| /* Intel PRO/1000 Linux driver |
| * Copyright(c) 1999 - 2014 Intel Corporation. |
| * |
| * This program is free software; you can redistribute it and/or modify it |
| * under the terms and conditions of the GNU General Public License, |
| * version 2, as published by the Free Software Foundation. |
| * |
| * This program is distributed in the hope it will be useful, but WITHOUT |
| * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or |
| * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for |
| * more details. |
| * |
| * The full GNU General Public License is included in this distribution in |
| * the file called "COPYING". |
| * |
| * Contact Information: |
| * Linux NICS <linux.nics@intel.com> |
| * e1000-devel Mailing List <e1000-devel@lists.sourceforge.net> |
| * Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497 |
| */ |
| |
| /* 82562G 10/100 Network Connection |
| * 82562G-2 10/100 Network Connection |
| * 82562GT 10/100 Network Connection |
| * 82562GT-2 10/100 Network Connection |
| * 82562V 10/100 Network Connection |
| * 82562V-2 10/100 Network Connection |
| * 82566DC-2 Gigabit Network Connection |
| * 82566DC Gigabit Network Connection |
| * 82566DM-2 Gigabit Network Connection |
| * 82566DM Gigabit Network Connection |
| * 82566MC Gigabit Network Connection |
| * 82566MM Gigabit Network Connection |
| * 82567LM Gigabit Network Connection |
| * 82567LF Gigabit Network Connection |
| * 82567V Gigabit Network Connection |
| * 82567LM-2 Gigabit Network Connection |
| * 82567LF-2 Gigabit Network Connection |
| * 82567V-2 Gigabit Network Connection |
| * 82567LF-3 Gigabit Network Connection |
| * 82567LM-3 Gigabit Network Connection |
| * 82567LM-4 Gigabit Network Connection |
| * 82577LM Gigabit Network Connection |
| * 82577LC Gigabit Network Connection |
| * 82578DM Gigabit Network Connection |
| * 82578DC Gigabit Network Connection |
| * 82579LM Gigabit Network Connection |
| * 82579V Gigabit Network Connection |
| * Ethernet Connection I217-LM |
| * Ethernet Connection I217-V |
| * Ethernet Connection I218-V |
| * Ethernet Connection I218-LM |
| * Ethernet Connection (2) I218-LM |
| * Ethernet Connection (2) I218-V |
| * Ethernet Connection (3) I218-LM |
| * Ethernet Connection (3) I218-V |
| */ |
| |
| #include "e1000.h" |
| |
| /* ICH GbE Flash Hardware Sequencing Flash Status Register bit breakdown */ |
| /* Offset 04h HSFSTS */ |
| union ich8_hws_flash_status { |
| struct ich8_hsfsts { |
| u16 flcdone:1; /* bit 0 Flash Cycle Done */ |
| u16 flcerr:1; /* bit 1 Flash Cycle Error */ |
| u16 dael:1; /* bit 2 Direct Access error Log */ |
| u16 berasesz:2; /* bit 4:3 Sector Erase Size */ |
| u16 flcinprog:1; /* bit 5 flash cycle in Progress */ |
| u16 reserved1:2; /* bit 13:6 Reserved */ |
| u16 reserved2:6; /* bit 13:6 Reserved */ |
| u16 fldesvalid:1; /* bit 14 Flash Descriptor Valid */ |
| u16 flockdn:1; /* bit 15 Flash Config Lock-Down */ |
| } hsf_status; |
| u16 regval; |
| }; |
| |
| /* ICH GbE Flash Hardware Sequencing Flash control Register bit breakdown */ |
| /* Offset 06h FLCTL */ |
| union ich8_hws_flash_ctrl { |
| struct ich8_hsflctl { |
| u16 flcgo:1; /* 0 Flash Cycle Go */ |
| u16 flcycle:2; /* 2:1 Flash Cycle */ |
| u16 reserved:5; /* 7:3 Reserved */ |
| u16 fldbcount:2; /* 9:8 Flash Data Byte Count */ |
| u16 flockdn:6; /* 15:10 Reserved */ |
| } hsf_ctrl; |
| u16 regval; |
| }; |
| |
| /* ICH Flash Region Access Permissions */ |
| union ich8_hws_flash_regacc { |
| struct ich8_flracc { |
| u32 grra:8; /* 0:7 GbE region Read Access */ |
| u32 grwa:8; /* 8:15 GbE region Write Access */ |
| u32 gmrag:8; /* 23:16 GbE Master Read Access Grant */ |
| u32 gmwag:8; /* 31:24 GbE Master Write Access Grant */ |
| } hsf_flregacc; |
| u16 regval; |
| }; |
| |
| /* ICH Flash Protected Region */ |
| union ich8_flash_protected_range { |
| struct ich8_pr { |
| u32 base:13; /* 0:12 Protected Range Base */ |
| u32 reserved1:2; /* 13:14 Reserved */ |
| u32 rpe:1; /* 15 Read Protection Enable */ |
| u32 limit:13; /* 16:28 Protected Range Limit */ |
| u32 reserved2:2; /* 29:30 Reserved */ |
| u32 wpe:1; /* 31 Write Protection Enable */ |
| } range; |
| u32 regval; |
| }; |
| |
| static void e1000_clear_hw_cntrs_ich8lan(struct e1000_hw *hw); |
| static void e1000_initialize_hw_bits_ich8lan(struct e1000_hw *hw); |
| static s32 e1000_erase_flash_bank_ich8lan(struct e1000_hw *hw, u32 bank); |
| static s32 e1000_retry_write_flash_byte_ich8lan(struct e1000_hw *hw, |
| u32 offset, u8 byte); |
| static s32 e1000_read_flash_byte_ich8lan(struct e1000_hw *hw, u32 offset, |
| u8 *data); |
| static s32 e1000_read_flash_word_ich8lan(struct e1000_hw *hw, u32 offset, |
| u16 *data); |
| static s32 e1000_read_flash_data_ich8lan(struct e1000_hw *hw, u32 offset, |
| u8 size, u16 *data); |
| static s32 e1000_read_flash_data32_ich8lan(struct e1000_hw *hw, u32 offset, |
| u32 *data); |
| static s32 e1000_read_flash_dword_ich8lan(struct e1000_hw *hw, |
| u32 offset, u32 *data); |
| static s32 e1000_write_flash_data32_ich8lan(struct e1000_hw *hw, |
| u32 offset, u32 data); |
| static s32 e1000_retry_write_flash_dword_ich8lan(struct e1000_hw *hw, |
| u32 offset, u32 dword); |
| static s32 e1000_kmrn_lock_loss_workaround_ich8lan(struct e1000_hw *hw); |
| static s32 e1000_cleanup_led_ich8lan(struct e1000_hw *hw); |
| static s32 e1000_led_on_ich8lan(struct e1000_hw *hw); |
| static s32 e1000_led_off_ich8lan(struct e1000_hw *hw); |
| static s32 e1000_id_led_init_pchlan(struct e1000_hw *hw); |
| static s32 e1000_setup_led_pchlan(struct e1000_hw *hw); |
| static s32 e1000_cleanup_led_pchlan(struct e1000_hw *hw); |
| static s32 e1000_led_on_pchlan(struct e1000_hw *hw); |
| static s32 e1000_led_off_pchlan(struct e1000_hw *hw); |
| static s32 e1000_set_lplu_state_pchlan(struct e1000_hw *hw, bool active); |
| static void e1000_power_down_phy_copper_ich8lan(struct e1000_hw *hw); |
| static void e1000_lan_init_done_ich8lan(struct e1000_hw *hw); |
| static s32 e1000_k1_gig_workaround_hv(struct e1000_hw *hw, bool link); |
| static s32 e1000_set_mdio_slow_mode_hv(struct e1000_hw *hw); |
| static bool e1000_check_mng_mode_ich8lan(struct e1000_hw *hw); |
| static bool e1000_check_mng_mode_pchlan(struct e1000_hw *hw); |
| static int e1000_rar_set_pch2lan(struct e1000_hw *hw, u8 *addr, u32 index); |
| static int e1000_rar_set_pch_lpt(struct e1000_hw *hw, u8 *addr, u32 index); |
| static u32 e1000_rar_get_count_pch_lpt(struct e1000_hw *hw); |
| static s32 e1000_k1_workaround_lv(struct e1000_hw *hw); |
| static void e1000_gate_hw_phy_config_ich8lan(struct e1000_hw *hw, bool gate); |
| static s32 e1000_disable_ulp_lpt_lp(struct e1000_hw *hw, bool force); |
| static s32 e1000_setup_copper_link_pch_lpt(struct e1000_hw *hw); |
| static s32 e1000_oem_bits_config_ich8lan(struct e1000_hw *hw, bool d0_state); |
| |
| static inline u16 __er16flash(struct e1000_hw *hw, unsigned long reg) |
| { |
| return readw(hw->flash_address + reg); |
| } |
| |
| static inline u32 __er32flash(struct e1000_hw *hw, unsigned long reg) |
| { |
| return readl(hw->flash_address + reg); |
| } |
| |
| static inline void __ew16flash(struct e1000_hw *hw, unsigned long reg, u16 val) |
| { |
| writew(val, hw->flash_address + reg); |
| } |
| |
| static inline void __ew32flash(struct e1000_hw *hw, unsigned long reg, u32 val) |
| { |
| writel(val, hw->flash_address + reg); |
| } |
| |
| #define er16flash(reg) __er16flash(hw, (reg)) |
| #define er32flash(reg) __er32flash(hw, (reg)) |
| #define ew16flash(reg, val) __ew16flash(hw, (reg), (val)) |
| #define ew32flash(reg, val) __ew32flash(hw, (reg), (val)) |
| |
| /** |
| * e1000_phy_is_accessible_pchlan - Check if able to access PHY registers |
| * @hw: pointer to the HW structure |
| * |
| * Test access to the PHY registers by reading the PHY ID registers. If |
| * the PHY ID is already known (e.g. resume path) compare it with known ID, |
| * otherwise assume the read PHY ID is correct if it is valid. |
| * |
| * Assumes the sw/fw/hw semaphore is already acquired. |
| **/ |
| static bool e1000_phy_is_accessible_pchlan(struct e1000_hw *hw) |
| { |
| u16 phy_reg = 0; |
| u32 phy_id = 0; |
| s32 ret_val = 0; |
| u16 retry_count; |
| u32 mac_reg = 0; |
| |
| for (retry_count = 0; retry_count < 2; retry_count++) { |
| ret_val = e1e_rphy_locked(hw, MII_PHYSID1, &phy_reg); |
| if (ret_val || (phy_reg == 0xFFFF)) |
| continue; |
| phy_id = (u32)(phy_reg << 16); |
| |
| ret_val = e1e_rphy_locked(hw, MII_PHYSID2, &phy_reg); |
| if (ret_val || (phy_reg == 0xFFFF)) { |
| phy_id = 0; |
| continue; |
| } |
| phy_id |= (u32)(phy_reg & PHY_REVISION_MASK); |
| break; |
| } |
| |
| if (hw->phy.id) { |
| if (hw->phy.id == phy_id) |
| goto out; |
| } else if (phy_id) { |
| hw->phy.id = phy_id; |
| hw->phy.revision = (u32)(phy_reg & ~PHY_REVISION_MASK); |
| goto out; |
| } |
| |
| /* In case the PHY needs to be in mdio slow mode, |
| * set slow mode and try to get the PHY id again. |
| */ |
| if (hw->mac.type < e1000_pch_lpt) { |
| hw->phy.ops.release(hw); |
| ret_val = e1000_set_mdio_slow_mode_hv(hw); |
| if (!ret_val) |
| ret_val = e1000e_get_phy_id(hw); |
| hw->phy.ops.acquire(hw); |
| } |
| |
| if (ret_val) |
| return false; |
| out: |
| if ((hw->mac.type == e1000_pch_lpt) || |
| (hw->mac.type == e1000_pch_spt)) { |
| /* Unforce SMBus mode in PHY */ |
| e1e_rphy_locked(hw, CV_SMB_CTRL, &phy_reg); |
| phy_reg &= ~CV_SMB_CTRL_FORCE_SMBUS; |
| e1e_wphy_locked(hw, CV_SMB_CTRL, phy_reg); |
| |
| /* Unforce SMBus mode in MAC */ |
| mac_reg = er32(CTRL_EXT); |
| mac_reg &= ~E1000_CTRL_EXT_FORCE_SMBUS; |
| ew32(CTRL_EXT, mac_reg); |
| } |
| |
| return true; |
| } |
| |
| /** |
| * e1000_toggle_lanphypc_pch_lpt - toggle the LANPHYPC pin value |
| * @hw: pointer to the HW structure |
| * |
| * Toggling the LANPHYPC pin value fully power-cycles the PHY and is |
| * used to reset the PHY to a quiescent state when necessary. |
| **/ |
| static void e1000_toggle_lanphypc_pch_lpt(struct e1000_hw *hw) |
| { |
| u32 mac_reg; |
| |
| /* Set Phy Config Counter to 50msec */ |
| mac_reg = er32(FEXTNVM3); |
| mac_reg &= ~E1000_FEXTNVM3_PHY_CFG_COUNTER_MASK; |
| mac_reg |= E1000_FEXTNVM3_PHY_CFG_COUNTER_50MSEC; |
| ew32(FEXTNVM3, mac_reg); |
| |
| /* Toggle LANPHYPC Value bit */ |
| mac_reg = er32(CTRL); |
| mac_reg |= E1000_CTRL_LANPHYPC_OVERRIDE; |
| mac_reg &= ~E1000_CTRL_LANPHYPC_VALUE; |
| ew32(CTRL, mac_reg); |
| e1e_flush(); |
| usleep_range(10, 20); |
| mac_reg &= ~E1000_CTRL_LANPHYPC_OVERRIDE; |
| ew32(CTRL, mac_reg); |
| e1e_flush(); |
| |
| if (hw->mac.type < e1000_pch_lpt) { |
| msleep(50); |
| } else { |
| u16 count = 20; |
| |
| do { |
| usleep_range(5000, 10000); |
| } while (!(er32(CTRL_EXT) & E1000_CTRL_EXT_LPCD) && count--); |
| |
| msleep(30); |
| } |
| } |
| |
| /** |
| * e1000_init_phy_workarounds_pchlan - PHY initialization workarounds |
| * @hw: pointer to the HW structure |
| * |
| * Workarounds/flow necessary for PHY initialization during driver load |
| * and resume paths. |
| **/ |
| static s32 e1000_init_phy_workarounds_pchlan(struct e1000_hw *hw) |
| { |
| struct e1000_adapter *adapter = hw->adapter; |
| u32 mac_reg, fwsm = er32(FWSM); |
| s32 ret_val; |
| |
| /* Gate automatic PHY configuration by hardware on managed and |
| * non-managed 82579 and newer adapters. |
| */ |
| e1000_gate_hw_phy_config_ich8lan(hw, true); |
| |
| /* It is not possible to be certain of the current state of ULP |
| * so forcibly disable it. |
| */ |
| hw->dev_spec.ich8lan.ulp_state = e1000_ulp_state_unknown; |
| e1000_disable_ulp_lpt_lp(hw, true); |
| |
| ret_val = hw->phy.ops.acquire(hw); |
| if (ret_val) { |
| e_dbg("Failed to initialize PHY flow\n"); |
| goto out; |
| } |
| |
| /* The MAC-PHY interconnect may be in SMBus mode. If the PHY is |
| * inaccessible and resetting the PHY is not blocked, toggle the |
| * LANPHYPC Value bit to force the interconnect to PCIe mode. |
| */ |
| switch (hw->mac.type) { |
| case e1000_pch_lpt: |
| case e1000_pch_spt: |
| if (e1000_phy_is_accessible_pchlan(hw)) |
| break; |
| |
| /* Before toggling LANPHYPC, see if PHY is accessible by |
| * forcing MAC to SMBus mode first. |
| */ |
| mac_reg = er32(CTRL_EXT); |
| mac_reg |= E1000_CTRL_EXT_FORCE_SMBUS; |
| ew32(CTRL_EXT, mac_reg); |
| |
| /* Wait 50 milliseconds for MAC to finish any retries |
| * that it might be trying to perform from previous |
| * attempts to acknowledge any phy read requests. |
| */ |
| msleep(50); |
| |
| /* fall-through */ |
| case e1000_pch2lan: |
| if (e1000_phy_is_accessible_pchlan(hw)) |
| break; |
| |
| /* fall-through */ |
| case e1000_pchlan: |
| if ((hw->mac.type == e1000_pchlan) && |
| (fwsm & E1000_ICH_FWSM_FW_VALID)) |
| break; |
| |
| if (hw->phy.ops.check_reset_block(hw)) { |
| e_dbg("Required LANPHYPC toggle blocked by ME\n"); |
| ret_val = -E1000_ERR_PHY; |
| break; |
| } |
| |
| /* Toggle LANPHYPC Value bit */ |
| e1000_toggle_lanphypc_pch_lpt(hw); |
| if (hw->mac.type >= e1000_pch_lpt) { |
| if (e1000_phy_is_accessible_pchlan(hw)) |
| break; |
| |
| /* Toggling LANPHYPC brings the PHY out of SMBus mode |
| * so ensure that the MAC is also out of SMBus mode |
| */ |
| mac_reg = er32(CTRL_EXT); |
| mac_reg &= ~E1000_CTRL_EXT_FORCE_SMBUS; |
| ew32(CTRL_EXT, mac_reg); |
| |
| if (e1000_phy_is_accessible_pchlan(hw)) |
| break; |
| |
| ret_val = -E1000_ERR_PHY; |
| } |
| break; |
| default: |
| break; |
| } |
| |
| hw->phy.ops.release(hw); |
| if (!ret_val) { |
| |
| /* Check to see if able to reset PHY. Print error if not */ |
| if (hw->phy.ops.check_reset_block(hw)) { |
| e_err("Reset blocked by ME\n"); |
| goto out; |
| } |
| |
| /* Reset the PHY before any access to it. Doing so, ensures |
| * that the PHY is in a known good state before we read/write |
| * PHY registers. The generic reset is sufficient here, |
| * because we haven't determined the PHY type yet. |
| */ |
| ret_val = e1000e_phy_hw_reset_generic(hw); |
| if (ret_val) |
| goto out; |
| |
| /* On a successful reset, possibly need to wait for the PHY |
| * to quiesce to an accessible state before returning control |
| * to the calling function. If the PHY does not quiesce, then |
| * return E1000E_BLK_PHY_RESET, as this is the condition that |
| * the PHY is in. |
| */ |
| ret_val = hw->phy.ops.check_reset_block(hw); |
| if (ret_val) |
| e_err("ME blocked access to PHY after reset\n"); |
| } |
| |
| out: |
| /* Ungate automatic PHY configuration on non-managed 82579 */ |
| if ((hw->mac.type == e1000_pch2lan) && |
| !(fwsm & E1000_ICH_FWSM_FW_VALID)) { |
| usleep_range(10000, 20000); |
| e1000_gate_hw_phy_config_ich8lan(hw, false); |
| } |
| |
| return ret_val; |
| } |
| |
| /** |
| * e1000_init_phy_params_pchlan - Initialize PHY function pointers |
| * @hw: pointer to the HW structure |
| * |
| * Initialize family-specific PHY parameters and function pointers. |
| **/ |
| static s32 e1000_init_phy_params_pchlan(struct e1000_hw *hw) |
| { |
| struct e1000_phy_info *phy = &hw->phy; |
| s32 ret_val; |
| |
| phy->addr = 1; |
| phy->reset_delay_us = 100; |
| |
| phy->ops.set_page = e1000_set_page_igp; |
| phy->ops.read_reg = e1000_read_phy_reg_hv; |
| phy->ops.read_reg_locked = e1000_read_phy_reg_hv_locked; |
| phy->ops.read_reg_page = e1000_read_phy_reg_page_hv; |
| phy->ops.set_d0_lplu_state = e1000_set_lplu_state_pchlan; |
| phy->ops.set_d3_lplu_state = e1000_set_lplu_state_pchlan; |
| phy->ops.write_reg = e1000_write_phy_reg_hv; |
| phy->ops.write_reg_locked = e1000_write_phy_reg_hv_locked; |
| phy->ops.write_reg_page = e1000_write_phy_reg_page_hv; |
| phy->ops.power_up = e1000_power_up_phy_copper; |
| phy->ops.power_down = e1000_power_down_phy_copper_ich8lan; |
| phy->autoneg_mask = AUTONEG_ADVERTISE_SPEED_DEFAULT; |
| |
| phy->id = e1000_phy_unknown; |
| |
| ret_val = e1000_init_phy_workarounds_pchlan(hw); |
| if (ret_val) |
| return ret_val; |
| |
| if (phy->id == e1000_phy_unknown) |
| switch (hw->mac.type) { |
| default: |
| ret_val = e1000e_get_phy_id(hw); |
| if (ret_val) |
| return ret_val; |
| if ((phy->id != 0) && (phy->id != PHY_REVISION_MASK)) |
| break; |
| /* fall-through */ |
| case e1000_pch2lan: |
| case e1000_pch_lpt: |
| case e1000_pch_spt: |
| /* In case the PHY needs to be in mdio slow mode, |
| * set slow mode and try to get the PHY id again. |
| */ |
| ret_val = e1000_set_mdio_slow_mode_hv(hw); |
| if (ret_val) |
| return ret_val; |
| ret_val = e1000e_get_phy_id(hw); |
| if (ret_val) |
| return ret_val; |
| break; |
| } |
| phy->type = e1000e_get_phy_type_from_id(phy->id); |
| |
| switch (phy->type) { |
| case e1000_phy_82577: |
| case e1000_phy_82579: |
| case e1000_phy_i217: |
| phy->ops.check_polarity = e1000_check_polarity_82577; |
| phy->ops.force_speed_duplex = |
| e1000_phy_force_speed_duplex_82577; |
| phy->ops.get_cable_length = e1000_get_cable_length_82577; |
| phy->ops.get_info = e1000_get_phy_info_82577; |
| phy->ops.commit = e1000e_phy_sw_reset; |
| break; |
| case e1000_phy_82578: |
| phy->ops.check_polarity = e1000_check_polarity_m88; |
| phy->ops.force_speed_duplex = e1000e_phy_force_speed_duplex_m88; |
| phy->ops.get_cable_length = e1000e_get_cable_length_m88; |
| phy->ops.get_info = e1000e_get_phy_info_m88; |
| break; |
| default: |
| ret_val = -E1000_ERR_PHY; |
| break; |
| } |
| |
| return ret_val; |
| } |
| |
| /** |
| * e1000_init_phy_params_ich8lan - Initialize PHY function pointers |
| * @hw: pointer to the HW structure |
| * |
| * Initialize family-specific PHY parameters and function pointers. |
| **/ |
| static s32 e1000_init_phy_params_ich8lan(struct e1000_hw *hw) |
| { |
| struct e1000_phy_info *phy = &hw->phy; |
| s32 ret_val; |
| u16 i = 0; |
| |
| phy->addr = 1; |
| phy->reset_delay_us = 100; |
| |
| phy->ops.power_up = e1000_power_up_phy_copper; |
| phy->ops.power_down = e1000_power_down_phy_copper_ich8lan; |
| |
| /* We may need to do this twice - once for IGP and if that fails, |
| * we'll set BM func pointers and try again |
| */ |
| ret_val = e1000e_determine_phy_address(hw); |
| if (ret_val) { |
| phy->ops.write_reg = e1000e_write_phy_reg_bm; |
| phy->ops.read_reg = e1000e_read_phy_reg_bm; |
| ret_val = e1000e_determine_phy_address(hw); |
| if (ret_val) { |
| e_dbg("Cannot determine PHY addr. Erroring out\n"); |
| return ret_val; |
| } |
| } |
| |
| phy->id = 0; |
| while ((e1000_phy_unknown == e1000e_get_phy_type_from_id(phy->id)) && |
| (i++ < 100)) { |
| usleep_range(1000, 2000); |
| ret_val = e1000e_get_phy_id(hw); |
| if (ret_val) |
| return ret_val; |
| } |
| |
| /* Verify phy id */ |
| switch (phy->id) { |
| case IGP03E1000_E_PHY_ID: |
| phy->type = e1000_phy_igp_3; |
| phy->autoneg_mask = AUTONEG_ADVERTISE_SPEED_DEFAULT; |
| phy->ops.read_reg_locked = e1000e_read_phy_reg_igp_locked; |
| phy->ops.write_reg_locked = e1000e_write_phy_reg_igp_locked; |
| phy->ops.get_info = e1000e_get_phy_info_igp; |
| phy->ops.check_polarity = e1000_check_polarity_igp; |
| phy->ops.force_speed_duplex = e1000e_phy_force_speed_duplex_igp; |
| break; |
| case IFE_E_PHY_ID: |
| case IFE_PLUS_E_PHY_ID: |
| case IFE_C_E_PHY_ID: |
| phy->type = e1000_phy_ife; |
| phy->autoneg_mask = E1000_ALL_NOT_GIG; |
| phy->ops.get_info = e1000_get_phy_info_ife; |
| phy->ops.check_polarity = e1000_check_polarity_ife; |
| phy->ops.force_speed_duplex = e1000_phy_force_speed_duplex_ife; |
| break; |
| case BME1000_E_PHY_ID: |
| phy->type = e1000_phy_bm; |
| phy->autoneg_mask = AUTONEG_ADVERTISE_SPEED_DEFAULT; |
| phy->ops.read_reg = e1000e_read_phy_reg_bm; |
| phy->ops.write_reg = e1000e_write_phy_reg_bm; |
| phy->ops.commit = e1000e_phy_sw_reset; |
| phy->ops.get_info = e1000e_get_phy_info_m88; |
| phy->ops.check_polarity = e1000_check_polarity_m88; |
| phy->ops.force_speed_duplex = e1000e_phy_force_speed_duplex_m88; |
| break; |
| default: |
| return -E1000_ERR_PHY; |
| } |
| |
| return 0; |
| } |
| |
| /** |
| * e1000_init_nvm_params_ich8lan - Initialize NVM function pointers |
| * @hw: pointer to the HW structure |
| * |
| * Initialize family-specific NVM parameters and function |
| * pointers. |
| **/ |
| static s32 e1000_init_nvm_params_ich8lan(struct e1000_hw *hw) |
| { |
| struct e1000_nvm_info *nvm = &hw->nvm; |
| struct e1000_dev_spec_ich8lan *dev_spec = &hw->dev_spec.ich8lan; |
| u32 gfpreg, sector_base_addr, sector_end_addr; |
| u16 i; |
| u32 nvm_size; |
| |
| nvm->type = e1000_nvm_flash_sw; |
| |
| if (hw->mac.type == e1000_pch_spt) { |
| /* in SPT, gfpreg doesn't exist. NVM size is taken from the |
| * STRAP register. This is because in SPT the GbE Flash region |
| * is no longer accessed through the flash registers. Instead, |
| * the mechanism has changed, and the Flash region access |
| * registers are now implemented in GbE memory space. |
| */ |
| nvm->flash_base_addr = 0; |
| nvm_size = (((er32(STRAP) >> 1) & 0x1F) + 1) |
| * NVM_SIZE_MULTIPLIER; |
| nvm->flash_bank_size = nvm_size / 2; |
| /* Adjust to word count */ |
| nvm->flash_bank_size /= sizeof(u16); |
| /* Set the base address for flash register access */ |
| hw->flash_address = hw->hw_addr + E1000_FLASH_BASE_ADDR; |
| } else { |
| /* Can't read flash registers if register set isn't mapped. */ |
| if (!hw->flash_address) { |
| e_dbg("ERROR: Flash registers not mapped\n"); |
| return -E1000_ERR_CONFIG; |
| } |
| |
| gfpreg = er32flash(ICH_FLASH_GFPREG); |
| |
| /* sector_X_addr is a "sector"-aligned address (4096 bytes) |
| * Add 1 to sector_end_addr since this sector is included in |
| * the overall size. |
| */ |
| sector_base_addr = gfpreg & FLASH_GFPREG_BASE_MASK; |
| sector_end_addr = ((gfpreg >> 16) & FLASH_GFPREG_BASE_MASK) + 1; |
| |
| /* flash_base_addr is byte-aligned */ |
| nvm->flash_base_addr = sector_base_addr |
| << FLASH_SECTOR_ADDR_SHIFT; |
| |
| /* find total size of the NVM, then cut in half since the total |
| * size represents two separate NVM banks. |
| */ |
| nvm->flash_bank_size = ((sector_end_addr - sector_base_addr) |
| << FLASH_SECTOR_ADDR_SHIFT); |
| nvm->flash_bank_size /= 2; |
| /* Adjust to word count */ |
