| // SPDX-License-Identifier: GPL-2.0 |
| /* |
| * Copyright (c) 2000-2005 Silicon Graphics, Inc. |
| * All Rights Reserved. |
| */ |
| #include "xfs.h" |
| #include "xfs_fs.h" |
| #include "xfs_shared.h" |
| #include "xfs_format.h" |
| #include "xfs_log_format.h" |
| #include "xfs_trans_resv.h" |
| #include "xfs_bit.h" |
| #include "xfs_sb.h" |
| #include "xfs_mount.h" |
| #include "xfs_ialloc.h" |
| #include "xfs_alloc.h" |
| #include "xfs_error.h" |
| #include "xfs_trace.h" |
| #include "xfs_trans.h" |
| #include "xfs_buf_item.h" |
| #include "xfs_bmap_btree.h" |
| #include "xfs_alloc_btree.h" |
| #include "xfs_log.h" |
| #include "xfs_rmap_btree.h" |
| #include "xfs_refcount_btree.h" |
| #include "xfs_da_format.h" |
| #include "xfs_health.h" |
| |
| /* |
| * Physical superblock buffer manipulations. Shared with libxfs in userspace. |
| */ |
| |
| /* |
| * Reference counting access wrappers to the perag structures. |
| * Because we never free per-ag structures, the only thing we |
| * have to protect against changes is the tree structure itself. |
| */ |
| struct xfs_perag * |
| xfs_perag_get( |
| struct xfs_mount *mp, |
| xfs_agnumber_t agno) |
| { |
| struct xfs_perag *pag; |
| int ref = 0; |
| |
| rcu_read_lock(); |
| pag = radix_tree_lookup(&mp->m_perag_tree, agno); |
| if (pag) { |
| ASSERT(atomic_read(&pag->pag_ref) >= 0); |
| ref = atomic_inc_return(&pag->pag_ref); |
| } |
| rcu_read_unlock(); |
| trace_xfs_perag_get(mp, agno, ref, _RET_IP_); |
| return pag; |
| } |
| |
| /* |
| * search from @first to find the next perag with the given tag set. |
| */ |
| struct xfs_perag * |
| xfs_perag_get_tag( |
| struct xfs_mount *mp, |
| xfs_agnumber_t first, |
| int tag) |
| { |
| struct xfs_perag *pag; |
| int found; |
| int ref; |
| |
| rcu_read_lock(); |
| found = radix_tree_gang_lookup_tag(&mp->m_perag_tree, |
| (void **)&pag, first, 1, tag); |
| if (found <= 0) { |
| rcu_read_unlock(); |
| return NULL; |
| } |
| ref = atomic_inc_return(&pag->pag_ref); |
| rcu_read_unlock(); |
| trace_xfs_perag_get_tag(mp, pag->pag_agno, ref, _RET_IP_); |
| return pag; |
| } |
| |
| void |
| xfs_perag_put( |
| struct xfs_perag *pag) |
| { |
| int ref; |
| |
| ASSERT(atomic_read(&pag->pag_ref) > 0); |
| ref = atomic_dec_return(&pag->pag_ref); |
| trace_xfs_perag_put(pag->pag_mount, pag->pag_agno, ref, _RET_IP_); |
| } |
| |
| /* Check all the superblock fields we care about when reading one in. */ |
| STATIC int |
| xfs_validate_sb_read( |
| struct xfs_mount *mp, |
| struct xfs_sb *sbp) |
| { |
| if (XFS_SB_VERSION_NUM(sbp) != XFS_SB_VERSION_5) |
| return 0; |
| |
| /* |
| * Version 5 superblock feature mask validation. Reject combinations |
| * the kernel cannot support up front before checking anything else. |
| */ |
| if (xfs_sb_has_compat_feature(sbp, XFS_SB_FEAT_COMPAT_UNKNOWN)) { |
| xfs_warn(mp, |
| "Superblock has unknown compatible features (0x%x) enabled.", |
| (sbp->sb_features_compat & XFS_SB_FEAT_COMPAT_UNKNOWN)); |
| xfs_warn(mp, |
| "Using a more recent kernel is recommended."); |
| } |
| |
| if (xfs_sb_has_ro_compat_feature(sbp, XFS_SB_FEAT_RO_COMPAT_UNKNOWN)) { |
| xfs_alert(mp, |
| "Superblock has unknown read-only compatible features (0x%x) enabled.", |
| (sbp->sb_features_ro_compat & |
| XFS_SB_FEAT_RO_COMPAT_UNKNOWN)); |
| if (!(mp->m_flags & XFS_MOUNT_RDONLY)) { |
| xfs_warn(mp, |
| "Attempted to mount read-only compatible filesystem read-write."); |
| xfs_warn(mp, |
| "Filesystem can only be safely mounted read only."); |
| |
| return -EINVAL; |
| } |
| } |
| if (xfs_sb_has_incompat_feature(sbp, XFS_SB_FEAT_INCOMPAT_UNKNOWN)) { |
| xfs_warn(mp, |
| "Superblock has unknown incompatible features (0x%x) enabled.", |
| (sbp->sb_features_incompat & |
| XFS_SB_FEAT_INCOMPAT_UNKNOWN)); |
| xfs_warn(mp, |
| "Filesystem cannot be safely mounted by this kernel."); |
| return -EINVAL; |
| } |
| |
| return 0; |
| } |
| |
| /* Check all the superblock fields we care about when writing one out. */ |
| STATIC int |
| xfs_validate_sb_write( |
| struct xfs_mount *mp, |
| struct xfs_buf *bp, |
| struct xfs_sb *sbp) |
| { |
| /* |
| * Carry out additional sb summary counter sanity checks when we write |
| * the superblock. We skip this in the read validator because there |
| * could be newer superblocks in the log and if the values are garbage |
| * even after replay we'll recalculate them at the end of log mount. |
| * |
| * mkfs has traditionally written zeroed counters to inprogress and |
| * secondary superblocks, so allow this usage to continue because |
| * we never read counters from such superblocks. |
| */ |
| if (XFS_BUF_ADDR(bp) == XFS_SB_DADDR && !sbp->sb_inprogress && |
| (sbp->sb_fdblocks > sbp->sb_dblocks || |
| !xfs_verify_icount(mp, sbp->sb_icount) || |
| sbp->sb_ifree > sbp->sb_icount)) { |
| xfs_warn(mp, "SB summary counter sanity check failed"); |
| return -EFSCORRUPTED; |
| } |
| |
| if (XFS_SB_VERSION_NUM(sbp) != XFS_SB_VERSION_5) |
