| // SPDX-License-Identifier: GPL-2.0 |
| /* |
| * Copyright 2019 Google LLC |
| */ |
| |
| #include <linux/keyslot-manager.h> |
| #include "ufshcd.h" |
| #include "ufshcd-crypto.h" |
| |
| static bool ufshcd_cap_idx_valid(struct ufs_hba *hba, unsigned int cap_idx) |
| { |
| return cap_idx < hba->crypto_capabilities.num_crypto_cap; |
| } |
| |
| static u8 get_data_unit_size_mask(unsigned int data_unit_size) |
| { |
| if (data_unit_size < 512 || data_unit_size > 65536 || |
| !is_power_of_2(data_unit_size)) |
| return 0; |
| |
| return data_unit_size / 512; |
| } |
| |
| static size_t get_keysize_bytes(enum ufs_crypto_key_size size) |
| { |
| switch (size) { |
| case UFS_CRYPTO_KEY_SIZE_128: |
| return 16; |
| case UFS_CRYPTO_KEY_SIZE_192: |
| return 24; |
| case UFS_CRYPTO_KEY_SIZE_256: |
| return 32; |
| case UFS_CRYPTO_KEY_SIZE_512: |
| return 64; |
| default: |
| return 0; |
| } |
| } |
| |
| int ufshcd_crypto_cap_find(struct ufs_hba *hba, |
| enum blk_crypto_mode_num crypto_mode, |
| unsigned int data_unit_size) |
| { |
| enum ufs_crypto_alg ufs_alg; |
| u8 data_unit_mask; |
| int cap_idx; |
| enum ufs_crypto_key_size ufs_key_size; |
| union ufs_crypto_cap_entry *ccap_array = hba->crypto_cap_array; |
| |
| if (!ufshcd_hba_is_crypto_supported(hba)) |
| return -EINVAL; |
| |
| switch (crypto_mode) { |
| case BLK_ENCRYPTION_MODE_AES_256_XTS: |
| ufs_alg = UFS_CRYPTO_ALG_AES_XTS; |
| ufs_key_size = UFS_CRYPTO_KEY_SIZE_256; |
| break; |
| default: |
| return -EINVAL; |
| } |
| |
| data_unit_mask = get_data_unit_size_mask(data_unit_size); |
| |
| for (cap_idx = 0; cap_idx < hba->crypto_capabilities.num_crypto_cap; |
| cap_idx++) { |
| if (ccap_array[cap_idx].algorithm_id == ufs_alg && |
| (ccap_array[cap_idx].sdus_mask & data_unit_mask) && |
| ccap_array[cap_idx].key_size == ufs_key_size) |
| return cap_idx; |
| } |
| |
| return -EINVAL; |
| } |
| EXPORT_SYMBOL(ufshcd_crypto_cap_find); |
| |
| /** |
| * ufshcd_crypto_cfg_entry_write_key - Write a key into a crypto_cfg_entry |
| * |
| * Writes the key with the appropriate format - for AES_XTS, |
| * the first half of the key is copied as is, the second half is |
| * copied with an offset halfway into the cfg->crypto_key array. |
| * For the other supported crypto algs, the key is just copied. |
| * |
| * @cfg: The crypto config to write to |
| * @key: The key to write |
| * @cap: The crypto capability (which specifies the crypto alg and key size) |
| * |
| * Returns 0 on success, or -EINVAL |
| */ |
| static int ufshcd_crypto_cfg_entry_write_key(union ufs_crypto_cfg_entry *cfg, |
| const u8 *key, |
| union ufs_crypto_cap_entry cap) |
| { |
| size_t key_size_bytes = get_keysize_bytes(cap.key_size); |
| |
| if (key_size_bytes == 0) |
| return -EINVAL; |
| |
| switch (cap.algorithm_id) { |
| case UFS_CRYPTO_ALG_AES_XTS: |
| key_size_bytes *= 2; |
