); |
| vcpu->mmio_read_completed = 1; |
| vcpu->mmio_needed = 0; |
| r = emulate_instruction(vcpu, kvm_run, |
| vcpu->mmio_fault_cr2, 0, 1); |
| if (r == EMULATE_DO_MMIO) { |
| /* |
| * Read-modify-write. Back to userspace. |
| */ |
| r = 0; |
| goto out; |
| } |
| } |
| #endif |
| if (kvm_run->exit_reason == KVM_EXIT_HYPERCALL) { |
| kvm_x86_ops->cache_regs(vcpu); |
| vcpu->regs[VCPU_REGS_RAX] = kvm_run->hypercall.ret; |
| kvm_x86_ops->decache_regs(vcpu); |
| } |
| |
| r = __vcpu_run(vcpu, kvm_run); |
| |
| out: |
| if (vcpu->sigset_active) |
| sigprocmask(SIG_SETMASK, &sigsaved, NULL); |
| |
| vcpu_put(vcpu); |
| return r; |
| } |
| |
| static int kvm_vcpu_ioctl_get_regs(struct kvm_vcpu *vcpu, |
| struct kvm_regs *regs) |
| { |
| vcpu_load(vcpu); |
| |
| kvm_x86_ops->cache_regs(vcpu); |
| |
| regs->rax = vcpu->regs[VCPU_REGS_RAX]; |
| regs->rbx = vcpu->regs[VCPU_REGS_RBX]; |
| regs->rcx = vcpu->regs[VCPU_REGS_RCX]; |
| regs->rdx = vcpu->regs[VCPU_REGS_RDX]; |
| regs->rsi = vcpu->regs[VCPU_REGS_RSI]; |
| regs->rdi = vcpu->regs[VCPU_REGS_RDI]; |
| regs->rsp = vcpu->regs[VCPU_REGS_RSP]; |
| regs->rbp = vcpu->regs[VCPU_REGS_RBP]; |
| #ifdef CONFIG_X86_64 |
| regs->r8 = vcpu->regs[VCPU_REGS_R8]; |
| regs->r9 = vcpu->regs[VCPU_REGS_R9]; |
| regs->r10 = vcpu->regs[VCPU_REGS_R10]; |
| regs->r11 = vcpu->regs[VCPU_REGS_R11]; |
| regs->r12 = vcpu->regs[VCPU_REGS_R12]; |
| regs->r13 = vcpu->regs[VCPU_REGS_R13]; |
| regs->r14 = vcpu->regs[VCPU_REGS_R14]; |
| regs->r15 = vcpu->regs[VCPU_REGS_R15]; |
| #endif |
| |
| regs->rip = vcpu->rip; |
| regs->rflags = kvm_x86_ops->get_rflags(vcpu); |
| |
| /* |
| * Don't leak debug flags in case they were set for guest debugging |
| */ |
| if (vcpu->guest_debug.enabled && vcpu->guest_debug.singlestep) |
| regs->rflags &= ~(X86_EFLAGS_TF | X86_EFLAGS_RF); |
| |
| vcpu_put(vcpu); |
| |
| return 0; |
| } |
| |
| static int kvm_vcpu_ioctl_set_regs(struct kvm_vcpu *vcpu, |
| struct kvm_regs *regs) |
| { |
| vcpu_load(vcpu); |
| |
| vcpu->regs[VCPU_REGS_RAX] = regs->rax; |
| vcpu->regs[VCPU_REGS_RBX] = regs->rbx; |
| vcpu->regs[VCPU_REGS_RCX] = regs->rcx; |
| vcpu->regs[VCPU_REGS_RDX] = regs->rdx; |
| vcpu->regs[VCPU_REGS_RSI] = regs->rsi; |
| vcpu->regs[VCPU_REGS_RDI] = regs->rdi; |
| vcpu->regs[VCPU_REGS_RSP] = regs->rsp; |
| vcpu->regs[VCPU_REGS_RBP] = regs->rbp; |
| #ifdef CONFIG_X86_64 |
| vcpu->regs[VCPU_REGS_R8] = regs->r8; |
| vcpu->regs[VCPU_REGS_R9] = regs->r9; |
| vcpu->regs[VCPU_REGS_R10] = regs->r10; |
| vcpu->regs[VCPU_REGS_R11] = regs->r11; |
| vcpu->regs[VCPU_REGS_R12] = regs->r12; |
| vcpu->regs[VCPU_REGS_R13] = regs->r13; |
| vcpu->regs[VCPU_REGS_R14] = regs->r14; |
| vcpu->regs[VCPU_REGS_R15] = regs->r15; |
| #endif |
| |
| vcpu->rip = regs->rip; |
| kvm_x86_ops->set_rflags(vcpu, regs->rflags); |
| |
| kvm_x86_ops->decache_regs(vcpu); |
| |
| vcpu_put(vcpu); |
| |
| return 0; |
| } |
| |
| static void get_segment(struct kvm_vcpu *vcpu, |
| struct kvm_segment *var, int seg) |
| { |
| return kvm_x86_ops->get_segment(vcpu, var, seg); |
| } |
| |
| static int kvm_vcpu_ioctl_get_sregs(struct kvm_vcpu *vcpu, |
| struct kvm_sregs *sregs) |
| { |
| struct descriptor_table dt; |
| int pending_vec; |
| |
| vcpu_load(vcpu); |
| |
| get_segment(vcpu, &sregs->cs, VCPU_SREG_CS); |
| get_segment(vcpu, &sregs->ds, VCPU_SREG_DS); |
| get_segment(vcpu, &sregs->es, VCPU_SREG_ES); |
| get_segment(vcpu, &sregs->fs, VCPU_SREG_FS); |
| get_segment(vcpu, &sregs->gs, VCPU_SREG_GS); |
| get_segment(vcpu, &sregs->ss, VCPU_SREG_SS); |
| |
| get_segment(vcpu, &sregs->tr, VCPU_SREG_TR); |
| get_segment(vcpu, &sregs->ldt, VCPU_SREG_LDTR); |
