blob: 87d46460a5240dfc771c766c7ccf6a5a4fa18c74 [file] [log] [blame]
/*
* Copyright (c) 2004-2011 Atheros Communications Inc.
* Copyright (c) 2011-2012 Qualcomm Atheros, Inc.
*
* Permission to use, copy, modify, and/or distribute this software for any
* purpose with or without fee is hereby granted, provided that the above
* copyright notice and this permission notice appear in all copies.
*
* THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
* WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
* MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
* ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
* WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
* ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
* OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
*/
#include "core.h"
#include "debug.h"
/*
* tid - tid_mux0..tid_mux3
* aid - tid_mux4..tid_mux7
*/
#define ATH6KL_TID_MASK 0xf
#define ATH6KL_AID_SHIFT 4
static inline u8 ath6kl_get_tid(u8 tid_mux)
{
return tid_mux & ATH6KL_TID_MASK;
}
static inline u8 ath6kl_get_aid(u8 tid_mux)
{
return tid_mux >> ATH6KL_AID_SHIFT;
}
static u8 ath6kl_ibss_map_epid(struct sk_buff *skb, struct net_device *dev,
u32 *map_no)
{
struct ath6kl *ar = ath6kl_priv(dev);
struct ethhdr *eth_hdr;
u32 i, ep_map = -1;
u8 *datap;
*map_no = 0;
datap = skb->data;
eth_hdr = (struct ethhdr *) (datap + sizeof(struct wmi_data_hdr));
if (is_multicast_ether_addr(eth_hdr->h_dest))
return ENDPOINT_2;
for (i = 0; i < ar->node_num; i++) {
if (memcmp(eth_hdr->h_dest, ar->node_map[i].mac_addr,
ETH_ALEN) == 0) {
*map_no = i + 1;
ar->node_map[i].tx_pend++;
return ar->node_map[i].ep_id;
}
if ((ep_map == -1) && !ar->node_map[i].tx_pend)
ep_map = i;
}
if (ep_map == -1) {
ep_map = ar->node_num;
ar->node_num++;
if (ar->node_num > MAX_NODE_NUM)
return ENDPOINT_UNUSED;
}
memcpy(ar->node_map[ep_map].mac_addr, eth_hdr->h_dest, ETH_ALEN);
for (i = ENDPOINT_2; i <= ENDPOINT_5; i++) {
if (!ar->tx_pending[i]) {
ar->node_map[ep_map].ep_id = i;
break;
}
/*
* No free endpoint is available, start redistribution on
* the inuse endpoints.
*/
if (i == ENDPOINT_5) {
ar->node_map[ep_map].ep_id = ar->next_ep_id;
ar->next_ep_id++;
if (ar->next_ep_id > ENDPOINT_5)
ar->next_ep_id = ENDPOINT_2;
}
}
*map_no = ep_map + 1;
ar->node_map[ep_map].tx_pend++;
return ar->node_map[ep_map].ep_id;
}
static bool ath6kl_process_uapsdq(struct ath6kl_sta *conn,
struct ath6kl_vif *vif,
struct sk_buff *skb,
u32 *flags)
{
struct ath6kl *ar = vif->ar;
bool is_apsdq_empty = false;
struct ethhdr *datap = (struct ethhdr *) skb->data;
u8 up = 0, traffic_class, *ip_hdr;
u16 ether_type;
struct ath6kl_llc_snap_hdr *llc_hdr;
if (conn->sta_flags & STA_PS_APSD_TRIGGER) {
/*
* This tx is because of a uAPSD trigger, determine
* more and EOSP bit. Set EOSP if queue is empty
* or sufficient frames are delivered for this trigger.
*/
spin_lock_bh(&conn->psq_lock);
if (!skb_queue_empty(&conn->apsdq))
*flags |= WMI_DATA_HDR_FLAGS_MORE;
else if (conn->sta_flags & STA_PS_APSD_EOSP)
*flags |= WMI_DATA_HDR_FLAGS_EOSP;
*flags |= WMI_DATA_HDR_FLAGS_UAPSD;
spin_unlock_bh(&conn->psq_lock);
return false;
} else if (!conn->apsd_info)
return false;
if (test_bit(WMM_ENABLED, &vif->flags)) {
ether_type = be16_to_cpu(datap->h_proto);
if (is_ethertype(ether_type)) {
/* packet is in DIX format */
ip_hdr = (u8 *)(datap + 1);
} else {
/* packet is in 802.3 format */
llc_hdr = (struct ath6kl_llc_snap_hdr *)
(datap + 1);
ether_type = be16_to_cpu(llc_hdr->eth_type);
ip_hdr = (u8 *)(llc_hdr + 1);
}
if (ether_type == IP_ETHERTYPE)
up = ath6kl_wmi_determine_user_priority(
ip_hdr, 0);
}
traffic_class = ath6kl_wmi_get_traffic_class(up);
if ((conn->apsd_info & (1 << traffic_class)) == 0)
return false;
/* Queue the frames if the STA is sleeping */
spin_lock_bh(&conn->psq_lock);
is_apsdq_empty = skb_queue_empty(&conn->apsdq);
skb_queue_tail(&conn->apsdq, skb);
spin_unlock_bh(&conn->psq_lock);
/*
* If this is the first pkt getting queued
* for this STA, update the PVB for this STA
*/
if (is_apsdq_empty) {
ath6kl_wmi_set_apsd_bfrd_traf(ar->wmi,
vif->fw_vif_idx,
conn->aid, 1, 0);
}
*flags |= WMI_DATA_HDR_FLAGS_UAPSD;
return true;
}
static bool ath6kl_process_psq(struct ath6kl_sta *conn,
struct ath6kl_vif *vif,
struct sk_buff *skb,
u32 *flags)
{
bool is_psq_empty = false;
struct ath6kl *ar = vif->ar;
if (conn->sta_flags & STA_PS_POLLED) {
spin_lock_bh(&conn->psq_lock);
if (!skb_queue_empty(&conn->psq))
*flags |= WMI_DATA_HDR_FLAGS_MORE;
spin_unlock_bh(&conn->psq_lock);
return false;
}
/* Queue the frames if the STA is sleeping */
spin_lock_bh(&conn->psq_lock);
is_psq_empty = skb_queue_empty(&conn->psq);
skb_queue_tail(&conn->psq, skb);
spin_unlock_bh(&conn->psq_lock);
/*
* If this is the first pkt getting queued
* for this STA, update the PVB for this
* STA.