| return 0; |
| |
| /* |
| * Version 5 superblock feature mask validation. Reject combinations |
| * the kernel cannot support since we checked for unsupported bits in |
| * the read verifier, which means that memory is corrupt. |
| */ |
| if (xfs_sb_has_compat_feature(sbp, XFS_SB_FEAT_COMPAT_UNKNOWN)) { |
| xfs_warn(mp, |
| "Corruption detected in superblock compatible features (0x%x)!", |
| (sbp->sb_features_compat & XFS_SB_FEAT_COMPAT_UNKNOWN)); |
| return -EFSCORRUPTED; |
| } |
| |
| if (xfs_sb_has_ro_compat_feature(sbp, XFS_SB_FEAT_RO_COMPAT_UNKNOWN)) { |
| xfs_alert(mp, |
| "Corruption detected in superblock read-only compatible features (0x%x)!", |
| (sbp->sb_features_ro_compat & |
| XFS_SB_FEAT_RO_COMPAT_UNKNOWN)); |
| return -EFSCORRUPTED; |
| } |
| if (xfs_sb_has_incompat_feature(sbp, XFS_SB_FEAT_INCOMPAT_UNKNOWN)) { |
| xfs_warn(mp, |
| "Corruption detected in superblock incompatible features (0x%x)!", |
| (sbp->sb_features_incompat & |
| XFS_SB_FEAT_INCOMPAT_UNKNOWN)); |
| return -EFSCORRUPTED; |
| } |
| if (xfs_sb_has_incompat_log_feature(sbp, |
| XFS_SB_FEAT_INCOMPAT_LOG_UNKNOWN)) { |
| xfs_warn(mp, |
| "Corruption detected in superblock incompatible log features (0x%x)!", |
| (sbp->sb_features_log_incompat & |
| XFS_SB_FEAT_INCOMPAT_LOG_UNKNOWN)); |
| return -EFSCORRUPTED; |
| } |
| |
| /* |
| * We can't read verify the sb LSN because the read verifier is called |
| * before the log is allocated and processed. We know the log is set up |
| * before write verifier calls, so check it here. |
| */ |
| if (!xfs_log_check_lsn(mp, sbp->sb_lsn)) |
| return -EFSCORRUPTED; |
| |
| return 0; |
| } |
| |
| /* Check the validity of the SB. */ |
| STATIC int |
| xfs_validate_sb_common( |
| struct xfs_mount *mp, |
| struct xfs_buf *bp, |
| struct xfs_sb *sbp) |
| { |
| struct xfs_dsb *dsb = bp->b_addr; |
| uint32_t agcount = 0; |
| uint32_t rem; |
| |
| if (!xfs_verify_magic(bp, dsb->sb_magicnum)) { |
| xfs_warn(mp, "bad magic number"); |
| return -EWRONGFS; |
| } |
| |
| if (!xfs_sb_good_version(sbp)) { |
| xfs_warn(mp, "bad version"); |
| return -EWRONGFS; |
| } |
| |
| if (xfs_sb_version_has_pquotino(sbp)) { |
| if (sbp->sb_qflags & (XFS_OQUOTA_ENFD | XFS_OQUOTA_CHKD)) { |
| xfs_notice(mp, |
| "Version 5 of Super block has XFS_OQUOTA bits."); |
| return -EFSCORRUPTED; |
| } |
| } else if (sbp->sb_qflags & (XFS_PQUOTA_ENFD | XFS_GQUOTA_ENFD | |
| XFS_PQUOTA_CHKD | XFS_GQUOTA_CHKD)) { |
| xfs_notice(mp, |
| "Superblock earlier than Version 5 has XFS_[PQ]UOTA_{ENFD|CHKD} bits."); |
| return -EFSCORRUPTED; |
| } |
| |
| /* |
| * Full inode chunks must be aligned to inode chunk size when |
| * sparse inodes are enabled to support the sparse chunk |
| * allocation algorithm and prevent overlapping inode records. |
| */ |
| if (xfs_sb_version_hassparseinodes(sbp)) { |
| uint32_t align; |
| |
| align = XFS_INODES_PER_CHUNK * sbp->sb_inodesize |
| >> sbp->sb_blocklog; |
| if (sbp->sb_inoalignmt != align) { |
| xfs_warn(mp, |
| "Inode block alignment (%u) must match chunk size (%u) for sparse inodes.", |
| sbp->sb_inoalignmt, align); |
| return -EINVAL; |
| } |
| } |
| |
| if (unlikely( |
| sbp->sb_logstart == 0 && mp->m_logdev_targp == mp->m_ddev_targp)) { |
| xfs_warn(mp, |
| "filesystem is marked as having an external log; " |
| "specify logdev on the mount command line."); |
| return -EINVAL; |
| } |
| |
| if (unlikely( |
| sbp->sb_logstart != 0 && mp->m_logdev_targp != mp->m_ddev_targp)) { |
| xfs_warn(mp, |
| "filesystem is marked as having an internal log; " |
| "do not specify logdev on the mount command line."); |
| return -EINVAL; |
| } |
| |
| /* Compute agcount for this number of dblocks and agblocks */ |
| if (sbp->sb_agblocks) { |
| agcount = div_u64_rem(sbp->sb_dblocks, sbp->sb_agblocks, &rem); |
| if (rem) |
| agcount++; |
| } |
| |
| /* |
| * More sanity checking. Most of these were stolen directly from |
| * xfs_repair. |
| */ |
| if (unlikely( |
| sbp->sb_agcount <= 0 || |
| sbp->sb_sectsize < XFS_MIN_SECTORSIZE || |
| sbp->sb_sectsize > XFS_MAX_SECTORSIZE || |
| sbp->sb_sectlog < XFS_MIN_SECTORSIZE_LOG || |
| sbp->sb_sectlog > XFS_MAX_SECTORSIZE_LOG || |
| sbp->sb_sectsize != (1 << sbp->sb_sectlog) || |
| sbp->sb_blocksize < XFS_MIN_BLOCKSIZE || |
| sbp->sb_blocksize > XFS_MAX_BLOCKSIZE || |
| sbp->sb_blocklog < XFS_MIN_BLOCKSIZE_LOG || |
| sbp->sb_blocklog > XFS_MAX_BLOCKSIZE_LOG || |
| sbp->sb_blocksize != (1 << sbp->sb_blocklog) || |
| sbp->sb_dirblklog + sbp->sb_blocklog > XFS_MAX_BLOCKSIZE_LOG || |
| sbp->sb_inodesize < XFS_DINODE_MIN_SIZE || |
| sbp->sb_inodesize > XFS_DINODE_MAX_SIZE || |
| sbp->sb_inodelog < XFS_DINODE_MIN_LOG || |
| sbp->sb_inodelog > XFS_DINODE_MAX_LOG || |
| sbp->sb_inodesize != (1 << sbp->sb_inodelog) || |
| sbp->sb_logsunit > XLOG_MAX_RECORD_BSIZE || |
| sbp->sb_inopblock != howmany(sbp->sb_blocksize,sbp->sb_inodesize) || |
| XFS_FSB_TO_B(mp, sbp->sb_agblocks) < XFS_MIN_AG_BYTES || |