| nvm->flash_bank_size /= sizeof(u16); |
| } |
| |
| nvm->word_size = E1000_ICH8_SHADOW_RAM_WORDS; |
| |
| /* Clear shadow ram */ |
| for (i = 0; i < nvm->word_size; i++) { |
| dev_spec->shadow_ram[i].modified = false; |
| dev_spec->shadow_ram[i].value = 0xFFFF; |
| } |
| |
| return 0; |
| } |
| |
| /** |
| * e1000_init_mac_params_ich8lan - Initialize MAC function pointers |
| * @hw: pointer to the HW structure |
| * |
| * Initialize family-specific MAC parameters and function |
| * pointers. |
| **/ |
| static s32 e1000_init_mac_params_ich8lan(struct e1000_hw *hw) |
| { |
| struct e1000_mac_info *mac = &hw->mac; |
| |
| /* Set media type function pointer */ |
| hw->phy.media_type = e1000_media_type_copper; |
| |
| /* Set mta register count */ |
| mac->mta_reg_count = 32; |
| /* Set rar entry count */ |
| mac->rar_entry_count = E1000_ICH_RAR_ENTRIES; |
| if (mac->type == e1000_ich8lan) |
| mac->rar_entry_count--; |
| /* FWSM register */ |
| mac->has_fwsm = true; |
| /* ARC subsystem not supported */ |
| mac->arc_subsystem_valid = false; |
| /* Adaptive IFS supported */ |
| mac->adaptive_ifs = true; |
| |
| /* LED and other operations */ |
| switch (mac->type) { |
| case e1000_ich8lan: |
| case e1000_ich9lan: |
| case e1000_ich10lan: |
| /* check management mode */ |
| mac->ops.check_mng_mode = e1000_check_mng_mode_ich8lan; |
| /* ID LED init */ |
| mac->ops.id_led_init = e1000e_id_led_init_generic; |
| /* blink LED */ |
| mac->ops.blink_led = e1000e_blink_led_generic; |
| /* setup LED */ |
| mac->ops.setup_led = e1000e_setup_led_generic; |
| /* cleanup LED */ |
| mac->ops.cleanup_led = e1000_cleanup_led_ich8lan; |
| /* turn on/off LED */ |
| mac->ops.led_on = e1000_led_on_ich8lan; |
| mac->ops.led_off = e1000_led_off_ich8lan; |
| break; |
| case e1000_pch2lan: |
| mac->rar_entry_count = E1000_PCH2_RAR_ENTRIES; |
| mac->ops.rar_set = e1000_rar_set_pch2lan; |
| /* fall-through */ |
| case e1000_pch_lpt: |
| case e1000_pch_spt: |
| case e1000_pchlan: |
| /* check management mode */ |
| mac->ops.check_mng_mode = e1000_check_mng_mode_pchlan; |
| /* ID LED init */ |
| mac->ops.id_led_init = e1000_id_led_init_pchlan; |
| /* setup LED */ |
| mac->ops.setup_led = e1000_setup_led_pchlan; |
| /* cleanup LED */ |
| mac->ops.cleanup_led = e1000_cleanup_led_pchlan; |
| /* turn on/off LED */ |
| mac->ops.led_on = e1000_led_on_pchlan; |
| mac->ops.led_off = e1000_led_off_pchlan; |
| break; |
| default: |
| break; |
| } |
| |
| if ((mac->type == e1000_pch_lpt) || (mac->type == e1000_pch_spt)) { |
| mac->rar_entry_count = E1000_PCH_LPT_RAR_ENTRIES; |
| mac->ops.rar_set = e1000_rar_set_pch_lpt; |
| mac->ops.setup_physical_interface = |
| e1000_setup_copper_link_pch_lpt; |
| mac->ops.rar_get_count = e1000_rar_get_count_pch_lpt; |
| } |
| |
| /* Enable PCS Lock-loss workaround for ICH8 */ |
| if (mac->type == e1000_ich8lan) |
| e1000e_set_kmrn_lock_loss_workaround_ich8lan(hw, true); |
| |
| return 0; |
| } |
| |
| /** |
| * __e1000_access_emi_reg_locked - Read/write EMI register |
| * @hw: pointer to the HW structure |
| * @addr: EMI address to program |
| * @data: pointer to value to read/write from/to the EMI address |
| * @read: boolean flag to indicate read or write |
| * |
| * This helper function assumes the SW/FW/HW Semaphore is already acquired. |
| **/ |
| static s32 __e1000_access_emi_reg_locked(struct e1000_hw *hw, u16 address, |
| u16 *data, bool read) |
| { |
| s32 ret_val; |
| |
| ret_val = e1e_wphy_locked(hw, I82579_EMI_ADDR, address); |
| if (ret_val) |
| return ret_val; |
| |
| if (read) |
| ret_val = e1e_rphy_locked(hw, I82579_EMI_DATA, data); |
| else |
| ret_val = e1e_wphy_locked(hw, I82579_EMI_DATA, *data); |
| |
| return ret_val; |
| } |
| |
| /** |
| * e1000_read_emi_reg_locked - Read Extended Management Interface register |
| * @hw: pointer to the HW structure |
| * @addr: EMI address to program |
| * @data: value to be read from the EMI address |
| * |
| * Assumes the SW/FW/HW Semaphore is already acquired. |
| **/ |
| s32 e1000_read_emi_reg_locked(struct e1000_hw *hw, u16 addr, u16 *data) |
| { |
| return __e1000_access_emi_reg_locked(hw, addr, data, true); |
| } |
| |
| /** |
| * e1000_write_emi_reg_locked - Write Extended Management Interface register |
| * @hw: pointer to the HW structure |
| * @addr: EMI address to program |
| * @data: value to be written to the EMI address |
| * |
| * Assumes the SW/FW/HW Semaphore is already acquired. |
| **/ |
| s32 e1000_write_emi_reg_locked(struct e1000_hw *hw, u16 addr, u16 data) |
| { |
| return __e1000_access_emi_reg_locked(hw, addr, &data, false); |
| } |
| |
| /** |
| * e1000_set_eee_pchlan - Enable/disable EEE support |
| * @hw: pointer to the HW structure |
| * |
| * Enable/disable EEE based on setting in dev_spec structure, the duplex of |
| * the link and the EEE capabilities of the link partner. The LPI Control |
| * register bits will remain set only if/when link is up. |
| * |
| * EEE LPI must not be asserted earlier than one second after link is up. |
| * On 82579, EEE LPI should not be enabled until such time otherwise there |
| * can be link issues with some switches. Other devices can have EEE LPI |
| * enabled immediately upon link up since they have a timer in hardware which |
| * prevents LPI from being asserted too early. |
| **/ |
| s32 e1000_set_eee_pchlan(struct e1000_hw *hw) |
| { |
| struct e1000_dev_spec_ich8lan *dev_spec = &hw->dev_spec.ich8lan; |
| s32 ret_val; |
| u16 lpa, pcs_status, adv, adv_addr, lpi_ctrl, data; |
| |
| switch (hw->phy.type) { |
| case e1000_phy_82579: |
| lpa = I82579_EEE_LP_ABILITY; |
| pcs_status = I82579_EEE_PCS_STATUS; |
| adv_addr = I82579_EEE_ADVERTISEMENT; |
| break; |
| case e1000_phy_i217: |
| lpa = I217_EEE_LP_ABILITY; |
| pcs_status = I217_EEE_PCS_STATUS; |
| adv_addr = I217_EEE_ADVERTISEMENT; |
| break; |
| default: |
| return 0; |
| } |
| |
| ret_val = hw->phy.ops.acquire(hw); |
| if (ret_val) |
| return ret_val; |
| |
| ret_val = e1e_rphy_locked(hw, I82579_LPI_CTRL, &lpi_ctrl); |
| if (ret_val) |
| goto release; |
| |
| /* Clear bits that enable EEE in various speeds */ |
| lpi_ctrl &= ~I82579_LPI_CTRL_ENABLE_MASK; |
| |
| /* Enable EEE if not disabled by user */ |
| if (!dev_spec->eee_disable) { |
| /* Save off link partner's EEE ability */ |
| ret_val = e1000_read_emi_reg_locked(hw, lpa, |
| &dev_spec->eee_lp_ability); |
| if (ret_val) |
| goto release; |
| |
| /* Read EEE advertisement */ |
| ret_val = e1000_read_emi_reg_locked(hw, adv_addr, &adv); |
| if (ret_val) |
| goto release; |
| |
| /* Enable EEE only for speeds in which the link partner is |
| * EEE capable and for which we advertise EEE. |
| */ |
| if (adv & dev_spec->eee_lp_ability & I82579_EEE_1000_SUPPORTED) |
| lpi_ctrl |= I82579_LPI_CTRL_1000_ENABLE; |
| |
| if (adv & dev_spec->eee_lp_ability & I82579_EEE_100_SUPPORTED) { |
| e1e_rphy_locked(hw, MII_LPA, &data); |
| if (data & LPA_100FULL) |
| lpi_ctrl |= I82579_LPI_CTRL_100_ENABLE; |
| else |
| /* EEE is not supported in 100Half, so ignore |
| * partner's EEE in 100 ability if full-duplex |
| * is not advertised. |
| */ |
| dev_spec->eee_lp_ability &= |
| ~I82579_EEE_100_SUPPORTED; |
| } |
| } |
| |
| if (hw->phy.type == e1000_phy_82579) { |
| ret_val = e1000_read_emi_reg_locked(hw, I82579_LPI_PLL_SHUT, |
| &data); |
| if (ret_val) |
| goto release; |
| |
| data &= ~I82579_LPI_100_PLL_SHUT; |
| ret_val = e1000_write_emi_reg_locked(hw, I82579_LPI_PLL_SHUT, |
| data); |
| } |
| |
| /* R/Clr IEEE MMD 3.1 bits 11:10 - Tx/Rx LPI Received */ |
| ret_val = e1000_read_emi_reg_locked(hw, pcs_status, &data); |
| if (ret_val) |
| goto release; |
| |
| ret_val = e1e_wphy_locked(hw, I82579_LPI_CTRL, lpi_ctrl); |
| release: |
| hw->phy.ops.release(hw); |
| |
| return ret_val; |
| } |
| |
| /** |
| * e1000_k1_workaround_lpt_lp - K1 workaround on Lynxpoint-LP |
| * @hw: pointer to the HW structure |
| * @link: link up bool flag |
| * |
| * When K1 is enabled for 1Gbps, the MAC can miss 2 DMA completion indications |
| * preventing further DMA write requests. Workaround the issue by disabling |
| * the de-assertion of the clock request when in 1Gpbs mode. |
| * Also, set appropriate Tx re-transmission timeouts for 10 and 100Half link |
| * speeds in order to avoid Tx hangs. |
| **/ |
| static s32 e1000_k1_workaround_lpt_lp(struct e1000_hw *hw, bool link) |
| { |
| u32 fextnvm6 = er32(FEXTNVM6); |
| u32 status = er32(STATUS); |
| s32 ret_val = 0; |
| u16 reg; |
| |
| if (link && (status & E1000_STATUS_SPEED_1000)) { |
| ret_val = hw->phy.ops.acquire(hw); |
| if (ret_val) |
| return ret_val; |
| |
| ret_val = |
| e1000e_read_kmrn_reg_locked(hw, E1000_KMRNCTRLSTA_K1_CONFIG, |
| ®); |
| if (ret_val) |
| goto release; |
| |
| ret_val = |
| e1000e_write_kmrn_reg_locked(hw, |
| E1000_KMRNCTRLSTA_K1_CONFIG, |
| reg & |
| ~E1000_KMRNCTRLSTA_K1_ENABLE); |
| if (ret_val) |
| goto release; |
| |
| usleep_range(10, 20); |
| |
| ew32(FEXTNVM6, fextnvm6 | E1000_FEXTNVM6_REQ_PLL_CLK); |
| |
| ret_val = |
| e1000e_write_kmrn_reg_locked(hw, |
| E1000_KMRNCTRLSTA_K1_CONFIG, |
| reg); |
| release: |
| hw->phy.ops.release(hw); |
| } else { |
| /* clear FEXTNVM6 bit 8 on link down or 10/100 */ |
| fextnvm6 &= ~E1000_FEXTNVM6_REQ_PLL_CLK; |
| |
| if ((hw->phy.revision > 5) || !link || |
| ((status & E1000_STATUS_SPEED_100) && |
| (status & E1000_STATUS_FD))) |
| goto update_fextnvm6; |
| |
| ret_val = e1e_rphy(hw, I217_INBAND_CTRL, ®); |
| if (ret_val) |
| return ret_val; |
| |
| /* Clear link status transmit timeout */ |
| reg &= ~I217_INBAND_CTRL_LINK_STAT_TX_TIMEOUT_MASK; |
| |
| if (status & E1000_STATUS_SPEED_100) { |
| /* Set inband Tx timeout to 5x10us for 100Half */ |
| reg |= 5 << I217_INBAND_CTRL_LINK_STAT_TX_TIMEOUT_SHIFT; |
| |
| /* Do not extend the K1 entry latency for 100Half */ |
| fextnvm6 &= ~E1000_FEXTNVM6_ENABLE_K1_ENTRY_CONDITION; |
| } else { |
| /* Set inband Tx timeout to 50x10us for 10Full/Half */ |
| reg |= 50 << |
| I217_INBAND_CTRL_LINK_STAT_TX_TIMEOUT_SHIFT; |
| |
| /* Extend the K1 entry latency for 10 Mbps */ |
| fextnvm6 |= E1000_FEXTNVM6_ENABLE_K1_ENTRY_CONDITION; |
| } |
| |
| ret_val = e1e_wphy(hw, I217_INBAND_CTRL, reg); |
| if (ret_val) |
| return ret_val; |
| |
| update_fextnvm6: |
| ew32(FEXTNVM6, fextnvm6); |
| } |
| |
| return ret_val; |
| } |
| |
| /** |
| * e1000_platform_pm_pch_lpt - Set platform power management values |
| * @hw: pointer to the HW structure |
| * @link: bool indicating link status |
| * |
| * Set the Latency Tolerance Reporting (LTR) values for the "PCIe-like" |
| * GbE MAC in the Lynx Point PCH based on Rx buffer size and link speed |
| * when link is up (which must not exceed the maximum latency supported |
| * by the platform), otherwise specify there is no LTR requirement. |
| * Unlike true-PCIe devices which set the LTR maximum snoop/no-snoop |
| * latencies in the LTR Extended Capability Structure in the PCIe Extended |
| * Capability register set, on this device LTR is set by writing the |
| * equivalent snoop/no-snoop latencies in the LTRV register in the MAC and |
| * set the SEND bit to send an Intel On-chip System Fabric sideband (IOSF-SB) |
| * message to the PMC. |
| **/ |
| static s32 e1000_platform_pm_pch_lpt(struct e1000_hw *hw, bool link) |
| { |
| u32 reg = link << (E1000_LTRV_REQ_SHIFT + E1000_LTRV_NOSNOOP_SHIFT) | |
| link << E1000_LTRV_REQ_SHIFT | E1000_LTRV_SEND; |
| u16 lat_enc = 0; /* latency encoded */ |
| |
| if (link) { |
| u16 speed, duplex, scale = 0; |
| u16 max_snoop, max_nosnoop; |
| u16 max_ltr_enc; /* max LTR latency encoded */ |
| s64 lat_ns; /* latency (ns) */ |
| u64 value; |
| u32 rxa; |
| |
| if (!hw->adapter->max_frame_size) { |
| e_dbg("max_frame_size not set.\n"); |
| return -E1000_ERR_CONFIG; |
| } |
| |
| hw->mac.ops.get_link_up_info(hw, &speed, &duplex); |
| if (!speed) { |
| e_dbg("Speed not set.\n"); |
| return -E1000_ERR_CONFIG; |
| } |
| |
| /* Rx Packet Buffer Allocation size (KB) */ |
| rxa = er32(PBA) & E1000_PBA_RXA_MASK; |
| |
| /* Determine the maximum latency tolerated by the device. |
| * |
| * Per the PCIe spec, the tolerated latencies are encoded as |
| * a 3-bit encoded scale (only 0-5 are valid) multiplied by |
| * a 10-bit value (0-1023) to provide a range from 1 ns to |
| * 2^25*(2^10-1) ns. The scale is encoded as 0=2^0ns, |
| * 1=2^5ns, 2=2^10ns,...5=2^25ns. |
| */ |
| lat_ns = ((s64)rxa * 1024 - |
| (2 * (s64)hw->adapter->max_frame_size)) * 8 * 1000; |
| if (lat_ns < 0) { |
| value = 0; |
| } else { |
| value = lat_ns; |
| do_div(value, speed); |
| } |
| |
| while (value > PCI_LTR_VALUE_MASK) { |
| scale++; |
| value = DIV_ROUND_UP(value, (1 << 5)); |
| } |
| if (scale > E1000_LTRV_SCALE_MAX) { |
| e_dbg("Invalid LTR latency scale %d\n", scale); |
| return -E1000_ERR_CONFIG; |
| } |
| lat_enc = (u16)((scale << PCI_LTR_SCALE_SHIFT) | value); |
| |
| /* Determine the maximum latency tolerated by the platform */ |
| pci_read_config_word(hw->adapter->pdev, E1000_PCI_LTR_CAP_LPT, |
| &max_snoop); |
| pci_read_config_word(hw->adapter->pdev, |
| E1000_PCI_LTR_CAP_LPT + 2, &max_nosnoop); |
| max_ltr_enc = max_t(u16, max_snoop, max_nosnoop); |
| |
| if (lat_enc > max_ltr_enc) |
| lat_enc = max_ltr_enc; |
| } |
| |
| /* Set Snoop and No-Snoop latencies the same */ |
| reg |= lat_enc | (lat_enc << E1000_LTRV_NOSNOOP_SHIFT); |
| ew32(LTRV, reg); |
| |
| return 0; |
| } |
| |
| /** |
| * e1000_enable_ulp_lpt_lp - configure Ultra Low Power mode for LynxPoint-LP |
| * @hw: pointer to the HW structure |
| * @to_sx: boolean indicating a system power state transition to Sx |
| * |
| * When link is down, configure ULP mode to significantly reduce the power |
| * to the PHY. If on a Manageability Engine (ME) enabled system, tell the |
| * ME firmware to start the ULP configuration. If not on an ME enabled |
| * system, configure the ULP mode by software. |
| */ |
| s32 e1000_enable_ulp_lpt_lp(struct e1000_hw *hw, bool to_sx) |
| { |
| u32 mac_reg; |
| s32 ret_val = 0; |
| u16 phy_reg; |
| |
| if ((hw->mac.type < e1000_pch_lpt) || |
| (hw->adapter->pdev->device == E1000_DEV_ID_PCH_LPT_I217_LM) || |
| (hw->adapter->pdev->device == E1000_DEV_ID_PCH_LPT_I217_V) || |
| (hw->adapter->pdev->device == E1000_DEV_ID_PCH_I218_LM2) || |
| (hw->adapter->pdev->device == E1000_DEV_ID_PCH_I218_V2) || |
| (hw->dev_spec.ich8lan.ulp_state == e1000_ulp_state_on)) |
| return 0; |
| |
| if (er32(FWSM) & E1000_ICH_FWSM_FW_VALID) { |
| /* Request ME configure ULP mode in the PHY */ |
| mac_reg = er32(H2ME); |
| mac_reg |= E1000_H2ME_ULP | E1000_H2ME_ENFORCE_SETTINGS; |
| ew32(H2ME, mac_reg); |
| |
| goto out; |
| } |
| |
| if (!to_sx) { |
| int i = 0; |
| |
| /* Poll up to 5 seconds for Cable Disconnected indication */ |
| while (!(er32(FEXT) & E1000_FEXT_PHY_CABLE_DISCONNECTED)) { |
| /* Bail if link is re-acquired */ |
| if (er32(STATUS) & E1000_STATUS_LU) |
| return -E1000_ERR_PHY; |
| |
| if (i++ == 100) |
| break; |
| |
| msleep(50); |
| } |
| e_dbg("CABLE_DISCONNECTED %s set after %dmsec\n", |
| (er32(FEXT) & |
| E1000_FEXT_PHY_CABLE_DISCONNECTED) ? "" : "not", i * 50); |
| } |
| |
| ret_val = hw->phy.ops.acquire(hw); |
| if (ret_val) |
| goto out; |
| |
| /* Si workaround for ULP entry flow on i127/rev6 h/w. Enable |
| * LPLU and disable Gig speed when entering ULP |
| */ |
| if ((hw->phy.type == e1000_phy_i217) && (hw->phy.revision == 6)) { |
| ret_val = e1000_read_phy_reg_hv_locked(hw, HV_OEM_BITS, |
| &phy_reg); |
| if (ret_val) |
| goto release; |
| phy_reg |= HV_OEM_BITS_LPLU | HV_OEM_BITS_GBE_DIS; |
| ret_val = e1000_write_phy_reg_hv_locked(hw, HV_OEM_BITS, |
| phy_reg); |
| if (ret_val) |
| goto release; |
| } |
| |
| /* Force SMBus mode in PHY */ |
| ret_val = e1000_read_phy_reg_hv_locked(hw, CV_SMB_CTRL, &phy_reg); |
| if (ret_val) |
| goto release; |
| phy_reg |= CV_SMB_CTRL_FORCE_SMBUS; |
| e1000_write_phy_reg_hv_locked(hw, CV_SMB_CTRL, phy_reg); |
| |
| /* Force SMBus mode in MAC */ |
| mac_reg = er32(CTRL_EXT); |
| mac_reg |= E1000_CTRL_EXT_FORCE_SMBUS; |
| ew32(CTRL_EXT, mac_reg); |
| |
| /* Set Inband ULP Exit, Reset to SMBus mode and |
| * Disable SMBus Release on PERST# in PHY |
| */ |
| ret_val = e1000_read_phy_reg_hv_locked(hw, I218_ULP_CONFIG1, &phy_reg); |
| if (ret_val) |
| goto release; |
| phy_reg |= (I218_ULP_CONFIG1_RESET_TO_SMBUS | |
| I218_ULP_CONFIG1_DISABLE_SMB_PERST); |
| if (to_sx) { |
| if (er32(WUFC) & E1000_WUFC_LNKC) |
| phy_reg |= I218_ULP_CONFIG1_WOL_HOST; |
| |
| phy_reg |= I218_ULP_CONFIG1_STICKY_ULP; |
| } else { |
| phy_reg |= I218_ULP_CONFIG1_INBAND_EXIT; |
| } |
| e1000_write_phy_reg_hv_locked(hw, I218_ULP_CONFIG1, phy_reg); |
| |
| /* Set Disable SMBus Release on PERST# in MAC */ |
| mac_reg = er32(FEXTNVM7); |
| mac_reg |= E1000_FEXTNVM7_DISABLE_SMB_PERST; |
| ew32(FEXTNVM7, mac_reg); |
| |
| /* Commit ULP changes in PHY by starting auto ULP configuration */ |
| phy_reg |= I218_ULP_CONFIG1_START; |
| e1000_write_phy_reg_hv_locked(hw, I218_ULP_CONFIG1, phy_reg); |
| release: |
| hw->phy.ops.release(hw); |
| out: |
| if (ret_val) |
| e_dbg("Error in ULP enable flow: %d\n", ret_val); |
| else |
| hw->dev_spec.ich8lan.ulp_state = e1000_ulp_state_on; |
| |
| return ret_val; |
| } |
| |
| /** |
| * e1000_disable_ulp_lpt_lp - unconfigure Ultra Low Power mode for LynxPoint-LP |
| * @hw: pointer to the HW structure |
| * @force: boolean indicating whether or not to force disabling ULP |
| * |
| * Un-configure ULP mode when link is up, the system is transitioned from |
| * Sx or the driver is unloaded. If on a Manageability Engine (ME) enabled |
| * system, poll for an indication from ME that ULP has been un-configured. |
| * If not on an ME enabled system, un-configure the ULP mode by software. |
| * |
| * During nominal operation, this function is called when link is acquired |
| * to disable ULP mode (force=false); otherwise, for example when unloading |
| * the driver or during Sx->S0 transitions, this is called with force=true |
| * to forcibly disable ULP. |
| */ |
| static s32 e1000_disable_ulp_lpt_lp(struct e1000_hw *hw, bool force) |
| { |
| s32 ret_val = 0; |
| u32 mac_reg; |
| u16 phy_reg; |
| int i = 0; |
| |
| if ((hw->mac.type < e1000_pch_lpt) || |
| (hw->adapter->pdev->device == E1000_DEV_ID_PCH_LPT_I217_LM) || |
| (hw->adapter->pdev->device == E1000_DEV_ID_PCH_LPT_I217_V) || |
| (hw->adapter->pdev->device == E1000_DEV_ID_PCH_I218_LM2) || |
| (hw->adapter->pdev->device == E1000_DEV_ID_PCH_I218_V2) || |
| (hw->dev_spec.ich8lan.ulp_state == e1000_ulp_state_off)) |
| return 0; |
| |
| if (er32(FWSM) & E1000_ICH_FWSM_FW_VALID) { |
| if (force) { |
| /* Request ME un-configure ULP mode in the PHY */ |
| mac_reg = er32(H2ME); |
| mac_reg &= ~E1000_H2ME_ULP; |
| mac_reg |= E1000_H2ME_ENFORCE_SETTINGS; |
| ew32(H2ME, mac_reg); |
| } |
| |
| /* Poll up to 100msec for ME to clear ULP_CFG_DONE */ |
| while (er32(FWSM) & E1000_FWSM_ULP_CFG_DONE) { |
| if (i++ == 10) { |
| ret_val = -E1000_ERR_PHY; |
| goto out; |
| } |
| |
| usleep_range(10000, 20000); |
| } |
| e_dbg("ULP_CONFIG_DONE cleared after %dmsec\n", i * 10); |
| |
| if (force) { |
| mac_reg = er32(H2ME); |
| mac_reg &= ~E1000_H2ME_ENFORCE_SETTINGS; |
| ew32(H2ME, mac_reg); |
| } else { |
| /* Clear H2ME.ULP after ME ULP configuration */ |
| mac_reg = er32(H2ME); |
| mac_reg &= ~E1000_H2ME_ULP; |
| ew32(H2ME, mac_reg); |
| } |
| |
| goto out; |
| } |
| |
| ret_val = hw->phy.ops.acquire(hw); |
| if (ret_val) |
| goto out; |
| |
| if (force) |
| /* Toggle LANPHYPC Value bit */ |
| e1000_toggle_lanphypc_pch_lpt(hw); |
| |
| /* Unforce SMBus mode in PHY */ |
| ret_val = e1000_read_phy_reg_hv_locked(hw, CV_SMB_CTRL, &phy_reg); |
| if (ret_val) { |
| /* The MAC might be in PCIe mode, so temporarily force to |
| * SMBus mode in order to access the PHY. |
| */ |
| mac_reg = er32(CTRL_EXT); |
| mac_reg |= E1000_CTRL_EXT_FORCE_SMBUS; |
| ew32(CTRL_EXT, mac_reg); |
| |
| msleep(50); |
| |
| ret_val = e1000_read_phy_reg_hv_locked(hw, CV_SMB_CTRL, |
| &phy_reg); |
| if (ret_val) |
| goto release; |
| } |
| phy_reg &= ~CV_SMB_CTRL_FORCE_SMBUS; |
| e1000_write_phy_reg_hv_locked(hw, CV_SMB_CTRL, phy_reg); |
| |
| /* Unforce SMBus mode in MAC */ |
| mac_reg = er32(CTRL_EXT); |
| mac_reg &= ~E1000_CTRL_EXT_FORCE_SMBUS; |
| ew32(CTRL_EXT, mac_reg); |
| |
| /* When ULP mode was previously entered, K1 was disabled by the |
| * hardware. Re-Enable K1 in the PHY when exiting ULP. |
| */ |
| ret_val = e1000_read_phy_reg_hv_locked(hw, HV_PM_CTRL, &phy_reg); |
| if (ret_val) |
| goto release; |
| phy_reg |= HV_PM_CTRL_K1_ENABLE; |
| e1000_write_phy_reg_hv_locked(hw, HV_PM_CTRL, phy_reg); |
| |
| /* Clear ULP enabled configuration */ |
| ret_val = e1000_read_phy_reg_hv_locked(hw, I218_ULP_CONFIG1, &phy_reg); |
| if (ret_val) |
| goto release; |
| phy_reg &= ~(I218_ULP_CONFIG1_IND | |
| I218_ULP_CONFIG1_STICKY_ULP | |
| I218_ULP_CONFIG1_RESET_TO_SMBUS | |
| I218_ULP_CONFIG1_WOL_HOST | |
| I218_ULP_CONFIG1_INBAND_EXIT | |
| I218_ULP_CONFIG1_DISABLE_SMB_PERST); |
| e1000_write_phy_reg_hv_locked(hw, I218_ULP_CONFIG1, phy_reg); |
| |
| /* Commit ULP changes by starting auto ULP configuration */ |
| phy_reg |= I218_ULP_CONFIG1_START; |
| e1000_write_phy_reg_hv_locked(hw, I218_ULP_CONFIG1, phy_reg); |
| |
| /* Clear Disable SMBus Release on PERST# in MAC */ |
| mac_reg = er32(FEXTNVM7); |
| mac_reg &= ~E1000_FEXTNVM7_DISABLE_SMB_PERST; |
| ew32(FEXTNVM7, mac_reg); |
| |
| release: |
| hw->phy.ops.release(hw); |
| if (force) { |
| e1000_phy_hw_reset(hw); |
| msleep(50); |
| } |
| out: |
| if (ret_val) |
| e_dbg("Error in ULP disable flow: %d\n", ret_val); |
| else |
| hw->dev_spec.ich8lan.ulp_state = e1000_ulp_state_off; |
| |
| return ret_val; |
| } |
| |
| /** |
| * e1000_check_for_copper_link_ich8lan - Check for link (Copper) |
| * @hw: pointer to the HW structure |
| * |
| * Checks to see of the link status of the hardware has changed. If a |
| * change in link status has been detected, then we read the PHY registers |
| * to get the current speed/duplex if link exists. |