| if (key_size_bytes > UFS_CRYPTO_KEY_MAX_SIZE) |
| return -EINVAL; |
| |
| memcpy(cfg->crypto_key, key, key_size_bytes/2); |
| memcpy(cfg->crypto_key + UFS_CRYPTO_KEY_MAX_SIZE/2, |
| key + key_size_bytes/2, key_size_bytes/2); |
| return 0; |
| case UFS_CRYPTO_ALG_BITLOCKER_AES_CBC: |
| /* fall through */ |
| case UFS_CRYPTO_ALG_AES_ECB: |
| /* fall through */ |
| case UFS_CRYPTO_ALG_ESSIV_AES_CBC: |
| memcpy(cfg->crypto_key, key, key_size_bytes); |
| return 0; |
| } |
| |
| return -EINVAL; |
| } |
| |
| static void ufshcd_program_key(struct ufs_hba *hba, |
| const union ufs_crypto_cfg_entry *cfg, |
| int slot) |
| { |
| int i; |
| u32 slot_offset = hba->crypto_cfg_register + slot * sizeof(*cfg); |
| |
| pm_runtime_get_sync(hba->dev); |
| ufshcd_hold(hba, false); |
| /* Clear the dword 16 */ |
| ufshcd_writel(hba, 0, slot_offset + 16 * sizeof(cfg->reg_val[0])); |
| /* Ensure that CFGE is cleared before programming the key */ |
| wmb(); |
| for (i = 0; i < 16; i++) { |
| ufshcd_writel(hba, le32_to_cpu(cfg->reg_val[i]), |
| slot_offset + i * sizeof(cfg->reg_val[0])); |
| /* Spec says each dword in key must be written sequentially */ |
| wmb(); |
| } |
| /* Write dword 17 */ |
| ufshcd_writel(hba, le32_to_cpu(cfg->reg_val[17]), |
| slot_offset + 17 * sizeof(cfg->reg_val[0])); |
| /* Dword 16 must be written last */ |
| wmb(); |
| /* Write dword 16 */ |
| ufshcd_writel(hba, le32_to_cpu(cfg->reg_val[16]), |
| slot_offset + 16 * sizeof(cfg->reg_val[0])); |
| wmb(); |
| ufshcd_release(hba); |
| pm_runtime_put_sync(hba->dev); |
| } |
| |
| static void ufshcd_clear_keyslot(struct ufs_hba *hba, int slot) |
| { |
| union ufs_crypto_cfg_entry cfg = { 0 }; |
| |
| ufshcd_program_key(hba, &cfg, slot); |
| } |
| |
| /* Clear all keyslots at driver init time */ |
| static void ufshcd_clear_all_keyslots(struct ufs_hba *hba) |
| { |
| int slot; |
| |
| for (slot = 0; slot < ufshcd_num_keyslots(hba); slot++) |
| ufshcd_clear_keyslot(hba, slot); |
| } |
| |
| static int ufshcd_crypto_keyslot_program(struct keyslot_manager *ksm, |
| const struct blk_crypto_key *key, |
| unsigned int slot) |
| { |
| struct ufs_hba *hba = keyslot_manager_private(ksm); |
| int err = 0; |
| u8 data_unit_mask; |
| union ufs_crypto_cfg_entry cfg; |
| int cap_idx; |
| |
| cap_idx = ufshcd_crypto_cap_find(hba, key->crypto_mode, |
| key->data_unit_size); |
| |
| if (!ufshcd_is_crypto_enabled(hba) || |
| !ufshcd_keyslot_valid(hba, slot) || |
| !ufshcd_cap_idx_valid(hba, cap_idx)) |
| return -EINVAL; |
| |
| data_unit_mask = get_data_unit_size_mask(key->data_unit_size); |
| |
| if (!(data_unit_mask & hba->crypto_cap_array[cap_idx].sdus_mask)) |
| return -EINVAL; |
| |
| memset(&cfg, 0, sizeof(cfg)); |
| cfg.data_unit_size = data_unit_mask; |
| cfg.crypto_cap_idx = cap_idx; |
| cfg.config_enable |= UFS_CRYPTO_CONFIGURATION_ENABLE; |
| |