| |
| kvm_x86_ops->get_idt(vcpu, &dt); |
| sregs->idt.limit = dt.limit; |
| sregs->idt.base = dt.base; |
| kvm_x86_ops->get_gdt(vcpu, &dt); |
| sregs->gdt.limit = dt.limit; |
| sregs->gdt.base = dt.base; |
| |
| kvm_x86_ops->decache_cr4_guest_bits(vcpu); |
| sregs->cr0 = vcpu->cr0; |
| sregs->cr2 = vcpu->cr2; |
| sregs->cr3 = vcpu->cr3; |
| sregs->cr4 = vcpu->cr4; |
| sregs->cr8 = get_cr8(vcpu); |
| sregs->efer = vcpu->shadow_efer; |
| sregs->apic_base = kvm_get_apic_base(vcpu); |
| |
| if (irqchip_in_kernel(vcpu->kvm)) { |
| memset(sregs->interrupt_bitmap, 0, |
| sizeof sregs->interrupt_bitmap); |
| pending_vec = kvm_x86_ops->get_irq(vcpu); |
| if (pending_vec >= 0) |
| set_bit(pending_vec, |
| (unsigned long *)sregs->interrupt_bitmap); |
| } else |
| memcpy(sregs->interrupt_bitmap, vcpu->irq_pending, |
| sizeof sregs->interrupt_bitmap); |
| |
| vcpu_put(vcpu); |
| |
| return 0; |
| } |
| |
| static void set_segment(struct kvm_vcpu *vcpu, |
| struct kvm_segment *var, int seg) |
| { |
| return kvm_x86_ops->set_segment(vcpu, var, seg); |
| } |
| |
| static int kvm_vcpu_ioctl_set_sregs(struct kvm_vcpu *vcpu, |
| struct kvm_sregs *sregs) |
| { |
| int mmu_reset_needed = 0; |
| int i, pending_vec, max_bits; |
| struct descriptor_table dt; |
| |
| vcpu_load(vcpu); |
| |
| dt.limit = sregs->idt.limit; |
| dt.base = sregs->idt.base; |
| kvm_x86_ops->set_idt(vcpu, &dt); |
| dt.limit = sregs->gdt.limit; |
| dt.base = sregs->gdt.base; |
| kvm_x86_ops->set_gdt(vcpu, &dt); |
| |
| vcpu->cr2 = sregs->cr2; |
| mmu_reset_needed |= vcpu->cr3 != sregs->cr3; |
| vcpu->cr3 = sregs->cr3; |
| |
| set_cr8(vcpu, sregs->cr8); |
| |
| mmu_reset_needed |= vcpu->shadow_efer != sregs->efer; |
| #ifdef CONFIG_X86_64 |
| kvm_x86_ops->set_efer(vcpu, sregs->efer); |
| #endif |
| kvm_set_apic_base(vcpu, sregs->apic_base); |
| |
| kvm_x86_ops->decache_cr4_guest_bits(vcpu); |
| |
| mmu_reset_needed |= vcpu->cr0 != sregs->cr0; |
| vcpu->cr0 = sregs->cr0; |
| kvm_x86_ops->set_cr0(vcpu, sregs->cr0); |
| |
| mmu_reset_needed |= vcpu->cr4 != sregs->cr4; |
| kvm_x86_ops->set_cr4(vcpu, sregs->cr4); |
| if (!is_long_mode(vcpu) && is_pae(vcpu)) |
| load_pdptrs(vcpu, vcpu->cr3); |
| |
| if (mmu_reset_needed) |
| kvm_mmu_reset_context(vcpu); |
| |
| if (!irqchip_in_kernel(vcpu->kvm)) { |
| memcpy(vcpu->irq_pending, sregs->interrupt_bitmap, |
| sizeof vcpu->irq_pending); |
| vcpu->irq_summary = 0; |
| for (i = 0; i < ARRAY_SIZE(vcpu->irq_pending); ++i) |
| if (vcpu->irq_pending[i]) |
| __set_bit(i, &vcpu->irq_summary); |
| } else { |
| max_bits = (sizeof sregs->interrupt_bitmap) << 3; |
| pending_vec = find_first_bit( |
| (const unsigned long *)sregs->interrupt_bitmap, |
| max_bits); |
| /* Only pending external irq is handled here */ |
| if (pending_vec < max_bits) { |
| kvm_x86_ops->set_irq(vcpu, pending_vec); |
| pr_debug("Set back pending irq %d\n", |
| pending_vec); |
| } |
| } |
| |
| set_segment(vcpu, &sregs->cs, VCPU_SREG_CS); |
| set_segment(vcpu, &sregs->ds, VCPU_SREG_DS); |
| set_segment(vcpu, &sregs->es, VCPU_SREG_ES); |
| set_segment(vcpu, &sregs->fs, VCPU_SREG_FS); |
| set_segment(vcpu, &sregs->gs, VCPU_SREG_GS); |
| set_segment(vcpu, &sregs->ss, VCPU_SREG_SS); |
| |
| set_segment(vcpu, &sregs->tr, VCPU_SREG_TR); |
| set_segment(vcpu, &sregs->ldt, VCPU_SREG_LDTR); |
| |
| vcpu_put(vcpu); |
| |
| return 0; |
| } |
| |
| void kvm_get_cs_db_l_bits(struct kvm_vcpu *vcpu, int *db, int *l) |
| { |
| struct kvm_segment cs; |
| |
| get_segment(vcpu, &cs, VCPU_SREG_CS); |
| *db = cs.db; |
| *l = cs.l; |
| } |
| EXPORT_SYMBOL_GPL(kvm_get_cs_db_l_bits); |
| |
| /* |