| **/ |
| static s32 e1000_check_for_copper_link_ich8lan(struct e1000_hw *hw) |
| { |
| struct e1000_mac_info *mac = &hw->mac; |
| s32 ret_val, tipg_reg = 0; |
| u16 emi_addr, emi_val = 0; |
| bool link; |
| u16 phy_reg; |
| |
| /* We only want to go out to the PHY registers to see if Auto-Neg |
| * has completed and/or if our link status has changed. The |
| * get_link_status flag is set upon receiving a Link Status |
| * Change or Rx Sequence Error interrupt. |
| */ |
| if (!mac->get_link_status) |
| return 0; |
| |
| /* First we want to see if the MII Status Register reports |
| * link. If so, then we want to get the current speed/duplex |
| * of the PHY. |
| */ |
| ret_val = e1000e_phy_has_link_generic(hw, 1, 0, &link); |
| if (ret_val) |
| return ret_val; |
| |
| if (hw->mac.type == e1000_pchlan) { |
| ret_val = e1000_k1_gig_workaround_hv(hw, link); |
| if (ret_val) |
| return ret_val; |
| } |
| |
| /* When connected at 10Mbps half-duplex, some parts are excessively |
| * aggressive resulting in many collisions. To avoid this, increase |
| * the IPG and reduce Rx latency in the PHY. |
| */ |
| if (((hw->mac.type == e1000_pch2lan) || |
| (hw->mac.type == e1000_pch_lpt) || |
| (hw->mac.type == e1000_pch_spt)) && link) { |
| u32 reg; |
| |
| reg = er32(STATUS); |
| tipg_reg = er32(TIPG); |
| tipg_reg &= ~E1000_TIPG_IPGT_MASK; |
| |
| if (!(reg & (E1000_STATUS_FD | E1000_STATUS_SPEED_MASK))) { |
| tipg_reg |= 0xFF; |
| /* Reduce Rx latency in analog PHY */ |
| emi_val = 0; |
| } else { |
| |
| /* Roll back the default values */ |
| tipg_reg |= 0x08; |
| emi_val = 1; |
| } |
| |
| ew32(TIPG, tipg_reg); |
| |
| ret_val = hw->phy.ops.acquire(hw); |
| if (ret_val) |
| return ret_val; |
| |
| if (hw->mac.type == e1000_pch2lan) |
| emi_addr = I82579_RX_CONFIG; |
| else |
| emi_addr = I217_RX_CONFIG; |
| ret_val = e1000_write_emi_reg_locked(hw, emi_addr, emi_val); |
| |
| hw->phy.ops.release(hw); |
| |
| if (ret_val) |
| return ret_val; |
| } |
| |
| /* Work-around I218 hang issue */ |
| if ((hw->adapter->pdev->device == E1000_DEV_ID_PCH_LPTLP_I218_LM) || |
| (hw->adapter->pdev->device == E1000_DEV_ID_PCH_LPTLP_I218_V) || |
| (hw->adapter->pdev->device == E1000_DEV_ID_PCH_I218_LM3) || |
| (hw->adapter->pdev->device == E1000_DEV_ID_PCH_I218_V3) || |
| (hw->mac.type == e1000_pch_spt)) { |
| ret_val = e1000_k1_workaround_lpt_lp(hw, link); |
| if (ret_val) |
| return ret_val; |
| } |
| if ((hw->mac.type == e1000_pch_lpt) || |
| (hw->mac.type == e1000_pch_spt)) { |
| /* Set platform power management values for |
| * Latency Tolerance Reporting (LTR) |
| */ |
| ret_val = e1000_platform_pm_pch_lpt(hw, link); |
| if (ret_val) |
| return ret_val; |
| } |
| |
| /* Clear link partner's EEE ability */ |
| hw->dev_spec.ich8lan.eee_lp_ability = 0; |
| |
| /* FEXTNVM6 K1-off workaround */ |
| if (hw->mac.type == e1000_pch_spt) { |
| u32 pcieanacfg = er32(PCIEANACFG); |
| u32 fextnvm6 = er32(FEXTNVM6); |
| |
| if (pcieanacfg & E1000_FEXTNVM6_K1_OFF_ENABLE) |
| fextnvm6 |= E1000_FEXTNVM6_K1_OFF_ENABLE; |
| else |
| fextnvm6 &= ~E1000_FEXTNVM6_K1_OFF_ENABLE; |
| |
| ew32(FEXTNVM6, fextnvm6); |
| } |
| |
| if (!link) |
| return 0; /* No link detected */ |
| |
| mac->get_link_status = false; |
| |
| switch (hw->mac.type) { |
| case e1000_pch2lan: |
| ret_val = e1000_k1_workaround_lv(hw); |
| if (ret_val) |
| return ret_val; |
| /* fall-thru */ |
| case e1000_pchlan: |
| if (hw->phy.type == e1000_phy_82578) { |
| ret_val = e1000_link_stall_workaround_hv(hw); |
| if (ret_val) |
| return ret_val; |
| } |
| |
| /* Workaround for PCHx parts in half-duplex: |
| * Set the number of preambles removed from the packet |
| * when it is passed from the PHY to the MAC to prevent |
| * the MAC from misinterpreting the packet type. |
| */ |
| e1e_rphy(hw, HV_KMRN_FIFO_CTRLSTA, &phy_reg); |
| phy_reg &= ~HV_KMRN_FIFO_CTRLSTA_PREAMBLE_MASK; |
| |
| if ((er32(STATUS) & E1000_STATUS_FD) != E1000_STATUS_FD) |
| phy_reg |= (1 << HV_KMRN_FIFO_CTRLSTA_PREAMBLE_SHIFT); |
| |
| e1e_wphy(hw, HV_KMRN_FIFO_CTRLSTA, phy_reg); |
| break; |
| default: |
| break; |
| } |
| |
| /* Check if there was DownShift, must be checked |
| * immediately after link-up |
| */ |
| e1000e_check_downshift(hw); |
| |
| /* Enable/Disable EEE after link up */ |
| if (hw->phy.type > e1000_phy_82579) { |
| ret_val = e1000_set_eee_pchlan(hw); |
| if (ret_val) |
| return ret_val; |
| } |
| |
| /* If we are forcing speed/duplex, then we simply return since |
| * we have already determined whether we have link or not. |
| */ |
| if (!mac->autoneg) |
| return -E1000_ERR_CONFIG; |
| |
| /* Auto-Neg is enabled. Auto Speed Detection takes care |
| * of MAC speed/duplex configuration. So we only need to |
| * configure Collision Distance in the MAC. |
| */ |
| mac->ops.config_collision_dist(hw); |
| |
| /* Configure Flow Control now that Auto-Neg has completed. |
| * First, we need to restore the desired flow control |
| * settings because we may have had to re-autoneg with a |
| * different link partner. |
| */ |
| ret_val = e1000e_config_fc_after_link_up(hw); |
| if (ret_val) |
| e_dbg("Error configuring flow control\n"); |
| |
| return ret_val; |
| } |
| |
| static s32 e1000_get_variants_ich8lan(struct e1000_adapter *adapter) |
| { |
| struct e1000_hw *hw = &adapter->hw; |
| s32 rc; |
| |
| rc = e1000_init_mac_params_ich8lan(hw); |
| if (rc) |
| return rc; |
| |
| rc = e1000_init_nvm_params_ich8lan(hw); |
| if (rc) |
| return rc; |
| |
| switch (hw->mac.type) { |
| case e1000_ich8lan: |
| case e1000_ich9lan: |
| case e1000_ich10lan: |
| rc = e1000_init_phy_params_ich8lan(hw); |
| break; |
| case e1000_pchlan: |
| case e1000_pch2lan: |
| case e1000_pch_lpt: |
| case e1000_pch_spt: |
| rc = e1000_init_phy_params_pchlan(hw); |
| break; |
| default: |
| break; |
| } |
| if (rc) |
| return rc; |
| |
| /* Disable Jumbo Frame support on parts with Intel 10/100 PHY or |
| * on parts with MACsec enabled in NVM (reflected in CTRL_EXT). |
| */ |
| if ((adapter->hw.phy.type == e1000_phy_ife) || |
| ((adapter->hw.mac.type >= e1000_pch2lan) && |
| (!(er32(CTRL_EXT) & E1000_CTRL_EXT_LSECCK)))) { |
| adapter->flags &= ~FLAG_HAS_JUMBO_FRAMES; |
| adapter->max_hw_frame_size = VLAN_ETH_FRAME_LEN + ETH_FCS_LEN; |
| |
| hw->mac.ops.blink_led = NULL; |
| } |
| |
| if ((adapter->hw.mac.type == e1000_ich8lan) && |
| (adapter->hw.phy.type != e1000_phy_ife)) |
| adapter->flags |= FLAG_LSC_GIG_SPEED_DROP; |
| |
| /* Enable workaround for 82579 w/ ME enabled */ |
| if ((adapter->hw.mac.type == e1000_pch2lan) && |
| (er32(FWSM) & E1000_ICH_FWSM_FW_VALID)) |
| adapter->flags2 |= FLAG2_PCIM2PCI_ARBITER_WA; |
| |
| return 0; |
| } |
| |
| static DEFINE_MUTEX(nvm_mutex); |
| |
| /** |
| * e1000_acquire_nvm_ich8lan - Acquire NVM mutex |
| * @hw: pointer to the HW structure |
| * |
| * Acquires the mutex for performing NVM operations. |
| **/ |
| static s32 e1000_acquire_nvm_ich8lan(struct e1000_hw __always_unused *hw) |
| { |
| mutex_lock(&nvm_mutex); |
| |
| return 0; |
| } |
| |
| /** |
| * e1000_release_nvm_ich8lan - Release NVM mutex |
| * @hw: pointer to the HW structure |
| * |
| * Releases the mutex used while performing NVM operations. |
| **/ |
| static void e1000_release_nvm_ich8lan(struct e1000_hw __always_unused *hw) |
| { |
| mutex_unlock(&nvm_mutex); |
| } |
| |
| /** |
| * e1000_acquire_swflag_ich8lan - Acquire software control flag |
| * @hw: pointer to the HW structure |
| * |
| * Acquires the software control flag for performing PHY and select |
| * MAC CSR accesses. |
| **/ |
| static s32 e1000_acquire_swflag_ich8lan(struct e1000_hw *hw) |
| { |
| u32 extcnf_ctrl, timeout = PHY_CFG_TIMEOUT; |
| s32 ret_val = 0; |
| |
| if (test_and_set_bit(__E1000_ACCESS_SHARED_RESOURCE, |
| &hw->adapter->state)) { |
| e_dbg("contention for Phy access\n"); |
| return -E1000_ERR_PHY; |
| } |
| |
| while (timeout) { |
| extcnf_ctrl = er32(EXTCNF_CTRL); |
| if (!(extcnf_ctrl & E1000_EXTCNF_CTRL_SWFLAG)) |
| break; |
| |
| mdelay(1); |
| timeout--; |
| } |
| |
| if (!timeout) { |
| e_dbg("SW has already locked the resource.\n"); |
| ret_val = -E1000_ERR_CONFIG; |
| goto out; |
| } |
| |
| timeout = SW_FLAG_TIMEOUT; |
| |
| extcnf_ctrl |= E1000_EXTCNF_CTRL_SWFLAG; |
| ew32(EXTCNF_CTRL, extcnf_ctrl); |
| |
| while (timeout) { |
| extcnf_ctrl = er32(EXTCNF_CTRL); |
| if (extcnf_ctrl & E1000_EXTCNF_CTRL_SWFLAG) |
| break; |
| |
| mdelay(1); |
| timeout--; |
| } |
| |
| if (!timeout) { |
| e_dbg("Failed to acquire the semaphore, FW or HW has it: FWSM=0x%8.8x EXTCNF_CTRL=0x%8.8x)\n", |
| er32(FWSM), extcnf_ctrl); |
| extcnf_ctrl &= ~E1000_EXTCNF_CTRL_SWFLAG; |
| ew32(EXTCNF_CTRL, extcnf_ctrl); |
| ret_val = -E1000_ERR_CONFIG; |
| goto out; |
| } |
| |
| out: |
| if (ret_val) |
| clear_bit(__E1000_ACCESS_SHARED_RESOURCE, &hw->adapter->state); |
| |
| return ret_val; |
| } |
| |
| /** |
| * e1000_release_swflag_ich8lan - Release software control flag |
| * @hw: pointer to the HW structure |
| * |
| * Releases the software control flag for performing PHY and select |
| * MAC CSR accesses. |
| **/ |
| static void e1000_release_swflag_ich8lan(struct e1000_hw *hw) |
| { |
| u32 extcnf_ctrl; |
| |
| extcnf_ctrl = er32(EXTCNF_CTRL); |
| |
| if (extcnf_ctrl & E1000_EXTCNF_CTRL_SWFLAG) { |
| extcnf_ctrl &= ~E1000_EXTCNF_CTRL_SWFLAG; |
| ew32(EXTCNF_CTRL, extcnf_ctrl); |
| } else { |
| e_dbg("Semaphore unexpectedly released by sw/fw/hw\n"); |
| } |
| |
| clear_bit(__E1000_ACCESS_SHARED_RESOURCE, &hw->adapter->state); |
| } |
| |
| /** |
| * e1000_check_mng_mode_ich8lan - Checks management mode |
| * @hw: pointer to the HW structure |
| * |
| * This checks if the adapter has any manageability enabled. |
| * This is a function pointer entry point only called by read/write |
| * routines for the PHY and NVM parts. |
| **/ |
| static bool e1000_check_mng_mode_ich8lan(struct e1000_hw *hw) |
| { |
| u32 fwsm; |
| |
| fwsm = er32(FWSM); |
| return (fwsm & E1000_ICH_FWSM_FW_VALID) && |
| ((fwsm & E1000_FWSM_MODE_MASK) == |
| (E1000_ICH_MNG_IAMT_MODE << E1000_FWSM_MODE_SHIFT)); |
| } |
| |
| /** |
| * e1000_check_mng_mode_pchlan - Checks management mode |
| * @hw: pointer to the HW structure |
| * |
| * This checks if the adapter has iAMT enabled. |
| * This is a function pointer entry point only called by read/write |
| * routines for the PHY and NVM parts. |
| **/ |
| static bool e1000_check_mng_mode_pchlan(struct e1000_hw *hw) |
| { |
| u32 fwsm; |
| |
| fwsm = er32(FWSM); |
| return (fwsm & E1000_ICH_FWSM_FW_VALID) && |
| (fwsm & (E1000_ICH_MNG_IAMT_MODE << E1000_FWSM_MODE_SHIFT)); |
| } |
| |
| /** |
| * e1000_rar_set_pch2lan - Set receive address register |
| * @hw: pointer to the HW structure |
| * @addr: pointer to the receive address |
| * @index: receive address array register |
| * |
| * Sets the receive address array register at index to the address passed |
| * in by addr. For 82579, RAR[0] is the base address register that is to |
| * contain the MAC address but RAR[1-6] are reserved for manageability (ME). |
| * Use SHRA[0-3] in place of those reserved for ME. |
| **/ |
| static int e1000_rar_set_pch2lan(struct e1000_hw *hw, u8 *addr, u32 index) |
| { |
| u32 rar_low, rar_high; |
| |
| /* HW expects these in little endian so we reverse the byte order |
| * from network order (big endian) to little endian |
| */ |
| rar_low = ((u32)addr[0] | |
| ((u32)addr[1] << 8) | |
| ((u32)addr[2] << 16) | ((u32)addr[3] << 24)); |
| |
| rar_high = ((u32)addr[4] | ((u32)addr[5] << 8)); |
| |
| /* If MAC address zero, no need to set the AV bit */ |
| if (rar_low || rar_high) |
| rar_high |= E1000_RAH_AV; |
| |
| if (index == 0) { |
| ew32(RAL(index), rar_low); |
| e1e_flush(); |
| ew32(RAH(index), rar_high); |
| e1e_flush(); |
| return 0; |
| } |
| |
| /* RAR[1-6] are owned by manageability. Skip those and program the |
| * next address into the SHRA register array. |
| */ |
| if (index < (u32)(hw->mac.rar_entry_count)) { |
| s32 ret_val; |
| |
| ret_val = e1000_acquire_swflag_ich8lan(hw); |
| if (ret_val) |
| goto out; |
| |
| ew32(SHRAL(index - 1), rar_low); |
| e1e_flush(); |
| ew32(SHRAH(index - 1), rar_high); |
| e1e_flush(); |
| |
| e1000_release_swflag_ich8lan(hw); |
| |
| /* verify the register updates */ |
| if ((er32(SHRAL(index - 1)) == rar_low) && |
| (er32(SHRAH(index - 1)) == rar_high)) |
| return 0; |
| |
| e_dbg("SHRA[%d] might be locked by ME - FWSM=0x%8.8x\n", |
| (index - 1), er32(FWSM)); |
| } |
| |
| out: |
| e_dbg("Failed to write receive address at index %d\n", index); |
| return -E1000_ERR_CONFIG; |
| } |
| |
| /** |
| * e1000_rar_get_count_pch_lpt - Get the number of available SHRA |
| * @hw: pointer to the HW structure |
| * |
| * Get the number of available receive registers that the Host can |
| * program. SHRA[0-10] are the shared receive address registers |
| * that are shared between the Host and manageability engine (ME). |
| * ME can reserve any number of addresses and the host needs to be |
| * able to tell how many available registers it has access to. |
| **/ |
| static u32 e1000_rar_get_count_pch_lpt(struct e1000_hw *hw) |
| { |
| u32 wlock_mac; |
| u32 num_entries; |
| |
| wlock_mac = er32(FWSM) & E1000_FWSM_WLOCK_MAC_MASK; |
| wlock_mac >>= E1000_FWSM_WLOCK_MAC_SHIFT; |
| |
| switch (wlock_mac) { |
| case 0: |
| /* All SHRA[0..10] and RAR[0] available */ |
| num_entries = hw->mac.rar_entry_count; |
| break; |
| case 1: |
| /* Only RAR[0] available */ |
| num_entries = 1; |
| break; |
| default: |
| /* SHRA[0..(wlock_mac - 1)] available + RAR[0] */ |
| num_entries = wlock_mac + 1; |
| break; |
| } |
| |
| return num_entries; |
| } |
| |
| /** |
| * e1000_rar_set_pch_lpt - Set receive address registers |
| * @hw: pointer to the HW structure |
| * @addr: pointer to the receive address |
| * @index: receive address array register |
| * |
| * Sets the receive address register array at index to the address passed |
| * in by addr. For LPT, RAR[0] is the base address register that is to |
| * contain the MAC address. SHRA[0-10] are the shared receive address |
| * registers that are shared between the Host and manageability engine (ME). |
| **/ |
| static int e1000_rar_set_pch_lpt(struct e1000_hw *hw, u8 *addr, u32 index) |
| { |
| u32 rar_low, rar_high; |
| u32 wlock_mac; |
| |
| /* HW expects these in little endian so we reverse the byte order |
| * from network order (big endian) to little endian |
| */ |
| rar_low = ((u32)addr[0] | ((u32)addr[1] << 8) | |
| ((u32)addr[2] << 16) | ((u32)addr[3] << 24)); |
| |
| rar_high = ((u32)addr[4] | ((u32)addr[5] << 8)); |
| |
| /* If MAC address zero, no need to set the AV bit */ |
| if (rar_low || rar_high) |
| rar_high |= E1000_RAH_AV; |
| |
| if (index == 0) { |
| ew32(RAL(index), rar_low); |
| e1e_flush(); |
| ew32(RAH(index), rar_high); |
| e1e_flush(); |
| return 0; |
| } |
| |
| /* The manageability engine (ME) can lock certain SHRAR registers that |
| * it is using - those registers are unavailable for use. |
| */ |
| if (index < hw->mac.rar_entry_count) { |
| wlock_mac = er32(FWSM) & E1000_FWSM_WLOCK_MAC_MASK; |
| wlock_mac >>= E1000_FWSM_WLOCK_MAC_SHIFT; |
| |
| /* Check if all SHRAR registers are locked */ |
| if (wlock_mac == 1) |
| goto out; |
| |
| if ((wlock_mac == 0) || (index <= wlock_mac)) { |
| s32 ret_val; |
| |
| ret_val = e1000_acquire_swflag_ich8lan(hw); |
| |
| if (ret_val) |
| goto out; |
| |
| ew32(SHRAL_PCH_LPT(index - 1), rar_low); |
| e1e_flush(); |
| ew32(SHRAH_PCH_LPT(index - 1), rar_high); |
| e1e_flush(); |
| |
| e1000_release_swflag_ich8lan(hw); |
| |
| /* verify the register updates */ |
| if ((er32(SHRAL_PCH_LPT(index - 1)) == rar_low) && |
| (er32(SHRAH_PCH_LPT(index - 1)) == rar_high)) |
| return 0; |
| } |
| } |
| |
| out: |
| e_dbg("Failed to write receive address at index %d\n", index); |
| return -E1000_ERR_CONFIG; |
| } |
| |
| /** |
| * e1000_check_reset_block_ich8lan - Check if PHY reset is blocked |
| * @hw: pointer to the HW structure |
| * |
| * Checks if firmware is blocking the reset of the PHY. |
| * This is a function pointer entry point only called by |
| * reset routines. |
| **/ |
| static s32 e1000_check_reset_block_ich8lan(struct e1000_hw *hw) |
| { |
| bool blocked = false; |
| int i = 0; |
| |
| while ((blocked = !(er32(FWSM) & E1000_ICH_FWSM_RSPCIPHY)) && |
| (i++ < 10)) |
| usleep_range(10000, 20000); |
| return blocked ? E1000_BLK_PHY_RESET : 0; |
| } |
| |
| /** |
| * e1000_write_smbus_addr - Write SMBus address to PHY needed during Sx states |
| * @hw: pointer to the HW structure |
| * |
| * Assumes semaphore already acquired. |
| * |
| **/ |
| static s32 e1000_write_smbus_addr(struct e1000_hw *hw) |
| { |
| u16 phy_data; |
| u32 strap = er32(STRAP); |
| u32 freq = (strap & E1000_STRAP_SMT_FREQ_MASK) >> |
| E1000_STRAP_SMT_FREQ_SHIFT; |
| s32 ret_val; |
| |
| strap &= E1000_STRAP_SMBUS_ADDRESS_MASK; |
| |
| ret_val = e1000_read_phy_reg_hv_locked(hw, HV_SMB_ADDR, &phy_data); |
| if (ret_val) |
| return ret_val; |
| |
| phy_data &= ~HV_SMB_ADDR_MASK; |
| phy_data |= (strap >> E1000_STRAP_SMBUS_ADDRESS_SHIFT); |
| phy_data |= HV_SMB_ADDR_PEC_EN | HV_SMB_ADDR_VALID; |
| |
| if (hw->phy.type == e1000_phy_i217) { |
| /* Restore SMBus frequency */ |
| if (freq--) { |
| phy_data &= ~HV_SMB_ADDR_FREQ_MASK; |
| phy_data |= (freq & (1 << 0)) << |
| HV_SMB_ADDR_FREQ_LOW_SHIFT; |
| phy_data |= (freq & (1 << 1)) << |
| (HV_SMB_ADDR_FREQ_HIGH_SHIFT - 1); |
| } else { |
| e_dbg("Unsupported SMB frequency in PHY\n"); |
| } |
| } |
| |
| return e1000_write_phy_reg_hv_locked(hw, HV_SMB_ADDR, phy_data); |
| } |
| |
| /** |
| * e1000_sw_lcd_config_ich8lan - SW-based LCD Configuration |
| * @hw: pointer to the HW structure |
| * |
| * SW should configure the LCD from the NVM extended configuration region |
| * as a workaround for certain parts. |
| **/ |
| static s32 e1000_sw_lcd_config_ich8lan(struct e1000_hw *hw) |
| { |
| struct e1000_phy_info *phy = &hw->phy; |
| u32 i, data, cnf_size, cnf_base_addr, sw_cfg_mask; |
| s32 ret_val = 0; |
| u16 word_addr, reg_data, reg_addr, phy_page = 0; |
| |
| /* Initialize the PHY from the NVM on ICH platforms. This |
| * is needed due to an issue where the NVM configuration is |
| * not properly autoloaded after power transitions. |
| * Therefore, after each PHY reset, we will load the |
| * configuration data out of the NVM manually. |
| */ |
| switch (hw->mac.type) { |
| case e1000_ich8lan: |
| if (phy->type != e1000_phy_igp_3) |
| return ret_val; |
| |
| if ((hw->adapter->pdev->device == E1000_DEV_ID_ICH8_IGP_AMT) || |
| (hw->adapter->pdev->device == E1000_DEV_ID_ICH8_IGP_C)) { |
| sw_cfg_mask = E1000_FEXTNVM_SW_CONFIG; |
| break; |
| } |
| /* Fall-thru */ |
| case e1000_pchlan: |
| case e1000_pch2lan: |
| case e1000_pch_lpt: |
| case e1000_pch_spt: |
| sw_cfg_mask = E1000_FEXTNVM_SW_CONFIG_ICH8M; |
| break; |
| default: |
| return ret_val; |
| } |
| |
| ret_val = hw->phy.ops.acquire(hw); |
| if (ret_val) |
| return ret_val; |
| |
| data = er32(FEXTNVM); |
| if (!(data & sw_cfg_mask)) |
| goto release; |
| |
| /* Make sure HW does not configure LCD from PHY |
| * extended configuration before SW configuration |
| */ |
| data = er32(EXTCNF_CTRL); |
| if ((hw->mac.type < e1000_pch2lan) && |
| (data & E1000_EXTCNF_CTRL_LCD_WRITE_ENABLE)) |
| goto release; |
| |
| cnf_size = er32(EXTCNF_SIZE); |
| cnf_size &= E1000_EXTCNF_SIZE_EXT_PCIE_LENGTH_MASK; |
| cnf_size >>= E1000_EXTCNF_SIZE_EXT_PCIE_LENGTH_SHIFT; |
| if (!cnf_size) |
| goto release; |
| |
| cnf_base_addr = data & E1000_EXTCNF_CTRL_EXT_CNF_POINTER_MASK; |
| cnf_base_addr >>= E1000_EXTCNF_CTRL_EXT_CNF_POINTER_SHIFT; |
| |
| if (((hw->mac.type == e1000_pchlan) && |
| !(data & E1000_EXTCNF_CTRL_OEM_WRITE_ENABLE)) || |
| (hw->mac.type > e1000_pchlan)) { |
| /* HW configures the SMBus address and LEDs when the |
| * OEM and LCD Write Enable bits are set in the NVM. |
| * When both NVM bits are cleared, SW will configure |
| * them instead. |
| */ |
| ret_val = e1000_write_smbus_addr(hw); |
| if (ret_val) |
| goto release; |
| |
| data = er32(LEDCTL); |
| ret_val = e1000_write_phy_reg_hv_locked(hw, HV_LED_CONFIG, |
| (u16)data); |
| if (ret_val) |
| goto release; |
| } |
| |
| /* Configure LCD from extended configuration region. */ |
| |
| /* cnf_base_addr is in DWORD */ |
| word_addr = (u16)(cnf_base_addr << 1); |
| |
| for (i = 0; i < cnf_size; i++) { |
| ret_val = e1000_read_nvm(hw, (word_addr + i * 2), 1, ®_data); |
| if (ret_val) |
| goto release; |
| |
| ret_val = e1000_read_nvm(hw, (word_addr + i * 2 + 1), |
| 1, ®_addr); |
| if (ret_val) |
| goto release; |
| |
| /* Save off the PHY page for future writes. */ |
| if (reg_addr == IGP01E1000_PHY_PAGE_SELECT) { |
| phy_page = reg_data; |
| continue; |
| } |
| |
| reg_addr &= PHY_REG_MASK; |
| reg_addr |= phy_page; |
| |
| ret_val = e1e_wphy_locked(hw, (u32)reg_addr, reg_data); |
| if (ret_val) |
| goto release; |
| } |
| |
| release: |
| hw->phy.ops.release(hw); |
| return ret_val; |
| } |
| |
| /** |
| * e1000_k1_gig_workaround_hv - K1 Si workaround |
| * @hw: pointer to the HW structure |
| * @link: link up bool flag |
| * |
| * If K1 is enabled for 1Gbps, the MAC might stall when transitioning |
| * from a lower speed. This workaround disables K1 whenever link is at 1Gig |
| * If link is down, the function will restore the default K1 setting located |
| * in the NVM. |
| **/ |
| static s32 e1000_k1_gig_workaround_hv(struct e1000_hw *hw, bool link) |
| { |
| s32 ret_val = 0; |
| u16 status_reg = 0; |
| bool k1_enable = hw->dev_spec.ich8lan.nvm_k1_enabled; |
| |
| if (hw->mac.type != e1000_pchlan) |
| return 0; |
| |
| /* Wrap the whole flow with the sw flag */ |
| ret_val = hw->phy.ops.acquire(hw); |
| if (ret_val) |
| return ret_val; |
| |
| /* Disable K1 when link is 1Gbps, otherwise use the NVM setting */ |
| if (link) { |
| if (hw->phy.type == e1000_phy_82578) { |
| ret_val = e1e_rphy_locked(hw, BM_CS_STATUS, |
| &status_reg); |
| if (ret_val) |
| goto release; |
| |