| err = ufshcd_crypto_cfg_entry_write_key(&cfg, key->raw, |
| hba->crypto_cap_array[cap_idx]); |
| if (err) |
| return err; |
| |
| ufshcd_program_key(hba, &cfg, slot); |
| |
| memzero_explicit(&cfg, sizeof(cfg)); |
| return 0; |
| } |
| |
| static int ufshcd_crypto_keyslot_evict(struct keyslot_manager *ksm, |
| const struct blk_crypto_key *key, |
| unsigned int slot) |
| { |
| struct ufs_hba *hba = keyslot_manager_private(ksm); |
| |
| if (!ufshcd_is_crypto_enabled(hba) || |
| !ufshcd_keyslot_valid(hba, slot)) |
| return -EINVAL; |
| |
| /* |
| * Clear the crypto cfg on the device. Clearing CFGE |
| * might not be sufficient, so just clear the entire cfg. |
| */ |
| ufshcd_clear_keyslot(hba, slot); |
| |
| return 0; |
| } |
| |
| /* Functions implementing UFSHCI v2.1 specification behaviour */ |
| void ufshcd_crypto_enable_spec(struct ufs_hba *hba) |
| { |
| if (!ufshcd_hba_is_crypto_supported(hba)) |
| return; |
| |
| hba->caps |= UFSHCD_CAP_CRYPTO; |
| |
| /* Reset might clear all keys, so reprogram all the keys. */ |
| keyslot_manager_reprogram_all_keys(hba->ksm); |
| } |
| EXPORT_SYMBOL_GPL(ufshcd_crypto_enable_spec); |
| |
| void ufshcd_crypto_disable_spec(struct ufs_hba *hba) |
| { |
| hba->caps &= ~UFSHCD_CAP_CRYPTO; |
| } |
| EXPORT_SYMBOL_GPL(ufshcd_crypto_disable_spec); |
| |
| static const struct keyslot_mgmt_ll_ops ufshcd_ksm_ops = { |
| .keyslot_program = ufshcd_crypto_keyslot_program, |
| .keyslot_evict = ufshcd_crypto_keyslot_evict, |
| }; |
| |
| enum blk_crypto_mode_num ufshcd_blk_crypto_mode_num_for_alg_dusize( |
| enum ufs_crypto_alg ufs_crypto_alg, |
| enum ufs_crypto_key_size key_size) |
| { |
| /* |
| * This is currently the only mode that UFS and blk-crypto both support. |
| */ |
| if (ufs_crypto_alg == UFS_CRYPTO_ALG_AES_XTS && |
| key_size == UFS_CRYPTO_KEY_SIZE_256) |
| return BLK_ENCRYPTION_MODE_AES_256_XTS; |
| |
| return BLK_ENCRYPTION_MODE_INVALID; |
| } |
| |
| /** |
| * ufshcd_hba_init_crypto - Read crypto capabilities, init crypto fields in hba |
| * @hba: Per adapter instance |
| * |
| * Return: 0 if crypto was initialized or is not supported, else a -errno value. |
| */ |
| int ufshcd_hba_init_crypto_spec(struct ufs_hba *hba, |
| const struct keyslot_mgmt_ll_ops *ksm_ops) |
| { |
| int cap_idx = 0; |
| int err = 0; |
| unsigned int crypto_modes_supported[BLK_ENCRYPTION_MODE_MAX]; |
| enum blk_crypto_mode_num blk_mode_num; |
| |
| /* Default to disabling crypto */ |
| hba->caps &= ~UFSHCD_CAP_CRYPTO; |
| |
| /* Return 0 if crypto support isn't present */ |
| if (!(hba->capabilities & MASK_CRYPTO_SUPPORT) || |
| (hba->quirks & UFSHCD_QUIRK_BROKEN_CRYPTO)) |
| goto out; |
| |
| /* |
| * Crypto Capabilities should never be 0, because the |
| * config_array_ptr > 04h. So we use a 0 value to indicate that |
| * crypto init failed, and can't be enabled. |
| */ |
| hba->crypto_capabilities.reg_val = |