| * Translate a guest virtual address to a guest physical address. |
| */ |
| static int kvm_vcpu_ioctl_translate(struct kvm_vcpu *vcpu, |
| struct kvm_translation *tr) |
| { |
| unsigned long vaddr = tr->linear_address; |
| gpa_t gpa; |
| |
| vcpu_load(vcpu); |
| mutex_lock(&vcpu->kvm->lock); |
| gpa = vcpu->mmu.gva_to_gpa(vcpu, vaddr); |
| tr->physical_address = gpa; |
| tr->valid = gpa != UNMAPPED_GVA; |
| tr->writeable = 1; |
| tr->usermode = 0; |
| mutex_unlock(&vcpu->kvm->lock); |
| vcpu_put(vcpu); |
| |
| return 0; |
| } |
| |
| static int kvm_vcpu_ioctl_interrupt(struct kvm_vcpu *vcpu, |
| struct kvm_interrupt *irq) |
| { |
| if (irq->irq < 0 || irq->irq >= 256) |
| return -EINVAL; |
| if (irqchip_in_kernel(vcpu->kvm)) |
| return -ENXIO; |
| vcpu_load(vcpu); |
| |
| set_bit(irq->irq, vcpu->irq_pending); |
| set_bit(irq->irq / BITS_PER_LONG, &vcpu->irq_summary); |
| |
| vcpu_put(vcpu); |
| |
| return 0; |
| } |
| |
| static int kvm_vcpu_ioctl_debug_guest(struct kvm_vcpu *vcpu, |
| struct kvm_debug_guest *dbg) |
| { |
| int r; |
| |
| vcpu_load(vcpu); |
| |
| r = kvm_x86_ops->set_guest_debug(vcpu, dbg); |
| |
| vcpu_put(vcpu); |
| |
| return r; |
| } |
| |
| static struct page *kvm_vcpu_nopage(struct vm_area_struct *vma, |
| unsigned long address, |
| int *type) |
| { |
| struct kvm_vcpu *vcpu = vma->vm_file->private_data; |
| unsigned long pgoff; |
| struct page *page; |
| |
| pgoff = ((address - vma->vm_start) >> PAGE_SHIFT) + vma->vm_pgoff; |
| if (pgoff == 0) |
| page = virt_to_page(vcpu->run); |
| else if (pgoff == KVM_PIO_PAGE_OFFSET) |
| page = virt_to_page(vcpu->pio_data); |
| else |
| return NOPAGE_SIGBUS; |
| get_page(page); |
| if (type != NULL) |
| *type = VM_FAULT_MINOR; |
| |
| return page; |
| } |
| |
| static struct vm_operations_struct kvm_vcpu_vm_ops = { |
| .nopage = kvm_vcpu_nopage, |
| }; |
| |
| static int kvm_vcpu_mmap(struct file *file, struct vm_area_struct *vma) |
| { |
| vma->vm_ops = &kvm_vcpu_vm_ops; |
| return 0; |
| } |
| |
| static int kvm_vcpu_release(struct inode *inode, struct file *filp) |
| { |
| struct kvm_vcpu *vcpu = filp->private_data; |
| |
| fput(vcpu->kvm->filp); |
| return 0; |
| } |
| |
| static struct file_operations kvm_vcpu_fops = { |
| .release = kvm_vcpu_release, |
| .unlocked_ioctl = kvm_vcpu_ioctl, |
| .compat_ioctl = kvm_vcpu_ioctl, |
| .mmap = kvm_vcpu_mmap, |
| }; |
| |
| /* |
| * Allocates an inode for the vcpu. |
| */ |
| static int create_vcpu_fd(struct kvm_vcpu *vcpu) |
| { |
| int fd, r; |
| struct inode *inode; |
| struct file *file; |
| |
| r = anon_inode_getfd(&fd, &inode, &file, |
| "kvm-vcpu", &kvm_vcpu_fops, vcpu); |
| if (r) |
| return r; |
| atomic_inc(&vcpu->kvm->filp->f_count); |
| return fd; |
| } |
| |
| /* |
| * Creates some virtual cpus. Good luck creating more than one. |
| */ |
| static int kvm_vm_ioctl_create_vcpu(struct kvm *kvm, int n) |
| { |
| int r; |
| struct kvm_vcpu *vcpu; |
| |
| if (!valid_vcpu(n)) |
| return -EINVAL; |
| |
| vcpu = kvm_x86_ops->vcpu_create(kvm, n); |
| if (IS_ERR(vcpu)) |
| return PTR_ERR(vcpu); |
| |
| preempt_notifier_init(&vcpu->preempt_notifier, &kvm_preempt_ops); |
| |
| /* We do fxsave: this must be aligned. */ |
| BUG_ON((unsigned long)&vcpu->host_fx_image & 0xF); |
| |
| vcpu_load(vcpu); |
| r = kvm_x86_ops->vcpu_reset(vcpu); |
| if (r == 0) |
| r = kvm_mmu_setup(vcpu); |
| vcpu_put(vcpu); |
| if (r < 0) |
| goto free_vcpu; |
| |
| mutex_lock(&kvm->lock); |
| if (kvm->vcpus[n]) { |
| r = -EEXIST; |
| mutex_unlock(&kvm->lock); |
| goto mmu_unload; |
| } |
| kvm->vcpus[n] = vcpu; |
| mutex_unlock(&kvm->lock); |
| |
| /* Now it's all set up, let userspace reach it */ |