| status_reg &= (BM_CS_STATUS_LINK_UP | |
| BM_CS_STATUS_RESOLVED | |
| BM_CS_STATUS_SPEED_MASK); |
| |
| if (status_reg == (BM_CS_STATUS_LINK_UP | |
| BM_CS_STATUS_RESOLVED | |
| BM_CS_STATUS_SPEED_1000)) |
| k1_enable = false; |
| } |
| |
| if (hw->phy.type == e1000_phy_82577) { |
| ret_val = e1e_rphy_locked(hw, HV_M_STATUS, &status_reg); |
| if (ret_val) |
| goto release; |
| |
| status_reg &= (HV_M_STATUS_LINK_UP | |
| HV_M_STATUS_AUTONEG_COMPLETE | |
| HV_M_STATUS_SPEED_MASK); |
| |
| if (status_reg == (HV_M_STATUS_LINK_UP | |
| HV_M_STATUS_AUTONEG_COMPLETE | |
| HV_M_STATUS_SPEED_1000)) |
| k1_enable = false; |
| } |
| |
| /* Link stall fix for link up */ |
| ret_val = e1e_wphy_locked(hw, PHY_REG(770, 19), 0x0100); |
| if (ret_val) |
| goto release; |
| |
| } else { |
| /* Link stall fix for link down */ |
| ret_val = e1e_wphy_locked(hw, PHY_REG(770, 19), 0x4100); |
| if (ret_val) |
| goto release; |
| } |
| |
| ret_val = e1000_configure_k1_ich8lan(hw, k1_enable); |
| |
| release: |
| hw->phy.ops.release(hw); |
| |
| return ret_val; |
| } |
| |
| /** |
| * e1000_configure_k1_ich8lan - Configure K1 power state |
| * @hw: pointer to the HW structure |
| * @enable: K1 state to configure |
| * |
| * Configure the K1 power state based on the provided parameter. |
| * Assumes semaphore already acquired. |
| * |
| * Success returns 0, Failure returns -E1000_ERR_PHY (-2) |
| **/ |
| s32 e1000_configure_k1_ich8lan(struct e1000_hw *hw, bool k1_enable) |
| { |
| s32 ret_val; |
| u32 ctrl_reg = 0; |
| u32 ctrl_ext = 0; |
| u32 reg = 0; |
| u16 kmrn_reg = 0; |
| |
| ret_val = e1000e_read_kmrn_reg_locked(hw, E1000_KMRNCTRLSTA_K1_CONFIG, |
| &kmrn_reg); |
| if (ret_val) |
| return ret_val; |
| |
| if (k1_enable) |
| kmrn_reg |= E1000_KMRNCTRLSTA_K1_ENABLE; |
| else |
| kmrn_reg &= ~E1000_KMRNCTRLSTA_K1_ENABLE; |
| |
| ret_val = e1000e_write_kmrn_reg_locked(hw, E1000_KMRNCTRLSTA_K1_CONFIG, |
| kmrn_reg); |
| if (ret_val) |
| return ret_val; |
| |
| usleep_range(20, 40); |
| ctrl_ext = er32(CTRL_EXT); |
| ctrl_reg = er32(CTRL); |
| |
| reg = ctrl_reg & ~(E1000_CTRL_SPD_1000 | E1000_CTRL_SPD_100); |
| reg |= E1000_CTRL_FRCSPD; |
| ew32(CTRL, reg); |
| |
| ew32(CTRL_EXT, ctrl_ext | E1000_CTRL_EXT_SPD_BYPS); |
| e1e_flush(); |
| usleep_range(20, 40); |
| ew32(CTRL, ctrl_reg); |
| ew32(CTRL_EXT, ctrl_ext); |
| e1e_flush(); |
| usleep_range(20, 40); |
| |
| return 0; |
| } |
| |
| /** |
| * e1000_oem_bits_config_ich8lan - SW-based LCD Configuration |
| * @hw: pointer to the HW structure |
| * @d0_state: boolean if entering d0 or d3 device state |
| * |
| * SW will configure Gbe Disable and LPLU based on the NVM. The four bits are |
| * collectively called OEM bits. The OEM Write Enable bit and SW Config bit |
| * in NVM determines whether HW should configure LPLU and Gbe Disable. |
| **/ |
| static s32 e1000_oem_bits_config_ich8lan(struct e1000_hw *hw, bool d0_state) |
| { |
| s32 ret_val = 0; |
| u32 mac_reg; |
| u16 oem_reg; |
| |
| if (hw->mac.type < e1000_pchlan) |
| return ret_val; |
| |
| ret_val = hw->phy.ops.acquire(hw); |
| if (ret_val) |
| return ret_val; |
| |
| if (hw->mac.type == e1000_pchlan) { |
| mac_reg = er32(EXTCNF_CTRL); |
| if (mac_reg & E1000_EXTCNF_CTRL_OEM_WRITE_ENABLE) |
| goto release; |
| } |
| |
| mac_reg = er32(FEXTNVM); |
| if (!(mac_reg & E1000_FEXTNVM_SW_CONFIG_ICH8M)) |
| goto release; |
| |
| mac_reg = er32(PHY_CTRL); |
| |
| ret_val = e1e_rphy_locked(hw, HV_OEM_BITS, &oem_reg); |
| if (ret_val) |
| goto release; |
| |
| oem_reg &= ~(HV_OEM_BITS_GBE_DIS | HV_OEM_BITS_LPLU); |
| |
| if (d0_state) { |
| if (mac_reg & E1000_PHY_CTRL_GBE_DISABLE) |
| oem_reg |= HV_OEM_BITS_GBE_DIS; |
| |
| if (mac_reg & E1000_PHY_CTRL_D0A_LPLU) |
| oem_reg |= HV_OEM_BITS_LPLU; |
| } else { |
| if (mac_reg & (E1000_PHY_CTRL_GBE_DISABLE | |
| E1000_PHY_CTRL_NOND0A_GBE_DISABLE)) |
| oem_reg |= HV_OEM_BITS_GBE_DIS; |
| |
| if (mac_reg & (E1000_PHY_CTRL_D0A_LPLU | |
| E1000_PHY_CTRL_NOND0A_LPLU)) |
| oem_reg |= HV_OEM_BITS_LPLU; |
| } |
| |
| /* Set Restart auto-neg to activate the bits */ |
| if ((d0_state || (hw->mac.type != e1000_pchlan)) && |
| !hw->phy.ops.check_reset_block(hw)) |
| oem_reg |= HV_OEM_BITS_RESTART_AN; |
| |
| ret_val = e1e_wphy_locked(hw, HV_OEM_BITS, oem_reg); |
| |
| release: |
| hw->phy.ops.release(hw); |
| |
| return ret_val; |
| } |
| |
| /** |
| * e1000_set_mdio_slow_mode_hv - Set slow MDIO access mode |
| * @hw: pointer to the HW structure |
| **/ |
| static s32 e1000_set_mdio_slow_mode_hv(struct e1000_hw *hw) |
| { |
| s32 ret_val; |
| u16 data; |
| |
| ret_val = e1e_rphy(hw, HV_KMRN_MODE_CTRL, &data); |
| if (ret_val) |
| return ret_val; |
| |
| data |= HV_KMRN_MDIO_SLOW; |
| |
| ret_val = e1e_wphy(hw, HV_KMRN_MODE_CTRL, data); |
| |
| return ret_val; |
| } |
| |
| /** |
| * e1000_hv_phy_workarounds_ich8lan - A series of Phy workarounds to be |
| * done after every PHY reset. |
| **/ |
| static s32 e1000_hv_phy_workarounds_ich8lan(struct e1000_hw *hw) |
| { |
| s32 ret_val = 0; |
| u16 phy_data; |
| |
| if (hw->mac.type != e1000_pchlan) |
| return 0; |
| |
| /* Set MDIO slow mode before any other MDIO access */ |
| if (hw->phy.type == e1000_phy_82577) { |
| ret_val = e1000_set_mdio_slow_mode_hv(hw); |
| if (ret_val) |
| return ret_val; |
| } |
| |
| if (((hw->phy.type == e1000_phy_82577) && |
| ((hw->phy.revision == 1) || (hw->phy.revision == 2))) || |
| ((hw->phy.type == e1000_phy_82578) && (hw->phy.revision == 1))) { |
| /* Disable generation of early preamble */ |
| ret_val = e1e_wphy(hw, PHY_REG(769, 25), 0x4431); |
| if (ret_val) |
| return ret_val; |
| |
| /* Preamble tuning for SSC */ |
| ret_val = e1e_wphy(hw, HV_KMRN_FIFO_CTRLSTA, 0xA204); |
| if (ret_val) |
| return ret_val; |
| } |
| |
| if (hw->phy.type == e1000_phy_82578) { |
| /* Return registers to default by doing a soft reset then |
| * writing 0x3140 to the control register. |
| */ |
| if (hw->phy.revision < 2) { |
| e1000e_phy_sw_reset(hw); |
| ret_val = e1e_wphy(hw, MII_BMCR, 0x3140); |
| } |
| } |
| |
| /* Select page 0 */ |
| ret_val = hw->phy.ops.acquire(hw); |
| if (ret_val) |
| return ret_val; |
| |
| hw->phy.addr = 1; |
| ret_val = e1000e_write_phy_reg_mdic(hw, IGP01E1000_PHY_PAGE_SELECT, 0); |
| hw->phy.ops.release(hw); |
| if (ret_val) |
| return ret_val; |
| |
| /* Configure the K1 Si workaround during phy reset assuming there is |
| * link so that it disables K1 if link is in 1Gbps. |
| */ |
| ret_val = e1000_k1_gig_workaround_hv(hw, true); |
| if (ret_val) |
| return ret_val; |
| |
| /* Workaround for link disconnects on a busy hub in half duplex */ |
| ret_val = hw->phy.ops.acquire(hw); |
| if (ret_val) |
| return ret_val; |
| ret_val = e1e_rphy_locked(hw, BM_PORT_GEN_CFG, &phy_data); |
| if (ret_val) |
| goto release; |
| ret_val = e1e_wphy_locked(hw, BM_PORT_GEN_CFG, phy_data & 0x00FF); |
| if (ret_val) |
| goto release; |
| |
| /* set MSE higher to enable link to stay up when noise is high */ |
| ret_val = e1000_write_emi_reg_locked(hw, I82577_MSE_THRESHOLD, 0x0034); |
| release: |
| hw->phy.ops.release(hw); |
| |
| return ret_val; |
| } |
| |
| /** |
| * e1000_copy_rx_addrs_to_phy_ich8lan - Copy Rx addresses from MAC to PHY |
| * @hw: pointer to the HW structure |
| **/ |
| void e1000_copy_rx_addrs_to_phy_ich8lan(struct e1000_hw *hw) |
| { |
| u32 mac_reg; |
| u16 i, phy_reg = 0; |
| s32 ret_val; |
| |
| ret_val = hw->phy.ops.acquire(hw); |
| if (ret_val) |
| return; |
| ret_val = e1000_enable_phy_wakeup_reg_access_bm(hw, &phy_reg); |
| if (ret_val) |
| goto release; |
| |
| /* Copy both RAL/H (rar_entry_count) and SHRAL/H to PHY */ |
| for (i = 0; i < (hw->mac.rar_entry_count); i++) { |
| mac_reg = er32(RAL(i)); |
| hw->phy.ops.write_reg_page(hw, BM_RAR_L(i), |
| (u16)(mac_reg & 0xFFFF)); |
| hw->phy.ops.write_reg_page(hw, BM_RAR_M(i), |
| (u16)((mac_reg >> 16) & 0xFFFF)); |
| |
| mac_reg = er32(RAH(i)); |
| hw->phy.ops.write_reg_page(hw, BM_RAR_H(i), |
| (u16)(mac_reg & 0xFFFF)); |
| hw->phy.ops.write_reg_page(hw, BM_RAR_CTRL(i), |
| (u16)((mac_reg & E1000_RAH_AV) |
| >> 16)); |
| } |
| |
| e1000_disable_phy_wakeup_reg_access_bm(hw, &phy_reg); |
| |
| release: |
| hw->phy.ops.release(hw); |
| } |
| |
| /** |
| * e1000_lv_jumbo_workaround_ich8lan - required for jumbo frame operation |
| * with 82579 PHY |
| * @hw: pointer to the HW structure |
| * @enable: flag to enable/disable workaround when enabling/disabling jumbos |
| **/ |
| s32 e1000_lv_jumbo_workaround_ich8lan(struct e1000_hw *hw, bool enable) |
| { |
| s32 ret_val = 0; |
| u16 phy_reg, data; |
| u32 mac_reg; |
| u16 i; |
| |
| if (hw->mac.type < e1000_pch2lan) |
| return 0; |
| |
| /* disable Rx path while enabling/disabling workaround */ |
| e1e_rphy(hw, PHY_REG(769, 20), &phy_reg); |
| ret_val = e1e_wphy(hw, PHY_REG(769, 20), phy_reg | (1 << 14)); |
| if (ret_val) |
| return ret_val; |
| |
| if (enable) { |
| /* Write Rx addresses (rar_entry_count for RAL/H, and |
| * SHRAL/H) and initial CRC values to the MAC |
| */ |
| for (i = 0; i < hw->mac.rar_entry_count; i++) { |
| u8 mac_addr[ETH_ALEN] = { 0 }; |
| u32 addr_high, addr_low; |
| |
| addr_high = er32(RAH(i)); |
| if (!(addr_high & E1000_RAH_AV)) |
| continue; |
| addr_low = er32(RAL(i)); |
| mac_addr[0] = (addr_low & 0xFF); |
| mac_addr[1] = ((addr_low >> 8) & 0xFF); |
| mac_addr[2] = ((addr_low >> 16) & 0xFF); |
| mac_addr[3] = ((addr_low >> 24) & 0xFF); |
| mac_addr[4] = (addr_high & 0xFF); |
| mac_addr[5] = ((addr_high >> 8) & 0xFF); |
| |
| ew32(PCH_RAICC(i), ~ether_crc_le(ETH_ALEN, mac_addr)); |
| } |
| |
| /* Write Rx addresses to the PHY */ |
| e1000_copy_rx_addrs_to_phy_ich8lan(hw); |
| |
| /* Enable jumbo frame workaround in the MAC */ |
| mac_reg = er32(FFLT_DBG); |
| mac_reg &= ~(1 << 14); |
| mac_reg |= (7 << 15); |
| ew32(FFLT_DBG, mac_reg); |
| |
| mac_reg = er32(RCTL); |
| mac_reg |= E1000_RCTL_SECRC; |
| ew32(RCTL, mac_reg); |
| |
| ret_val = e1000e_read_kmrn_reg(hw, |
| E1000_KMRNCTRLSTA_CTRL_OFFSET, |
| &data); |
| if (ret_val) |
| return ret_val; |
| ret_val = e1000e_write_kmrn_reg(hw, |
| E1000_KMRNCTRLSTA_CTRL_OFFSET, |
| data | (1 << 0)); |
| if (ret_val) |
| return ret_val; |
| ret_val = e1000e_read_kmrn_reg(hw, |
| E1000_KMRNCTRLSTA_HD_CTRL, |
| &data); |
| if (ret_val) |
| return ret_val; |
| data &= ~(0xF << 8); |
| data |= (0xB << 8); |
| ret_val = e1000e_write_kmrn_reg(hw, |
| E1000_KMRNCTRLSTA_HD_CTRL, |
| data); |
| if (ret_val) |
| return ret_val; |
| |
| /* Enable jumbo frame workaround in the PHY */ |
| e1e_rphy(hw, PHY_REG(769, 23), &data); |
| data &= ~(0x7F << 5); |
| data |= (0x37 << 5); |
| ret_val = e1e_wphy(hw, PHY_REG(769, 23), data); |
| if (ret_val) |
| return ret_val; |
| e1e_rphy(hw, PHY_REG(769, 16), &data); |
| data &= ~(1 << 13); |
| ret_val = e1e_wphy(hw, PHY_REG(769, 16), data); |
| if (ret_val) |
| return ret_val; |
| e1e_rphy(hw, PHY_REG(776, 20), &data); |
| data &= ~(0x3FF << 2); |
| data |= (E1000_TX_PTR_GAP << 2); |
| ret_val = e1e_wphy(hw, PHY_REG(776, 20), data); |
| if (ret_val) |
| return ret_val; |
| ret_val = e1e_wphy(hw, PHY_REG(776, 23), 0xF100); |
| if (ret_val) |
| return ret_val; |
| e1e_rphy(hw, HV_PM_CTRL, &data); |
| ret_val = e1e_wphy(hw, HV_PM_CTRL, data | (1 << 10)); |
| if (ret_val) |
| return ret_val; |
| } else { |
| /* Write MAC register values back to h/w defaults */ |
| mac_reg = er32(FFLT_DBG); |
| mac_reg &= ~(0xF << 14); |
| ew32(FFLT_DBG, mac_reg); |
| |
| mac_reg = er32(RCTL); |
| mac_reg &= ~E1000_RCTL_SECRC; |
| ew32(RCTL, mac_reg); |
| |
| ret_val = e1000e_read_kmrn_reg(hw, |
| E1000_KMRNCTRLSTA_CTRL_OFFSET, |
| &data); |
| if (ret_val) |
| return ret_val; |
| ret_val = e1000e_write_kmrn_reg(hw, |
| E1000_KMRNCTRLSTA_CTRL_OFFSET, |
| data & ~(1 << 0)); |
| if (ret_val) |
| return ret_val; |
| ret_val = e1000e_read_kmrn_reg(hw, |
| E1000_KMRNCTRLSTA_HD_CTRL, |
| &data); |
| if (ret_val) |
| return ret_val; |
| data &= ~(0xF << 8); |
| data |= (0xB << 8); |
| ret_val = e1000e_write_kmrn_reg(hw, |
| E1000_KMRNCTRLSTA_HD_CTRL, |
| data); |
| if (ret_val) |
| return ret_val; |
| |
| /* Write PHY register values back to h/w defaults */ |
| e1e_rphy(hw, PHY_REG(769, 23), &data); |
| data &= ~(0x7F << 5); |
| ret_val = e1e_wphy(hw, PHY_REG(769, 23), data); |
| if (ret_val) |
| return ret_val; |
| e1e_rphy(hw, PHY_REG(769, 16), &data); |
| data |= (1 << 13); |
| ret_val = e1e_wphy(hw, PHY_REG(769, 16), data); |
| if (ret_val) |
| return ret_val; |
| e1e_rphy(hw, PHY_REG(776, 20), &data); |
| data &= ~(0x3FF << 2); |
| data |= (0x8 << 2); |
| ret_val = e1e_wphy(hw, PHY_REG(776, 20), data); |
| if (ret_val) |
| return ret_val; |
| ret_val = e1e_wphy(hw, PHY_REG(776, 23), 0x7E00); |
| if (ret_val) |
| return ret_val; |
| e1e_rphy(hw, HV_PM_CTRL, &data); |
| ret_val = e1e_wphy(hw, HV_PM_CTRL, data & ~(1 << 10)); |
| if (ret_val) |
| return ret_val; |
| } |
| |
| /* re-enable Rx path after enabling/disabling workaround */ |
| return e1e_wphy(hw, PHY_REG(769, 20), phy_reg & ~(1 << 14)); |
| } |
| |
| /** |
| * e1000_lv_phy_workarounds_ich8lan - A series of Phy workarounds to be |
| * done after every PHY reset. |
| **/ |
| static s32 e1000_lv_phy_workarounds_ich8lan(struct e1000_hw *hw) |
| { |
| s32 ret_val = 0; |
| |
| if (hw->mac.type != e1000_pch2lan) |
| return 0; |
| |
| /* Set MDIO slow mode before any other MDIO access */ |
| ret_val = e1000_set_mdio_slow_mode_hv(hw); |
| if (ret_val) |
| return ret_val; |
| |
| ret_val = hw->phy.ops.acquire(hw); |
| if (ret_val) |
| return ret_val; |
| /* set MSE higher to enable link to stay up when noise is high */ |
| ret_val = e1000_write_emi_reg_locked(hw, I82579_MSE_THRESHOLD, 0x0034); |
| if (ret_val) |
| goto release; |
| /* drop link after 5 times MSE threshold was reached */ |
| ret_val = e1000_write_emi_reg_locked(hw, I82579_MSE_LINK_DOWN, 0x0005); |
| release: |
| hw->phy.ops.release(hw); |
| |
| return ret_val; |
| } |
| |
| /** |
| * e1000_k1_gig_workaround_lv - K1 Si workaround |
| * @hw: pointer to the HW structure |
| * |
| * Workaround to set the K1 beacon duration for 82579 parts in 10Mbps |
| * Disable K1 in 1000Mbps and 100Mbps |
| **/ |
| static s32 e1000_k1_workaround_lv(struct e1000_hw *hw) |
| { |
| s32 ret_val = 0; |
| u16 status_reg = 0; |
| |
| if (hw->mac.type != e1000_pch2lan) |
| return 0; |
| |
| /* Set K1 beacon duration based on 10Mbs speed */ |
| ret_val = e1e_rphy(hw, HV_M_STATUS, &status_reg); |
| if (ret_val) |
| return ret_val; |
| |
| if ((status_reg & (HV_M_STATUS_LINK_UP | HV_M_STATUS_AUTONEG_COMPLETE)) |
| == (HV_M_STATUS_LINK_UP | HV_M_STATUS_AUTONEG_COMPLETE)) { |
| if (status_reg & |
| (HV_M_STATUS_SPEED_1000 | HV_M_STATUS_SPEED_100)) { |
| u16 pm_phy_reg; |
| |
| /* LV 1G/100 Packet drop issue wa */ |
| ret_val = e1e_rphy(hw, HV_PM_CTRL, &pm_phy_reg); |
| if (ret_val) |
| return ret_val; |
| pm_phy_reg &= ~HV_PM_CTRL_K1_ENABLE; |
| ret_val = e1e_wphy(hw, HV_PM_CTRL, pm_phy_reg); |
| if (ret_val) |
| return ret_val; |
| } else { |
| u32 mac_reg; |
| |
| mac_reg = er32(FEXTNVM4); |
| mac_reg &= ~E1000_FEXTNVM4_BEACON_DURATION_MASK; |
| mac_reg |= E1000_FEXTNVM4_BEACON_DURATION_16USEC; |
| ew32(FEXTNVM4, mac_reg); |
| } |
| } |
| |
| return ret_val; |
| } |
| |
| /** |
| * e1000_gate_hw_phy_config_ich8lan - disable PHY config via hardware |
| * @hw: pointer to the HW structure |
| * @gate: boolean set to true to gate, false to ungate |
| * |
| * Gate/ungate the automatic PHY configuration via hardware; perform |
| * the configuration via software instead. |
| **/ |
| static void e1000_gate_hw_phy_config_ich8lan(struct e1000_hw *hw, bool gate) |
| { |
| u32 extcnf_ctrl; |
| |
| if (hw->mac.type < e1000_pch2lan) |
| return; |
| |
| extcnf_ctrl = er32(EXTCNF_CTRL); |
| |
| if (gate) |
| extcnf_ctrl |= E1000_EXTCNF_CTRL_GATE_PHY_CFG; |
| else |
| extcnf_ctrl &= ~E1000_EXTCNF_CTRL_GATE_PHY_CFG; |
| |
| ew32(EXTCNF_CTRL, extcnf_ctrl); |
| } |
| |
| /** |
| * e1000_lan_init_done_ich8lan - Check for PHY config completion |
| * @hw: pointer to the HW structure |
| * |
| * Check the appropriate indication the MAC has finished configuring the |
| * PHY after a software reset. |
| **/ |
| static void e1000_lan_init_done_ich8lan(struct e1000_hw *hw) |
| { |
| u32 data, loop = E1000_ICH8_LAN_INIT_TIMEOUT; |
| |
| /* Wait for basic configuration completes before proceeding */ |
| do { |
| data = er32(STATUS); |
| data &= E1000_STATUS_LAN_INIT_DONE; |
| usleep_range(100, 200); |
| } while ((!data) && --loop); |
| |
| /* If basic configuration is incomplete before the above loop |
| * count reaches 0, loading the configuration from NVM will |
| * leave the PHY in a bad state possibly resulting in no link. |
| */ |
| if (loop == 0) |
| e_dbg("LAN_INIT_DONE not set, increase timeout\n"); |
| |
| /* Clear the Init Done bit for the next init event */ |
| data = er32(STATUS); |
| data &= ~E1000_STATUS_LAN_INIT_DONE; |
| ew32(STATUS, data); |
| } |
| |
| /** |
| * e1000_post_phy_reset_ich8lan - Perform steps required after a PHY reset |
| * @hw: pointer to the HW structure |
| **/ |
| static s32 e1000_post_phy_reset_ich8lan(struct e1000_hw *hw) |
| { |
| s32 ret_val = 0; |
| u16 reg; |
| |
| if (hw->phy.ops.check_reset_block(hw)) |
| return 0; |
| |
| /* Allow time for h/w to get to quiescent state after reset */ |
| usleep_range(10000, 20000); |
| |
| /* Perform any necessary post-reset workarounds */ |
| switch (hw->mac.type) { |
| case e1000_pchlan: |
| ret_val = e1000_hv_phy_workarounds_ich8lan(hw); |
| if (ret_val) |
| return ret_val; |
| break; |
| case e1000_pch2lan: |
| ret_val = e1000_lv_phy_workarounds_ich8lan(hw); |
| if (ret_val) |
| return ret_val; |
| break; |
| default: |
| break; |
| } |
| |
| /* Clear the host wakeup bit after lcd reset */ |
| if (hw->mac.type >= e1000_pchlan) { |
| e1e_rphy(hw, BM_PORT_GEN_CFG, ®); |
| reg &= ~BM_WUC_HOST_WU_BIT; |
| e1e_wphy(hw, BM_PORT_GEN_CFG, reg); |
| } |
| |
| /* Configure the LCD with the extended configuration region in NVM */ |
| ret_val = e1000_sw_lcd_config_ich8lan(hw); |
| if (ret_val) |
| return ret_val; |
| |
| /* Configure the LCD with the OEM bits in NVM */ |
| ret_val = e1000_oem_bits_config_ich8lan(hw, true); |
| |
| if (hw->mac.type == e1000_pch2lan) { |
| /* Ungate automatic PHY configuration on non-managed 82579 */ |
| if (!(er32(FWSM) & E1000_ICH_FWSM_FW_VALID)) { |
| usleep_range(10000, 20000); |
| e1000_gate_hw_phy_config_ich8lan(hw, false); |
| } |
| |
| /* Set EEE LPI Update Timer to 200usec */ |
| ret_val = hw->phy.ops.acquire(hw); |
| if (ret_val) |
| return ret_val; |
| ret_val = e1000_write_emi_reg_locked(hw, |
| I82579_LPI_UPDATE_TIMER, |
| 0x1387); |
| hw->phy.ops.release(hw); |
| } |
| |
| return ret_val; |
| } |
| |
| /** |
| * e1000_phy_hw_reset_ich8lan - Performs a PHY reset |
| * @hw: pointer to the HW structure |
| * |
| * Resets the PHY |
| * This is a function pointer entry point called by drivers |
| * or other shared routines. |
| **/ |
| static s32 e1000_phy_hw_reset_ich8lan(struct e1000_hw *hw) |
| { |
| s32 ret_val = 0; |
| |
| /* Gate automatic PHY configuration by hardware on non-managed 82579 */ |
| if ((hw->mac.type == e1000_pch2lan) && |
| !(er32(FWSM) & E1000_ICH_FWSM_FW_VALID)) |
| e1000_gate_hw_phy_config_ich8lan(hw, true); |
| |
| ret_val = e1000e_phy_hw_reset_generic(hw); |
| if (ret_val) |
| return ret_val; |
| |
| return e1000_post_phy_reset_ich8lan(hw); |
| } |
| |
| /** |
| * e1000_set_lplu_state_pchlan - Set Low Power Link Up state |
| * @hw: pointer to the HW structure |
| * @active: true to enable LPLU, false to disable |
| * |
| * Sets the LPLU state according to the active flag. For PCH, if OEM write |
| * bit are disabled in the NVM, writing the LPLU bits in the MAC will not set |
| * the phy speed. This function will manually set the LPLU bit and restart |
| * auto-neg as hw would do. D3 and D0 LPLU will call the same function |
| * since it configures the same bit. |
| **/ |
| static s32 e1000_set_lplu_state_pchlan(struct e1000_hw *hw, bool active) |
| { |
| s32 ret_val; |
| u16 oem_reg; |
| |
| ret_val = e1e_rphy(hw, HV_OEM_BITS, &oem_reg); |
| if (ret_val) |
| return ret_val; |
| |
| if (active) |
| oem_reg |= HV_OEM_BITS_LPLU; |
| else |
| oem_reg &= ~HV_OEM_BITS_LPLU; |
| |
| if (!hw->phy.ops.check_reset_block(hw)) |
| oem_reg |= HV_OEM_BITS_RESTART_AN; |
| |
| return e1e_wphy(hw, HV_OEM_BITS, oem_reg); |
| } |
| |
| /** |
| * e1000_set_d0_lplu_state_ich8lan - Set Low Power Linkup D0 state |
| * @hw: pointer to the HW structure |
| * @active: true to enable LPLU, false to disable |
| * |
| * Sets the LPLU D0 state according to the active flag. When |
| * activating LPLU this function also disables smart speed |
| * and vice versa. LPLU will not be activated unless the |
| * device autonegotiation advertisement meets standards of |
| * either 10 or 10/100 or 10/100/1000 at all duplexes. |
| * This is a function pointer entry point only called by |
| * PHY setup routines. |
| **/ |
| static s32 e1000_set_d0_lplu_state_ich8lan(struct e1000_hw *hw, bool active) |
| { |
| struct e1000_phy_info *phy = &hw->phy; |
| u32 phy_ctrl; |
| s32 ret_val = 0; |
| u16 data; |
| |
| if (phy->type == e1000_phy_ife) |
| return 0; |
| |
| phy_ctrl = er32(PHY_CTRL); |
| |
| if (active) { |
| phy_ctrl |= E1000_PHY_CTRL_D0A_LPLU; |
| ew32(PHY_CTRL, phy_ctrl); |
| |
| if (phy->type != e1000_phy_igp_3) |
| return 0; |
| |
| /* Call gig speed drop workaround on LPLU before accessing |
| * any PHY registers |
| */ |
| if (hw->mac.type == e1000_ich8lan) |
| e1000e_gig_downshift_workaround_ich8lan(hw); |
| |
| /* When LPLU is enabled, we should disable SmartSpeed */ |
| ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_CONFIG, &data); |
| if (ret_val) |
| return ret_val; |
| data &= ~IGP01E1000_PSCFR_SMART_SPEED; |
| ret_val = e1e_wphy(hw, IGP01E1000_PHY_PORT_CONFIG, data); |
| if (ret_val) |
| return ret_val; |
| } else { |
| phy_ctrl &= ~E1000_PHY_CTRL_D0A_LPLU; |
| ew32(PHY_CTRL, phy_ctrl); |
| |
| if (phy->type != e1000_phy_igp_3) |