*/
if (is_psq_empty)
ath6kl_wmi_set_pvb_cmd(ar->wmi,
vif->fw_vif_idx,
conn->aid, 1);
return true;
}
static bool ath6kl_powersave_ap(struct ath6kl_vif *vif, struct sk_buff *skb,
u32 *flags)
{
struct ethhdr *datap = (struct ethhdr *) skb->data;
struct ath6kl_sta *conn = NULL;
bool ps_queued = false;
struct ath6kl *ar = vif->ar;
if (is_multicast_ether_addr(datap->h_dest)) {
u8 ctr = 0;
bool q_mcast = false;
for (ctr = 0; ctr < AP_MAX_NUM_STA; ctr++) {
if (ar->sta_list[ctr].sta_flags & STA_PS_SLEEP) {
q_mcast = true;
break;
}
}
if (q_mcast) {
/*
* If this transmit is not because of a Dtim Expiry
* q it.
*/
if (!test_bit(DTIM_EXPIRED, &vif->flags)) {
bool is_mcastq_empty = false;
spin_lock_bh(&ar->mcastpsq_lock);
is_mcastq_empty =
skb_queue_empty(&ar->mcastpsq);
skb_queue_tail(&ar->mcastpsq, skb);
spin_unlock_bh(&ar->mcastpsq_lock);
/*
* If this is the first Mcast pkt getting
* queued indicate to the target to set the
* BitmapControl LSB of the TIM IE.
*/
if (is_mcastq_empty)
ath6kl_wmi_set_pvb_cmd(ar->wmi,
vif->fw_vif_idx,
MCAST_AID, 1);
ps_queued = true;
} else {
/*
* This transmit is because of Dtim expiry.
* Determine if MoreData bit has to be set.
*/
spin_lock_bh(&ar->mcastpsq_lock);
if (!skb_queue_empty(&ar->mcastpsq))
*flags |= WMI_DATA_HDR_FLAGS_MORE;
spin_unlock_bh(&ar->mcastpsq_lock);
}
}
} else {
conn = ath6kl_find_sta(vif, datap->h_dest);
if (!conn) {
dev_kfree_skb(skb);
/* Inform the caller that the skb is consumed */
return true;
}
if (conn->sta_flags & STA_PS_SLEEP) {
ps_queued = ath6kl_process_uapsdq(conn,
vif, skb, flags);
if (!(*flags & WMI_DATA_HDR_FLAGS_UAPSD))
ps_queued = ath6kl_process_psq(conn,
vif, skb, flags);
}
}
return ps_queued;
}
/* Tx functions */
int ath6kl_control_tx(void *devt, struct sk_buff *skb,
enum htc_endpoint_id eid)
{
struct ath6kl *ar = devt;
int status = 0;
struct ath6kl_cookie *cookie = NULL;
spin_lock_bh(&ar->lock);
ath6kl_dbg(ATH6KL_DBG_WLAN_TX,
"%s: skb=0x%p, len=0x%x eid =%d\n", __func__,
skb, skb->len, eid);
if (test_bit(WMI_CTRL_EP_FULL, &ar->flag) && (eid == ar->ctrl_ep)) {
/*
* Control endpoint is full, don't allocate resources, we
* are just going to drop this packet.
*/
cookie = NULL;
ath6kl_err("wmi ctrl ep full, dropping pkt : 0x%p, len:%d\n",
skb, skb->len);
} else
cookie = ath6kl_alloc_cookie(ar);
if (cookie == NULL) {
spin_unlock_bh(&ar->lock);
status = -ENOMEM;
goto fail_ctrl_tx;
}
ar->tx_pending[eid]++;
if (eid != ar->ctrl_ep)
ar->total_tx_data_pend++;
spin_unlock_bh(&ar->lock);
cookie->skb = skb;
cookie->map_no = 0;
set_htc_pkt_info(&cookie->htc_pkt, cookie, skb->data, skb->len,
eid, ATH6KL_CONTROL_PKT_TAG);
/*
* This interface is asynchronous, if there is an error, cleanup
* will happen in the TX completion callback.