| r = create_vcpu_fd(vcpu); |
| if (r < 0) |
| goto unlink; |
| return r; |
| |
| unlink: |
| mutex_lock(&kvm->lock); |
| kvm->vcpus[n] = NULL; |
| mutex_unlock(&kvm->lock); |
| |
| mmu_unload: |
| vcpu_load(vcpu); |
| kvm_mmu_unload(vcpu); |
| vcpu_put(vcpu); |
| |
| free_vcpu: |
| kvm_x86_ops->vcpu_free(vcpu); |
| return r; |
| } |
| |
| static int kvm_vcpu_ioctl_set_sigmask(struct kvm_vcpu *vcpu, sigset_t *sigset) |
| { |
| if (sigset) { |
| sigdelsetmask(sigset, sigmask(SIGKILL)|sigmask(SIGSTOP)); |
| vcpu->sigset_active = 1; |
| vcpu->sigset = *sigset; |
| } else |
| vcpu->sigset_active = 0; |
| return 0; |
| } |
| |
| /* |
| * fxsave fpu state. Taken from x86_64/processor.h. To be killed when |
| * we have asm/x86/processor.h |
| */ |
| struct fxsave { |
| u16 cwd; |
| u16 swd; |
| u16 twd; |
| u16 fop; |
| u64 rip; |
| u64 rdp; |
| u32 mxcsr; |
| u32 mxcsr_mask; |
| u32 st_space[32]; /* 8*16 bytes for each FP-reg = 128 bytes */ |
| #ifdef CONFIG_X86_64 |
| u32 xmm_space[64]; /* 16*16 bytes for each XMM-reg = 256 bytes */ |
| #else |
| u32 xmm_space[32]; /* 8*16 bytes for each XMM-reg = 128 bytes */ |
| #endif |
| }; |
| |
| static int kvm_vcpu_ioctl_get_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu) |
| { |
| struct fxsave *fxsave = (struct fxsave *)&vcpu->guest_fx_image; |
| |
| vcpu_load(vcpu); |
| |
| memcpy(fpu->fpr, fxsave->st_space, 128); |
| fpu->fcw = fxsave->cwd; |
| fpu->fsw = fxsave->swd; |
| fpu->ftwx = fxsave->twd; |
| fpu->last_opcode = fxsave->fop; |
| fpu->last_ip = fxsave->rip; |
| fpu->last_dp = fxsave->rdp; |
| memcpy(fpu->xmm, fxsave->xmm_space, sizeof fxsave->xmm_space); |
| |
| vcpu_put(vcpu); |
| |
| return 0; |
| } |
| |
| static int kvm_vcpu_ioctl_set_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu) |
| { |
| struct fxsave *fxsave = (struct fxsave *)&vcpu->guest_fx_image; |
| |
| vcpu_load(vcpu); |
| |
| memcpy(fxsave->st_space, fpu->fpr, 128); |
| fxsave->cwd = fpu->fcw; |
| fxsave->swd = fpu->fsw; |
| fxsave->twd = fpu->ftwx; |
| fxsave->fop = fpu->last_opcode; |
| fxsave->rip = fpu->last_ip; |
| fxsave->rdp = fpu->last_dp; |
| memcpy(fxsave->xmm_space, fpu->xmm, sizeof fxsave->xmm_space); |
| |
| vcpu_put(vcpu); |
| |
| return 0; |
| } |
| |
| static long kvm_vcpu_ioctl(struct file *filp, |
| unsigned int ioctl, unsigned long arg) |
| { |
| struct kvm_vcpu *vcpu = filp->private_data; |
| void __user *argp = (void __user *)arg; |
| int r; |
| |
| switch (ioctl) { |
| case KVM_RUN: |
| r = -EINVAL; |
| if (arg) |
| goto out; |
| r = kvm_vcpu_ioctl_run(vcpu, vcpu->run); |
| break; |
| case KVM_GET_REGS: { |
| struct kvm_regs kvm_regs; |
| |
| memset(&kvm_regs, 0, sizeof kvm_regs); |
| r = kvm_vcpu_ioctl_get_regs(vcpu, &kvm_regs); |
| if (r) |
| goto out; |
| r = -EFAULT; |
| if (copy_to_user(argp, &kvm_regs, sizeof kvm_regs)) |
| goto out; |
| r = 0; |
| break; |
| } |
| case KVM_SET_REGS: { |
| struct kvm_regs kvm_regs; |
| |
| r = -EFAULT; |
| if (copy_from_user(&kvm_regs, argp, sizeof kvm_regs)) |
| goto out; |
| r = kvm_vcpu_ioctl_set_regs(vcpu, &kvm_regs); |
| if (r) |
| goto out; |
| r = 0; |
| break; |
| } |
| case KVM_GET_SREGS: { |
| struct kvm_sregs kvm_sregs; |
| |
| memset(&kvm_sregs, 0, sizeof kvm_sregs); |
| r = kvm_vcpu_ioctl_get_sregs(vcpu, &kvm_sregs); |
| if (r) |
| goto out; |
| r = -EFAULT; |
| if (copy_to_user(argp, &kvm_sregs, sizeof kvm_sregs)) |
| goto out; |
| r = 0; |
| break; |
| } |
| case KVM_SET_SREGS: { |
| struct kvm_sregs kvm_sregs; |
| |
| r = -EFAULT; |
| if (copy_from_user(&kvm_sregs, argp, sizeof kvm_sregs)) |
| goto out; |
| r = kvm_vcpu_ioctl_set_sregs(vcpu, &kvm_sregs); |