| return 0; |
| |
| /* LPLU and SmartSpeed are mutually exclusive. LPLU is used |
| * during Dx states where the power conservation is most |
| * important. During driver activity we should enable |
| * SmartSpeed, so performance is maintained. |
| */ |
| if (phy->smart_speed == e1000_smart_speed_on) { |
| ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_CONFIG, |
| &data); |
| if (ret_val) |
| return ret_val; |
| |
| data |= IGP01E1000_PSCFR_SMART_SPEED; |
| ret_val = e1e_wphy(hw, IGP01E1000_PHY_PORT_CONFIG, |
| data); |
| if (ret_val) |
| return ret_val; |
| } else if (phy->smart_speed == e1000_smart_speed_off) { |
| ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_CONFIG, |
| &data); |
| if (ret_val) |
| return ret_val; |
| |
| data &= ~IGP01E1000_PSCFR_SMART_SPEED; |
| ret_val = e1e_wphy(hw, IGP01E1000_PHY_PORT_CONFIG, |
| data); |
| if (ret_val) |
| return ret_val; |
| } |
| } |
| |
| return 0; |
| } |
| |
| /** |
| * e1000_set_d3_lplu_state_ich8lan - Set Low Power Linkup D3 state |
| * @hw: pointer to the HW structure |
| * @active: true to enable LPLU, false to disable |
| * |
| * Sets the LPLU D3 state according to the active flag. When |
| * activating LPLU this function also disables smart speed |
| * and vice versa. LPLU will not be activated unless the |
| * device autonegotiation advertisement meets standards of |
| * either 10 or 10/100 or 10/100/1000 at all duplexes. |
| * This is a function pointer entry point only called by |
| * PHY setup routines. |
| **/ |
| static s32 e1000_set_d3_lplu_state_ich8lan(struct e1000_hw *hw, bool active) |
| { |
| struct e1000_phy_info *phy = &hw->phy; |
| u32 phy_ctrl; |
| s32 ret_val = 0; |
| u16 data; |
| |
| phy_ctrl = er32(PHY_CTRL); |
| |
| if (!active) { |
| phy_ctrl &= ~E1000_PHY_CTRL_NOND0A_LPLU; |
| ew32(PHY_CTRL, phy_ctrl); |
| |
| if (phy->type != e1000_phy_igp_3) |
| return 0; |
| |
| /* LPLU and SmartSpeed are mutually exclusive. LPLU is used |
| * during Dx states where the power conservation is most |
| * important. During driver activity we should enable |
| * SmartSpeed, so performance is maintained. |
| */ |
| if (phy->smart_speed == e1000_smart_speed_on) { |
| ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_CONFIG, |
| &data); |
| if (ret_val) |
| return ret_val; |
| |
| data |= IGP01E1000_PSCFR_SMART_SPEED; |
| ret_val = e1e_wphy(hw, IGP01E1000_PHY_PORT_CONFIG, |
| data); |
| if (ret_val) |
| return ret_val; |
| } else if (phy->smart_speed == e1000_smart_speed_off) { |
| ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_CONFIG, |
| &data); |
| if (ret_val) |
| return ret_val; |
| |
| data &= ~IGP01E1000_PSCFR_SMART_SPEED; |
| ret_val = e1e_wphy(hw, IGP01E1000_PHY_PORT_CONFIG, |
| data); |
| if (ret_val) |
| return ret_val; |
| } |
| } else if ((phy->autoneg_advertised == E1000_ALL_SPEED_DUPLEX) || |
| (phy->autoneg_advertised == E1000_ALL_NOT_GIG) || |
| (phy->autoneg_advertised == E1000_ALL_10_SPEED)) { |
| phy_ctrl |= E1000_PHY_CTRL_NOND0A_LPLU; |
| ew32(PHY_CTRL, phy_ctrl); |
| |
| if (phy->type != e1000_phy_igp_3) |
| return 0; |
| |
| /* Call gig speed drop workaround on LPLU before accessing |
| * any PHY registers |
| */ |
| if (hw->mac.type == e1000_ich8lan) |
| e1000e_gig_downshift_workaround_ich8lan(hw); |
| |
| /* When LPLU is enabled, we should disable SmartSpeed */ |
| ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_CONFIG, &data); |
| if (ret_val) |
| return ret_val; |
| |
| data &= ~IGP01E1000_PSCFR_SMART_SPEED; |
| ret_val = e1e_wphy(hw, IGP01E1000_PHY_PORT_CONFIG, data); |
| } |
| |
| return ret_val; |
| } |
| |
| /** |
| * e1000_valid_nvm_bank_detect_ich8lan - finds out the valid bank 0 or 1 |
| * @hw: pointer to the HW structure |
| * @bank: pointer to the variable that returns the active bank |
| * |
| * Reads signature byte from the NVM using the flash access registers. |
| * Word 0x13 bits 15:14 = 10b indicate a valid signature for that bank. |
| **/ |
| static s32 e1000_valid_nvm_bank_detect_ich8lan(struct e1000_hw *hw, u32 *bank) |
| { |
| u32 eecd; |
| struct e1000_nvm_info *nvm = &hw->nvm; |
| u32 bank1_offset = nvm->flash_bank_size * sizeof(u16); |
| u32 act_offset = E1000_ICH_NVM_SIG_WORD * 2 + 1; |
| u8 sig_byte = 0; |
| s32 ret_val; |
| |
| switch (hw->mac.type) { |
| /* In SPT, read from the CTRL_EXT reg instead of |
| * accessing the sector valid bits from the nvm |
| */ |
| case e1000_pch_spt: |
| *bank = er32(CTRL_EXT) |
| & E1000_CTRL_EXT_NVMVS; |
| if ((*bank == 0) || (*bank == 1)) { |
| e_dbg("ERROR: No valid NVM bank present\n"); |
| return -E1000_ERR_NVM; |
| } else { |
| *bank = *bank - 2; |
| return 0; |
| } |
| break; |
| case e1000_ich8lan: |
| case e1000_ich9lan: |
| eecd = er32(EECD); |
| if ((eecd & E1000_EECD_SEC1VAL_VALID_MASK) == |
| E1000_EECD_SEC1VAL_VALID_MASK) { |
| if (eecd & E1000_EECD_SEC1VAL) |
| *bank = 1; |
| else |
| *bank = 0; |
| |
| return 0; |
| } |
| e_dbg("Unable to determine valid NVM bank via EEC - reading flash signature\n"); |
| /* fall-thru */ |
| default: |
| /* set bank to 0 in case flash read fails */ |
| *bank = 0; |
| |
| /* Check bank 0 */ |
| ret_val = e1000_read_flash_byte_ich8lan(hw, act_offset, |
| &sig_byte); |
| if (ret_val) |
| return ret_val; |
| if ((sig_byte & E1000_ICH_NVM_VALID_SIG_MASK) == |
| E1000_ICH_NVM_SIG_VALUE) { |
| *bank = 0; |
| return 0; |
| } |
| |
| /* Check bank 1 */ |
| ret_val = e1000_read_flash_byte_ich8lan(hw, act_offset + |
| bank1_offset, |
| &sig_byte); |
| if (ret_val) |
| return ret_val; |
| if ((sig_byte & E1000_ICH_NVM_VALID_SIG_MASK) == |
| E1000_ICH_NVM_SIG_VALUE) { |
| *bank = 1; |
| return 0; |
| } |
| |
| e_dbg("ERROR: No valid NVM bank present\n"); |
| return -E1000_ERR_NVM; |
| } |
| } |
| |
| /** |
| * e1000_read_nvm_spt - NVM access for SPT |
| * @hw: pointer to the HW structure |
| * @offset: The offset (in bytes) of the word(s) to read. |
| * @words: Size of data to read in words. |
| * @data: pointer to the word(s) to read at offset. |
| * |
| * Reads a word(s) from the NVM |
| **/ |
| static s32 e1000_read_nvm_spt(struct e1000_hw *hw, u16 offset, u16 words, |
| u16 *data) |
| { |
| struct e1000_nvm_info *nvm = &hw->nvm; |
| struct e1000_dev_spec_ich8lan *dev_spec = &hw->dev_spec.ich8lan; |
| u32 act_offset; |
| s32 ret_val = 0; |
| u32 bank = 0; |
| u32 dword = 0; |
| u16 offset_to_read; |
| u16 i; |
| |
| if ((offset >= nvm->word_size) || (words > nvm->word_size - offset) || |
| (words == 0)) { |
| e_dbg("nvm parameter(s) out of bounds\n"); |
| ret_val = -E1000_ERR_NVM; |
| goto out; |
| } |
| |
| nvm->ops.acquire(hw); |
| |
| ret_val = e1000_valid_nvm_bank_detect_ich8lan(hw, &bank); |
| if (ret_val) { |
| e_dbg("Could not detect valid bank, assuming bank 0\n"); |
| bank = 0; |
| } |
| |
| act_offset = (bank) ? nvm->flash_bank_size : 0; |
| act_offset += offset; |
| |
| ret_val = 0; |
| |
| for (i = 0; i < words; i += 2) { |
| if (words - i == 1) { |
| if (dev_spec->shadow_ram[offset + i].modified) { |
| data[i] = |
| dev_spec->shadow_ram[offset + i].value; |
| } else { |
| offset_to_read = act_offset + i - |
| ((act_offset + i) % 2); |
| ret_val = |
| e1000_read_flash_dword_ich8lan(hw, |
| offset_to_read, |
| &dword); |
| if (ret_val) |
| break; |
| if ((act_offset + i) % 2 == 0) |
| data[i] = (u16)(dword & 0xFFFF); |
| else |
| data[i] = (u16)((dword >> 16) & 0xFFFF); |
| } |
| } else { |
| offset_to_read = act_offset + i; |
| if (!(dev_spec->shadow_ram[offset + i].modified) || |
| !(dev_spec->shadow_ram[offset + i + 1].modified)) { |
| ret_val = |
| e1000_read_flash_dword_ich8lan(hw, |
| offset_to_read, |
| &dword); |
| if (ret_val) |
| break; |
| } |
| if (dev_spec->shadow_ram[offset + i].modified) |
| data[i] = |
| dev_spec->shadow_ram[offset + i].value; |
| else |
| data[i] = (u16)(dword & 0xFFFF); |
| if (dev_spec->shadow_ram[offset + i].modified) |
| data[i + 1] = |
| dev_spec->shadow_ram[offset + i + 1].value; |
| else |
| data[i + 1] = (u16)(dword >> 16 & 0xFFFF); |
| } |
| } |
| |
| nvm->ops.release(hw); |
| |
| out: |
| if (ret_val) |
| e_dbg("NVM read error: %d\n", ret_val); |
| |
| return ret_val; |
| } |
| |
| /** |
| * e1000_read_nvm_ich8lan - Read word(s) from the NVM |
| * @hw: pointer to the HW structure |
| * @offset: The offset (in bytes) of the word(s) to read. |
| * @words: Size of data to read in words |
| * @data: Pointer to the word(s) to read at offset. |
| * |
| * Reads a word(s) from the NVM using the flash access registers. |
| **/ |
| static s32 e1000_read_nvm_ich8lan(struct e1000_hw *hw, u16 offset, u16 words, |
| u16 *data) |
| { |
| struct e1000_nvm_info *nvm = &hw->nvm; |
| struct e1000_dev_spec_ich8lan *dev_spec = &hw->dev_spec.ich8lan; |
| u32 act_offset; |
| s32 ret_val = 0; |
| u32 bank = 0; |
| u16 i, word; |
| |
| if ((offset >= nvm->word_size) || (words > nvm->word_size - offset) || |
| (words == 0)) { |
| e_dbg("nvm parameter(s) out of bounds\n"); |
| ret_val = -E1000_ERR_NVM; |
| goto out; |
| } |
| |
| nvm->ops.acquire(hw); |
| |
| ret_val = e1000_valid_nvm_bank_detect_ich8lan(hw, &bank); |
| if (ret_val) { |
| e_dbg("Could not detect valid bank, assuming bank 0\n"); |
| bank = 0; |
| } |
| |
| act_offset = (bank) ? nvm->flash_bank_size : 0; |
| act_offset += offset; |
| |
| ret_val = 0; |
| for (i = 0; i < words; i++) { |
| if (dev_spec->shadow_ram[offset + i].modified) { |
| data[i] = dev_spec->shadow_ram[offset + i].value; |
| } else { |
| ret_val = e1000_read_flash_word_ich8lan(hw, |
| act_offset + i, |
| &word); |
| if (ret_val) |
| break; |
| data[i] = word; |
| } |
| } |
| |
| nvm->ops.release(hw); |
| |
| out: |
| if (ret_val) |
| e_dbg("NVM read error: %d\n", ret_val); |
| |
| return ret_val; |
| } |
| |
| /** |
| * e1000_flash_cycle_init_ich8lan - Initialize flash |
| * @hw: pointer to the HW structure |
| * |
| * This function does initial flash setup so that a new read/write/erase cycle |
| * can be started. |
| **/ |
| static s32 e1000_flash_cycle_init_ich8lan(struct e1000_hw *hw) |
| { |
| union ich8_hws_flash_status hsfsts; |
| s32 ret_val = -E1000_ERR_NVM; |
| |
| hsfsts.regval = er16flash(ICH_FLASH_HSFSTS); |
| |
| /* Check if the flash descriptor is valid */ |
| if (!hsfsts.hsf_status.fldesvalid) { |
| e_dbg("Flash descriptor invalid. SW Sequencing must be used.\n"); |
| return -E1000_ERR_NVM; |
| } |
| |
| /* Clear FCERR and DAEL in hw status by writing 1 */ |
| hsfsts.hsf_status.flcerr = 1; |
| hsfsts.hsf_status.dael = 1; |
| if (hw->mac.type == e1000_pch_spt) |
| ew32flash(ICH_FLASH_HSFSTS, hsfsts.regval & 0xFFFF); |
| else |
| ew16flash(ICH_FLASH_HSFSTS, hsfsts.regval); |
| |
| /* Either we should have a hardware SPI cycle in progress |
| * bit to check against, in order to start a new cycle or |
| * FDONE bit should be changed in the hardware so that it |
| * is 1 after hardware reset, which can then be used as an |
| * indication whether a cycle is in progress or has been |
| * completed. |
| */ |
| |
| if (!hsfsts.hsf_status.flcinprog) { |
| /* There is no cycle running at present, |
| * so we can start a cycle. |
| * Begin by setting Flash Cycle Done. |
| */ |
| hsfsts.hsf_status.flcdone = 1; |
| if (hw->mac.type == e1000_pch_spt) |
| ew32flash(ICH_FLASH_HSFSTS, hsfsts.regval & 0xFFFF); |
| else |
| ew16flash(ICH_FLASH_HSFSTS, hsfsts.regval); |
| ret_val = 0; |
| } else { |
| s32 i; |
| |
| /* Otherwise poll for sometime so the current |
| * cycle has a chance to end before giving up. |
| */ |
| for (i = 0; i < ICH_FLASH_READ_COMMAND_TIMEOUT; i++) { |
| hsfsts.regval = er16flash(ICH_FLASH_HSFSTS); |
| if (!hsfsts.hsf_status.flcinprog) { |
| ret_val = 0; |
| break; |
| } |
| udelay(1); |
| } |
| if (!ret_val) { |
| /* Successful in waiting for previous cycle to timeout, |
| * now set the Flash Cycle Done. |
| */ |
| hsfsts.hsf_status.flcdone = 1; |
| if (hw->mac.type == e1000_pch_spt) |
| ew32flash(ICH_FLASH_HSFSTS, |
| hsfsts.regval & 0xFFFF); |
| else |
| ew16flash(ICH_FLASH_HSFSTS, hsfsts.regval); |
| } else { |
| e_dbg("Flash controller busy, cannot get access\n"); |
| } |
| } |
| |
| return ret_val; |
| } |
| |
| /** |
| * e1000_flash_cycle_ich8lan - Starts flash cycle (read/write/erase) |
| * @hw: pointer to the HW structure |
| * @timeout: maximum time to wait for completion |
| * |
| * This function starts a flash cycle and waits for its completion. |
| **/ |
| static s32 e1000_flash_cycle_ich8lan(struct e1000_hw *hw, u32 timeout) |
| { |
| union ich8_hws_flash_ctrl hsflctl; |
| union ich8_hws_flash_status hsfsts; |
| u32 i = 0; |
| |
| /* Start a cycle by writing 1 in Flash Cycle Go in Hw Flash Control */ |
| if (hw->mac.type == e1000_pch_spt) |
| hsflctl.regval = er32flash(ICH_FLASH_HSFSTS) >> 16; |
| else |
| hsflctl.regval = er16flash(ICH_FLASH_HSFCTL); |
| hsflctl.hsf_ctrl.flcgo = 1; |
| |
| if (hw->mac.type == e1000_pch_spt) |
| ew32flash(ICH_FLASH_HSFSTS, hsflctl.regval << 16); |
| else |
| ew16flash(ICH_FLASH_HSFCTL, hsflctl.regval); |
| |
| /* wait till FDONE bit is set to 1 */ |
| do { |
| hsfsts.regval = er16flash(ICH_FLASH_HSFSTS); |
| if (hsfsts.hsf_status.flcdone) |
| break; |
| udelay(1); |
| } while (i++ < timeout); |
| |
| if (hsfsts.hsf_status.flcdone && !hsfsts.hsf_status.flcerr) |
| return 0; |
| |
| return -E1000_ERR_NVM; |
| } |
| |
| /** |
| * e1000_read_flash_dword_ich8lan - Read dword from flash |
| * @hw: pointer to the HW structure |
| * @offset: offset to data location |
| * @data: pointer to the location for storing the data |
| * |
| * Reads the flash dword at offset into data. Offset is converted |
| * to bytes before read. |
| **/ |
| static s32 e1000_read_flash_dword_ich8lan(struct e1000_hw *hw, u32 offset, |
| u32 *data) |
| { |
| /* Must convert word offset into bytes. */ |
| offset <<= 1; |
| return e1000_read_flash_data32_ich8lan(hw, offset, data); |
| } |
| |
| /** |
| * e1000_read_flash_word_ich8lan - Read word from flash |
| * @hw: pointer to the HW structure |
| * @offset: offset to data location |
| * @data: pointer to the location for storing the data |
| * |
| * Reads the flash word at offset into data. Offset is converted |
| * to bytes before read. |
| **/ |
| static s32 e1000_read_flash_word_ich8lan(struct e1000_hw *hw, u32 offset, |
| u16 *data) |
| { |
| /* Must convert offset into bytes. */ |
| offset <<= 1; |
| |
| return e1000_read_flash_data_ich8lan(hw, offset, 2, data); |
| } |
| |
| /** |
| * e1000_read_flash_byte_ich8lan - Read byte from flash |
| * @hw: pointer to the HW structure |
| * @offset: The offset of the byte to read. |
| * @data: Pointer to a byte to store the value read. |
| * |
| * Reads a single byte from the NVM using the flash access registers. |
| **/ |
| static s32 e1000_read_flash_byte_ich8lan(struct e1000_hw *hw, u32 offset, |
| u8 *data) |
| { |
| s32 ret_val; |
| u16 word = 0; |
| |
| /* In SPT, only 32 bits access is supported, |
| * so this function should not be called. |
| */ |
| if (hw->mac.type == e1000_pch_spt) |
| return -E1000_ERR_NVM; |
| else |
| ret_val = e1000_read_flash_data_ich8lan(hw, offset, 1, &word); |
| |
| if (ret_val) |
| return ret_val; |
| |
| *data = (u8)word; |
| |
| return 0; |
| } |
| |
| /** |
| * e1000_read_flash_data_ich8lan - Read byte or word from NVM |
| * @hw: pointer to the HW structure |
| * @offset: The offset (in bytes) of the byte or word to read. |
| * @size: Size of data to read, 1=byte 2=word |
| * @data: Pointer to the word to store the value read. |
| * |
| * Reads a byte or word from the NVM using the flash access registers. |
| **/ |
| static s32 e1000_read_flash_data_ich8lan(struct e1000_hw *hw, u32 offset, |
| u8 size, u16 *data) |
| { |
| union ich8_hws_flash_status hsfsts; |
| union ich8_hws_flash_ctrl hsflctl; |
| u32 flash_linear_addr; |
| u32 flash_data = 0; |
| s32 ret_val = -E1000_ERR_NVM; |
| u8 count = 0; |
| |
| if (size < 1 || size > 2 || offset > ICH_FLASH_LINEAR_ADDR_MASK) |
| return -E1000_ERR_NVM; |
| |
| flash_linear_addr = ((ICH_FLASH_LINEAR_ADDR_MASK & offset) + |
| hw->nvm.flash_base_addr); |
| |
| do { |
| udelay(1); |
| /* Steps */ |
| ret_val = e1000_flash_cycle_init_ich8lan(hw); |
| if (ret_val) |
| break; |
| |
| hsflctl.regval = er16flash(ICH_FLASH_HSFCTL); |
| /* 0b/1b corresponds to 1 or 2 byte size, respectively. */ |
| hsflctl.hsf_ctrl.fldbcount = size - 1; |
| hsflctl.hsf_ctrl.flcycle = ICH_CYCLE_READ; |
| ew16flash(ICH_FLASH_HSFCTL, hsflctl.regval); |
| |
| ew32flash(ICH_FLASH_FADDR, flash_linear_addr); |
| |
| ret_val = |
| e1000_flash_cycle_ich8lan(hw, |
| ICH_FLASH_READ_COMMAND_TIMEOUT); |
| |
| /* Check if FCERR is set to 1, if set to 1, clear it |
| * and try the whole sequence a few more times, else |
| * read in (shift in) the Flash Data0, the order is |
| * least significant byte first msb to lsb |
| */ |
| if (!ret_val) { |
| flash_data = er32flash(ICH_FLASH_FDATA0); |
| if (size == 1) |
| *data = (u8)(flash_data & 0x000000FF); |
| else if (size == 2) |
| *data = (u16)(flash_data & 0x0000FFFF); |
| break; |
| } else { |
| /* If we've gotten here, then things are probably |
| * completely hosed, but if the error condition is |
| * detected, it won't hurt to give it another try... |
| * ICH_FLASH_CYCLE_REPEAT_COUNT times. |
| */ |
| hsfsts.regval = er16flash(ICH_FLASH_HSFSTS); |
| if (hsfsts.hsf_status.flcerr) { |
| /* Repeat for some time before giving up. */ |
| continue; |
| } else if (!hsfsts.hsf_status.flcdone) { |
| e_dbg("Timeout error - flash cycle did not complete.\n"); |
| break; |
| } |
| } |
| } while (count++ < ICH_FLASH_CYCLE_REPEAT_COUNT); |
| |
| return ret_val; |
| } |
| |
| /** |
| * e1000_read_flash_data32_ich8lan - Read dword from NVM |
| * @hw: pointer to the HW structure |
| * @offset: The offset (in bytes) of the dword to read. |
| * @data: Pointer to the dword to store the value read. |
| * |
| * Reads a byte or word from the NVM using the flash access registers. |
| **/ |
| |
| static s32 e1000_read_flash_data32_ich8lan(struct e1000_hw *hw, u32 offset, |
| u32 *data) |
| { |
| union ich8_hws_flash_status hsfsts; |
| union ich8_hws_flash_ctrl hsflctl; |
| u32 flash_linear_addr; |
| s32 ret_val = -E1000_ERR_NVM; |
| u8 count = 0; |
| |
| if (offset > ICH_FLASH_LINEAR_ADDR_MASK || |
| hw->mac.type != e1000_pch_spt) |
| return -E1000_ERR_NVM; |
| flash_linear_addr = ((ICH_FLASH_LINEAR_ADDR_MASK & offset) + |
| hw->nvm.flash_base_addr); |
| |
| do { |
| udelay(1); |
| /* Steps */ |
| ret_val = e1000_flash_cycle_init_ich8lan(hw); |
| if (ret_val) |
| break; |
| /* In SPT, This register is in Lan memory space, not flash. |
| * Therefore, only 32 bit access is supported |
| */ |
| hsflctl.regval = er32flash(ICH_FLASH_HSFSTS) >> 16; |
| |
| /* 0b/1b corresponds to 1 or 2 byte size, respectively. */ |
| hsflctl.hsf_ctrl.fldbcount = sizeof(u32) - 1; |
| hsflctl.hsf_ctrl.flcycle = ICH_CYCLE_READ; |
| /* In SPT, This register is in Lan memory space, not flash. |
| * Therefore, only 32 bit access is supported |
| */ |
| ew32flash(ICH_FLASH_HSFSTS, (u32)hsflctl.regval << 16); |
| ew32flash(ICH_FLASH_FADDR, flash_linear_addr); |
| |
| ret_val = |
| e1000_flash_cycle_ich8lan(hw, |
| ICH_FLASH_READ_COMMAND_TIMEOUT); |
| |
| /* Check if FCERR is set to 1, if set to 1, clear it |
| * and try the whole sequence a few more times, else |
| * read in (shift in) the Flash Data0, the order is |
| * least significant byte first msb to lsb |
| */ |
| if (!ret_val) { |
| *data = er32flash(ICH_FLASH_FDATA0); |
| break; |
| } else { |
| /* If we've gotten here, then things are probably |
| * completely hosed, but if the error condition is |
| * detected, it won't hurt to give it another try... |
| * ICH_FLASH_CYCLE_REPEAT_COUNT times. |
| */ |
| hsfsts.regval = er16flash(ICH_FLASH_HSFSTS); |
| if (hsfsts.hsf_status.flcerr) { |
| /* Repeat for some time before giving up. */ |
| continue; |
| } else if (!hsfsts.hsf_status.flcdone) { |
| e_dbg("Timeout error - flash cycle did not complete.\n"); |
| break; |
| } |
| } |
| } while (count++ < ICH_FLASH_CYCLE_REPEAT_COUNT); |
| |
| return ret_val; |
| } |
| |
| /** |
| * e1000_write_nvm_ich8lan - Write word(s) to the NVM |
| * @hw: pointer to the HW structure |
| * @offset: The offset (in bytes) of the word(s) to write. |
| * @words: Size of data to write in words |
| * @data: Pointer to the word(s) to write at offset. |
| * |
| * Writes a byte or word to the NVM using the flash access registers. |
| **/ |
| static s32 e1000_write_nvm_ich8lan(struct e1000_hw *hw, u16 offset, u16 words, |
| u16 *data) |
| { |
| struct e1000_nvm_info *nvm = &hw->nvm; |
| struct e1000_dev_spec_ich8lan *dev_spec = &hw->dev_spec.ich8lan; |
| u16 i; |
| |
| if ((offset >= nvm->word_size) || (words > nvm->word_size - offset) || |
| (words == 0)) { |
| e_dbg("nvm parameter(s) out of bounds\n"); |
| return -E1000_ERR_NVM; |
| } |
| |
| nvm->ops.acquire(hw); |
| |
| for (i = 0; i < words; i++) { |
| dev_spec->shadow_ram[offset + i].modified = true; |
| dev_spec->shadow_ram[offset + i].value = data[i]; |
| } |
| |
| nvm->ops.release(hw); |
| |
| return 0; |
| } |
| |
| /** |
| * e1000_update_nvm_checksum_spt - Update the checksum for NVM |
| * @hw: pointer to the HW structure |
| * |
| * The NVM checksum is updated by calling the generic update_nvm_checksum, |
| * which writes the checksum to the shadow ram. The changes in the shadow |
| * ram are then committed to the EEPROM by processing each bank at a time |
| * checking for the modified bit and writing only the pending changes. |
| * After a successful commit, the shadow ram is cleared and is ready for |
| * future writes. |
| **/ |
| static s32 e1000_update_nvm_checksum_spt(struct e1000_hw *hw) |
| { |
| struct e1000_nvm_info *nvm = &hw->nvm; |
| struct e1000_dev_spec_ich8lan *dev_spec = &hw->dev_spec.ich8lan; |
| u32 i, act_offset, new_bank_offset, old_bank_offset, bank; |
| s32 ret_val; |
| u32 dword = 0; |
| |
| ret_val = e1000e_update_nvm_checksum_generic(hw); |
| if (ret_val) |
| goto out; |
| |
| if (nvm->type != e1000_nvm_flash_sw) |
| goto out; |
| |
| nvm->ops.acquire(hw); |