*/
ath6kl_htc_tx(ar->htc_target, &cookie->htc_pkt);
return 0;
fail_ctrl_tx:
dev_kfree_skb(skb);
return status;
}
int ath6kl_data_tx(struct sk_buff *skb, struct net_device *dev)
{
struct ath6kl *ar = ath6kl_priv(dev);
struct ath6kl_cookie *cookie = NULL;
enum htc_endpoint_id eid = ENDPOINT_UNUSED;
struct ath6kl_vif *vif = netdev_priv(dev);
u32 map_no = 0;
u16 htc_tag = ATH6KL_DATA_PKT_TAG;
u8 ac = 99 ; /* initialize to unmapped ac */
bool chk_adhoc_ps_mapping = false;
int ret;
struct wmi_tx_meta_v2 meta_v2;
void *meta;
u8 csum_start = 0, csum_dest = 0, csum = skb->ip_summed;
u8 meta_ver = 0;
u32 flags = 0;
ath6kl_dbg(ATH6KL_DBG_WLAN_TX,
"%s: skb=0x%p, data=0x%p, len=0x%x\n", __func__,
skb, skb->data, skb->len);
/* If target is not associated */
if (!test_bit(CONNECTED, &vif->flags)) {
dev_kfree_skb(skb);
return 0;
}
if (!test_bit(WMI_READY, &ar->flag))
goto fail_tx;
/* AP mode Power saving processing */
if (vif->nw_type == AP_NETWORK) {
if (ath6kl_powersave_ap(vif, skb, &flags))
return 0;
}
if (test_bit(WMI_ENABLED, &ar->flag)) {
if ((dev->features & NETIF_F_IP_CSUM) &&
(csum == CHECKSUM_PARTIAL)) {
csum_start = skb->csum_start -
(skb_network_header(skb) - skb->head) +
sizeof(struct ath6kl_llc_snap_hdr);
csum_dest = skb->csum_offset + csum_start;
}
if (skb_headroom(skb) < dev->needed_headroom) {
struct sk_buff *tmp_skb = skb;
skb = skb_realloc_headroom(skb, dev->needed_headroom);
kfree_skb(tmp_skb);
if (skb == NULL) {
vif->net_stats.tx_dropped++;
return 0;
}
}
if (ath6kl_wmi_dix_2_dot3(ar->wmi, skb)) {
ath6kl_err("ath6kl_wmi_dix_2_dot3 failed\n");
goto fail_tx;
}
if ((dev->features & NETIF_F_IP_CSUM) &&
(csum == CHECKSUM_PARTIAL)) {
meta_v2.csum_start = csum_start;
meta_v2.csum_dest = csum_dest;
/* instruct target to calculate checksum */
meta_v2.csum_flags = WMI_META_V2_FLAG_CSUM_OFFLOAD;
meta_ver = WMI_META_VERSION_2;
meta = &meta_v2;
} else {
meta_ver = 0;
meta = NULL;
}
ret = ath6kl_wmi_data_hdr_add(ar->wmi, skb,
DATA_MSGTYPE, flags, 0,
meta_ver,
meta, vif->fw_vif_idx);
if (ret) {
ath6kl_warn("failed to add wmi data header:%d\n"
, ret);
goto fail_tx;
}
if ((vif->nw_type == ADHOC_NETWORK) &&
ar->ibss_ps_enable && test_bit(CONNECTED, &vif->flags))
chk_adhoc_ps_mapping = true;
else {
/* get the stream mapping */
ret = ath6kl_wmi_implicit_create_pstream(ar->wmi,
vif->fw_vif_idx, skb,
0, test_bit(WMM_ENABLED, &vif->flags), &ac);
if (ret)
goto fail_tx;
}
} else
goto fail_tx;
spin_lock_bh(&ar->lock);
if (chk_adhoc_ps_mapping)
eid = ath6kl_ibss_map_epid(skb, dev, &map_no);
else
eid = ar->ac2ep_map[ac];
if (eid == 0 || eid == ENDPOINT_UNUSED) {
ath6kl_err("eid %d is not mapped!\n", eid);
spin_unlock_bh(&ar->lock);
goto fail_tx;
}
/* allocate resource for this packet */
cookie = ath6kl_alloc_cookie(ar);
if (!cookie) {
spin_unlock_bh(&ar->lock);
goto fail_tx;
}
/* update counts while the lock is held */
ar->tx_pending[eid]++;
ar->total_tx_data_pend++;
spin_unlock_bh(&ar->lock);
if (!IS_ALIGNED((unsigned long) skb->data - HTC_HDR_LENGTH, 4) &&
skb_cloned(skb)) {
/*
* We will touch (move the buffer data to align it. Since the
* skb buffer is cloned and not only the header is changed, we
* have to copy it to allow the changes. Since we are copying
* the data here, we may as well align it by reserving suitable
* headroom to avoid the memmove in ath6kl_htc_tx_buf_align().
*/
struct sk_buff *nskb;
nskb = skb_copy_expand(skb, HTC_HDR_LENGTH, 0, GFP_ATOMIC);
if (nskb == NULL)
goto fail_tx;
kfree_skb(skb);
skb = nskb;
}
cookie->skb = skb;
cookie->map_no = map_no;
set_htc_pkt_info(&cookie->htc_pkt, cookie, skb->data, skb->len,
eid, htc_tag);
ath6kl_dbg_dump(ATH6KL_DBG_RAW_BYTES, __func__, "tx ",
skb->data, skb->len);
/*
* HTC interface is asynchronous, if this fails, cleanup will
* happen in the ath6kl_tx_complete callback.
*/
ath6kl_htc_tx(ar->htc_target, &cookie->htc_pkt);
return 0;
fail_tx:
dev_kfree_skb(skb);
vif->net_stats.tx_dropped++;
vif->net_stats.tx_aborted_errors++;
return 0;
}
/* indicate tx activity or inactivity on a WMI stream */
void ath6kl_indicate_tx_activity(void *devt, u8 traffic_class, bool active)
{
struct ath6kl *ar = devt;
enum htc_endpoint_id eid;
int i;
eid = ar->ac2ep_map[traffic_class];
if (!test_bit(WMI_ENABLED, &ar->flag))
goto notify_htc;
spin_lock_bh(&ar->lock);
ar->ac_stream_active[traffic_class] = active;
if (active) {
/*
* Keep track of the active stream with the highest
* priority.