| XFS_FSB_TO_B(mp, sbp->sb_agblocks) > XFS_MAX_AG_BYTES || |
| sbp->sb_agblklog != xfs_highbit32(sbp->sb_agblocks - 1) + 1 || |
| agcount == 0 || agcount != sbp->sb_agcount || |
| (sbp->sb_blocklog - sbp->sb_inodelog != sbp->sb_inopblog) || |
| (sbp->sb_rextsize * sbp->sb_blocksize > XFS_MAX_RTEXTSIZE) || |
| (sbp->sb_rextsize * sbp->sb_blocksize < XFS_MIN_RTEXTSIZE) || |
| (sbp->sb_imax_pct > 100 /* zero sb_imax_pct is valid */) || |
| sbp->sb_dblocks == 0 || |
| sbp->sb_dblocks > XFS_MAX_DBLOCKS(sbp) || |
| sbp->sb_dblocks < XFS_MIN_DBLOCKS(sbp) || |
| sbp->sb_shared_vn != 0)) { |
| xfs_notice(mp, "SB sanity check failed"); |
| return -EFSCORRUPTED; |
| } |
| |
| if (sbp->sb_unit) { |
| if (!xfs_sb_version_hasdalign(sbp) || |
| sbp->sb_unit > sbp->sb_width || |
| (sbp->sb_width % sbp->sb_unit) != 0) { |
| xfs_notice(mp, "SB stripe unit sanity check failed"); |
| return -EFSCORRUPTED; |
| } |
| } else if (xfs_sb_version_hasdalign(sbp)) { |
| xfs_notice(mp, "SB stripe alignment sanity check failed"); |
| return -EFSCORRUPTED; |
| } else if (sbp->sb_width) { |
| xfs_notice(mp, "SB stripe width sanity check failed"); |
| return -EFSCORRUPTED; |
| } |
| |
| |
| if (xfs_sb_version_hascrc(&mp->m_sb) && |
| sbp->sb_blocksize < XFS_MIN_CRC_BLOCKSIZE) { |
| xfs_notice(mp, "v5 SB sanity check failed"); |
| return -EFSCORRUPTED; |
| } |
| |
| /* |
| * Until this is fixed only page-sized or smaller data blocks work. |
| */ |
| if (unlikely(sbp->sb_blocksize > PAGE_SIZE)) { |
| xfs_warn(mp, |
| "File system with blocksize %d bytes. " |
| "Only pagesize (%ld) or less will currently work.", |
| sbp->sb_blocksize, PAGE_SIZE); |
| return -ENOSYS; |
| } |
| |
| /* |
| * Currently only very few inode sizes are supported. |
| */ |
| switch (sbp->sb_inodesize) { |
| case 256: |
| case 512: |
| case 1024: |
| case 2048: |
| break; |
| default: |
| xfs_warn(mp, "inode size of %d bytes not supported", |
| sbp->sb_inodesize); |
| return -ENOSYS; |
| } |
| |
| if (xfs_sb_validate_fsb_count(sbp, sbp->sb_dblocks) || |
| xfs_sb_validate_fsb_count(sbp, sbp->sb_rblocks)) { |
| xfs_warn(mp, |
| "file system too large to be mounted on this system."); |
| return -EFBIG; |
| } |
| |
| /* |
| * Don't touch the filesystem if a user tool thinks it owns the primary |
| * superblock. mkfs doesn't clear the flag from secondary supers, so |
| * we don't check them at all. |
| */ |
| if (XFS_BUF_ADDR(bp) == XFS_SB_DADDR && sbp->sb_inprogress) { |
| xfs_warn(mp, "Offline file system operation in progress!"); |
| return -EFSCORRUPTED; |
| } |
| return 0; |
| } |
| |
| void |
| xfs_sb_quota_from_disk(struct xfs_sb *sbp) |
| { |
| /* |
| * older mkfs doesn't initialize quota inodes to NULLFSINO. This |
| * leads to in-core values having two different values for a quota |
| * inode to be invalid: 0 and NULLFSINO. Change it to a single value |
| * NULLFSINO. |
| * |
| * Note that this change affect only the in-core values. These |
| * values are not written back to disk unless any quota information |
| * is written to the disk. Even in that case, sb_pquotino field is |
| * not written to disk unless the superblock supports pquotino. |
| */ |
| if (sbp->sb_uquotino == 0) |
| sbp->sb_uquotino = NULLFSINO; |
| if (sbp->sb_gquotino == 0) |
| sbp->sb_gquotino = NULLFSINO; |
| if (sbp->sb_pquotino == 0) |
| sbp->sb_pquotino = NULLFSINO; |
| |
| /* |
| * We need to do these manipilations only if we are working |
| * with an older version of on-disk superblock. |
| */ |
| if (xfs_sb_version_has_pquotino(sbp)) |
| return; |
| |
| if (sbp->sb_qflags & XFS_OQUOTA_ENFD) |
| sbp->sb_qflags |= (sbp->sb_qflags & XFS_PQUOTA_ACCT) ? |
| XFS_PQUOTA_ENFD : XFS_GQUOTA_ENFD; |
| if (sbp->sb_qflags & XFS_OQUOTA_CHKD) |
| sbp->sb_qflags |= (sbp->sb_qflags & XFS_PQUOTA_ACCT) ? |
| XFS_PQUOTA_CHKD : XFS_GQUOTA_CHKD; |
| sbp->sb_qflags &= ~(XFS_OQUOTA_ENFD | XFS_OQUOTA_CHKD); |
| |
| if (sbp->sb_qflags & XFS_PQUOTA_ACCT && |
| sbp->sb_gquotino != NULLFSINO) { |
| /* |
| * In older version of superblock, on-disk superblock only |
| * has sb_gquotino, and in-core superblock has both sb_gquotino |
| * and sb_pquotino. But, only one of them is supported at any |
| * point of time. So, if PQUOTA is set in disk superblock, |
| * copy over sb_gquotino to sb_pquotino. The NULLFSINO test |
| * above is to make sure we don't do this twice and wipe them |
| * both out! |
| */ |
| sbp->sb_pquotino = sbp->sb_gquotino; |
| sbp->sb_gquotino = NULLFSINO; |
| } |
| } |
| |
| static void |
| __xfs_sb_from_disk( |
| struct xfs_sb *to, |
| xfs_dsb_t *from, |
| bool convert_xquota) |
| { |
| to->sb_magicnum = be32_to_cpu(from->sb_magicnum); |
| to->sb_blocksize = be32_to_cpu(from->sb_blocksize); |
| to->sb_dblocks = be64_to_cpu(from->sb_dblocks); |
| to->sb_rblocks = be64_to_cpu(from->sb_rblocks); |
| to->sb_rextents = be64_to_cpu(from->sb_rextents); |
| memcpy(&to->sb_uuid, &from->sb_uuid, sizeof(to->sb_uuid)); |