| cpu_to_le32(ufshcd_readl(hba, REG_UFS_CCAP)); |
| hba->crypto_cfg_register = |
| (u32)hba->crypto_capabilities.config_array_ptr * 0x100; |
| hba->crypto_cap_array = |
| devm_kcalloc(hba->dev, |
| hba->crypto_capabilities.num_crypto_cap, |
| sizeof(hba->crypto_cap_array[0]), |
| GFP_KERNEL); |
| if (!hba->crypto_cap_array) { |
| err = -ENOMEM; |
| goto out; |
| } |
| |
| memset(crypto_modes_supported, 0, sizeof(crypto_modes_supported)); |
| /* |
| * Store all the capabilities now so that we don't need to repeatedly |
| * access the device each time we want to know its capabilities |
| */ |
| for (cap_idx = 0; cap_idx < hba->crypto_capabilities.num_crypto_cap; |
| cap_idx++) { |
| hba->crypto_cap_array[cap_idx].reg_val = |
| cpu_to_le32(ufshcd_readl(hba, |
| REG_UFS_CRYPTOCAP + |
| cap_idx * sizeof(__le32))); |
| blk_mode_num = ufshcd_blk_crypto_mode_num_for_alg_dusize( |
| hba->crypto_cap_array[cap_idx].algorithm_id, |
| hba->crypto_cap_array[cap_idx].key_size); |
| if (blk_mode_num == BLK_ENCRYPTION_MODE_INVALID) |
| continue; |
| crypto_modes_supported[blk_mode_num] |= |
| hba->crypto_cap_array[cap_idx].sdus_mask * 512; |
| } |
| |
| ufshcd_clear_all_keyslots(hba); |
| |
| hba->ksm = keyslot_manager_create(ufshcd_num_keyslots(hba), ksm_ops, |
| crypto_modes_supported, hba); |
| |
| if (!hba->ksm) { |
| err = -ENOMEM; |
| goto out_free_caps; |
| } |
| |
| return 0; |
| |
| out_free_caps: |
| devm_kfree(hba->dev, hba->crypto_cap_array); |
| out: |
| /* Indicate that init failed by setting crypto_capabilities to 0 */ |
| hba->crypto_capabilities.reg_val = 0; |
| return err; |
| } |
| EXPORT_SYMBOL_GPL(ufshcd_hba_init_crypto_spec); |
| |
| void ufshcd_crypto_setup_rq_keyslot_manager_spec(struct ufs_hba *hba, |
| struct request_queue *q) |
| { |
| if (!ufshcd_hba_is_crypto_supported(hba) || !q) |
| return; |
| |
| q->ksm = hba->ksm; |
| } |
| EXPORT_SYMBOL_GPL(ufshcd_crypto_setup_rq_keyslot_manager_spec); |
| |
| void ufshcd_crypto_destroy_rq_keyslot_manager_spec(struct ufs_hba *hba, |
| struct request_queue *q) |
| { |
| keyslot_manager_destroy(hba->ksm); |
| } |
| EXPORT_SYMBOL_GPL(ufshcd_crypto_destroy_rq_keyslot_manager_spec); |
| |
| int ufshcd_prepare_lrbp_crypto_spec(struct ufs_hba *hba, |
| struct scsi_cmnd *cmd, |
| struct ufshcd_lrb *lrbp) |
| { |
| struct bio_crypt_ctx *bc; |
| |
| if (!bio_crypt_should_process(cmd->request)) { |
| lrbp->crypto_enable = false; |
| return 0; |
| } |
| bc = cmd->request->bio->bi_crypt_context; |
| |
| if (WARN_ON(!ufshcd_is_crypto_enabled(hba))) { |
| /* |
| * Upper layer asked us to do inline encryption |
| * but that isn't enabled, so we fail this request. |
| */ |
| return -EINVAL; |
| } |
| if (!ufshcd_keyslot_valid(hba, bc->bc_keyslot)) |
| return -EINVAL; |
| |
| lrbp->crypto_enable = true; |
| lrbp->crypto_key_slot = bc->bc_keyslot; |