| if (r) |
| goto out; |
| r = 0; |
| break; |
| } |
| case KVM_TRANSLATE: { |
| struct kvm_translation tr; |
| |
| r = -EFAULT; |
| if (copy_from_user(&tr, argp, sizeof tr)) |
| goto out; |
| r = kvm_vcpu_ioctl_translate(vcpu, &tr); |
| if (r) |
| goto out; |
| r = -EFAULT; |
| if (copy_to_user(argp, &tr, sizeof tr)) |
| goto out; |
| r = 0; |
| break; |
| } |
| case KVM_INTERRUPT: { |
| struct kvm_interrupt irq; |
| |
| r = -EFAULT; |
| if (copy_from_user(&irq, argp, sizeof irq)) |
| goto out; |
| r = kvm_vcpu_ioctl_interrupt(vcpu, &irq); |
| if (r) |
| goto out; |
| r = 0; |
| break; |
| } |
| case KVM_DEBUG_GUEST: { |
| struct kvm_debug_guest dbg; |
| |
| r = -EFAULT; |
| if (copy_from_user(&dbg, argp, sizeof dbg)) |
| goto out; |
| r = kvm_vcpu_ioctl_debug_guest(vcpu, &dbg); |
| if (r) |
| goto out; |
| r = 0; |
| break; |
| } |
| case KVM_SET_SIGNAL_MASK: { |
| struct kvm_signal_mask __user *sigmask_arg = argp; |
| struct kvm_signal_mask kvm_sigmask; |
| sigset_t sigset, *p; |
| |
| p = NULL; |
| if (argp) { |
| r = -EFAULT; |
| if (copy_from_user(&kvm_sigmask, argp, |
| sizeof kvm_sigmask)) |
| goto out; |
| r = -EINVAL; |
| if (kvm_sigmask.len != sizeof sigset) |
| goto out; |
| r = -EFAULT; |
| if (copy_from_user(&sigset, sigmask_arg->sigset, |
| sizeof sigset)) |
| goto out; |
| p = &sigset; |
| } |
| r = kvm_vcpu_ioctl_set_sigmask(vcpu, &sigset); |
| break; |
| } |
| case KVM_GET_FPU: { |
| struct kvm_fpu fpu; |
| |
| memset(&fpu, 0, sizeof fpu); |
| r = kvm_vcpu_ioctl_get_fpu(vcpu, &fpu); |
| if (r) |
| goto out; |
| r = -EFAULT; |
| if (copy_to_user(argp, &fpu, sizeof fpu)) |
| goto out; |
| r = 0; |
| break; |
| } |
| case KVM_SET_FPU: { |
| struct kvm_fpu fpu; |
| |
| r = -EFAULT; |
| if (copy_from_user(&fpu, argp, sizeof fpu)) |
| goto out; |
| r = kvm_vcpu_ioctl_set_fpu(vcpu, &fpu); |
| if (r) |
| goto out; |
| r = 0; |
| break; |
| } |
| default: |
| r = kvm_arch_vcpu_ioctl(filp, ioctl, arg); |
| } |
| out: |
| return r; |
| } |
| |
| static long kvm_vm_ioctl(struct file *filp, |
| unsigned int ioctl, unsigned long arg) |
| { |
| struct kvm *kvm = filp->private_data; |
| void __user *argp = (void __user *)arg; |
| int r; |
| |
| switch (ioctl) { |
| case KVM_CREATE_VCPU: |
| r = kvm_vm_ioctl_create_vcpu(kvm, arg); |
| if (r < 0) |
| goto out; |
| break; |
| case KVM_SET_USER_MEMORY_REGION: { |
| struct kvm_userspace_memory_region kvm_userspace_mem; |
| |
| r = -EFAULT; |
| if (copy_from_user(&kvm_userspace_mem, argp, |
| sizeof kvm_userspace_mem)) |
| goto out; |
| |
| r = kvm_vm_ioctl_set_memory_region(kvm, &kvm_userspace_mem, 1); |
| if (r) |
| goto out; |
| break; |
| } |
| case KVM_GET_DIRTY_LOG: { |
| struct kvm_dirty_log log; |
| |
| r = -EFAULT; |
| if (copy_from_user(&log, argp, sizeof log)) |
| goto out; |
| r = kvm_vm_ioctl_get_dirty_log(kvm, &log); |
| if (r) |
| goto out; |
| break; |
| } |
| default: |
| r = kvm_arch_vm_ioctl(filp, ioctl, arg); |
| } |
| out: |
| return r; |
| } |
| |
| static struct page *kvm_vm_nopage(struct vm_area_struct *vma, |
| unsigned long address, |
| int *type) |
| { |
| struct kvm *kvm = vma->vm_file->private_data; |
| unsigned long pgoff; |
| struct page *page; |
| |
| pgoff = ((address - vma->vm_start) >> PAGE_SHIFT) + vma->vm_pgoff; |
| if (!kvm_is_visible_gfn(kvm, pgoff)) |
| return NOPAGE_SIGBUS; |
| /* current->mm->mmap_sem is already held so call lockless version */ |
| page = __gfn_to_page(kvm, pgoff); |
| if (is_error_page(page)) { |
| kvm_release_page(page); |
| return NOPAGE_SIGBUS; |
| } |
| if (type != NULL) |
| *type = VM_FAULT_MINOR; |
| |
| return page; |