| to->sb_logstart = be64_to_cpu(from->sb_logstart); |
| to->sb_rootino = be64_to_cpu(from->sb_rootino); |
| to->sb_rbmino = be64_to_cpu(from->sb_rbmino); |
| to->sb_rsumino = be64_to_cpu(from->sb_rsumino); |
| to->sb_rextsize = be32_to_cpu(from->sb_rextsize); |
| to->sb_agblocks = be32_to_cpu(from->sb_agblocks); |
| to->sb_agcount = be32_to_cpu(from->sb_agcount); |
| to->sb_rbmblocks = be32_to_cpu(from->sb_rbmblocks); |
| to->sb_logblocks = be32_to_cpu(from->sb_logblocks); |
| to->sb_versionnum = be16_to_cpu(from->sb_versionnum); |
| to->sb_sectsize = be16_to_cpu(from->sb_sectsize); |
| to->sb_inodesize = be16_to_cpu(from->sb_inodesize); |
| to->sb_inopblock = be16_to_cpu(from->sb_inopblock); |
| memcpy(&to->sb_fname, &from->sb_fname, sizeof(to->sb_fname)); |
| to->sb_blocklog = from->sb_blocklog; |
| to->sb_sectlog = from->sb_sectlog; |
| to->sb_inodelog = from->sb_inodelog; |
| to->sb_inopblog = from->sb_inopblog; |
| to->sb_agblklog = from->sb_agblklog; |
| to->sb_rextslog = from->sb_rextslog; |
| to->sb_inprogress = from->sb_inprogress; |
| to->sb_imax_pct = from->sb_imax_pct; |
| to->sb_icount = be64_to_cpu(from->sb_icount); |
| to->sb_ifree = be64_to_cpu(from->sb_ifree); |
| to->sb_fdblocks = be64_to_cpu(from->sb_fdblocks); |
| to->sb_frextents = be64_to_cpu(from->sb_frextents); |
| to->sb_uquotino = be64_to_cpu(from->sb_uquotino); |
| to->sb_gquotino = be64_to_cpu(from->sb_gquotino); |
| to->sb_qflags = be16_to_cpu(from->sb_qflags); |
| to->sb_flags = from->sb_flags; |
| to->sb_shared_vn = from->sb_shared_vn; |
| to->sb_inoalignmt = be32_to_cpu(from->sb_inoalignmt); |
| to->sb_unit = be32_to_cpu(from->sb_unit); |
| to->sb_width = be32_to_cpu(from->sb_width); |
| to->sb_dirblklog = from->sb_dirblklog; |
| to->sb_logsectlog = from->sb_logsectlog; |
| to->sb_logsectsize = be16_to_cpu(from->sb_logsectsize); |
| to->sb_logsunit = be32_to_cpu(from->sb_logsunit); |
| to->sb_features2 = be32_to_cpu(from->sb_features2); |
| to->sb_bad_features2 = be32_to_cpu(from->sb_bad_features2); |
| to->sb_features_compat = be32_to_cpu(from->sb_features_compat); |
| to->sb_features_ro_compat = be32_to_cpu(from->sb_features_ro_compat); |
| to->sb_features_incompat = be32_to_cpu(from->sb_features_incompat); |
| to->sb_features_log_incompat = |
| be32_to_cpu(from->sb_features_log_incompat); |
| /* crc is only used on disk, not in memory; just init to 0 here. */ |
| to->sb_crc = 0; |
| to->sb_spino_align = be32_to_cpu(from->sb_spino_align); |
| to->sb_pquotino = be64_to_cpu(from->sb_pquotino); |
| to->sb_lsn = be64_to_cpu(from->sb_lsn); |
| /* |
| * sb_meta_uuid is only on disk if it differs from sb_uuid and the |
| * feature flag is set; if not set we keep it only in memory. |
| */ |
| if (xfs_sb_version_hasmetauuid(to)) |
| uuid_copy(&to->sb_meta_uuid, &from->sb_meta_uuid); |
| else |
| uuid_copy(&to->sb_meta_uuid, &from->sb_uuid); |
| /* Convert on-disk flags to in-memory flags? */ |
| if (convert_xquota) |
| xfs_sb_quota_from_disk(to); |
| } |
| |
| void |
| xfs_sb_from_disk( |
| struct xfs_sb *to, |
| xfs_dsb_t *from) |
| { |
| __xfs_sb_from_disk(to, from, true); |
| } |
| |
| static void |
| xfs_sb_quota_to_disk( |
| struct xfs_dsb *to, |
| struct xfs_sb *from) |
| { |
| uint16_t qflags = from->sb_qflags; |
| |
| to->sb_uquotino = cpu_to_be64(from->sb_uquotino); |
| if (xfs_sb_version_has_pquotino(from)) { |
| to->sb_qflags = cpu_to_be16(from->sb_qflags); |
| to->sb_gquotino = cpu_to_be64(from->sb_gquotino); |
| to->sb_pquotino = cpu_to_be64(from->sb_pquotino); |
| return; |
| } |
| |
| /* |
| * The in-core version of sb_qflags do not have XFS_OQUOTA_* |
| * flags, whereas the on-disk version does. So, convert incore |
| * XFS_{PG}QUOTA_* flags to on-disk XFS_OQUOTA_* flags. |
| */ |
| qflags &= ~(XFS_PQUOTA_ENFD | XFS_PQUOTA_CHKD | |
| XFS_GQUOTA_ENFD | XFS_GQUOTA_CHKD); |
| |
| if (from->sb_qflags & |
| (XFS_PQUOTA_ENFD | XFS_GQUOTA_ENFD)) |
| qflags |= XFS_OQUOTA_ENFD; |
| if (from->sb_qflags & |
| (XFS_PQUOTA_CHKD | XFS_GQUOTA_CHKD)) |
| qflags |= XFS_OQUOTA_CHKD; |
| to->sb_qflags = cpu_to_be16(qflags); |
| |
| /* |
| * GQUOTINO and PQUOTINO cannot be used together in versions |
| * of superblock that do not have pquotino. from->sb_flags |
| * tells us which quota is active and should be copied to |
| * disk. If neither are active, we should NULL the inode. |
| * |
| * In all cases, the separate pquotino must remain 0 because it |
| * it beyond the "end" of the valid non-pquotino superblock. |
| */ |
| if (from->sb_qflags & XFS_GQUOTA_ACCT) |
| to->sb_gquotino = cpu_to_be64(from->sb_gquotino); |
| else if (from->sb_qflags & XFS_PQUOTA_ACCT) |
| to->sb_gquotino = cpu_to_be64(from->sb_pquotino); |
| else { |
| /* |
| * We can't rely on just the fields being logged to tell us |
| * that it is safe to write NULLFSINO - we should only do that |
| * if quotas are not actually enabled. Hence only write |
| * NULLFSINO if both in-core quota inodes are NULL. |
| */ |