| lrbp->data_unit_num = bc->bc_dun[0]; |
| |
| return 0; |
| } |
| EXPORT_SYMBOL_GPL(ufshcd_prepare_lrbp_crypto_spec); |
| |
| /* Crypto Variant Ops Support */ |
| |
| void ufshcd_crypto_enable(struct ufs_hba *hba) |
| { |
| if (hba->crypto_vops && hba->crypto_vops->enable) |
| return hba->crypto_vops->enable(hba); |
| |
| return ufshcd_crypto_enable_spec(hba); |
| } |
| |
| void ufshcd_crypto_disable(struct ufs_hba *hba) |
| { |
| if (hba->crypto_vops && hba->crypto_vops->disable) |
| return hba->crypto_vops->disable(hba); |
| |
| return ufshcd_crypto_disable_spec(hba); |
| } |
| |
| int ufshcd_hba_init_crypto(struct ufs_hba *hba) |
| { |
| if (hba->crypto_vops && hba->crypto_vops->hba_init_crypto) |
| return hba->crypto_vops->hba_init_crypto(hba, |
| &ufshcd_ksm_ops); |
| |
| return ufshcd_hba_init_crypto_spec(hba, &ufshcd_ksm_ops); |
| } |
| |
| void ufshcd_crypto_setup_rq_keyslot_manager(struct ufs_hba *hba, |
| struct request_queue *q) |
| { |
| if (hba->crypto_vops && hba->crypto_vops->setup_rq_keyslot_manager) |
| return hba->crypto_vops->setup_rq_keyslot_manager(hba, q); |
| |
| return ufshcd_crypto_setup_rq_keyslot_manager_spec(hba, q); |
| } |
| |
| void ufshcd_crypto_destroy_rq_keyslot_manager(struct ufs_hba *hba, |
| struct request_queue *q) |
| { |
| if (hba->crypto_vops && hba->crypto_vops->destroy_rq_keyslot_manager) |
| return hba->crypto_vops->destroy_rq_keyslot_manager(hba, q); |
| |
| return ufshcd_crypto_destroy_rq_keyslot_manager_spec(hba, q); |
| } |
| |
| int ufshcd_prepare_lrbp_crypto(struct ufs_hba *hba, |
| struct scsi_cmnd *cmd, |
| struct ufshcd_lrb *lrbp) |
| { |
| if (hba->crypto_vops && hba->crypto_vops->prepare_lrbp_crypto) |
| return hba->crypto_vops->prepare_lrbp_crypto(hba, cmd, lrbp); |
| |
| return ufshcd_prepare_lrbp_crypto_spec(hba, cmd, lrbp); |
| } |
| |
| int ufshcd_complete_lrbp_crypto(struct ufs_hba *hba, |
| struct scsi_cmnd *cmd, |
| struct ufshcd_lrb *lrbp) |
| { |
| if (hba->crypto_vops && hba->crypto_vops->complete_lrbp_crypto) |
| return hba->crypto_vops->complete_lrbp_crypto(hba, cmd, lrbp); |
| |
| return 0; |
| } |
| |
| void ufshcd_crypto_debug(struct ufs_hba *hba) |
| { |
| if (hba->crypto_vops && hba->crypto_vops->debug) |
| hba->crypto_vops->debug(hba); |
| } |
| |
| int ufshcd_crypto_suspend(struct ufs_hba *hba, |
| enum ufs_pm_op pm_op) |
| { |
| if (hba->crypto_vops && hba->crypto_vops->suspend) |
| return hba->crypto_vops->suspend(hba, pm_op); |
| |
| return 0; |
| } |
| |
| int ufshcd_crypto_resume(struct ufs_hba *hba, |
| enum ufs_pm_op pm_op) |
| { |
| if (hba->crypto_vops && hba->crypto_vops->resume) |
| return hba->crypto_vops->resume(hba, pm_op); |
| |
| return 0; |
| } |
| |
| void ufshcd_crypto_set_vops(struct ufs_hba *hba, |
| struct ufs_hba_crypto_variant_ops *crypto_vops) |
| { |
| hba->crypto_vops = crypto_vops; |
| } |