*/
if (ar->ac_stream_pri_map[traffic_class] >
ar->hiac_stream_active_pri)
/* set the new highest active priority */
ar->hiac_stream_active_pri =
ar->ac_stream_pri_map[traffic_class];
} else {
/*
* We may have to search for the next active stream
* that is the highest priority.
*/
if (ar->hiac_stream_active_pri ==
ar->ac_stream_pri_map[traffic_class]) {
/*
* The highest priority stream just went inactive
* reset and search for the "next" highest "active"
* priority stream.
*/
ar->hiac_stream_active_pri = 0;
for (i = 0; i < WMM_NUM_AC; i++) {
if (ar->ac_stream_active[i] &&
(ar->ac_stream_pri_map[i] >
ar->hiac_stream_active_pri))
/*
* Set the new highest active
* priority.
*/
ar->hiac_stream_active_pri =
ar->ac_stream_pri_map[i];
}
}
}
spin_unlock_bh(&ar->lock);
notify_htc:
/* notify HTC, this may cause credit distribution changes */
ath6kl_htc_indicate_activity_change(ar->htc_target, eid, active);
}
enum htc_send_full_action ath6kl_tx_queue_full(struct htc_target *target,
struct htc_packet *packet)
{
struct ath6kl *ar = target->dev->ar;
struct ath6kl_vif *vif;
enum htc_endpoint_id endpoint = packet->endpoint;
enum htc_send_full_action action = HTC_SEND_FULL_KEEP;
if (endpoint == ar->ctrl_ep) {
/*
* Under normal WMI if this is getting full, then something
* is running rampant the host should not be exhausting the
* WMI queue with too many commands the only exception to
* this is during testing using endpointping.
*/
set_bit(WMI_CTRL_EP_FULL, &ar->flag);
ath6kl_err("wmi ctrl ep is full\n");
return action;
}
if (packet->info.tx.tag == ATH6KL_CONTROL_PKT_TAG)
return action;
/*
* The last MAX_HI_COOKIE_NUM "batch" of cookies are reserved for
* the highest active stream.
*/
if (ar->ac_stream_pri_map[ar->ep2ac_map[endpoint]] <
ar->hiac_stream_active_pri &&
ar->cookie_count <= MAX_HI_COOKIE_NUM)
/*
* Give preference to the highest priority stream by
* dropping the packets which overflowed.
*/
action = HTC_SEND_FULL_DROP;
/* FIXME: Locking */
spin_lock_bh(&ar->list_lock);
list_for_each_entry(vif, &ar->vif_list, list) {
if (vif->nw_type == ADHOC_NETWORK ||
action != HTC_SEND_FULL_DROP) {
spin_unlock_bh(&ar->list_lock);
set_bit(NETQ_STOPPED, &vif->flags);
netif_stop_queue(vif->ndev);
return action;
}
}
spin_unlock_bh(&ar->list_lock);
return action;
}
/* TODO this needs to be looked at */
static void ath6kl_tx_clear_node_map(struct ath6kl_vif *vif,
enum htc_endpoint_id eid, u32 map_no)
{
struct ath6kl *ar = vif->ar;
u32 i;
if (vif->nw_type != ADHOC_NETWORK)
return;
if (!ar->ibss_ps_enable)
return;
if (eid == ar->ctrl_ep)
return;
if (map_no == 0)
return;
map_no--;
ar->node_map[map_no].tx_pend--;
if (ar->node_map[map_no].tx_pend)
return;
if (map_no != (ar->node_num - 1))
return;
for (i = ar->node_num; i > 0; i--) {
if (ar->node_map[i - 1].tx_pend)
break;
memset(&ar->node_map[i - 1], 0,
sizeof(struct ath6kl_node_mapping));
ar->node_num--;
}
}
void ath6kl_tx_complete(void *context, struct list_head *packet_queue)
{
struct ath6kl *ar = context;
struct sk_buff_head skb_queue;
struct htc_packet *packet;
struct sk_buff *skb;
struct ath6kl_cookie *ath6kl_cookie;
u32 map_no = 0;
int status;
enum htc_endpoint_id eid;
bool wake_event = false;
bool flushing[ATH6KL_VIF_MAX] = {false};
u8 if_idx;
struct ath6kl_vif *vif;
skb_queue_head_init(&skb_queue);
/* lock the driver as we update internal state */
spin_lock_bh(&ar->lock);
/* reap completed packets */
while (!list_empty(packet_queue)) {
packet = list_first_entry(packet_queue, struct htc_packet,
list);
list_del(&packet->list);
ath6kl_cookie = (struct ath6kl_cookie *)packet->pkt_cntxt;
if (!ath6kl_cookie)
goto fatal;
status = packet->status;
skb = ath6kl_cookie->skb;
eid = packet->endpoint;
map_no = ath6kl_cookie->map_no;
if (!skb || !skb->data)
goto fatal;
__skb_queue_tail(&skb_queue, skb);
if (!status && (packet->act_len != skb->len))
goto fatal;
ar->tx_pending[eid]--;
if (eid != ar->ctrl_ep)
ar->total_tx_data_pend--;
if (eid == ar->ctrl_ep) {
if (test_bit(WMI_CTRL_EP_FULL, &ar->flag))
clear_bit(WMI_CTRL_EP_FULL, &ar->flag);
if (ar->tx_pending[eid] == 0)
wake_event = true;
}
if (eid == ar->ctrl_ep) {