| } |
| |
| static struct vm_operations_struct kvm_vm_vm_ops = { |
| .nopage = kvm_vm_nopage, |
| }; |
| |
| static int kvm_vm_mmap(struct file *file, struct vm_area_struct *vma) |
| { |
| vma->vm_ops = &kvm_vm_vm_ops; |
| return 0; |
| } |
| |
| static struct file_operations kvm_vm_fops = { |
| .release = kvm_vm_release, |
| .unlocked_ioctl = kvm_vm_ioctl, |
| .compat_ioctl = kvm_vm_ioctl, |
| .mmap = kvm_vm_mmap, |
| }; |
| |
| static int kvm_dev_ioctl_create_vm(void) |
| { |
| int fd, r; |
| struct inode *inode; |
| struct file *file; |
| struct kvm *kvm; |
| |
| kvm = kvm_create_vm(); |
| if (IS_ERR(kvm)) |
| return PTR_ERR(kvm); |
| r = anon_inode_getfd(&fd, &inode, &file, "kvm-vm", &kvm_vm_fops, kvm); |
| if (r) { |
| kvm_destroy_vm(kvm); |
| return r; |
| } |
| |
| kvm->filp = file; |
| |
| return fd; |
| } |
| |
| static long kvm_dev_ioctl(struct file *filp, |
| unsigned int ioctl, unsigned long arg) |
| { |
| void __user *argp = (void __user *)arg; |
| long r = -EINVAL; |
| |
| switch (ioctl) { |
| case KVM_GET_API_VERSION: |
| r = -EINVAL; |
| if (arg) |
| goto out; |
| r = KVM_API_VERSION; |
| break; |
| case KVM_CREATE_VM: |
| r = -EINVAL; |
| if (arg) |
| goto out; |
| r = kvm_dev_ioctl_create_vm(); |
| break; |
| case KVM_CHECK_EXTENSION: { |
| int ext = (long)argp; |
| |
| switch (ext) { |
| case KVM_CAP_IRQCHIP: |
| case KVM_CAP_HLT: |
| case KVM_CAP_MMU_SHADOW_CACHE_CONTROL: |
| case KVM_CAP_USER_MEMORY: |
| case KVM_CAP_SET_TSS_ADDR: |
| r = 1; |
| break; |
| default: |
| r = 0; |
| break; |
| } |
| break; |
| } |
| case KVM_GET_VCPU_MMAP_SIZE: |
| r = -EINVAL; |
| if (arg) |
| goto out; |
| r = 2 * PAGE_SIZE; |
| break; |
| default: |
| return kvm_arch_dev_ioctl(filp, ioctl, arg); |
| } |
| out: |
| return r; |
| } |
| |
| static struct file_operations kvm_chardev_ops = { |
| .unlocked_ioctl = kvm_dev_ioctl, |
| .compat_ioctl = kvm_dev_ioctl, |
| }; |
| |
| static struct miscdevice kvm_dev = { |
| KVM_MINOR, |
| "kvm", |
| &kvm_chardev_ops, |
| }; |
| |
| /* |
| * Make sure that a cpu that is being hot-unplugged does not have any vcpus |
| * cached on it. |
| */ |
| static void decache_vcpus_on_cpu(int cpu) |
| { |
| struct kvm *vm; |
| struct kvm_vcpu *vcpu; |
| int i; |
| |
| spin_lock(&kvm_lock); |
| list_for_each_entry(vm, &vm_list, vm_list) |
| for (i = 0; i < KVM_MAX_VCPUS; ++i) { |
| vcpu = vm->vcpus[i]; |
| if (!vcpu) |
| continue; |
| /* |
| * If the vcpu is locked, then it is running on some |
| * other cpu and therefore it is not cached on the |
| * cpu in question. |
| * |
| * If it's not locked, check the last cpu it executed |
| * on. |
| */ |
| if (mutex_trylock(&vcpu->mutex)) { |
| if (vcpu->cpu == cpu) { |
| kvm_x86_ops->vcpu_decache(vcpu); |
| vcpu->cpu = -1; |
| } |
| mutex_unlock(&vcpu->mutex); |
| } |
| } |
| spin_unlock(&kvm_lock); |
| } |
| |
| static void hardware_enable(void *junk) |
| { |
| int cpu = raw_smp_processor_id(); |
| |
| if (cpu_isset(cpu, cpus_hardware_enabled)) |
| return; |
| cpu_set(cpu, cpus_hardware_enabled); |
| kvm_x86_ops->hardware_enable(NULL); |
| } |
| |
| static void hardware_disable(void *junk) |
| { |
| int cpu = raw_smp_processor_id(); |
| |
| if (!cpu_isset(cpu, cpus_hardware_enabled)) |
| return; |
| cpu_clear(cpu, cpus_hardware_enabled); |
| decache_vcpus_on_cpu(cpu); |
| kvm_x86_ops->hardware_disable(NULL); |
| } |
| |
| static int kvm_cpu_hotplug(struct notifier_block *notifier, unsigned long val, |
| void *v) |
| { |
| int cpu = (long)v; |
| |
| switch (val) { |
| case CPU_DYING: |
| case CPU_DYING_FROZEN: |
| printk(KERN_INFO "kvm: disabling virtualization on CPU%d\n", |