| if (from->sb_gquotino == NULLFSINO && |
| from->sb_pquotino == NULLFSINO) |
| to->sb_gquotino = cpu_to_be64(NULLFSINO); |
| } |
| |
| to->sb_pquotino = 0; |
| } |
| |
| void |
| xfs_sb_to_disk( |
| struct xfs_dsb *to, |
| struct xfs_sb *from) |
| { |
| xfs_sb_quota_to_disk(to, from); |
| |
| to->sb_magicnum = cpu_to_be32(from->sb_magicnum); |
| to->sb_blocksize = cpu_to_be32(from->sb_blocksize); |
| to->sb_dblocks = cpu_to_be64(from->sb_dblocks); |
| to->sb_rblocks = cpu_to_be64(from->sb_rblocks); |
| to->sb_rextents = cpu_to_be64(from->sb_rextents); |
| memcpy(&to->sb_uuid, &from->sb_uuid, sizeof(to->sb_uuid)); |
| to->sb_logstart = cpu_to_be64(from->sb_logstart); |
| to->sb_rootino = cpu_to_be64(from->sb_rootino); |
| to->sb_rbmino = cpu_to_be64(from->sb_rbmino); |
| to->sb_rsumino = cpu_to_be64(from->sb_rsumino); |
| to->sb_rextsize = cpu_to_be32(from->sb_rextsize); |
| to->sb_agblocks = cpu_to_be32(from->sb_agblocks); |
| to->sb_agcount = cpu_to_be32(from->sb_agcount); |
| to->sb_rbmblocks = cpu_to_be32(from->sb_rbmblocks); |
| to->sb_logblocks = cpu_to_be32(from->sb_logblocks); |
| to->sb_versionnum = cpu_to_be16(from->sb_versionnum); |
| to->sb_sectsize = cpu_to_be16(from->sb_sectsize); |
| to->sb_inodesize = cpu_to_be16(from->sb_inodesize); |
| to->sb_inopblock = cpu_to_be16(from->sb_inopblock); |
| memcpy(&to->sb_fname, &from->sb_fname, sizeof(to->sb_fname)); |
| to->sb_blocklog = from->sb_blocklog; |
| to->sb_sectlog = from->sb_sectlog; |
| to->sb_inodelog = from->sb_inodelog; |
| to->sb_inopblog = from->sb_inopblog; |
| to->sb_agblklog = from->sb_agblklog; |
| to->sb_rextslog = from->sb_rextslog; |
| to->sb_inprogress = from->sb_inprogress; |
| to->sb_imax_pct = from->sb_imax_pct; |
| to->sb_icount = cpu_to_be64(from->sb_icount); |
| to->sb_ifree = cpu_to_be64(from->sb_ifree); |
| to->sb_fdblocks = cpu_to_be64(from->sb_fdblocks); |
| to->sb_frextents = cpu_to_be64(from->sb_frextents); |
| |
| to->sb_flags = from->sb_flags; |
| to->sb_shared_vn = from->sb_shared_vn; |
| to->sb_inoalignmt = cpu_to_be32(from->sb_inoalignmt); |
| to->sb_unit = cpu_to_be32(from->sb_unit); |
| to->sb_width = cpu_to_be32(from->sb_width); |
| to->sb_dirblklog = from->sb_dirblklog; |
| to->sb_logsectlog = from->sb_logsectlog; |
| to->sb_logsectsize = cpu_to_be16(from->sb_logsectsize); |
| to->sb_logsunit = cpu_to_be32(from->sb_logsunit); |
| |
| /* |
| * We need to ensure that bad_features2 always matches features2. |
| * Hence we enforce that here rather than having to remember to do it |
| * everywhere else that updates features2. |
| */ |
| from->sb_bad_features2 = from->sb_features2; |
| to->sb_features2 = cpu_to_be32(from->sb_features2); |
| to->sb_bad_features2 = cpu_to_be32(from->sb_bad_features2); |
| |
| if (xfs_sb_version_hascrc(from)) { |
| to->sb_features_compat = cpu_to_be32(from->sb_features_compat); |
| to->sb_features_ro_compat = |
| cpu_to_be32(from->sb_features_ro_compat); |
| to->sb_features_incompat = |
| cpu_to_be32(from->sb_features_incompat); |
| to->sb_features_log_incompat = |
| cpu_to_be32(from->sb_features_log_incompat); |
| to->sb_spino_align = cpu_to_be32(from->sb_spino_align); |
| to->sb_lsn = cpu_to_be64(from->sb_lsn); |
| if (xfs_sb_version_hasmetauuid(from)) |
| uuid_copy(&to->sb_meta_uuid, &from->sb_meta_uuid); |
| } |
| } |
| |
| /* |
| * If the superblock has the CRC feature bit set or the CRC field is non-null, |
| * check that the CRC is valid. We check the CRC field is non-null because a |
| * single bit error could clear the feature bit and unused parts of the |
| * superblock are supposed to be zero. Hence a non-null crc field indicates that |
| * we've potentially lost a feature bit and we should check it anyway. |
| * |
| * However, past bugs (i.e. in growfs) left non-zeroed regions beyond the |
| * last field in V4 secondary superblocks. So for secondary superblocks, |
| * we are more forgiving, and ignore CRC failures if the primary doesn't |
| * indicate that the fs version is V5. |
| */ |
| static void |
| xfs_sb_read_verify( |
| struct xfs_buf *bp) |
| { |
| struct xfs_sb sb; |
| struct xfs_mount *mp = bp->b_mount; |
| struct xfs_dsb *dsb = bp->b_addr; |
| int error; |
| |
| /* |
| * open code the version check to avoid needing to convert the entire |
| * superblock from disk order just to check the version number |
| */ |
| if (dsb->sb_magicnum == cpu_to_be32(XFS_SB_MAGIC) && |
| (((be16_to_cpu(dsb->sb_versionnum) & XFS_SB_VERSION_NUMBITS) == |
| XFS_SB_VERSION_5) || |
| dsb->sb_crc != 0)) { |
| |
| if (!xfs_buf_verify_cksum(bp, XFS_SB_CRC_OFF)) { |
| /* Only fail bad secondaries on a known V5 filesystem */ |
| if (bp->b_bn == XFS_SB_DADDR || |
| xfs_sb_version_hascrc(&mp->m_sb)) { |
| error = -EFSBADCRC; |
| goto out_error; |
| } |
| } |
| } |
| |
| /* |
| * Check all the superblock fields. Don't byteswap the xquota flags |
| * because _verify_common checks the on-disk values. |
| */ |
| __xfs_sb_from_disk(&sb, dsb, false); |