if_idx = wmi_cmd_hdr_get_if_idx(
(struct wmi_cmd_hdr *) packet->buf);
} else {
if_idx = wmi_data_hdr_get_if_idx(
(struct wmi_data_hdr *) packet->buf);
}
vif = ath6kl_get_vif_by_index(ar, if_idx);
if (!vif) {
ath6kl_free_cookie(ar, ath6kl_cookie);
continue;
}
if (status) {
if (status == -ECANCELED)
/* a packet was flushed */
flushing[if_idx] = true;
vif->net_stats.tx_errors++;
if (status != -ENOSPC && status != -ECANCELED)
ath6kl_warn("tx complete error: %d\n", status);
ath6kl_dbg(ATH6KL_DBG_WLAN_TX,
"%s: skb=0x%p data=0x%p len=0x%x eid=%d %s\n",
__func__, skb, packet->buf, packet->act_len,
eid, "error!");
} else {
ath6kl_dbg(ATH6KL_DBG_WLAN_TX,
"%s: skb=0x%p data=0x%p len=0x%x eid=%d %s\n",
__func__, skb, packet->buf, packet->act_len,
eid, "OK");
flushing[if_idx] = false;
vif->net_stats.tx_packets++;
vif->net_stats.tx_bytes += skb->len;
}
ath6kl_tx_clear_node_map(vif, eid, map_no);
ath6kl_free_cookie(ar, ath6kl_cookie);
if (test_bit(NETQ_STOPPED, &vif->flags))
clear_bit(NETQ_STOPPED, &vif->flags);
}
spin_unlock_bh(&ar->lock);
__skb_queue_purge(&skb_queue);
/* FIXME: Locking */
spin_lock_bh(&ar->list_lock);
list_for_each_entry(vif, &ar->vif_list, list) {
if (test_bit(CONNECTED, &vif->flags) &&
!flushing[vif->fw_vif_idx]) {
spin_unlock_bh(&ar->list_lock);
netif_wake_queue(vif->ndev);
spin_lock_bh(&ar->list_lock);
}
}
spin_unlock_bh(&ar->list_lock);
if (wake_event)
wake_up(&ar->event_wq);
return;
fatal:
WARN_ON(1);
spin_unlock_bh(&ar->lock);
return;
}
void ath6kl_tx_data_cleanup(struct ath6kl *ar)
{
int i;
/* flush all the data (non-control) streams */
for (i = 0; i < WMM_NUM_AC; i++)
ath6kl_htc_flush_txep(ar->htc_target, ar->ac2ep_map[i],
ATH6KL_DATA_PKT_TAG);
}
/* Rx functions */
static void ath6kl_deliver_frames_to_nw_stack(struct net_device *dev,
struct sk_buff *skb)
{
if (!skb)
return;
skb->dev = dev;
if (!(skb->dev->flags & IFF_UP)) {
dev_kfree_skb(skb);
return;
}
skb->protocol = eth_type_trans(skb, skb->dev);
netif_rx_ni(skb);
}
static void ath6kl_alloc_netbufs(struct sk_buff_head *q, u16 num)
{
struct sk_buff *skb;
while (num) {
skb = ath6kl_buf_alloc(ATH6KL_BUFFER_SIZE);
if (!skb) {
ath6kl_err("netbuf allocation failed\n");
return;
}
skb_queue_tail(q, skb);
num--;
}
}
static struct sk_buff *aggr_get_free_skb(struct aggr_info *p_aggr)
{
struct sk_buff *skb = NULL;
if (skb_queue_len(&p_aggr->rx_amsdu_freeq) <
(AGGR_NUM_OF_FREE_NETBUFS >> 2))
ath6kl_alloc_netbufs(&p_aggr->rx_amsdu_freeq,
AGGR_NUM_OF_FREE_NETBUFS);
skb = skb_dequeue(&p_aggr->rx_amsdu_freeq);
return skb;
}
void ath6kl_rx_refill(struct htc_target *target, enum htc_endpoint_id endpoint)
{
struct ath6kl *ar = target->dev->ar;
struct sk_buff *skb;
int rx_buf;
int n_buf_refill;
struct htc_packet *packet;
struct list_head queue;
n_buf_refill = ATH6KL_MAX_RX_BUFFERS -
ath6kl_htc_get_rxbuf_num(ar->htc_target, endpoint);
if (n_buf_refill <= 0)
return;
INIT_LIST_HEAD(&queue);
ath6kl_dbg(ATH6KL_DBG_WLAN_RX,
"%s: providing htc with %d buffers at eid=%d\n",
__func__, n_buf_refill, endpoint);
for (rx_buf = 0; rx_buf < n_buf_refill; rx_buf++) {
skb = ath6kl_buf_alloc(ATH6KL_BUFFER_SIZE);
if (!skb)
break;
packet = (struct htc_packet *) skb->head;
if (!IS_ALIGNED((unsigned long) skb->data, 4))
skb->data = PTR_ALIGN(skb->data - 4, 4);
set_htc_rxpkt_info(packet, skb, skb->data,
ATH6KL_BUFFER_SIZE, endpoint);
list_add_tail(&packet->list, &queue);
}
if (!list_empty(&queue))
ath6kl_htc_add_rxbuf_multiple(ar->htc_target, &queue);
}
void ath6kl_refill_amsdu_rxbufs(struct ath6kl *ar, int count)
{
struct htc_packet *packet;
struct sk_buff *skb;
while (count) {
skb = ath6kl_buf_alloc(ATH6KL_AMSDU_BUFFER_SIZE);
if (!skb)
return;
packet = (struct htc_packet *) skb->head;
if (!IS_ALIGNED((unsigned long) skb->data, 4))
skb->data = PTR_ALIGN(skb->data - 4, 4);
set_htc_rxpkt_info(packet, skb, skb->data,
ATH6KL_AMSDU_BUFFER_SIZE, 0);
spin_lock_bh(&ar->lock);
list_add_tail(&packet->list, &ar->amsdu_rx_buffer_queue);
spin_unlock_bh(&ar->lock);
count--;
}
}
/*
* Callback to allocate a receive buffer for a pending packet. We use a
* pre-allocated list of buffers of maximum AMSDU size (4K).