| cpu); |
| hardware_disable(NULL); |
| break; |
| case CPU_UP_CANCELED: |
| case CPU_UP_CANCELED_FROZEN: |
| printk(KERN_INFO "kvm: disabling virtualization on CPU%d\n", |
| cpu); |
| smp_call_function_single(cpu, hardware_disable, NULL, 0, 1); |
| break; |
| case CPU_ONLINE: |
| case CPU_ONLINE_FROZEN: |
| printk(KERN_INFO "kvm: enabling virtualization on CPU%d\n", |
| cpu); |
| smp_call_function_single(cpu, hardware_enable, NULL, 0, 1); |
| break; |
| } |
| return NOTIFY_OK; |
| } |
| |
| static int kvm_reboot(struct notifier_block *notifier, unsigned long val, |
| void *v) |
| { |
| if (val == SYS_RESTART) { |
| /* |
| * Some (well, at least mine) BIOSes hang on reboot if |
| * in vmx root mode. |
| */ |
| printk(KERN_INFO "kvm: exiting hardware virtualization\n"); |
| on_each_cpu(hardware_disable, NULL, 0, 1); |
| } |
| return NOTIFY_OK; |
| } |
| |
| static struct notifier_block kvm_reboot_notifier = { |
| .notifier_call = kvm_reboot, |
| .priority = 0, |
| }; |
| |
| void kvm_io_bus_init(struct kvm_io_bus *bus) |
| { |
| memset(bus, 0, sizeof(*bus)); |
| } |
| |
| void kvm_io_bus_destroy(struct kvm_io_bus *bus) |
| { |
| int i; |
| |
| for (i = 0; i < bus->dev_count; i++) { |
| struct kvm_io_device *pos = bus->devs[i]; |
| |
| kvm_iodevice_destructor(pos); |
| } |
| } |
| |
| struct kvm_io_device *kvm_io_bus_find_dev(struct kvm_io_bus *bus, gpa_t addr) |
| { |
| int i; |
| |
| for (i = 0; i < bus->dev_count; i++) { |
| struct kvm_io_device *pos = bus->devs[i]; |
| |
| if (pos->in_range(pos, addr)) |
| return pos; |
| } |
| |
| return NULL; |
| } |
| |
| void kvm_io_bus_register_dev(struct kvm_io_bus *bus, struct kvm_io_device *dev) |
| { |
| BUG_ON(bus->dev_count > (NR_IOBUS_DEVS-1)); |
| |
| bus->devs[bus->dev_count++] = dev; |
| } |
| |
| static struct notifier_block kvm_cpu_notifier = { |
| .notifier_call = kvm_cpu_hotplug, |
| .priority = 20, /* must be > scheduler priority */ |
| }; |
| |
| static u64 stat_get(void *_offset) |
| { |
| unsigned offset = (long)_offset; |
| u64 total = 0; |
| struct kvm *kvm; |
| struct kvm_vcpu *vcpu; |
| int i; |
| |
| spin_lock(&kvm_lock); |
| list_for_each_entry(kvm, &vm_list, vm_list) |
| for (i = 0; i < KVM_MAX_VCPUS; ++i) { |
| vcpu = kvm->vcpus[i]; |
| if (vcpu) |
| total += *(u32 *)((void *)vcpu + offset); |
| } |
| spin_unlock(&kvm_lock); |
| return total; |
| } |
| |
| DEFINE_SIMPLE_ATTRIBUTE(stat_fops, stat_get, NULL, "%llu\n"); |
| |
| static __init void kvm_init_debug(void) |
| { |
| struct kvm_stats_debugfs_item *p; |
| |
| debugfs_dir = debugfs_create_dir("kvm", NULL); |
| for (p = debugfs_entries; p->name; ++p) |
| p->dentry = debugfs_create_file(p->name, 0444, debugfs_dir, |
| (void *)(long)p->offset, |
| &stat_fops); |
| } |
| |
| static void kvm_exit_debug(void) |
| { |
| struct kvm_stats_debugfs_item *p; |
| |
| for (p = debugfs_entries; p->name; ++p) |
| debugfs_remove(p->dentry); |
| debugfs_remove(debugfs_dir); |
| } |
| |
| static int kvm_suspend(struct sys_device *dev, pm_message_t state) |
| { |
| hardware_disable(NULL); |
| return 0; |
| } |
| |
| static int kvm_resume(struct sys_device *dev) |
| { |
| hardware_enable(NULL); |
| return 0; |
| } |
| |
| static struct sysdev_class kvm_sysdev_class = { |
| .name = "kvm", |
| .suspend = kvm_suspend, |
| .resume = kvm_resume, |
| }; |
| |
| static struct sys_device kvm_sysdev = { |
| .id = 0, |
| .cls = &kvm_sysdev_class, |
| }; |
| |
| struct page *bad_page; |
| |
| static inline |
| struct kvm_vcpu *preempt_notifier_to_vcpu(struct preempt_notifier *pn) |
| { |
| return container_of(pn, struct kvm_vcpu, preempt_notifier); |