| error = xfs_validate_sb_common(mp, bp, &sb); |
| if (error) |
| goto out_error; |
| error = xfs_validate_sb_read(mp, &sb); |
| |
| out_error: |
| if (error == -EFSCORRUPTED || error == -EFSBADCRC) |
| xfs_verifier_error(bp, error, __this_address); |
| else if (error) |
| xfs_buf_ioerror(bp, error); |
| } |
| |
| /* |
| * We may be probed for a filesystem match, so we may not want to emit |
| * messages when the superblock buffer is not actually an XFS superblock. |
| * If we find an XFS superblock, then run a normal, noisy mount because we are |
| * really going to mount it and want to know about errors. |
| */ |
| static void |
| xfs_sb_quiet_read_verify( |
| struct xfs_buf *bp) |
| { |
| struct xfs_dsb *dsb = bp->b_addr; |
| |
| if (dsb->sb_magicnum == cpu_to_be32(XFS_SB_MAGIC)) { |
| /* XFS filesystem, verify noisily! */ |
| xfs_sb_read_verify(bp); |
| return; |
| } |
| /* quietly fail */ |
| xfs_buf_ioerror(bp, -EWRONGFS); |
| } |
| |
| static void |
| xfs_sb_write_verify( |
| struct xfs_buf *bp) |
| { |
| struct xfs_sb sb; |
| struct xfs_mount *mp = bp->b_mount; |
| struct xfs_buf_log_item *bip = bp->b_log_item; |
| struct xfs_dsb *dsb = bp->b_addr; |
| int error; |
| |
| /* |
| * Check all the superblock fields. Don't byteswap the xquota flags |
| * because _verify_common checks the on-disk values. |
| */ |
| __xfs_sb_from_disk(&sb, dsb, false); |
| error = xfs_validate_sb_common(mp, bp, &sb); |
| if (error) |
| goto out_error; |
| error = xfs_validate_sb_write(mp, bp, &sb); |
| if (error) |
| goto out_error; |
| |
| if (!xfs_sb_version_hascrc(&mp->m_sb)) |
| return; |
| |
| if (bip) |
| dsb->sb_lsn = cpu_to_be64(bip->bli_item.li_lsn); |
| |
| xfs_buf_update_cksum(bp, XFS_SB_CRC_OFF); |
| return; |
| |
| out_error: |
| xfs_verifier_error(bp, error, __this_address); |
| } |
| |
| const struct xfs_buf_ops xfs_sb_buf_ops = { |
| .name = "xfs_sb", |
| .magic = { cpu_to_be32(XFS_SB_MAGIC), cpu_to_be32(XFS_SB_MAGIC) }, |
| .verify_read = xfs_sb_read_verify, |
| .verify_write = xfs_sb_write_verify, |
| }; |
| |
| const struct xfs_buf_ops xfs_sb_quiet_buf_ops = { |
| .name = "xfs_sb_quiet", |
| .magic = { cpu_to_be32(XFS_SB_MAGIC), cpu_to_be32(XFS_SB_MAGIC) }, |
| .verify_read = xfs_sb_quiet_read_verify, |
| .verify_write = xfs_sb_write_verify, |
| }; |
| |
| /* |
| * xfs_mount_common |
| * |
| * Mount initialization code establishing various mount |
| * fields from the superblock associated with the given |
| * mount structure. |
| * |
| * Inode geometry are calculated in xfs_ialloc_setup_geometry. |
| */ |
| void |
| xfs_sb_mount_common( |
| struct xfs_mount *mp, |
| struct xfs_sb *sbp) |
| { |
| mp->m_agfrotor = mp->m_agirotor = 0; |
| mp->m_maxagi = mp->m_sb.sb_agcount; |
| mp->m_blkbit_log = sbp->sb_blocklog + XFS_NBBYLOG; |
| mp->m_blkbb_log = sbp->sb_blocklog - BBSHIFT; |
| mp->m_sectbb_log = sbp->sb_sectlog - BBSHIFT; |
| mp->m_agno_log = xfs_highbit32(sbp->sb_agcount - 1) + 1; |
| mp->m_blockmask = sbp->sb_blocksize - 1; |
| mp->m_blockwsize = sbp->sb_blocksize >> XFS_WORDLOG; |
| mp->m_blockwmask = mp->m_blockwsize - 1; |
| |
| mp->m_alloc_mxr[0] = xfs_allocbt_maxrecs(mp, sbp->sb_blocksize, 1); |
| mp->m_alloc_mxr[1] = xfs_allocbt_maxrecs(mp, sbp->sb_blocksize, 0); |
| mp->m_alloc_mnr[0] = mp->m_alloc_mxr[0] / 2; |
| mp->m_alloc_mnr[1] = mp->m_alloc_mxr[1] / 2; |
| |
| mp->m_bmap_dmxr[0] = xfs_bmbt_maxrecs(mp, sbp->sb_blocksize, 1); |
| mp->m_bmap_dmxr[1] = xfs_bmbt_maxrecs(mp, sbp->sb_blocksize, 0); |
| mp->m_bmap_dmnr[0] = mp->m_bmap_dmxr[0] / 2; |
| mp->m_bmap_dmnr[1] = mp->m_bmap_dmxr[1] / 2; |
| |
| mp->m_rmap_mxr[0] = xfs_rmapbt_maxrecs(sbp->sb_blocksize, 1); |
| mp->m_rmap_mxr[1] = xfs_rmapbt_maxrecs(sbp->sb_blocksize, 0); |
| mp->m_rmap_mnr[0] = mp->m_rmap_mxr[0] / 2; |
| mp->m_rmap_mnr[1] = mp->m_rmap_mxr[1] / 2; |
| |
| mp->m_refc_mxr[0] = xfs_refcountbt_maxrecs(sbp->sb_blocksize, true); |
| mp->m_refc_mxr[1] = xfs_refcountbt_maxrecs(sbp->sb_blocksize, false); |
| mp->m_refc_mnr[0] = mp->m_refc_mxr[0] / 2; |
| mp->m_refc_mnr[1] = mp->m_refc_mxr[1] / 2; |
| |
| mp->m_bsize = XFS_FSB_TO_BB(mp, 1); |
| mp->m_alloc_set_aside = xfs_alloc_set_aside(mp); |
| mp->m_ag_max_usable = xfs_alloc_ag_max_usable(mp); |
| } |
| |
| /* |
| * xfs_initialize_perag_data |
| * |
| * Read in each per-ag structure so we can count up the number of |
| * allocated inodes, free inodes and used filesystem blocks as this |
| * information is no longer persistent in the superblock. Once we have |
| * this information, write it into the in-core superblock structure. |
| */ |
| int |
| xfs_initialize_perag_data( |
| struct xfs_mount *mp, |
| xfs_agnumber_t agcount) |
| { |
| xfs_agnumber_t index; |
| xfs_perag_t *pag; |
| xfs_sb_t *sbp = &mp->m_sb; |
| uint64_t ifree = 0; |
| uint64_t ialloc = 0; |
| uint64_t bfree = 0; |
| uint64_t bfreelst = 0; |
| uint64_t btree = 0; |
| uint64_t fdblocks; |
| int error = 0; |
| |