*/
struct htc_packet *ath6kl_alloc_amsdu_rxbuf(struct htc_target *target,
enum htc_endpoint_id endpoint,
int len)
{
struct ath6kl *ar = target->dev->ar;
struct htc_packet *packet = NULL;
struct list_head *pkt_pos;
int refill_cnt = 0, depth = 0;
ath6kl_dbg(ATH6KL_DBG_WLAN_RX, "%s: eid=%d, len:%d\n",
__func__, endpoint, len);
if ((len <= ATH6KL_BUFFER_SIZE) ||
(len > ATH6KL_AMSDU_BUFFER_SIZE))
return NULL;
spin_lock_bh(&ar->lock);
if (list_empty(&ar->amsdu_rx_buffer_queue)) {
spin_unlock_bh(&ar->lock);
refill_cnt = ATH6KL_MAX_AMSDU_RX_BUFFERS;
goto refill_buf;
}
packet = list_first_entry(&ar->amsdu_rx_buffer_queue,
struct htc_packet, list);
list_del(&packet->list);
list_for_each(pkt_pos, &ar->amsdu_rx_buffer_queue)
depth++;
refill_cnt = ATH6KL_MAX_AMSDU_RX_BUFFERS - depth;
spin_unlock_bh(&ar->lock);
/* set actual endpoint ID */
packet->endpoint = endpoint;
refill_buf:
if (refill_cnt >= ATH6KL_AMSDU_REFILL_THRESHOLD)
ath6kl_refill_amsdu_rxbufs(ar, refill_cnt);
return packet;
}
static void aggr_slice_amsdu(struct aggr_info *p_aggr,
struct rxtid *rxtid, struct sk_buff *skb)
{
struct sk_buff *new_skb;
struct ethhdr *hdr;
u16 frame_8023_len, payload_8023_len, mac_hdr_len, amsdu_len;
u8 *framep;
mac_hdr_len = sizeof(struct ethhdr);
framep = skb->data + mac_hdr_len;
amsdu_len = skb->len - mac_hdr_len;
while (amsdu_len > mac_hdr_len) {
hdr = (struct ethhdr *) framep;
payload_8023_len = ntohs(hdr->h_proto);
if (payload_8023_len < MIN_MSDU_SUBFRAME_PAYLOAD_LEN ||
payload_8023_len > MAX_MSDU_SUBFRAME_PAYLOAD_LEN) {
ath6kl_err("802.3 AMSDU frame bound check failed. len %d\n",
payload_8023_len);
break;
}
frame_8023_len = payload_8023_len + mac_hdr_len;
new_skb = aggr_get_free_skb(p_aggr);
if (!new_skb) {
ath6kl_err("no buffer available\n");
break;
}
memcpy(new_skb->data, framep, frame_8023_len);
skb_put(new_skb, frame_8023_len);
if (ath6kl_wmi_dot3_2_dix(new_skb)) {
ath6kl_err("dot3_2_dix error\n");
dev_kfree_skb(new_skb);
break;
}
skb_queue_tail(&rxtid->q, new_skb);
/* Is this the last subframe within this aggregate ? */
if ((amsdu_len - frame_8023_len) == 0)
break;
/* Add the length of A-MSDU subframe padding bytes -
* Round to nearest word.
*/
frame_8023_len = ALIGN(frame_8023_len, 4);
framep += frame_8023_len;
amsdu_len -= frame_8023_len;
}
dev_kfree_skb(skb);
}
static void aggr_deque_frms(struct aggr_info_conn *agg_conn, u8 tid,
u16 seq_no, u8 order)
{
struct sk_buff *skb;
struct rxtid *rxtid;
struct skb_hold_q *node;
u16 idx, idx_end, seq_end;
struct rxtid_stats *stats;
rxtid = &agg_conn->rx_tid[tid];
stats = &agg_conn->stat[tid];
idx = AGGR_WIN_IDX(rxtid->seq_next, rxtid->hold_q_sz);
/*
* idx_end is typically the last possible frame in the window,
* but changes to 'the' seq_no, when BAR comes. If seq_no
* is non-zero, we will go up to that and stop.
* Note: last seq no in current window will occupy the same
* index position as index that is just previous to start.
* An imp point : if win_sz is 7, for seq_no space of 4095,
* then, there would be holes when sequence wrap around occurs.
* Target should judiciously choose the win_sz, based on
* this condition. For 4095, (TID_WINDOW_SZ = 2 x win_sz
* 2, 4, 8, 16 win_sz works fine).
* We must deque from "idx" to "idx_end", including both.