| |
| /* We're writing to the opposite bank so if we're on bank 1, |
| * write to bank 0 etc. We also need to erase the segment that |
| * is going to be written |
| */ |
| ret_val = e1000_valid_nvm_bank_detect_ich8lan(hw, &bank); |
| if (ret_val) { |
| e_dbg("Could not detect valid bank, assuming bank 0\n"); |
| bank = 0; |
| } |
| |
| if (bank == 0) { |
| new_bank_offset = nvm->flash_bank_size; |
| old_bank_offset = 0; |
| ret_val = e1000_erase_flash_bank_ich8lan(hw, 1); |
| if (ret_val) |
| goto release; |
| } else { |
| old_bank_offset = nvm->flash_bank_size; |
| new_bank_offset = 0; |
| ret_val = e1000_erase_flash_bank_ich8lan(hw, 0); |
| if (ret_val) |
| goto release; |
| } |
| for (i = 0; i < E1000_ICH8_SHADOW_RAM_WORDS; i += 2) { |
| /* Determine whether to write the value stored |
| * in the other NVM bank or a modified value stored |
| * in the shadow RAM |
| */ |
| ret_val = e1000_read_flash_dword_ich8lan(hw, |
| i + old_bank_offset, |
| &dword); |
| |
| if (dev_spec->shadow_ram[i].modified) { |
| dword &= 0xffff0000; |
| dword |= (dev_spec->shadow_ram[i].value & 0xffff); |
| } |
| if (dev_spec->shadow_ram[i + 1].modified) { |
| dword &= 0x0000ffff; |
| dword |= ((dev_spec->shadow_ram[i + 1].value & 0xffff) |
| << 16); |
| } |
| if (ret_val) |
| break; |
| |
| /* If the word is 0x13, then make sure the signature bits |
| * (15:14) are 11b until the commit has completed. |
| * This will allow us to write 10b which indicates the |
| * signature is valid. We want to do this after the write |
| * has completed so that we don't mark the segment valid |
| * while the write is still in progress |
| */ |
| if (i == E1000_ICH_NVM_SIG_WORD - 1) |
| dword |= E1000_ICH_NVM_SIG_MASK << 16; |
| |
| /* Convert offset to bytes. */ |
| act_offset = (i + new_bank_offset) << 1; |
| |
| usleep_range(100, 200); |
| |
| /* Write the data to the new bank. Offset in words */ |
| act_offset = i + new_bank_offset; |
| ret_val = e1000_retry_write_flash_dword_ich8lan(hw, act_offset, |
| dword); |
| if (ret_val) |
| break; |
| } |
| |
| /* Don't bother writing the segment valid bits if sector |
| * programming failed. |
| */ |
| if (ret_val) { |
| /* Possibly read-only, see e1000e_write_protect_nvm_ich8lan() */ |
| e_dbg("Flash commit failed.\n"); |
| goto release; |
| } |
| |
| /* Finally validate the new segment by setting bit 15:14 |
| * to 10b in word 0x13 , this can be done without an |
| * erase as well since these bits are 11 to start with |
| * and we need to change bit 14 to 0b |
| */ |
| act_offset = new_bank_offset + E1000_ICH_NVM_SIG_WORD; |
| |
| /*offset in words but we read dword */ |
| --act_offset; |
| ret_val = e1000_read_flash_dword_ich8lan(hw, act_offset, &dword); |
| |
| if (ret_val) |
| goto release; |
| |
| dword &= 0xBFFFFFFF; |
| ret_val = e1000_retry_write_flash_dword_ich8lan(hw, act_offset, dword); |
| |
| if (ret_val) |
| goto release; |
| |
| /* And invalidate the previously valid segment by setting |
| * its signature word (0x13) high_byte to 0b. This can be |
| * done without an erase because flash erase sets all bits |
| * to 1's. We can write 1's to 0's without an erase |
| */ |
| act_offset = (old_bank_offset + E1000_ICH_NVM_SIG_WORD) * 2 + 1; |
| |
| /* offset in words but we read dword */ |
| act_offset = old_bank_offset + E1000_ICH_NVM_SIG_WORD - 1; |
| ret_val = e1000_read_flash_dword_ich8lan(hw, act_offset, &dword); |
| |
| if (ret_val) |
| goto release; |
| |
| dword &= 0x00FFFFFF; |
| ret_val = e1000_retry_write_flash_dword_ich8lan(hw, act_offset, dword); |
| |
| if (ret_val) |
| goto release; |
| |
| /* Great! Everything worked, we can now clear the cached entries. */ |
| for (i = 0; i < E1000_ICH8_SHADOW_RAM_WORDS; i++) { |
| dev_spec->shadow_ram[i].modified = false; |
| dev_spec->shadow_ram[i].value = 0xFFFF; |
| } |
| |
| release: |
| nvm->ops.release(hw); |
| |
| /* Reload the EEPROM, or else modifications will not appear |
| * until after the next adapter reset. |
| */ |
| if (!ret_val) { |
| nvm->ops.reload(hw); |
| usleep_range(10000, 20000); |
| } |
| |
| out: |
| if (ret_val) |
| e_dbg("NVM update error: %d\n", ret_val); |
| |
| return ret_val; |
| } |
| |
| /** |
| * e1000_update_nvm_checksum_ich8lan - Update the checksum for NVM |
| * @hw: pointer to the HW structure |
| * |
| * The NVM checksum is updated by calling the generic update_nvm_checksum, |
| * which writes the checksum to the shadow ram. The changes in the shadow |
| * ram are then committed to the EEPROM by processing each bank at a time |
| * checking for the modified bit and writing only the pending changes. |
| * After a successful commit, the shadow ram is cleared and is ready for |
| * future writes. |
| **/ |
| static s32 e1000_update_nvm_checksum_ich8lan(struct e1000_hw *hw) |
| { |
| struct e1000_nvm_info *nvm = &hw->nvm; |
| struct e1000_dev_spec_ich8lan *dev_spec = &hw->dev_spec.ich8lan; |
| u32 i, act_offset, new_bank_offset, old_bank_offset, bank; |
| s32 ret_val; |
| u16 data = 0; |
| |
| ret_val = e1000e_update_nvm_checksum_generic(hw); |
| if (ret_val) |
| goto out; |
| |
| if (nvm->type != e1000_nvm_flash_sw) |
| goto out; |
| |
| nvm->ops.acquire(hw); |
| |
| /* We're writing to the opposite bank so if we're on bank 1, |
| * write to bank 0 etc. We also need to erase the segment that |
| * is going to be written |
| */ |
| ret_val = e1000_valid_nvm_bank_detect_ich8lan(hw, &bank); |
| if (ret_val) { |
| e_dbg("Could not detect valid bank, assuming bank 0\n"); |
| bank = 0; |
| } |
| |
| if (bank == 0) { |
| new_bank_offset = nvm->flash_bank_size; |
| old_bank_offset = 0; |
| ret_val = e1000_erase_flash_bank_ich8lan(hw, 1); |
| if (ret_val) |
| goto release; |
| } else { |
| old_bank_offset = nvm->flash_bank_size; |
| new_bank_offset = 0; |
| ret_val = e1000_erase_flash_bank_ich8lan(hw, 0); |
| if (ret_val) |
| goto release; |
| } |
| for (i = 0; i < E1000_ICH8_SHADOW_RAM_WORDS; i++) { |
| if (dev_spec->shadow_ram[i].modified) { |
| data = dev_spec->shadow_ram[i].value; |
| } else { |
| ret_val = e1000_read_flash_word_ich8lan(hw, i + |
| old_bank_offset, |
| &data); |
| if (ret_val) |
| break; |
| } |
| |
| /* If the word is 0x13, then make sure the signature bits |
| * (15:14) are 11b until the commit has completed. |
| * This will allow us to write 10b which indicates the |
| * signature is valid. We want to do this after the write |
| * has completed so that we don't mark the segment valid |
| * while the write is still in progress |
| */ |
| if (i == E1000_ICH_NVM_SIG_WORD) |
| data |= E1000_ICH_NVM_SIG_MASK; |
| |
| /* Convert offset to bytes. */ |
| act_offset = (i + new_bank_offset) << 1; |
| |
| usleep_range(100, 200); |
| /* Write the bytes to the new bank. */ |
| ret_val = e1000_retry_write_flash_byte_ich8lan(hw, |
| act_offset, |
| (u8)data); |
| if (ret_val) |
| break; |
| |
| usleep_range(100, 200); |
| ret_val = e1000_retry_write_flash_byte_ich8lan(hw, |
| act_offset + 1, |
| (u8)(data >> 8)); |
| if (ret_val) |
| break; |
| } |
| |
| /* Don't bother writing the segment valid bits if sector |
| * programming failed. |
| */ |
| if (ret_val) { |
| /* Possibly read-only, see e1000e_write_protect_nvm_ich8lan() */ |
| e_dbg("Flash commit failed.\n"); |
| goto release; |
| } |
| |
| /* Finally validate the new segment by setting bit 15:14 |
| * to 10b in word 0x13 , this can be done without an |
| * erase as well since these bits are 11 to start with |
| * and we need to change bit 14 to 0b |
| */ |
| act_offset = new_bank_offset + E1000_ICH_NVM_SIG_WORD; |
| ret_val = e1000_read_flash_word_ich8lan(hw, act_offset, &data); |
| if (ret_val) |
| goto release; |
| |
| data &= 0xBFFF; |
| ret_val = e1000_retry_write_flash_byte_ich8lan(hw, |
| act_offset * 2 + 1, |
| (u8)(data >> 8)); |
| if (ret_val) |
| goto release; |
| |
| /* And invalidate the previously valid segment by setting |
| * its signature word (0x13) high_byte to 0b. This can be |
| * done without an erase because flash erase sets all bits |
| * to 1's. We can write 1's to 0's without an erase |
| */ |
| act_offset = (old_bank_offset + E1000_ICH_NVM_SIG_WORD) * 2 + 1; |
| ret_val = e1000_retry_write_flash_byte_ich8lan(hw, act_offset, 0); |
| if (ret_val) |
| goto release; |
| |
| /* Great! Everything worked, we can now clear the cached entries. */ |
| for (i = 0; i < E1000_ICH8_SHADOW_RAM_WORDS; i++) { |
| dev_spec->shadow_ram[i].modified = false; |
| dev_spec->shadow_ram[i].value = 0xFFFF; |
| } |
| |
| release: |
| nvm->ops.release(hw); |
| |
| /* Reload the EEPROM, or else modifications will not appear |
| * until after the next adapter reset. |
| */ |
| if (!ret_val) { |
| nvm->ops.reload(hw); |
| usleep_range(10000, 20000); |
| } |
| |
| out: |
| if (ret_val) |
| e_dbg("NVM update error: %d\n", ret_val); |
| |
| return ret_val; |
| } |
| |
| /** |
| * e1000_validate_nvm_checksum_ich8lan - Validate EEPROM checksum |
| * @hw: pointer to the HW structure |
| * |
| * Check to see if checksum needs to be fixed by reading bit 6 in word 0x19. |
| * If the bit is 0, that the EEPROM had been modified, but the checksum was not |
| * calculated, in which case we need to calculate the checksum and set bit 6. |
| **/ |
| static s32 e1000_validate_nvm_checksum_ich8lan(struct e1000_hw *hw) |
| { |
| s32 ret_val; |
| u16 data; |
| u16 word; |
| u16 valid_csum_mask; |
| |
| /* Read NVM and check Invalid Image CSUM bit. If this bit is 0, |
| * the checksum needs to be fixed. This bit is an indication that |
| * the NVM was prepared by OEM software and did not calculate |
| * the checksum...a likely scenario. |
| */ |
| switch (hw->mac.type) { |
| case e1000_pch_lpt: |
| case e1000_pch_spt: |
| word = NVM_COMPAT; |
| valid_csum_mask = NVM_COMPAT_VALID_CSUM; |
| break; |
| default: |
| word = NVM_FUTURE_INIT_WORD1; |
| valid_csum_mask = NVM_FUTURE_INIT_WORD1_VALID_CSUM; |
| break; |
| } |
| |
| ret_val = e1000_read_nvm(hw, word, 1, &data); |
| if (ret_val) |
| return ret_val; |
| |
| if (!(data & valid_csum_mask)) { |
| data |= valid_csum_mask; |
| ret_val = e1000_write_nvm(hw, word, 1, &data); |
| if (ret_val) |
| return ret_val; |
| ret_val = e1000e_update_nvm_checksum(hw); |
| if (ret_val) |
| return ret_val; |
| } |
| |
| return e1000e_validate_nvm_checksum_generic(hw); |
| } |
| |
| /** |
| * e1000e_write_protect_nvm_ich8lan - Make the NVM read-only |
| * @hw: pointer to the HW structure |
| * |
| * To prevent malicious write/erase of the NVM, set it to be read-only |
| * so that the hardware ignores all write/erase cycles of the NVM via |
| * the flash control registers. The shadow-ram copy of the NVM will |
| * still be updated, however any updates to this copy will not stick |
| * across driver reloads. |
| **/ |
| void e1000e_write_protect_nvm_ich8lan(struct e1000_hw *hw) |
| { |
| struct e1000_nvm_info *nvm = &hw->nvm; |
| union ich8_flash_protected_range pr0; |
| union ich8_hws_flash_status hsfsts; |
| u32 gfpreg; |
| |
| nvm->ops.acquire(hw); |
| |
| gfpreg = er32flash(ICH_FLASH_GFPREG); |
| |
| /* Write-protect GbE Sector of NVM */ |
| pr0.regval = er32flash(ICH_FLASH_PR0); |
| pr0.range.base = gfpreg & FLASH_GFPREG_BASE_MASK; |
| pr0.range.limit = ((gfpreg >> 16) & FLASH_GFPREG_BASE_MASK); |
| pr0.range.wpe = true; |
| ew32flash(ICH_FLASH_PR0, pr0.regval); |
| |
| /* Lock down a subset of GbE Flash Control Registers, e.g. |
| * PR0 to prevent the write-protection from being lifted. |
| * Once FLOCKDN is set, the registers protected by it cannot |
| * be written until FLOCKDN is cleared by a hardware reset. |
| */ |
| hsfsts.regval = er16flash(ICH_FLASH_HSFSTS); |
| hsfsts.hsf_status.flockdn = true; |
| ew32flash(ICH_FLASH_HSFSTS, hsfsts.regval); |
| |
| nvm->ops.release(hw); |
| } |
| |
| /** |
| * e1000_write_flash_data_ich8lan - Writes bytes to the NVM |
| * @hw: pointer to the HW structure |
| * @offset: The offset (in bytes) of the byte/word to read. |
| * @size: Size of data to read, 1=byte 2=word |
| * @data: The byte(s) to write to the NVM. |
| * |
| * Writes one/two bytes to the NVM using the flash access registers. |
| **/ |
| static s32 e1000_write_flash_data_ich8lan(struct e1000_hw *hw, u32 offset, |
| u8 size, u16 data) |
| { |
| union ich8_hws_flash_status hsfsts; |
| union ich8_hws_flash_ctrl hsflctl; |
| u32 flash_linear_addr; |
| u32 flash_data = 0; |
| s32 ret_val; |
| u8 count = 0; |
| |
| if (hw->mac.type == e1000_pch_spt) { |
| if (size != 4 || offset > ICH_FLASH_LINEAR_ADDR_MASK) |
| return -E1000_ERR_NVM; |
| } else { |
| if (size < 1 || size > 2 || offset > ICH_FLASH_LINEAR_ADDR_MASK) |
| return -E1000_ERR_NVM; |
| } |
| |
| flash_linear_addr = ((ICH_FLASH_LINEAR_ADDR_MASK & offset) + |
| hw->nvm.flash_base_addr); |
| |
| do { |
| udelay(1); |
| /* Steps */ |
| ret_val = e1000_flash_cycle_init_ich8lan(hw); |
| if (ret_val) |
| break; |
| /* In SPT, This register is in Lan memory space, not |
| * flash. Therefore, only 32 bit access is supported |
| */ |
| if (hw->mac.type == e1000_pch_spt) |
| hsflctl.regval = er32flash(ICH_FLASH_HSFSTS) >> 16; |
| else |
| hsflctl.regval = er16flash(ICH_FLASH_HSFCTL); |
| |
| /* 0b/1b corresponds to 1 or 2 byte size, respectively. */ |
| hsflctl.hsf_ctrl.fldbcount = size - 1; |
| hsflctl.hsf_ctrl.flcycle = ICH_CYCLE_WRITE; |
| /* In SPT, This register is in Lan memory space, |
| * not flash. Therefore, only 32 bit access is |
| * supported |
| */ |
| if (hw->mac.type == e1000_pch_spt) |
| ew32flash(ICH_FLASH_HSFSTS, hsflctl.regval << 16); |
| else |
| ew16flash(ICH_FLASH_HSFCTL, hsflctl.regval); |
| |
| ew32flash(ICH_FLASH_FADDR, flash_linear_addr); |
| |
| if (size == 1) |
| flash_data = (u32)data & 0x00FF; |
| else |
| flash_data = (u32)data; |
| |
| ew32flash(ICH_FLASH_FDATA0, flash_data); |
| |
| /* check if FCERR is set to 1 , if set to 1, clear it |
| * and try the whole sequence a few more times else done |
| */ |
| ret_val = |
| e1000_flash_cycle_ich8lan(hw, |
| ICH_FLASH_WRITE_COMMAND_TIMEOUT); |
| if (!ret_val) |
| break; |
| |
| /* If we're here, then things are most likely |
| * completely hosed, but if the error condition |
| * is detected, it won't hurt to give it another |
| * try...ICH_FLASH_CYCLE_REPEAT_COUNT times. |
| */ |
| hsfsts.regval = er16flash(ICH_FLASH_HSFSTS); |
| if (hsfsts.hsf_status.flcerr) |
| /* Repeat for some time before giving up. */ |
| continue; |
| if (!hsfsts.hsf_status.flcdone) { |
| e_dbg("Timeout error - flash cycle did not complete.\n"); |
| break; |
| } |
| } while (count++ < ICH_FLASH_CYCLE_REPEAT_COUNT); |
| |
| return ret_val; |
| } |
| |
| /** |
| * e1000_write_flash_data32_ich8lan - Writes 4 bytes to the NVM |
| * @hw: pointer to the HW structure |
| * @offset: The offset (in bytes) of the dwords to read. |
| * @data: The 4 bytes to write to the NVM. |
| * |
| * Writes one/two/four bytes to the NVM using the flash access registers. |
| **/ |
| static s32 e1000_write_flash_data32_ich8lan(struct e1000_hw *hw, u32 offset, |
| u32 data) |
| { |
| union ich8_hws_flash_status hsfsts; |
| union ich8_hws_flash_ctrl hsflctl; |
| u32 flash_linear_addr; |
| s32 ret_val; |
| u8 count = 0; |
| |
| if (hw->mac.type == e1000_pch_spt) { |
| if (offset > ICH_FLASH_LINEAR_ADDR_MASK) |
| return -E1000_ERR_NVM; |
| } |
| flash_linear_addr = ((ICH_FLASH_LINEAR_ADDR_MASK & offset) + |
| hw->nvm.flash_base_addr); |
| do { |
| udelay(1); |
| /* Steps */ |
| ret_val = e1000_flash_cycle_init_ich8lan(hw); |
| if (ret_val) |
| break; |
| |
| /* In SPT, This register is in Lan memory space, not |
| * flash. Therefore, only 32 bit access is supported |
| */ |
| if (hw->mac.type == e1000_pch_spt) |
| hsflctl.regval = er32flash(ICH_FLASH_HSFSTS) |
| >> 16; |
| else |
| hsflctl.regval = er16flash(ICH_FLASH_HSFCTL); |
| |
| hsflctl.hsf_ctrl.fldbcount = sizeof(u32) - 1; |
| hsflctl.hsf_ctrl.flcycle = ICH_CYCLE_WRITE; |
| |
| /* In SPT, This register is in Lan memory space, |
| * not flash. Therefore, only 32 bit access is |
| * supported |
| */ |
| if (hw->mac.type == e1000_pch_spt) |
| ew32flash(ICH_FLASH_HSFSTS, hsflctl.regval << 16); |
| else |
| ew16flash(ICH_FLASH_HSFCTL, hsflctl.regval); |
| |
| ew32flash(ICH_FLASH_FADDR, flash_linear_addr); |
| |
| ew32flash(ICH_FLASH_FDATA0, data); |
| |
| /* check if FCERR is set to 1 , if set to 1, clear it |
| * and try the whole sequence a few more times else done |
| */ |
| ret_val = |
| e1000_flash_cycle_ich8lan(hw, |
| ICH_FLASH_WRITE_COMMAND_TIMEOUT); |
| |
| if (!ret_val) |
| break; |
| |
| /* If we're here, then things are most likely |
| * completely hosed, but if the error condition |
| * is detected, it won't hurt to give it another |
| * try...ICH_FLASH_CYCLE_REPEAT_COUNT times. |
| */ |
| hsfsts.regval = er16flash(ICH_FLASH_HSFSTS); |
| |
| if (hsfsts.hsf_status.flcerr) |
| /* Repeat for some time before giving up. */ |
| continue; |
| if (!hsfsts.hsf_status.flcdone) { |
| e_dbg("Timeout error - flash cycle did not complete.\n"); |
| break; |
| } |
| } while (count++ < ICH_FLASH_CYCLE_REPEAT_COUNT); |
| |
| return ret_val; |
| } |
| |
| /** |
| * e1000_write_flash_byte_ich8lan - Write a single byte to NVM |
| * @hw: pointer to the HW structure |
| * @offset: The index of the byte to read. |
| * @data: The byte to write to the NVM. |
| * |
| * Writes a single byte to the NVM using the flash access registers. |
| **/ |
| static s32 e1000_write_flash_byte_ich8lan(struct e1000_hw *hw, u32 offset, |
| u8 data) |
| { |
| u16 word = (u16)data; |
| |
| return e1000_write_flash_data_ich8lan(hw, offset, 1, word); |
| } |
| |
| /** |
| * e1000_retry_write_flash_dword_ich8lan - Writes a dword to NVM |
| * @hw: pointer to the HW structure |
| * @offset: The offset of the word to write. |
| * @dword: The dword to write to the NVM. |
| * |
| * Writes a single dword to the NVM using the flash access registers. |
| * Goes through a retry algorithm before giving up. |
| **/ |
| static s32 e1000_retry_write_flash_dword_ich8lan(struct e1000_hw *hw, |
| u32 offset, u32 dword) |
| { |
| s32 ret_val; |
| u16 program_retries; |
| |
| /* Must convert word offset into bytes. */ |
| offset <<= 1; |
| ret_val = e1000_write_flash_data32_ich8lan(hw, offset, dword); |
| |
| if (!ret_val) |
| return ret_val; |
| for (program_retries = 0; program_retries < 100; program_retries++) { |
| e_dbg("Retrying Byte %8.8X at offset %u\n", dword, offset); |
| usleep_range(100, 200); |
| ret_val = e1000_write_flash_data32_ich8lan(hw, offset, dword); |
| if (!ret_val) |
| break; |
| } |
| if (program_retries == 100) |
| return -E1000_ERR_NVM; |
| |
| return 0; |
| } |
| |
| /** |
| * e1000_retry_write_flash_byte_ich8lan - Writes a single byte to NVM |
| * @hw: pointer to the HW structure |
| * @offset: The offset of the byte to write. |
| * @byte: The byte to write to the NVM. |
| * |
| * Writes a single byte to the NVM using the flash access registers. |
| * Goes through a retry algorithm before giving up. |
| **/ |
| static s32 e1000_retry_write_flash_byte_ich8lan(struct e1000_hw *hw, |
| u32 offset, u8 byte) |
| { |
| s32 ret_val; |
| u16 program_retries; |
| |
| ret_val = e1000_write_flash_byte_ich8lan(hw, offset, byte); |
| if (!ret_val) |
| return ret_val; |
| |
| for (program_retries = 0; program_retries < 100; program_retries++) { |
| e_dbg("Retrying Byte %2.2X at offset %u\n", byte, offset); |
| usleep_range(100, 200); |
| ret_val = e1000_write_flash_byte_ich8lan(hw, offset, byte); |
| if (!ret_val) |
| break; |
| } |
| if (program_retries == 100) |
| return -E1000_ERR_NVM; |
| |
| return 0; |
| } |
| |
| /** |
| * e1000_erase_flash_bank_ich8lan - Erase a bank (4k) from NVM |
| * @hw: pointer to the HW structure |
| * @bank: 0 for first bank, 1 for second bank, etc. |
| * |
| * Erases the bank specified. Each bank is a 4k block. Banks are 0 based. |
| * bank N is 4096 * N + flash_reg_addr. |
| **/ |
| static s32 e1000_erase_flash_bank_ich8lan(struct e1000_hw *hw, u32 bank) |
| { |
| struct e1000_nvm_info *nvm = &hw->nvm; |
| union ich8_hws_flash_status hsfsts; |
| union ich8_hws_flash_ctrl hsflctl; |
| u32 flash_linear_addr; |
| /* bank size is in 16bit words - adjust to bytes */ |
| u32 flash_bank_size = nvm->flash_bank_size * 2; |
| s32 ret_val; |
| s32 count = 0; |
| s32 j, iteration, sector_size; |
| |
| hsfsts.regval = er16flash(ICH_FLASH_HSFSTS); |
| |
| /* Determine HW Sector size: Read BERASE bits of hw flash status |
| * register |
| * 00: The Hw sector is 256 bytes, hence we need to erase 16 |
| * consecutive sectors. The start index for the nth Hw sector |
| * can be calculated as = bank * 4096 + n * 256 |
| * 01: The Hw sector is 4K bytes, hence we need to erase 1 sector. |
| * The start index for the nth Hw sector can be calculated |
| * as = bank * 4096 |
| * 10: The Hw sector is 8K bytes, nth sector = bank * 8192 |
| * (ich9 only, otherwise error condition) |
| * 11: The Hw sector is 64K bytes, nth sector = bank * 65536 |
| */ |
| switch (hsfsts.hsf_status.berasesz) { |
| case 0: |
| /* Hw sector size 256 */ |
| sector_size = ICH_FLASH_SEG_SIZE_256; |
| iteration = flash_bank_size / ICH_FLASH_SEG_SIZE_256; |
| break; |
| case 1: |
| sector_size = ICH_FLASH_SEG_SIZE_4K; |
| iteration = 1; |
| break; |
| case 2: |
| sector_size = ICH_FLASH_SEG_SIZE_8K; |
| iteration = 1; |
| break; |
| case 3: |
| sector_size = ICH_FLASH_SEG_SIZE_64K; |
| iteration = 1; |
| break; |
| default: |
| return -E1000_ERR_NVM; |
| } |
| |
| /* Start with the base address, then add the sector offset. */ |
| flash_linear_addr = hw->nvm.flash_base_addr; |
| flash_linear_addr += (bank) ? flash_bank_size : 0; |
| |
| for (j = 0; j < iteration; j++) { |
| do { |
| u32 timeout = ICH_FLASH_ERASE_COMMAND_TIMEOUT; |
| |
| /* Steps */ |
| ret_val = e1000_flash_cycle_init_ich8lan(hw); |
| if (ret_val) |
| return ret_val; |
| |
| /* Write a value 11 (block Erase) in Flash |
| * Cycle field in hw flash control |
| */ |
| if (hw->mac.type == e1000_pch_spt) |
| hsflctl.regval = |
| er32flash(ICH_FLASH_HSFSTS) >> 16; |
| else |