| for (index = 0; index < agcount; index++) { |
| /* |
| * read the agf, then the agi. This gets us |
| * all the information we need and populates the |
| * per-ag structures for us. |
| */ |
| error = xfs_alloc_pagf_init(mp, NULL, index, 0); |
| if (error) |
| return error; |
| |
| error = xfs_ialloc_pagi_init(mp, NULL, index); |
| if (error) |
| return error; |
| pag = xfs_perag_get(mp, index); |
| ifree += pag->pagi_freecount; |
| ialloc += pag->pagi_count; |
| bfree += pag->pagf_freeblks; |
| bfreelst += pag->pagf_flcount; |
| btree += pag->pagf_btreeblks; |
| xfs_perag_put(pag); |
| } |
| fdblocks = bfree + bfreelst + btree; |
| |
| /* |
| * If the new summary counts are obviously incorrect, fail the |
| * mount operation because that implies the AGFs are also corrupt. |
| * Clear FS_COUNTERS so that we don't unmount with a dirty log, which |
| * will prevent xfs_repair from fixing anything. |
| */ |
| if (fdblocks > sbp->sb_dblocks || ifree > ialloc) { |
| xfs_alert(mp, "AGF corruption. Please run xfs_repair."); |
| error = -EFSCORRUPTED; |
| goto out; |
| } |
| |
| /* Overwrite incore superblock counters with just-read data */ |
| spin_lock(&mp->m_sb_lock); |
| sbp->sb_ifree = ifree; |
| sbp->sb_icount = ialloc; |
| sbp->sb_fdblocks = fdblocks; |
| spin_unlock(&mp->m_sb_lock); |
| |
| xfs_reinit_percpu_counters(mp); |
| out: |
| xfs_fs_mark_healthy(mp, XFS_SICK_FS_COUNTERS); |
| return error; |
| } |
| |
| /* |
| * xfs_log_sb() can be used to copy arbitrary changes to the in-core superblock |
| * into the superblock buffer to be logged. It does not provide the higher |
| * level of locking that is needed to protect the in-core superblock from |
| * concurrent access. |
| */ |
| void |
| xfs_log_sb( |
| struct xfs_trans *tp) |
| { |
| struct xfs_mount *mp = tp->t_mountp; |
| struct xfs_buf *bp = xfs_trans_getsb(tp, mp); |
| |
| mp->m_sb.sb_icount = percpu_counter_sum(&mp->m_icount); |
| mp->m_sb.sb_ifree = percpu_counter_sum(&mp->m_ifree); |
| mp->m_sb.sb_fdblocks = percpu_counter_sum(&mp->m_fdblocks); |
| |
| xfs_sb_to_disk(bp->b_addr, &mp->m_sb); |
| xfs_trans_buf_set_type(tp, bp, XFS_BLFT_SB_BUF); |
| xfs_trans_log_buf(tp, bp, 0, sizeof(struct xfs_dsb) - 1); |
| } |
| |
| /* |
| * xfs_sync_sb |
| * |
| * Sync the superblock to disk. |
| * |
| * Note that the caller is responsible for checking the frozen state of the |
| * filesystem. This procedure uses the non-blocking transaction allocator and |
| * thus will allow modifications to a frozen fs. This is required because this |
| * code can be called during the process of freezing where use of the high-level |
| * allocator would deadlock. |
| */ |
| int |
| xfs_sync_sb( |
| struct xfs_mount *mp, |
| bool wait) |
| { |
| struct xfs_trans *tp; |
| int error; |
| |
| error = xfs_trans_alloc(mp, &M_RES(mp)->tr_sb, 0, 0, |
| XFS_TRANS_NO_WRITECOUNT, &tp); |
| if (error) |
| return error; |
| |
| xfs_log_sb(tp); |
| if (wait) |
| xfs_trans_set_sync(tp); |
| return xfs_trans_commit(tp); |
| } |
| |
| /* |
| * Update all the secondary superblocks to match the new state of the primary. |
| * Because we are completely overwriting all the existing fields in the |
| * secondary superblock buffers, there is no need to read them in from disk. |
| * Just get a new buffer, stamp it and write it. |
| * |
| * The sb buffers need to be cached here so that we serialise against other |
| * operations that access the secondary superblocks, but we don't want to keep |
| * them in memory once it is written so we mark it as a one-shot buffer. |
| */ |
| int |
| xfs_update_secondary_sbs( |
| struct xfs_mount *mp) |
| { |
| xfs_agnumber_t agno; |
| int saved_error = 0; |
| int error = 0; |
| LIST_HEAD (buffer_list); |
| |
| /* update secondary superblocks. */ |
| for (agno = 1; agno < mp->m_sb.sb_agcount; agno++) { |
| struct xfs_buf *bp; |
| |
| error = xfs_buf_get(mp->m_ddev_targp, |
| XFS_AG_DADDR(mp, agno, XFS_SB_DADDR), |
| XFS_FSS_TO_BB(mp, 1), &bp); |
| /* |
| * If we get an error reading or writing alternate superblocks, |
| * continue. xfs_repair chooses the "best" superblock based |
| * on most matches; if we break early, we'll leave more |
| * superblocks un-updated than updated, and xfs_repair may |
| * pick them over the properly-updated primary. |
| */ |
| if (error) { |
| xfs_warn(mp, |
| "error allocating secondary superblock for ag %d", |
| agno); |
| if (!saved_error) |
| saved_error = error; |
| continue; |
| } |
| |
| bp->b_ops = &xfs_sb_buf_ops; |
| xfs_buf_oneshot(bp); |
| xfs_buf_zero(bp, 0, BBTOB(bp->b_length)); |
| xfs_sb_to_disk(bp->b_addr, &mp->m_sb); |
| xfs_buf_delwri_queue(bp, &buffer_list); |
| xfs_buf_relse(bp); |
| |
| /* don't hold too many buffers at once */ |
| if (agno % 16) |
| continue; |
| |
| error = xfs_buf_delwri_submit(&buffer_list); |
| if (error) { |
| xfs_warn(mp, |
| "write error %d updating a secondary superblock near ag %d", |
| error, agno); |
| if (!saved_error) |