*/
seq_end = seq_no ? seq_no : rxtid->seq_next;
idx_end = AGGR_WIN_IDX(seq_end, rxtid->hold_q_sz);
spin_lock_bh(&rxtid->lock);
do {
node = &rxtid->hold_q[idx];
if ((order == 1) && (!node->skb))
break;
if (node->skb) {
if (node->is_amsdu)
aggr_slice_amsdu(agg_conn->aggr_info, rxtid,
node->skb);
else
skb_queue_tail(&rxtid->q, node->skb);
node->skb = NULL;
} else
stats->num_hole++;
rxtid->seq_next = ATH6KL_NEXT_SEQ_NO(rxtid->seq_next);
idx = AGGR_WIN_IDX(rxtid->seq_next, rxtid->hold_q_sz);
} while (idx != idx_end);
spin_unlock_bh(&rxtid->lock);
stats->num_delivered += skb_queue_len(&rxtid->q);
while ((skb = skb_dequeue(&rxtid->q)))
ath6kl_deliver_frames_to_nw_stack(agg_conn->dev, skb);
}
static bool aggr_process_recv_frm(struct aggr_info_conn *agg_conn, u8 tid,
u16 seq_no,
bool is_amsdu, struct sk_buff *frame)
{
struct rxtid *rxtid;
struct rxtid_stats *stats;
struct sk_buff *skb;
struct skb_hold_q *node;
u16 idx, st, cur, end;
bool is_queued = false;
u16 extended_end;
rxtid = &agg_conn->rx_tid[tid];
stats = &agg_conn->stat[tid];
stats->num_into_aggr++;
if (!rxtid->aggr) {
if (is_amsdu) {
aggr_slice_amsdu(agg_conn->aggr_info, rxtid, frame);
is_queued = true;
stats->num_amsdu++;
while ((skb = skb_dequeue(&rxtid->q)))
ath6kl_deliver_frames_to_nw_stack(agg_conn->dev,
skb);
}
return is_queued;
}
/* Check the incoming sequence no, if it's in the window */
st = rxtid->seq_next;
cur = seq_no;
end = (st + rxtid->hold_q_sz-1) & ATH6KL_MAX_SEQ_NO;
if (((st < end) && (cur < st || cur > end)) ||
((st > end) && (cur > end) && (cur < st))) {
extended_end = (end + rxtid->hold_q_sz - 1) &
ATH6KL_MAX_SEQ_NO;
if (((end < extended_end) &&
(cur < end || cur > extended_end)) ||
((end > extended_end) && (cur > extended_end) &&
(cur < end))) {
aggr_deque_frms(agg_conn, tid, 0, 0);
if (cur >= rxtid->hold_q_sz - 1)
rxtid->seq_next = cur - (rxtid->hold_q_sz - 1);
else
rxtid->seq_next = ATH6KL_MAX_SEQ_NO -
(rxtid->hold_q_sz - 2 - cur);
} else {
/*
* Dequeue only those frames that are outside the
* new shifted window.
*/
if (cur >= rxtid->hold_q_sz - 1)
st = cur - (rxtid->hold_q_sz - 1);
else
st = ATH6KL_MAX_SEQ_NO -
(rxtid->hold_q_sz - 2 - cur);
aggr_deque_frms(agg_conn, tid, st, 0);
}
stats->num_oow++;
}
idx = AGGR_WIN_IDX(seq_no, rxtid->hold_q_sz);
node = &rxtid->hold_q[idx];
spin_lock_bh(&rxtid->lock);
/*
* Is the cur frame duplicate or something beyond our window(hold_q
* -> which is 2x, already)?
*
* 1. Duplicate is easy - drop incoming frame.
* 2. Not falling in current sliding window.
* 2a. is the frame_seq_no preceding current tid_seq_no?
* -> drop the frame. perhaps sender did not get our ACK.
* this is taken care of above.
* 2b. is the frame_seq_no beyond window(st, TID_WINDOW_SZ);
* -> Taken care of it above, by moving window forward.
*/
dev_kfree_skb(node->skb);
stats->num_dups++;
node->skb = frame;
is_queued = true;
node->is_amsdu = is_amsdu;
node->seq_no = seq_no;
if (node->is_amsdu)
stats->num_amsdu++;
else
stats->num_mpdu++;
spin_unlock_bh(&rxtid->lock);
aggr_deque_frms(agg_conn, tid, 0, 1);
if (agg_conn->timer_scheduled)
rxtid->progress = true;
else
for (idx = 0 ; idx < rxtid->hold_q_sz; idx++) {
if (rxtid->hold_q[idx].skb) {
/*
* There is a frame in the queue and no
* timer so start a timer to ensure that
* the frame doesn't remain stuck
* forever.
*/
agg_conn->timer_scheduled = true;
mod_timer(&agg_conn->timer,
(jiffies +
HZ * (AGGR_RX_TIMEOUT) / 1000));
rxtid->progress = false;
rxtid->timer_mon = true;
break;
}
}
return is_queued;
}
static void ath6kl_uapsd_trigger_frame_rx(struct ath6kl_vif *vif,
struct ath6kl_sta *conn)
{
struct ath6kl *ar = vif->ar;
bool is_apsdq_empty, is_apsdq_empty_at_start;
u32 num_frames_to_deliver, flags;
struct sk_buff *skb = NULL;
/*
* If the APSD q for this STA is not empty, dequeue and
* send a pkt from the head of the q. Also update the
* More data bit in the WMI_DATA_HDR if there are
* more pkts for this STA in the APSD q.
* If there are no more pkts for this STA,
* update the APSD bitmap for this STA.