| hsflctl.regval = er16flash(ICH_FLASH_HSFCTL); |
| |
| hsflctl.hsf_ctrl.flcycle = ICH_CYCLE_ERASE; |
| if (hw->mac.type == e1000_pch_spt) |
| ew32flash(ICH_FLASH_HSFSTS, |
| hsflctl.regval << 16); |
| else |
| ew16flash(ICH_FLASH_HSFCTL, hsflctl.regval); |
| |
| /* Write the last 24 bits of an index within the |
| * block into Flash Linear address field in Flash |
| * Address. |
| */ |
| flash_linear_addr += (j * sector_size); |
| ew32flash(ICH_FLASH_FADDR, flash_linear_addr); |
| |
| ret_val = e1000_flash_cycle_ich8lan(hw, timeout); |
| if (!ret_val) |
| break; |
| |
| /* Check if FCERR is set to 1. If 1, |
| * clear it and try the whole sequence |
| * a few more times else Done |
| */ |
| hsfsts.regval = er16flash(ICH_FLASH_HSFSTS); |
| if (hsfsts.hsf_status.flcerr) |
| /* repeat for some time before giving up */ |
| continue; |
| else if (!hsfsts.hsf_status.flcdone) |
| return ret_val; |
| } while (++count < ICH_FLASH_CYCLE_REPEAT_COUNT); |
| } |
| |
| return 0; |
| } |
| |
| /** |
| * e1000_valid_led_default_ich8lan - Set the default LED settings |
| * @hw: pointer to the HW structure |
| * @data: Pointer to the LED settings |
| * |
| * Reads the LED default settings from the NVM to data. If the NVM LED |
| * settings is all 0's or F's, set the LED default to a valid LED default |
| * setting. |
| **/ |
| static s32 e1000_valid_led_default_ich8lan(struct e1000_hw *hw, u16 *data) |
| { |
| s32 ret_val; |
| |
| ret_val = e1000_read_nvm(hw, NVM_ID_LED_SETTINGS, 1, data); |
| if (ret_val) { |
| e_dbg("NVM Read Error\n"); |
| return ret_val; |
| } |
| |
| if (*data == ID_LED_RESERVED_0000 || *data == ID_LED_RESERVED_FFFF) |
| *data = ID_LED_DEFAULT_ICH8LAN; |
| |
| return 0; |
| } |
| |
| /** |
| * e1000_id_led_init_pchlan - store LED configurations |
| * @hw: pointer to the HW structure |
| * |
| * PCH does not control LEDs via the LEDCTL register, rather it uses |
| * the PHY LED configuration register. |
| * |
| * PCH also does not have an "always on" or "always off" mode which |
| * complicates the ID feature. Instead of using the "on" mode to indicate |
| * in ledctl_mode2 the LEDs to use for ID (see e1000e_id_led_init_generic()), |
| * use "link_up" mode. The LEDs will still ID on request if there is no |
| * link based on logic in e1000_led_[on|off]_pchlan(). |
| **/ |
| static s32 e1000_id_led_init_pchlan(struct e1000_hw *hw) |
| { |
| struct e1000_mac_info *mac = &hw->mac; |
| s32 ret_val; |
| const u32 ledctl_on = E1000_LEDCTL_MODE_LINK_UP; |
| const u32 ledctl_off = E1000_LEDCTL_MODE_LINK_UP | E1000_PHY_LED0_IVRT; |
| u16 data, i, temp, shift; |
| |
| /* Get default ID LED modes */ |
| ret_val = hw->nvm.ops.valid_led_default(hw, &data); |
| if (ret_val) |
| return ret_val; |
| |
| mac->ledctl_default = er32(LEDCTL); |
| mac->ledctl_mode1 = mac->ledctl_default; |
| mac->ledctl_mode2 = mac->ledctl_default; |
| |
| for (i = 0; i < 4; i++) { |
| temp = (data >> (i << 2)) & E1000_LEDCTL_LED0_MODE_MASK; |
| shift = (i * 5); |
| switch (temp) { |
| case ID_LED_ON1_DEF2: |
| case ID_LED_ON1_ON2: |
| case ID_LED_ON1_OFF2: |
| mac->ledctl_mode1 &= ~(E1000_PHY_LED0_MASK << shift); |
| mac->ledctl_mode1 |= (ledctl_on << shift); |
| break; |
| case ID_LED_OFF1_DEF2: |
| case ID_LED_OFF1_ON2: |
| case ID_LED_OFF1_OFF2: |
| mac->ledctl_mode1 &= ~(E1000_PHY_LED0_MASK << shift); |
| mac->ledctl_mode1 |= (ledctl_off << shift); |
| break; |
| default: |
| /* Do nothing */ |
| break; |
| } |
| switch (temp) { |
| case ID_LED_DEF1_ON2: |
| case ID_LED_ON1_ON2: |
| case ID_LED_OFF1_ON2: |
| mac->ledctl_mode2 &= ~(E1000_PHY_LED0_MASK << shift); |
| mac->ledctl_mode2 |= (ledctl_on << shift); |
| break; |
| case ID_LED_DEF1_OFF2: |
| case ID_LED_ON1_OFF2: |
| case ID_LED_OFF1_OFF2: |
| mac->ledctl_mode2 &= ~(E1000_PHY_LED0_MASK << shift); |
| mac->ledctl_mode2 |= (ledctl_off << shift); |
| break; |
| default: |
| /* Do nothing */ |
| break; |
| } |
| } |
| |
| return 0; |
| } |
| |
| /** |
| * e1000_get_bus_info_ich8lan - Get/Set the bus type and width |
| * @hw: pointer to the HW structure |
| * |
| * ICH8 use the PCI Express bus, but does not contain a PCI Express Capability |
| * register, so the the bus width is hard coded. |
| **/ |
| static s32 e1000_get_bus_info_ich8lan(struct e1000_hw *hw) |
| { |
| struct e1000_bus_info *bus = &hw->bus; |
| s32 ret_val; |
| |
| ret_val = e1000e_get_bus_info_pcie(hw); |
| |
| /* ICH devices are "PCI Express"-ish. They have |
| * a configuration space, but do not contain |
| * PCI Express Capability registers, so bus width |
| * must be hardcoded. |
| */ |
| if (bus->width == e1000_bus_width_unknown) |
| bus->width = e1000_bus_width_pcie_x1; |
| |
| return ret_val; |
| } |
| |
| /** |
| * e1000_reset_hw_ich8lan - Reset the hardware |
| * @hw: pointer to the HW structure |
| * |
| * Does a full reset of the hardware which includes a reset of the PHY and |
| * MAC. |
| **/ |
| static s32 e1000_reset_hw_ich8lan(struct e1000_hw *hw) |
| { |
| struct e1000_dev_spec_ich8lan *dev_spec = &hw->dev_spec.ich8lan; |
| u16 kum_cfg; |
| u32 ctrl, reg; |
| s32 ret_val; |
| |
| /* Prevent the PCI-E bus from sticking if there is no TLP connection |
| * on the last TLP read/write transaction when MAC is reset. |
| */ |
| ret_val = e1000e_disable_pcie_master(hw); |
| if (ret_val) |
| e_dbg("PCI-E Master disable polling has failed.\n"); |
| |
| e_dbg("Masking off all interrupts\n"); |
| ew32(IMC, 0xffffffff); |
| |
| /* Disable the Transmit and Receive units. Then delay to allow |
| * any pending transactions to complete before we hit the MAC |
| * with the global reset. |
| */ |
| ew32(RCTL, 0); |
| ew32(TCTL, E1000_TCTL_PSP); |
| e1e_flush(); |
| |
| usleep_range(10000, 20000); |
| |
| /* Workaround for ICH8 bit corruption issue in FIFO memory */ |
| if (hw->mac.type == e1000_ich8lan) { |
| /* Set Tx and Rx buffer allocation to 8k apiece. */ |
| ew32(PBA, E1000_PBA_8K); |
| /* Set Packet Buffer Size to 16k. */ |
| ew32(PBS, E1000_PBS_16K); |
| } |
| |
| if (hw->mac.type == e1000_pchlan) { |
| /* Save the NVM K1 bit setting */ |
| ret_val = e1000_read_nvm(hw, E1000_NVM_K1_CONFIG, 1, &kum_cfg); |
| if (ret_val) |
| return ret_val; |
| |
| if (kum_cfg & E1000_NVM_K1_ENABLE) |
| dev_spec->nvm_k1_enabled = true; |
| else |
| dev_spec->nvm_k1_enabled = false; |
| } |
| |
| ctrl = er32(CTRL); |
| |
| if (!hw->phy.ops.check_reset_block(hw)) { |
| /* Full-chip reset requires MAC and PHY reset at the same |
| * time to make sure the interface between MAC and the |
| * external PHY is reset. |
| */ |
| ctrl |= E1000_CTRL_PHY_RST; |
| |
| /* Gate automatic PHY configuration by hardware on |
| * non-managed 82579 |
| */ |
| if ((hw->mac.type == e1000_pch2lan) && |
| !(er32(FWSM) & E1000_ICH_FWSM_FW_VALID)) |
| e1000_gate_hw_phy_config_ich8lan(hw, true); |
| } |
| ret_val = e1000_acquire_swflag_ich8lan(hw); |
| e_dbg("Issuing a global reset to ich8lan\n"); |
| ew32(CTRL, (ctrl | E1000_CTRL_RST)); |
| /* cannot issue a flush here because it hangs the hardware */ |
| msleep(20); |
| |
| /* Set Phy Config Counter to 50msec */ |
| if (hw->mac.type == e1000_pch2lan) { |
| reg = er32(FEXTNVM3); |
| reg &= ~E1000_FEXTNVM3_PHY_CFG_COUNTER_MASK; |
| reg |= E1000_FEXTNVM3_PHY_CFG_COUNTER_50MSEC; |
| ew32(FEXTNVM3, reg); |
| } |
| |
| if (!ret_val) |
| clear_bit(__E1000_ACCESS_SHARED_RESOURCE, &hw->adapter->state); |
| |
| if (ctrl & E1000_CTRL_PHY_RST) { |
| ret_val = hw->phy.ops.get_cfg_done(hw); |
| if (ret_val) |
| return ret_val; |
| |
| ret_val = e1000_post_phy_reset_ich8lan(hw); |
| if (ret_val) |
| return ret_val; |
| } |
| |
| /* For PCH, this write will make sure that any noise |
| * will be detected as a CRC error and be dropped rather than show up |
| * as a bad packet to the DMA engine. |
| */ |
| if (hw->mac.type == e1000_pchlan) |
| ew32(CRC_OFFSET, 0x65656565); |
| |
| ew32(IMC, 0xffffffff); |
| er32(ICR); |
| |
| reg = er32(KABGTXD); |
| reg |= E1000_KABGTXD_BGSQLBIAS; |
| ew32(KABGTXD, reg); |
| |
| return 0; |
| } |
| |
| /** |
| * e1000_init_hw_ich8lan - Initialize the hardware |
| * @hw: pointer to the HW structure |
| * |
| * Prepares the hardware for transmit and receive by doing the following: |
| * - initialize hardware bits |
| * - initialize LED identification |
| * - setup receive address registers |
| * - setup flow control |
| * - setup transmit descriptors |
| * - clear statistics |
| **/ |
| static s32 e1000_init_hw_ich8lan(struct e1000_hw *hw) |
| { |
| struct e1000_mac_info *mac = &hw->mac; |
| u32 ctrl_ext, txdctl, snoop; |
| s32 ret_val; |
| u16 i; |
| |
| e1000_initialize_hw_bits_ich8lan(hw); |
| |
| /* Initialize identification LED */ |
| ret_val = mac->ops.id_led_init(hw); |
| /* An error is not fatal and we should not stop init due to this */ |
| if (ret_val) |
| e_dbg("Error initializing identification LED\n"); |
| |
| /* Setup the receive address. */ |
| e1000e_init_rx_addrs(hw, mac->rar_entry_count); |
| |
| /* Zero out the Multicast HASH table */ |
| e_dbg("Zeroing the MTA\n"); |
| for (i = 0; i < mac->mta_reg_count; i++) |
| E1000_WRITE_REG_ARRAY(hw, E1000_MTA, i, 0); |
| |
| /* The 82578 Rx buffer will stall if wakeup is enabled in host and |
| * the ME. Disable wakeup by clearing the host wakeup bit. |
| * Reset the phy after disabling host wakeup to reset the Rx buffer. |
| */ |
| if (hw->phy.type == e1000_phy_82578) { |
| e1e_rphy(hw, BM_PORT_GEN_CFG, &i); |
| i &= ~BM_WUC_HOST_WU_BIT; |
| e1e_wphy(hw, BM_PORT_GEN_CFG, i); |
| ret_val = e1000_phy_hw_reset_ich8lan(hw); |
| if (ret_val) |
| return ret_val; |
| } |
| |
| /* Setup link and flow control */ |
| ret_val = mac->ops.setup_link(hw); |
| |
| /* Set the transmit descriptor write-back policy for both queues */ |
| txdctl = er32(TXDCTL(0)); |
| txdctl = ((txdctl & ~E1000_TXDCTL_WTHRESH) | |
| E1000_TXDCTL_FULL_TX_DESC_WB); |
| txdctl = ((txdctl & ~E1000_TXDCTL_PTHRESH) | |
| E1000_TXDCTL_MAX_TX_DESC_PREFETCH); |
| ew32(TXDCTL(0), txdctl); |
| txdctl = er32(TXDCTL(1)); |
| txdctl = ((txdctl & ~E1000_TXDCTL_WTHRESH) | |
| E1000_TXDCTL_FULL_TX_DESC_WB); |
| txdctl = ((txdctl & ~E1000_TXDCTL_PTHRESH) | |
| E1000_TXDCTL_MAX_TX_DESC_PREFETCH); |
| ew32(TXDCTL(1), txdctl); |
| |
| /* ICH8 has opposite polarity of no_snoop bits. |
| * By default, we should use snoop behavior. |
| */ |
| if (mac->type == e1000_ich8lan) |
| snoop = PCIE_ICH8_SNOOP_ALL; |
| else |
| snoop = (u32)~(PCIE_NO_SNOOP_ALL); |
| e1000e_set_pcie_no_snoop(hw, snoop); |
| |
| ctrl_ext = er32(CTRL_EXT); |
| ctrl_ext |= E1000_CTRL_EXT_RO_DIS; |
| ew32(CTRL_EXT, ctrl_ext); |
| |
| /* Clear all of the statistics registers (clear on read). It is |
| * important that we do this after we have tried to establish link |
| * because the symbol error count will increment wildly if there |
| * is no link. |
| */ |
| e1000_clear_hw_cntrs_ich8lan(hw); |
| |
| return ret_val; |
| } |
| |
| /** |
| * e1000_initialize_hw_bits_ich8lan - Initialize required hardware bits |
| * @hw: pointer to the HW structure |
| * |
| * Sets/Clears required hardware bits necessary for correctly setting up the |
| * hardware for transmit and receive. |
| **/ |
| static void e1000_initialize_hw_bits_ich8lan(struct e1000_hw *hw) |
| { |
| u32 reg; |
| |
| /* Extended Device Control */ |
| reg = er32(CTRL_EXT); |
| reg |= (1 << 22); |
| /* Enable PHY low-power state when MAC is at D3 w/o WoL */ |
| if (hw->mac.type >= e1000_pchlan) |
| reg |= E1000_CTRL_EXT_PHYPDEN; |
| ew32(CTRL_EXT, reg); |
| |
| /* Transmit Descriptor Control 0 */ |
| reg = er32(TXDCTL(0)); |
| reg |= (1 << 22); |
| ew32(TXDCTL(0), reg); |
| |
| /* Transmit Descriptor Control 1 */ |
| reg = er32(TXDCTL(1)); |
| reg |= (1 << 22); |
| ew32(TXDCTL(1), reg); |
| |
| /* Transmit Arbitration Control 0 */ |
| reg = er32(TARC(0)); |
| if (hw->mac.type == e1000_ich8lan) |
| reg |= (1 << 28) | (1 << 29); |
| reg |= (1 << 23) | (1 << 24) | (1 << 26) | (1 << 27); |
| ew32(TARC(0), reg); |
| |
| /* Transmit Arbitration Control 1 */ |
| reg = er32(TARC(1)); |
| if (er32(TCTL) & E1000_TCTL_MULR) |
| reg &= ~(1 << 28); |
| else |
| reg |= (1 << 28); |
| reg |= (1 << 24) | (1 << 26) | (1 << 30); |
| ew32(TARC(1), reg); |
| |
| /* Device Status */ |
| if (hw->mac.type == e1000_ich8lan) { |
| reg = er32(STATUS); |
| reg &= ~(1 << 31); |
| ew32(STATUS, reg); |
| } |
| |
| /* work-around descriptor data corruption issue during nfs v2 udp |
| * traffic, just disable the nfs filtering capability |
| */ |
| reg = er32(RFCTL); |
| reg |= (E1000_RFCTL_NFSW_DIS | E1000_RFCTL_NFSR_DIS); |
| |
| /* Disable IPv6 extension header parsing because some malformed |
| * IPv6 headers can hang the Rx. |
| */ |
| if (hw->mac.type == e1000_ich8lan) |
| reg |= (E1000_RFCTL_IPV6_EX_DIS | E1000_RFCTL_NEW_IPV6_EXT_DIS); |
| ew32(RFCTL, reg); |
| |
| /* Enable ECC on Lynxpoint */ |
| if ((hw->mac.type == e1000_pch_lpt) || |
| (hw->mac.type == e1000_pch_spt)) { |
| reg = er32(PBECCSTS); |
| reg |= E1000_PBECCSTS_ECC_ENABLE; |
| ew32(PBECCSTS, reg); |
| |
| reg = er32(CTRL); |
| reg |= E1000_CTRL_MEHE; |
| ew32(CTRL, reg); |
| } |
| } |
| |
| /** |
| * e1000_setup_link_ich8lan - Setup flow control and link settings |
| * @hw: pointer to the HW structure |
| * |
| * Determines which flow control settings to use, then configures flow |
| * control. Calls the appropriate media-specific link configuration |
| * function. Assuming the adapter has a valid link partner, a valid link |
| * should be established. Assumes the hardware has previously been reset |
| * and the transmitter and receiver are not enabled. |
| **/ |
| static s32 e1000_setup_link_ich8lan(struct e1000_hw *hw) |
| { |
| s32 ret_val; |
| |
| if (hw->phy.ops.check_reset_block(hw)) |
| return 0; |
| |
| /* ICH parts do not have a word in the NVM to determine |
| * the default flow control setting, so we explicitly |
| * set it to full. |
| */ |
| if (hw->fc.requested_mode == e1000_fc_default) { |
| /* Workaround h/w hang when Tx flow control enabled */ |
| if (hw->mac.type == e1000_pchlan) |
| hw->fc.requested_mode = e1000_fc_rx_pause; |
| else |
| hw->fc.requested_mode = e1000_fc_full; |
| } |
| |
| /* Save off the requested flow control mode for use later. Depending |
| * on the link partner's capabilities, we may or may not use this mode. |
| */ |
| hw->fc.current_mode = hw->fc.requested_mode; |
| |
| e_dbg("After fix-ups FlowControl is now = %x\n", hw->fc.current_mode); |
| |
| /* Continue to configure the copper link. */ |
| ret_val = hw->mac.ops.setup_physical_interface(hw); |
| if (ret_val) |
| return ret_val; |
| |
| ew32(FCTTV, hw->fc.pause_time); |
| if ((hw->phy.type == e1000_phy_82578) || |
| (hw->phy.type == e1000_phy_82579) || |
| (hw->phy.type == e1000_phy_i217) || |
| (hw->phy.type == e1000_phy_82577)) { |
| ew32(FCRTV_PCH, hw->fc.refresh_time); |
| |
| ret_val = e1e_wphy(hw, PHY_REG(BM_PORT_CTRL_PAGE, 27), |
| hw->fc.pause_time); |
| if (ret_val) |
| return ret_val; |
| } |
| |
| return e1000e_set_fc_watermarks(hw); |
| } |
| |
| /** |
| * e1000_setup_copper_link_ich8lan - Configure MAC/PHY interface |
| * @hw: pointer to the HW structure |
| * |
| * Configures the kumeran interface to the PHY to wait the appropriate time |
| * when polling the PHY, then call the generic setup_copper_link to finish |
| * configuring the copper link. |
| **/ |
| static s32 e1000_setup_copper_link_ich8lan(struct e1000_hw *hw) |
| { |
| u32 ctrl; |
| s32 ret_val; |
| u16 reg_data; |
| |
| ctrl = er32(CTRL); |
| ctrl |= E1000_CTRL_SLU; |
| ctrl &= ~(E1000_CTRL_FRCSPD | E1000_CTRL_FRCDPX); |
| ew32(CTRL, ctrl); |
| |
| /* Set the mac to wait the maximum time between each iteration |
| * and increase the max iterations when polling the phy; |
| * this fixes erroneous timeouts at 10Mbps. |
| */ |
| ret_val = e1000e_write_kmrn_reg(hw, E1000_KMRNCTRLSTA_TIMEOUTS, 0xFFFF); |
| if (ret_val) |
| return ret_val; |
| ret_val = e1000e_read_kmrn_reg(hw, E1000_KMRNCTRLSTA_INBAND_PARAM, |
| ®_data); |
| if (ret_val) |
| return ret_val; |
| reg_data |= 0x3F; |
| ret_val = e1000e_write_kmrn_reg(hw, E1000_KMRNCTRLSTA_INBAND_PARAM, |
| reg_data); |
| if (ret_val) |
| return ret_val; |
| |
| switch (hw->phy.type) { |
| case e1000_phy_igp_3: |
| ret_val = e1000e_copper_link_setup_igp(hw); |
| if (ret_val) |
| return ret_val; |
| break; |
| case e1000_phy_bm: |
| case e1000_phy_82578: |
| ret_val = e1000e_copper_link_setup_m88(hw); |
| if (ret_val) |
| return ret_val; |
| break; |
| case e1000_phy_82577: |
| case e1000_phy_82579: |
| ret_val = e1000_copper_link_setup_82577(hw); |
| if (ret_val) |
| return ret_val; |
| break; |
| case e1000_phy_ife: |
| ret_val = e1e_rphy(hw, IFE_PHY_MDIX_CONTROL, ®_data); |
| if (ret_val) |
| return ret_val; |
| |
| reg_data &= ~IFE_PMC_AUTO_MDIX; |
| |
| switch (hw->phy.mdix) { |
| case 1: |
| reg_data &= ~IFE_PMC_FORCE_MDIX; |
| break; |
| case 2: |
| reg_data |= IFE_PMC_FORCE_MDIX; |
| break; |
| case 0: |
| default: |
| reg_data |= IFE_PMC_AUTO_MDIX; |
| break; |
| } |
| ret_val = e1e_wphy(hw, IFE_PHY_MDIX_CONTROL, reg_data); |
| if (ret_val) |
| return ret_val; |
| break; |
| default: |
| break; |
| } |
| |
| return e1000e_setup_copper_link(hw); |
| } |
| |
| /** |
| * e1000_setup_copper_link_pch_lpt - Configure MAC/PHY interface |
| * @hw: pointer to the HW structure |
| * |
| * Calls the PHY specific link setup function and then calls the |
| * generic setup_copper_link to finish configuring the link for |
| * Lynxpoint PCH devices |
| **/ |
| static s32 e1000_setup_copper_link_pch_lpt(struct e1000_hw *hw) |
| { |
| u32 ctrl; |
| s32 ret_val; |
| |
| ctrl = er32(CTRL); |
| ctrl |= E1000_CTRL_SLU; |
| ctrl &= ~(E1000_CTRL_FRCSPD | E1000_CTRL_FRCDPX); |
| ew32(CTRL, ctrl); |
| |
| ret_val = e1000_copper_link_setup_82577(hw); |
| if (ret_val) |
| return ret_val; |
| |
| return e1000e_setup_copper_link(hw); |
| } |
| |
| /** |
| * e1000_get_link_up_info_ich8lan - Get current link speed and duplex |
| * @hw: pointer to the HW structure |
| * @speed: pointer to store current link speed |
| * @duplex: pointer to store the current link duplex |
| * |
| * Calls the generic get_speed_and_duplex to retrieve the current link |
| * information and then calls the Kumeran lock loss workaround for links at |
| * gigabit speeds. |
| **/ |
| static s32 e1000_get_link_up_info_ich8lan(struct e1000_hw *hw, u16 *speed, |
| u16 *duplex) |
| { |
| s32 ret_val; |
| |
| ret_val = e1000e_get_speed_and_duplex_copper(hw, speed, duplex); |
| if (ret_val) |
| return ret_val; |
| |
| if ((hw->mac.type == e1000_ich8lan) && |
| (hw->phy.type == e1000_phy_igp_3) && (*speed == SPEED_1000)) { |
| ret_val = e1000_kmrn_lock_loss_workaround_ich8lan(hw); |
| } |
| |
| return ret_val; |
| } |
| |
| /** |
| * e1000_kmrn_lock_loss_workaround_ich8lan - Kumeran workaround |
| * @hw: pointer to the HW structure |
| * |
| * Work-around for 82566 Kumeran PCS lock loss: |
| * On link status change (i.e. PCI reset, speed change) and link is up and |
| * speed is gigabit- |
| * 0) if workaround is optionally disabled do nothing |
| * 1) wait 1ms for Kumeran link to come up |
| * 2) check Kumeran Diagnostic register PCS lock loss bit |
| * 3) if not set the link is locked (all is good), otherwise... |
| * 4) reset the PHY |
| * 5) repeat up to 10 times |
| * Note: this is only called for IGP3 copper when speed is 1gb. |
| **/ |
| static s32 e1000_kmrn_lock_loss_workaround_ich8lan(struct e1000_hw *hw) |
| { |
| struct e1000_dev_spec_ich8lan *dev_spec = &hw->dev_spec.ich8lan; |
| u32 phy_ctrl; |
| s32 ret_val; |
| u16 i, data; |
| bool link; |
| |
| if (!dev_spec->kmrn_lock_loss_workaround_enabled) |
| return 0; |
| |
| /* Make sure link is up before proceeding. If not just return. |
| * Attempting this while link is negotiating fouled up link |
| * stability |
| */ |
| ret_val = e1000e_phy_has_link_generic(hw, 1, 0, &link); |
| if (!link) |
| return 0; |
| |
| for (i = 0; i < 10; i++) { |
| /* read once to clear */ |
| ret_val = e1e_rphy(hw, IGP3_KMRN_DIAG, &data); |
| if (ret_val) |
| return ret_val; |
| /* and again to get new status */ |
| ret_val = e1e_rphy(hw, IGP3_KMRN_DIAG, &data); |
| if (ret_val) |
| return ret_val; |
| |
| /* check for PCS lock */ |
| if (!(data & IGP3_KMRN_DIAG_PCS_LOCK_LOSS)) |
| return 0; |
| |
| /* Issue PHY reset */ |
| e1000_phy_hw_reset(hw); |
| mdelay(5); |
| } |
| /* Disable GigE link negotiation */ |
| phy_ctrl = er32(PHY_CTRL); |
| phy_ctrl |= (E1000_PHY_CTRL_GBE_DISABLE | |
| E1000_PHY_CTRL_NOND0A_GBE_DISABLE); |
| ew32(PHY_CTRL, phy_ctrl); |
| |
| /* Call gig speed drop workaround on Gig disable before accessing |
| * any PHY registers |
| */ |
| e1000e_gig_downshift_workaround_ich8lan(hw); |
| |
| /* unable to acquire PCS lock */ |
| return -E1000_ERR_PHY; |
| } |
| |
| /** |
| * e1000e_set_kmrn_lock_loss_workaround_ich8lan - Set Kumeran workaround state |
| * @hw: pointer to the HW structure |
| * @state: boolean value used to set the current Kumeran workaround state |
| * |
| * If ICH8, set the current Kumeran workaround state (enabled - true |
| * /disabled - false). |
| **/ |
| void e1000e_set_kmrn_lock_loss_workaround_ich8lan(struct e1000_hw *hw, |
| bool state) |
| { |
| struct e1000_dev_spec_ich8lan *dev_spec = &hw->dev_spec.ich8lan; |
| |
| if (hw->mac.type != e1000_ich8lan) { |
| e_dbg("Workaround applies to ICH8 only.\n"); |
| return; |
| } |
| |
| dev_spec->kmrn_lock_loss_workaround_enabled = state; |
| } |
| |
| /** |
| * e1000_ipg3_phy_powerdown_workaround_ich8lan - Power down workaround on D3 |
| * @hw: pointer to the HW structure |
| * |
| * Workaround for 82566 power-down on D3 entry: |
| * 1) disable gigabit link |
| * 2) write VR power-down enable |
| * 3) read it back |
| * Continue if successful, else issue LCD reset and repeat |
| **/ |
| void e1000e_igp3_phy_powerdown_workaround_ich8lan(struct e1000_hw *hw) |
| { |
| u32 reg; |
| u16 data; |
| u8 retry = 0; |
| |
| if (hw->phy.type != e1000_phy_igp_3) |
| return; |
| |
| /* Try the workaround twice (if needed) */ |
| do { |
| /* Disable link */ |