| saved_error = error; |
| continue; |
| } |
| } |
| error = xfs_buf_delwri_submit(&buffer_list); |
| if (error) { |
| xfs_warn(mp, |
| "write error %d updating a secondary superblock near ag %d", |
| error, agno); |
| } |
| |
| return saved_error ? saved_error : error; |
| } |
| |
| /* |
| * Same behavior as xfs_sync_sb, except that it is always synchronous and it |
| * also writes the superblock buffer to disk sector 0 immediately. |
| */ |
| int |
| xfs_sync_sb_buf( |
| struct xfs_mount *mp) |
| { |
| struct xfs_trans *tp; |
| struct xfs_buf *bp; |
| int error; |
| |
| error = xfs_trans_alloc(mp, &M_RES(mp)->tr_sb, 0, 0, 0, &tp); |
| if (error) |
| return error; |
| |
| bp = xfs_trans_getsb(tp, mp); |
| xfs_log_sb(tp); |
| xfs_trans_bhold(tp, bp); |
| xfs_trans_set_sync(tp); |
| error = xfs_trans_commit(tp); |
| if (error) |
| goto out; |
| /* |
| * write out the sb buffer to get the changes to disk |
| */ |
| error = xfs_bwrite(bp); |
| out: |
| xfs_buf_relse(bp); |
| return error; |
| } |
| |
| void |
| xfs_fs_geometry( |
| struct xfs_sb *sbp, |
| struct xfs_fsop_geom *geo, |
| int struct_version) |
| { |
| memset(geo, 0, sizeof(struct xfs_fsop_geom)); |
| |
| geo->blocksize = sbp->sb_blocksize; |
| geo->rtextsize = sbp->sb_rextsize; |
| geo->agblocks = sbp->sb_agblocks; |
| geo->agcount = sbp->sb_agcount; |
| geo->logblocks = sbp->sb_logblocks; |
| geo->sectsize = sbp->sb_sectsize; |
| geo->inodesize = sbp->sb_inodesize; |
| geo->imaxpct = sbp->sb_imax_pct; |
| geo->datablocks = sbp->sb_dblocks; |
| geo->rtblocks = sbp->sb_rblocks; |
| geo->rtextents = sbp->sb_rextents; |
| geo->logstart = sbp->sb_logstart; |
| BUILD_BUG_ON(sizeof(geo->uuid) != sizeof(sbp->sb_uuid)); |
| memcpy(geo->uuid, &sbp->sb_uuid, sizeof(sbp->sb_uuid)); |
| |
| if (struct_version < 2) |
| return; |
| |
| geo->sunit = sbp->sb_unit; |
| geo->swidth = sbp->sb_width; |
| |
| if (struct_version < 3) |
| return; |
| |
| geo->version = XFS_FSOP_GEOM_VERSION; |
| geo->flags = XFS_FSOP_GEOM_FLAGS_NLINK | |
| XFS_FSOP_GEOM_FLAGS_DIRV2 | |
| XFS_FSOP_GEOM_FLAGS_EXTFLG; |
| if (xfs_sb_version_hasattr(sbp)) |
| geo->flags |= XFS_FSOP_GEOM_FLAGS_ATTR; |
| if (xfs_sb_version_hasquota(sbp)) |
| geo->flags |= XFS_FSOP_GEOM_FLAGS_QUOTA; |
| if (xfs_sb_version_hasalign(sbp)) |
| geo->flags |= XFS_FSOP_GEOM_FLAGS_IALIGN; |
| if (xfs_sb_version_hasdalign(sbp)) |
| geo->flags |= XFS_FSOP_GEOM_FLAGS_DALIGN; |
| if (xfs_sb_version_hassector(sbp)) |
| geo->flags |= XFS_FSOP_GEOM_FLAGS_SECTOR; |
| if (xfs_sb_version_hasasciici(sbp)) |
| geo->flags |= XFS_FSOP_GEOM_FLAGS_DIRV2CI; |
| if (xfs_sb_version_haslazysbcount(sbp)) |
| geo->flags |= XFS_FSOP_GEOM_FLAGS_LAZYSB; |
| if (xfs_sb_version_hasattr2(sbp)) |
| geo->flags |= XFS_FSOP_GEOM_FLAGS_ATTR2; |
| if (xfs_sb_version_hasprojid32bit(sbp)) |
| geo->flags |= XFS_FSOP_GEOM_FLAGS_PROJID32; |
| if (xfs_sb_version_hascrc(sbp)) |
| geo->flags |= XFS_FSOP_GEOM_FLAGS_V5SB; |
| if (xfs_sb_version_hasftype(sbp)) |
| geo->flags |= XFS_FSOP_GEOM_FLAGS_FTYPE; |
| if (xfs_sb_version_hasfinobt(sbp)) |
| geo->flags |= XFS_FSOP_GEOM_FLAGS_FINOBT; |
| if (xfs_sb_version_hassparseinodes(sbp)) |
| geo->flags |= XFS_FSOP_GEOM_FLAGS_SPINODES; |
| if (xfs_sb_version_hasrmapbt(sbp)) |
| geo->flags |= XFS_FSOP_GEOM_FLAGS_RMAPBT; |
| if (xfs_sb_version_hasreflink(sbp)) |
| geo->flags |= XFS_FSOP_GEOM_FLAGS_REFLINK; |
| if (xfs_sb_version_hassector(sbp)) |
| geo->logsectsize = sbp->sb_logsectsize; |
| else |
| geo->logsectsize = BBSIZE; |
| geo->rtsectsize = sbp->sb_blocksize; |
| geo->dirblocksize = xfs_dir2_dirblock_bytes(sbp); |
| |
| if (struct_version < 4) |
| return; |
| |
| if (xfs_sb_version_haslogv2(sbp)) |
| geo->flags |= XFS_FSOP_GEOM_FLAGS_LOGV2; |
| |
| geo->logsunit = sbp->sb_logsunit; |
| |
| if (struct_version < 5) |
| return; |
| |
| geo->version = XFS_FSOP_GEOM_VERSION_V5; |
| } |
| |
| /* Read a secondary superblock. */ |
| int |
| xfs_sb_read_secondary( |
| struct xfs_mount *mp, |
| struct xfs_trans *tp, |
| xfs_agnumber_t agno, |
| struct xfs_buf **bpp) |
| { |
| struct xfs_buf *bp; |
| int error; |
| |
| ASSERT(agno != 0 && agno != NULLAGNUMBER); |
| error = xfs_trans_read_buf(mp, tp, mp->m_ddev_targp, |
| XFS_AG_DADDR(mp, agno, XFS_SB_BLOCK(mp)), |
| XFS_FSS_TO_BB(mp, 1), 0, &bp, &xfs_sb_buf_ops); |
| if (error) |
| return error; |
| xfs_buf_set_ref(bp, XFS_SSB_REF); |
| *bpp = bp; |
| return 0; |
| } |
| |
| /* Get an uninitialised secondary superblock buffer. */ |
| int |
| xfs_sb_get_secondary( |
| struct xfs_mount *mp, |
| struct xfs_trans *tp, |
| xfs_agnumber_t agno, |
| struct xfs_buf **bpp) |
| { |
| struct xfs_buf *bp; |
| int error; |
| |
| ASSERT(agno != 0 && agno != NULLAGNUMBER); |
| error = xfs_trans_get_buf(tp, mp->m_ddev_targp, |
| XFS_AG_DADDR(mp, agno, XFS_SB_BLOCK(mp)), |
| XFS_FSS_TO_BB(mp, 1), 0, &bp); |
| if (error) |
| return error; |
| bp->b_ops = &xfs_sb_buf_ops; |
| xfs_buf_oneshot(bp); |
| *bpp = bp; |
| return 0; |
| } |