| } |
| |
| static void kvm_sched_in(struct preempt_notifier *pn, int cpu) |
| { |
| struct kvm_vcpu *vcpu = preempt_notifier_to_vcpu(pn); |
| |
| kvm_x86_ops->vcpu_load(vcpu, cpu); |
| } |
| |
| static void kvm_sched_out(struct preempt_notifier *pn, |
| struct task_struct *next) |
| { |
| struct kvm_vcpu *vcpu = preempt_notifier_to_vcpu(pn); |
| |
| kvm_x86_ops->vcpu_put(vcpu); |
| } |
| |
| int kvm_init_x86(struct kvm_x86_ops *ops, unsigned int vcpu_size, |
| struct module *module) |
| { |
| int r; |
| int cpu; |
| |
| if (kvm_x86_ops) { |
| printk(KERN_ERR "kvm: already loaded the other module\n"); |
| return -EEXIST; |
| } |
| |
| if (!ops->cpu_has_kvm_support()) { |
| printk(KERN_ERR "kvm: no hardware support\n"); |
| return -EOPNOTSUPP; |
| } |
| if (ops->disabled_by_bios()) { |
| printk(KERN_ERR "kvm: disabled by bios\n"); |
| return -EOPNOTSUPP; |
| } |
| |
| kvm_x86_ops = ops; |
| |
| r = kvm_x86_ops->hardware_setup(); |
| if (r < 0) |
| goto out; |
| |
| for_each_online_cpu(cpu) { |
| smp_call_function_single(cpu, |
| kvm_x86_ops->check_processor_compatibility, |
| &r, 0, 1); |
| if (r < 0) |
| goto out_free_0; |
| } |
| |
| on_each_cpu(hardware_enable, NULL, 0, 1); |
| r = register_cpu_notifier(&kvm_cpu_notifier); |
| if (r) |
| goto out_free_1; |
| register_reboot_notifier(&kvm_reboot_notifier); |
| |
| r = sysdev_class_register(&kvm_sysdev_class); |
| if (r) |
| goto out_free_2; |
| |
| r = sysdev_register(&kvm_sysdev); |
| if (r) |
| goto out_free_3; |
| |
| /* A kmem cache lets us meet the alignment requirements of fx_save. */ |
| kvm_vcpu_cache = kmem_cache_create("kvm_vcpu", vcpu_size, |
| __alignof__(struct kvm_vcpu), 0, 0); |
| if (!kvm_vcpu_cache) { |
| r = -ENOMEM; |
| goto out_free_4; |
| } |
| |
| kvm_chardev_ops.owner = module; |
| |
| r = misc_register(&kvm_dev); |
| if (r) { |
| printk(KERN_ERR "kvm: misc device register failed\n"); |
| goto out_free; |
| } |
| |
| kvm_preempt_ops.sched_in = kvm_sched_in; |
| kvm_preempt_ops.sched_out = kvm_sched_out; |
| |
| kvm_mmu_set_nonpresent_ptes(0ull, 0ull); |
| |
| return 0; |
| |
| out_free: |
| kmem_cache_destroy(kvm_vcpu_cache); |
| out_free_4: |
| sysdev_unregister(&kvm_sysdev); |
| out_free_3: |
| sysdev_class_unregister(&kvm_sysdev_class); |
| out_free_2: |
| unregister_reboot_notifier(&kvm_reboot_notifier); |
| unregister_cpu_notifier(&kvm_cpu_notifier); |
| out_free_1: |
| on_each_cpu(hardware_disable, NULL, 0, 1); |
| out_free_0: |
| kvm_x86_ops->hardware_unsetup(); |
| out: |
| kvm_x86_ops = NULL; |
| return r; |
| } |
| EXPORT_SYMBOL_GPL(kvm_init_x86); |
| |
| void kvm_exit_x86(void) |
| { |
| misc_deregister(&kvm_dev); |
| kmem_cache_destroy(kvm_vcpu_cache); |
| sysdev_unregister(&kvm_sysdev); |
| sysdev_class_unregister(&kvm_sysdev_class); |
| unregister_reboot_notifier(&kvm_reboot_notifier); |
| unregister_cpu_notifier(&kvm_cpu_notifier); |
| on_each_cpu(hardware_disable, NULL, 0, 1); |
| kvm_x86_ops->hardware_unsetup(); |
| kvm_x86_ops = NULL; |
| } |
| EXPORT_SYMBOL_GPL(kvm_exit_x86); |
| |
| static __init int kvm_init(void) |
| { |
| int r; |
| |
| r = kvm_mmu_module_init(); |
| if (r) |
| goto out4; |
| |
| kvm_init_debug(); |
| |
| kvm_arch_init(); |
| |
| bad_page = alloc_page(GFP_KERNEL | __GFP_ZERO); |
| |
| if (bad_page == NULL) { |
| r = -ENOMEM; |
| goto out; |
| } |
| |
| return 0; |
| |
| out: |
| kvm_exit_debug(); |
| kvm_mmu_module_exit(); |
| out4: |
| return r; |
| } |
| |
| static __exit void kvm_exit(void) |
| { |
| kvm_exit_debug(); |
| __free_page(bad_page); |
| kvm_mmu_module_exit(); |
| } |
| |
| module_init(kvm_init) |
| module_exit(kvm_exit) |