| reg = er32(PHY_CTRL); |
| reg |= (E1000_PHY_CTRL_GBE_DISABLE | |
| E1000_PHY_CTRL_NOND0A_GBE_DISABLE); |
| ew32(PHY_CTRL, reg); |
| |
| /* Call gig speed drop workaround on Gig disable before |
| * accessing any PHY registers |
| */ |
| if (hw->mac.type == e1000_ich8lan) |
| e1000e_gig_downshift_workaround_ich8lan(hw); |
| |
| /* Write VR power-down enable */ |
| e1e_rphy(hw, IGP3_VR_CTRL, &data); |
| data &= ~IGP3_VR_CTRL_DEV_POWERDOWN_MODE_MASK; |
| e1e_wphy(hw, IGP3_VR_CTRL, data | IGP3_VR_CTRL_MODE_SHUTDOWN); |
| |
| /* Read it back and test */ |
| e1e_rphy(hw, IGP3_VR_CTRL, &data); |
| data &= IGP3_VR_CTRL_DEV_POWERDOWN_MODE_MASK; |
| if ((data == IGP3_VR_CTRL_MODE_SHUTDOWN) || retry) |
| break; |
| |
| /* Issue PHY reset and repeat at most one more time */ |
| reg = er32(CTRL); |
| ew32(CTRL, reg | E1000_CTRL_PHY_RST); |
| retry++; |
| } while (retry); |
| } |
| |
| /** |
| * e1000e_gig_downshift_workaround_ich8lan - WoL from S5 stops working |
| * @hw: pointer to the HW structure |
| * |
| * Steps to take when dropping from 1Gb/s (eg. link cable removal (LSC), |
| * LPLU, Gig disable, MDIC PHY reset): |
| * 1) Set Kumeran Near-end loopback |
| * 2) Clear Kumeran Near-end loopback |
| * Should only be called for ICH8[m] devices with any 1G Phy. |
| **/ |
| void e1000e_gig_downshift_workaround_ich8lan(struct e1000_hw *hw) |
| { |
| s32 ret_val; |
| u16 reg_data; |
| |
| if ((hw->mac.type != e1000_ich8lan) || (hw->phy.type == e1000_phy_ife)) |
| return; |
| |
| ret_val = e1000e_read_kmrn_reg(hw, E1000_KMRNCTRLSTA_DIAG_OFFSET, |
| ®_data); |
| if (ret_val) |
| return; |
| reg_data |= E1000_KMRNCTRLSTA_DIAG_NELPBK; |
| ret_val = e1000e_write_kmrn_reg(hw, E1000_KMRNCTRLSTA_DIAG_OFFSET, |
| reg_data); |
| if (ret_val) |
| return; |
| reg_data &= ~E1000_KMRNCTRLSTA_DIAG_NELPBK; |
| e1000e_write_kmrn_reg(hw, E1000_KMRNCTRLSTA_DIAG_OFFSET, reg_data); |
| } |
| |
| /** |
| * e1000_suspend_workarounds_ich8lan - workarounds needed during S0->Sx |
| * @hw: pointer to the HW structure |
| * |
| * During S0 to Sx transition, it is possible the link remains at gig |
| * instead of negotiating to a lower speed. Before going to Sx, set |
| * 'Gig Disable' to force link speed negotiation to a lower speed based on |
| * the LPLU setting in the NVM or custom setting. For PCH and newer parts, |
| * the OEM bits PHY register (LED, GbE disable and LPLU configurations) also |
| * needs to be written. |
| * Parts that support (and are linked to a partner which support) EEE in |
| * 100Mbps should disable LPLU since 100Mbps w/ EEE requires less power |
| * than 10Mbps w/o EEE. |
| **/ |
| void e1000_suspend_workarounds_ich8lan(struct e1000_hw *hw) |
| { |
| struct e1000_dev_spec_ich8lan *dev_spec = &hw->dev_spec.ich8lan; |
| u32 phy_ctrl; |
| s32 ret_val; |
| |
| phy_ctrl = er32(PHY_CTRL); |
| phy_ctrl |= E1000_PHY_CTRL_GBE_DISABLE; |
| |
| if (hw->phy.type == e1000_phy_i217) { |
| u16 phy_reg, device_id = hw->adapter->pdev->device; |
| |
| if ((device_id == E1000_DEV_ID_PCH_LPTLP_I218_LM) || |
| (device_id == E1000_DEV_ID_PCH_LPTLP_I218_V) || |
| (device_id == E1000_DEV_ID_PCH_I218_LM3) || |
| (device_id == E1000_DEV_ID_PCH_I218_V3) || |
| (hw->mac.type == e1000_pch_spt)) { |
| u32 fextnvm6 = er32(FEXTNVM6); |
| |
| ew32(FEXTNVM6, fextnvm6 & ~E1000_FEXTNVM6_REQ_PLL_CLK); |
| } |
| |
| ret_val = hw->phy.ops.acquire(hw); |
| if (ret_val) |
| goto out; |
| |
| if (!dev_spec->eee_disable) { |
| u16 eee_advert; |
| |
| ret_val = |
| e1000_read_emi_reg_locked(hw, |
| I217_EEE_ADVERTISEMENT, |
| &eee_advert); |
| if (ret_val) |
| goto release; |
| |
| /* Disable LPLU if both link partners support 100BaseT |
| * EEE and 100Full is advertised on both ends of the |
| * link, and enable Auto Enable LPI since there will |
| * be no driver to enable LPI while in Sx. |
| */ |
| if ((eee_advert & I82579_EEE_100_SUPPORTED) && |
| (dev_spec->eee_lp_ability & |
| I82579_EEE_100_SUPPORTED) && |
| (hw->phy.autoneg_advertised & ADVERTISE_100_FULL)) { |
| phy_ctrl &= ~(E1000_PHY_CTRL_D0A_LPLU | |
| E1000_PHY_CTRL_NOND0A_LPLU); |
| |
| /* Set Auto Enable LPI after link up */ |
| e1e_rphy_locked(hw, |
| I217_LPI_GPIO_CTRL, &phy_reg); |
| phy_reg |= I217_LPI_GPIO_CTRL_AUTO_EN_LPI; |
| e1e_wphy_locked(hw, |
| I217_LPI_GPIO_CTRL, phy_reg); |
| } |
| } |
| |
| /* For i217 Intel Rapid Start Technology support, |
| * when the system is going into Sx and no manageability engine |
| * is present, the driver must configure proxy to reset only on |
| * power good. LPI (Low Power Idle) state must also reset only |
| * on power good, as well as the MTA (Multicast table array). |
| * The SMBus release must also be disabled on LCD reset. |
| */ |
| if (!(er32(FWSM) & E1000_ICH_FWSM_FW_VALID)) { |
| /* Enable proxy to reset only on power good. */ |
| e1e_rphy_locked(hw, I217_PROXY_CTRL, &phy_reg); |
| phy_reg |= I217_PROXY_CTRL_AUTO_DISABLE; |
| e1e_wphy_locked(hw, I217_PROXY_CTRL, phy_reg); |
| |
| /* Set bit enable LPI (EEE) to reset only on |
| * power good. |
| */ |
| e1e_rphy_locked(hw, I217_SxCTRL, &phy_reg); |
| phy_reg |= I217_SxCTRL_ENABLE_LPI_RESET; |
| e1e_wphy_locked(hw, I217_SxCTRL, phy_reg); |
| |
| /* Disable the SMB release on LCD reset. */ |
| e1e_rphy_locked(hw, I217_MEMPWR, &phy_reg); |
| phy_reg &= ~I217_MEMPWR_DISABLE_SMB_RELEASE; |
| e1e_wphy_locked(hw, I217_MEMPWR, phy_reg); |
| } |
| |
| /* Enable MTA to reset for Intel Rapid Start Technology |
| * Support |
| */ |
| e1e_rphy_locked(hw, I217_CGFREG, &phy_reg); |
| phy_reg |= I217_CGFREG_ENABLE_MTA_RESET; |
| e1e_wphy_locked(hw, I217_CGFREG, phy_reg); |
| |
| release: |
| hw->phy.ops.release(hw); |
| } |
| out: |
| ew32(PHY_CTRL, phy_ctrl); |
| |
| if (hw->mac.type == e1000_ich8lan) |
| e1000e_gig_downshift_workaround_ich8lan(hw); |
| |
| if (hw->mac.type >= e1000_pchlan) { |
| e1000_oem_bits_config_ich8lan(hw, false); |
| |
| /* Reset PHY to activate OEM bits on 82577/8 */ |
| if (hw->mac.type == e1000_pchlan) |
| e1000e_phy_hw_reset_generic(hw); |
| |
| ret_val = hw->phy.ops.acquire(hw); |
| if (ret_val) |
| return; |
| e1000_write_smbus_addr(hw); |
| hw->phy.ops.release(hw); |
| } |
| } |
| |
| /** |
| * e1000_resume_workarounds_pchlan - workarounds needed during Sx->S0 |
| * @hw: pointer to the HW structure |
| * |
| * During Sx to S0 transitions on non-managed devices or managed devices |
| * on which PHY resets are not blocked, if the PHY registers cannot be |
| * accessed properly by the s/w toggle the LANPHYPC value to power cycle |
| * the PHY. |
| * On i217, setup Intel Rapid Start Technology. |
| **/ |
| void e1000_resume_workarounds_pchlan(struct e1000_hw *hw) |
| { |
| s32 ret_val; |
| |
| if (hw->mac.type < e1000_pch2lan) |
| return; |
| |
| ret_val = e1000_init_phy_workarounds_pchlan(hw); |
| if (ret_val) { |
| e_dbg("Failed to init PHY flow ret_val=%d\n", ret_val); |
| return; |
| } |
| |
| /* For i217 Intel Rapid Start Technology support when the system |
| * is transitioning from Sx and no manageability engine is present |
| * configure SMBus to restore on reset, disable proxy, and enable |
| * the reset on MTA (Multicast table array). |
| */ |
| if (hw->phy.type == e1000_phy_i217) { |
| u16 phy_reg; |
| |
| ret_val = hw->phy.ops.acquire(hw); |
| if (ret_val) { |
| e_dbg("Failed to setup iRST\n"); |
| return; |
| } |
| |
| /* Clear Auto Enable LPI after link up */ |
| e1e_rphy_locked(hw, I217_LPI_GPIO_CTRL, &phy_reg); |
| phy_reg &= ~I217_LPI_GPIO_CTRL_AUTO_EN_LPI; |
| e1e_wphy_locked(hw, I217_LPI_GPIO_CTRL, phy_reg); |
| |
| if (!(er32(FWSM) & E1000_ICH_FWSM_FW_VALID)) { |
| /* Restore clear on SMB if no manageability engine |
| * is present |
| */ |
| ret_val = e1e_rphy_locked(hw, I217_MEMPWR, &phy_reg); |
| if (ret_val) |
| goto release; |
| phy_reg |= I217_MEMPWR_DISABLE_SMB_RELEASE; |
| e1e_wphy_locked(hw, I217_MEMPWR, phy_reg); |
| |
| /* Disable Proxy */ |
| e1e_wphy_locked(hw, I217_PROXY_CTRL, 0); |
| } |
| /* Enable reset on MTA */ |
| ret_val = e1e_rphy_locked(hw, I217_CGFREG, &phy_reg); |
| if (ret_val) |
| goto release; |
| phy_reg &= ~I217_CGFREG_ENABLE_MTA_RESET; |
| e1e_wphy_locked(hw, I217_CGFREG, phy_reg); |
| release: |
| if (ret_val) |
| e_dbg("Error %d in resume workarounds\n", ret_val); |
| hw->phy.ops.release(hw); |
| } |
| } |
| |
| /** |
| * e1000_cleanup_led_ich8lan - Restore the default LED operation |
| * @hw: pointer to the HW structure |
| * |
| * Return the LED back to the default configuration. |
| **/ |
| static s32 e1000_cleanup_led_ich8lan(struct e1000_hw *hw) |
| { |
| if (hw->phy.type == e1000_phy_ife) |
| return e1e_wphy(hw, IFE_PHY_SPECIAL_CONTROL_LED, 0); |
| |
| ew32(LEDCTL, hw->mac.ledctl_default); |
| return 0; |
| } |
| |
| /** |
| * e1000_led_on_ich8lan - Turn LEDs on |
| * @hw: pointer to the HW structure |
| * |
| * Turn on the LEDs. |
| **/ |
| static s32 e1000_led_on_ich8lan(struct e1000_hw *hw) |
| { |
| if (hw->phy.type == e1000_phy_ife) |
| return e1e_wphy(hw, IFE_PHY_SPECIAL_CONTROL_LED, |
| (IFE_PSCL_PROBE_MODE | IFE_PSCL_PROBE_LEDS_ON)); |
| |
| ew32(LEDCTL, hw->mac.ledctl_mode2); |
| return 0; |
| } |
| |
| /** |
| * e1000_led_off_ich8lan - Turn LEDs off |
| * @hw: pointer to the HW structure |
| * |
| * Turn off the LEDs. |
| **/ |
| static s32 e1000_led_off_ich8lan(struct e1000_hw *hw) |
| { |
| if (hw->phy.type == e1000_phy_ife) |
| return e1e_wphy(hw, IFE_PHY_SPECIAL_CONTROL_LED, |
| (IFE_PSCL_PROBE_MODE | |
| IFE_PSCL_PROBE_LEDS_OFF)); |
| |
| ew32(LEDCTL, hw->mac.ledctl_mode1); |
| return 0; |
| } |
| |
| /** |
| * e1000_setup_led_pchlan - Configures SW controllable LED |
| * @hw: pointer to the HW structure |
| * |
| * This prepares the SW controllable LED for use. |
| **/ |
| static s32 e1000_setup_led_pchlan(struct e1000_hw *hw) |
| { |
| return e1e_wphy(hw, HV_LED_CONFIG, (u16)hw->mac.ledctl_mode1); |
| } |
| |
| /** |
| * e1000_cleanup_led_pchlan - Restore the default LED operation |
| * @hw: pointer to the HW structure |
| * |
| * Return the LED back to the default configuration. |
| **/ |
| static s32 e1000_cleanup_led_pchlan(struct e1000_hw *hw) |
| { |
| return e1e_wphy(hw, HV_LED_CONFIG, (u16)hw->mac.ledctl_default); |
| } |
| |
| /** |
| * e1000_led_on_pchlan - Turn LEDs on |
| * @hw: pointer to the HW structure |
| * |
| * Turn on the LEDs. |
| **/ |
| static s32 e1000_led_on_pchlan(struct e1000_hw *hw) |
| { |
| u16 data = (u16)hw->mac.ledctl_mode2; |
| u32 i, led; |
| |
| /* If no link, then turn LED on by setting the invert bit |
| * for each LED that's mode is "link_up" in ledctl_mode2. |
| */ |
| if (!(er32(STATUS) & E1000_STATUS_LU)) { |
| for (i = 0; i < 3; i++) { |
| led = (data >> (i * 5)) & E1000_PHY_LED0_MASK; |
| if ((led & E1000_PHY_LED0_MODE_MASK) != |
| E1000_LEDCTL_MODE_LINK_UP) |
| continue; |
| if (led & E1000_PHY_LED0_IVRT) |
| data &= ~(E1000_PHY_LED0_IVRT << (i * 5)); |
| else |
| data |= (E1000_PHY_LED0_IVRT << (i * 5)); |
| } |
| } |
| |
| return e1e_wphy(hw, HV_LED_CONFIG, data); |
| } |
| |
| /** |
| * e1000_led_off_pchlan - Turn LEDs off |
| * @hw: pointer to the HW structure |
| * |
| * Turn off the LEDs. |
| **/ |
| static s32 e1000_led_off_pchlan(struct e1000_hw *hw) |
| { |
| u16 data = (u16)hw->mac.ledctl_mode1; |
| u32 i, led; |
| |
| /* If no link, then turn LED off by clearing the invert bit |
| * for each LED that's mode is "link_up" in ledctl_mode1. |
| */ |
| if (!(er32(STATUS) & E1000_STATUS_LU)) { |
| for (i = 0; i < 3; i++) { |
| led = (data >> (i * 5)) & E1000_PHY_LED0_MASK; |
| if ((led & E1000_PHY_LED0_MODE_MASK) != |
| E1000_LEDCTL_MODE_LINK_UP) |
| continue; |
| if (led & E1000_PHY_LED0_IVRT) |
| data &= ~(E1000_PHY_LED0_IVRT << (i * 5)); |
| else |
| data |= (E1000_PHY_LED0_IVRT << (i * 5)); |
| } |
| } |
| |
| return e1e_wphy(hw, HV_LED_CONFIG, data); |
| } |
| |
| /** |
| * e1000_get_cfg_done_ich8lan - Read config done bit after Full or PHY reset |
| * @hw: pointer to the HW structure |
| * |
| * Read appropriate register for the config done bit for completion status |
| * and configure the PHY through s/w for EEPROM-less parts. |
| * |
| * NOTE: some silicon which is EEPROM-less will fail trying to read the |
| * config done bit, so only an error is logged and continues. If we were |
| * to return with error, EEPROM-less silicon would not be able to be reset |
| * or change link. |
| **/ |
| static s32 e1000_get_cfg_done_ich8lan(struct e1000_hw *hw) |
| { |
| s32 ret_val = 0; |
| u32 bank = 0; |
| u32 status; |
| |
| e1000e_get_cfg_done_generic(hw); |
| |
| /* Wait for indication from h/w that it has completed basic config */ |
| if (hw->mac.type >= e1000_ich10lan) { |
| e1000_lan_init_done_ich8lan(hw); |
| } else { |
| ret_val = e1000e_get_auto_rd_done(hw); |
| if (ret_val) { |
| /* When auto config read does not complete, do not |
| * return with an error. This can happen in situations |
| * where there is no eeprom and prevents getting link. |
| */ |
| e_dbg("Auto Read Done did not complete\n"); |
| ret_val = 0; |
| } |
| } |
| |
| /* Clear PHY Reset Asserted bit */ |
| status = er32(STATUS); |
| if (status & E1000_STATUS_PHYRA) |
| ew32(STATUS, status & ~E1000_STATUS_PHYRA); |
| else |
| e_dbg("PHY Reset Asserted not set - needs delay\n"); |
| |
| /* If EEPROM is not marked present, init the IGP 3 PHY manually */ |
| if (hw->mac.type <= e1000_ich9lan) { |
| if (!(er32(EECD) & E1000_EECD_PRES) && |
| (hw->phy.type == e1000_phy_igp_3)) { |
| e1000e_phy_init_script_igp3(hw); |
| } |
| } else { |
| if (e1000_valid_nvm_bank_detect_ich8lan(hw, &bank)) { |
| /* Maybe we should do a basic PHY config */ |
| e_dbg("EEPROM not present\n"); |
| ret_val = -E1000_ERR_CONFIG; |
| } |
| } |
| |
| return ret_val; |
| } |
| |
| /** |
| * e1000_power_down_phy_copper_ich8lan - Remove link during PHY power down |
| * @hw: pointer to the HW structure |
| * |
| * In the case of a PHY power down to save power, or to turn off link during a |
| * driver unload, or wake on lan is not enabled, remove the link. |
| **/ |
| static void e1000_power_down_phy_copper_ich8lan(struct e1000_hw *hw) |
| { |
| /* If the management interface is not enabled, then power down */ |
| if (!(hw->mac.ops.check_mng_mode(hw) || |
| hw->phy.ops.check_reset_block(hw))) |
| e1000_power_down_phy_copper(hw); |
| } |
| |
| /** |
| * e1000_clear_hw_cntrs_ich8lan - Clear statistical counters |
| * @hw: pointer to the HW structure |
| * |
| * Clears hardware counters specific to the silicon family and calls |
| * clear_hw_cntrs_generic to clear all general purpose counters. |
| **/ |
| static void e1000_clear_hw_cntrs_ich8lan(struct e1000_hw *hw) |
| { |
| u16 phy_data; |
| s32 ret_val; |
| |
| e1000e_clear_hw_cntrs_base(hw); |
| |
| er32(ALGNERRC); |
| er32(RXERRC); |
| er32(TNCRS); |
| er32(CEXTERR); |
| er32(TSCTC); |
| er32(TSCTFC); |
| |
| er32(MGTPRC); |
| er32(MGTPDC); |
| er32(MGTPTC); |
| |
| er32(IAC); |
| er32(ICRXOC); |
| |
| /* Clear PHY statistics registers */ |
| if ((hw->phy.type == e1000_phy_82578) || |
| (hw->phy.type == e1000_phy_82579) || |
| (hw->phy.type == e1000_phy_i217) || |
| (hw->phy.type == e1000_phy_82577)) { |
| ret_val = hw->phy.ops.acquire(hw); |
| if (ret_val) |
| return; |
| ret_val = hw->phy.ops.set_page(hw, |
| HV_STATS_PAGE << IGP_PAGE_SHIFT); |
| if (ret_val) |
| goto release; |
| hw->phy.ops.read_reg_page(hw, HV_SCC_UPPER, &phy_data); |
| hw->phy.ops.read_reg_page(hw, HV_SCC_LOWER, &phy_data); |
| hw->phy.ops.read_reg_page(hw, HV_ECOL_UPPER, &phy_data); |
| hw->phy.ops.read_reg_page(hw, HV_ECOL_LOWER, &phy_data); |
| hw->phy.ops.read_reg_page(hw, HV_MCC_UPPER, &phy_data); |
| hw->phy.ops.read_reg_page(hw, HV_MCC_LOWER, &phy_data); |
| hw->phy.ops.read_reg_page(hw, HV_LATECOL_UPPER, &phy_data); |
| hw->phy.ops.read_reg_page(hw, HV_LATECOL_LOWER, &phy_data); |
| hw->phy.ops.read_reg_page(hw, HV_COLC_UPPER, &phy_data); |
| hw->phy.ops.read_reg_page(hw, HV_COLC_LOWER, &phy_data); |
| hw->phy.ops.read_reg_page(hw, HV_DC_UPPER, &phy_data); |
| hw->phy.ops.read_reg_page(hw, HV_DC_LOWER, &phy_data); |
| hw->phy.ops.read_reg_page(hw, HV_TNCRS_UPPER, &phy_data); |
| hw->phy.ops.read_reg_page(hw, HV_TNCRS_LOWER, &phy_data); |
| release: |
| hw->phy.ops.release(hw); |
| } |
| } |
| |
| static const struct e1000_mac_operations ich8_mac_ops = { |
| /* check_mng_mode dependent on mac type */ |
| .check_for_link = e1000_check_for_copper_link_ich8lan, |
| /* cleanup_led dependent on mac type */ |
| .clear_hw_cntrs = e1000_clear_hw_cntrs_ich8lan, |
| .get_bus_info = e1000_get_bus_info_ich8lan, |
| .set_lan_id = e1000_set_lan_id_single_port, |
| .get_link_up_info = e1000_get_link_up_info_ich8lan, |
| /* led_on dependent on mac type */ |
| /* led_off dependent on mac type */ |
| .update_mc_addr_list = e1000e_update_mc_addr_list_generic, |
| .reset_hw = e1000_reset_hw_ich8lan, |
| .init_hw = e1000_init_hw_ich8lan, |
| .setup_link = e1000_setup_link_ich8lan, |
| .setup_physical_interface = e1000_setup_copper_link_ich8lan, |
| /* id_led_init dependent on mac type */ |
| .config_collision_dist = e1000e_config_collision_dist_generic, |
| .rar_set = e1000e_rar_set_generic, |
| .rar_get_count = e1000e_rar_get_count_generic, |
| }; |
| |
| static const struct e1000_phy_operations ich8_phy_ops = { |
| .acquire = e1000_acquire_swflag_ich8lan, |
| .check_reset_block = e1000_check_reset_block_ich8lan, |
| .commit = NULL, |
| .get_cfg_done = e1000_get_cfg_done_ich8lan, |
| .get_cable_length = e1000e_get_cable_length_igp_2, |
| .read_reg = e1000e_read_phy_reg_igp, |
| .release = e1000_release_swflag_ich8lan, |
| .reset = e1000_phy_hw_reset_ich8lan, |
| .set_d0_lplu_state = e1000_set_d0_lplu_state_ich8lan, |
| .set_d3_lplu_state = e1000_set_d3_lplu_state_ich8lan, |
| .write_reg = e1000e_write_phy_reg_igp, |
| }; |
| |
| static const struct e1000_nvm_operations ich8_nvm_ops = { |
| .acquire = e1000_acquire_nvm_ich8lan, |
| .read = e1000_read_nvm_ich8lan, |
| .release = e1000_release_nvm_ich8lan, |
| .reload = e1000e_reload_nvm_generic, |
| .update = e1000_update_nvm_checksum_ich8lan, |
| .valid_led_default = e1000_valid_led_default_ich8lan, |
| .validate = e1000_validate_nvm_checksum_ich8lan, |
| .write = e1000_write_nvm_ich8lan, |
| }; |
| |
| static const struct e1000_nvm_operations spt_nvm_ops = { |
| .acquire = e1000_acquire_nvm_ich8lan, |
| .release = e1000_release_nvm_ich8lan, |
| .read = e1000_read_nvm_spt, |
| .update = e1000_update_nvm_checksum_spt, |
| .reload = e1000e_reload_nvm_generic, |
| .valid_led_default = e1000_valid_led_default_ich8lan, |
| .validate = e1000_validate_nvm_checksum_ich8lan, |
| .write = e1000_write_nvm_ich8lan, |
| }; |
| |
| const struct e1000_info e1000_ich8_info = { |
| .mac = e1000_ich8lan, |
| .flags = FLAG_HAS_WOL |
| | FLAG_IS_ICH |
| | FLAG_HAS_CTRLEXT_ON_LOAD |
| | FLAG_HAS_AMT |
| | FLAG_HAS_FLASH |
| | FLAG_APME_IN_WUC, |
| .pba = 8, |
| .max_hw_frame_size = VLAN_ETH_FRAME_LEN + ETH_FCS_LEN, |
| .get_variants = e1000_get_variants_ich8lan, |
| .mac_ops = &ich8_mac_ops, |
| .phy_ops = &ich8_phy_ops, |
| .nvm_ops = &ich8_nvm_ops, |
| }; |
| |
| const struct e1000_info e1000_ich9_info = { |
| .mac = e1000_ich9lan, |
| .flags = FLAG_HAS_JUMBO_FRAMES |
| | FLAG_IS_ICH |
| | FLAG_HAS_WOL |
| | FLAG_HAS_CTRLEXT_ON_LOAD |
| | FLAG_HAS_AMT |
| | FLAG_HAS_FLASH |
| | FLAG_APME_IN_WUC, |
| .pba = 18, |
| .max_hw_frame_size = DEFAULT_JUMBO, |
| .get_variants = e1000_get_variants_ich8lan, |
| .mac_ops = &ich8_mac_ops, |
| .phy_ops = &ich8_phy_ops, |
| .nvm_ops = &ich8_nvm_ops, |
| }; |
| |
| const struct e1000_info e1000_ich10_info = { |
| .mac = e1000_ich10lan, |
| .flags = FLAG_HAS_JUMBO_FRAMES |
| | FLAG_IS_ICH |
| | FLAG_HAS_WOL |
| | FLAG_HAS_CTRLEXT_ON_LOAD |
| | FLAG_HAS_AMT |
| | FLAG_HAS_FLASH |
| | FLAG_APME_IN_WUC, |
| .pba = 18, |
| .max_hw_frame_size = DEFAULT_JUMBO, |
| .get_variants = e1000_get_variants_ich8lan, |
| .mac_ops = &ich8_mac_ops, |
| .phy_ops = &ich8_phy_ops, |
| .nvm_ops = &ich8_nvm_ops, |
| }; |
| |
| const struct e1000_info e1000_pch_info = { |
| .mac = e1000_pchlan, |
| .flags = FLAG_IS_ICH |
| | FLAG_HAS_WOL |
| | FLAG_HAS_CTRLEXT_ON_LOAD |
| | FLAG_HAS_AMT |
| | FLAG_HAS_FLASH |
| | FLAG_HAS_JUMBO_FRAMES |
| | FLAG_DISABLE_FC_PAUSE_TIME /* errata */ |
| | FLAG_APME_IN_WUC, |
| .flags2 = FLAG2_HAS_PHY_STATS, |
| .pba = 26, |
| .max_hw_frame_size = 4096, |
| .get_variants = e1000_get_variants_ich8lan, |
| .mac_ops = &ich8_mac_ops, |
| .phy_ops = &ich8_phy_ops, |
| .nvm_ops = &ich8_nvm_ops, |
| }; |
| |
| const struct e1000_info e1000_pch2_info = { |
| .mac = e1000_pch2lan, |
| .flags = FLAG_IS_ICH |
| | FLAG_HAS_WOL |
| | FLAG_HAS_HW_TIMESTAMP |
| | FLAG_HAS_CTRLEXT_ON_LOAD |
| | FLAG_HAS_AMT |
| | FLAG_HAS_FLASH |
| | FLAG_HAS_JUMBO_FRAMES |
| | FLAG_APME_IN_WUC, |
| .flags2 = FLAG2_HAS_PHY_STATS |
| | FLAG2_HAS_EEE, |
| .pba = 26, |
| .max_hw_frame_size = 9022, |
| .get_variants = e1000_get_variants_ich8lan, |
| .mac_ops = &ich8_mac_ops, |
| .phy_ops = &ich8_phy_ops, |
| .nvm_ops = &ich8_nvm_ops, |
| }; |
| |
| const struct e1000_info e1000_pch_lpt_info = { |
| .mac = e1000_pch_lpt, |
| .flags = FLAG_IS_ICH |
| | FLAG_HAS_WOL |
| | FLAG_HAS_HW_TIMESTAMP |
| | FLAG_HAS_CTRLEXT_ON_LOAD |
| | FLAG_HAS_AMT |
| | FLAG_HAS_FLASH |
| | FLAG_HAS_JUMBO_FRAMES |
| | FLAG_APME_IN_WUC, |
| .flags2 = FLAG2_HAS_PHY_STATS |
| | FLAG2_HAS_EEE, |
| .pba = 26, |
| .max_hw_frame_size = 9022, |
| .get_variants = e1000_get_variants_ich8lan, |
| .mac_ops = &ich8_mac_ops, |
| .phy_ops = &ich8_phy_ops, |
| .nvm_ops = &ich8_nvm_ops, |
| }; |
| |
| const struct e1000_info e1000_pch_spt_info = { |
| .mac = e1000_pch_spt, |
| .flags = FLAG_IS_ICH |
| | FLAG_HAS_WOL |
| | FLAG_HAS_HW_TIMESTAMP |
| | FLAG_HAS_CTRLEXT_ON_LOAD |
| | FLAG_HAS_AMT |
| | FLAG_HAS_FLASH |
| | FLAG_HAS_JUMBO_FRAMES |
| | FLAG_APME_IN_WUC, |
| .flags2 = FLAG2_HAS_PHY_STATS |
| | FLAG2_HAS_EEE, |
| .pba = 26, |
| .max_hw_frame_size = 9022, |
| .get_variants = e1000_get_variants_ich8lan, |
| .mac_ops = &ich8_mac_ops, |
| .phy_ops = &ich8_phy_ops, |
| .nvm_ops = &spt_nvm_ops, |
| }; |