*/
num_frames_to_deliver = (conn->apsd_info >> ATH6KL_APSD_NUM_OF_AC) &
ATH6KL_APSD_FRAME_MASK;
/*
* Number of frames to send in a service period is
* indicated by the station
* in the QOS_INFO of the association request
* If it is zero, send all frames
*/
if (!num_frames_to_deliver)
num_frames_to_deliver = ATH6KL_APSD_ALL_FRAME;
spin_lock_bh(&conn->psq_lock);
is_apsdq_empty = skb_queue_empty(&conn->apsdq);
spin_unlock_bh(&conn->psq_lock);
is_apsdq_empty_at_start = is_apsdq_empty;
while ((!is_apsdq_empty) && (num_frames_to_deliver)) {
spin_lock_bh(&conn->psq_lock);
skb = skb_dequeue(&conn->apsdq);
is_apsdq_empty = skb_queue_empty(&conn->apsdq);
spin_unlock_bh(&conn->psq_lock);
/*
* Set the STA flag to Trigger delivery,
* so that the frame will go out
*/
conn->sta_flags |= STA_PS_APSD_TRIGGER;
num_frames_to_deliver--;
/* Last frame in the service period, set EOSP or queue empty */
if ((is_apsdq_empty) || (!num_frames_to_deliver))
conn->sta_flags |= STA_PS_APSD_EOSP;
ath6kl_data_tx(skb, vif->ndev);
conn->sta_flags &= ~(STA_PS_APSD_TRIGGER);
conn->sta_flags &= ~(STA_PS_APSD_EOSP);
}
if (is_apsdq_empty) {
if (is_apsdq_empty_at_start)
flags = WMI_AP_APSD_NO_DELIVERY_FRAMES;
else
flags = 0;
ath6kl_wmi_set_apsd_bfrd_traf(ar->wmi,
vif->fw_vif_idx,
conn->aid, 0, flags);
}
return;
}
void ath6kl_rx(struct htc_target *target, struct htc_packet *packet)
{
struct ath6kl *ar = target->dev->ar;
struct sk_buff *skb = packet->pkt_cntxt;
struct wmi_rx_meta_v2 *meta;
struct wmi_data_hdr *dhdr;
int min_hdr_len;
u8 meta_type, dot11_hdr = 0;
int status = packet->status;
enum htc_endpoint_id ept = packet->endpoint;
bool is_amsdu, prev_ps, ps_state = false;
bool trig_state = false;
struct ath6kl_sta *conn = NULL;
struct sk_buff *skb1 = NULL;
struct ethhdr *datap = NULL;
struct ath6kl_vif *vif;
struct aggr_info_conn *aggr_conn;
u16 seq_no, offset;
u8 tid, if_idx;
ath6kl_dbg(ATH6KL_DBG_WLAN_RX,
"%s: ar=0x%p eid=%d, skb=0x%p, data=0x%p, len=0x%x status:%d",
__func__, ar, ept, skb, packet->buf,
packet->act_len, status);
if (status || !(skb->data + HTC_HDR_LENGTH)) {
dev_kfree_skb(skb);
return;
}
skb_put(skb, packet->act_len + HTC_HDR_LENGTH);
skb_pull(skb, HTC_HDR_LENGTH);
if (ept == ar->ctrl_ep) {
if_idx =
wmi_cmd_hdr_get_if_idx((struct wmi_cmd_hdr *) skb->data);
} else {
if_idx =
wmi_data_hdr_get_if_idx((struct wmi_data_hdr *) skb->data);
}
vif = ath6kl_get_vif_by_index(ar, if_idx);
if (!vif) {
dev_kfree_skb(skb);
return;
}
/*
* Take lock to protect buffer counts and adaptive power throughput
* state.
*/
spin_lock_bh(&vif->if_lock);
vif->net_stats.rx_packets++;
vif->net_stats.rx_bytes += packet->act_len;
spin_unlock_bh(&vif->if_lock);
ath6kl_dbg_dump(ATH6KL_DBG_RAW_BYTES, __func__, "rx ",
skb->data, skb->len);
skb->dev = vif->ndev;
if (!test_bit(WMI_ENABLED, &ar->flag)) {
if (EPPING_ALIGNMENT_PAD > 0)
skb_pull(skb, EPPING_ALIGNMENT_PAD);
ath6kl_deliver_frames_to_nw_stack(vif->ndev, skb);
return;
}
ath6kl_check_wow_status(ar);
if (ept == ar->ctrl_ep) {
ath6kl_wmi_control_rx(ar->wmi, skb);
return;
}
min_hdr_len = sizeof(struct ethhdr) + sizeof(struct wmi_data_hdr) +
sizeof(struct ath6kl_llc_snap_hdr);
dhdr = (struct wmi_data_hdr *) skb->data;
/*
* In the case of AP mode we may receive NULL data frames
* that do not have LLC hdr. They are 16 bytes in size.
* Allow these frames in the AP mode.
*/
if (vif->nw_type != AP_NETWORK &&
((packet->act_len < min_hdr_len) ||
(packet->act_len > WMI_MAX_AMSDU_RX_DATA_FRAME_LENGTH))) {
ath6kl_info("frame len is too short or too long\n");
vif->net_stats.rx_errors++;
vif->net_stats.rx_length_errors++;
dev_kfree_skb(skb);
return;
}
/* Get the Power save state of the STA */
if (vif->nw_type == AP_NETWORK) {
meta_type = wmi_data_hdr_get_meta(dhdr);
ps_state = !!((dhdr->info >> WMI_DATA_HDR_PS_SHIFT) &
WMI_DATA_HDR_PS_MASK);
offset = sizeof(struct wmi_data_hdr);
trig_state = !!(le16_to_cpu(dhdr->info3) & WMI_DATA_HDR_TRIG);
switch (meta_type) {
case 0:
break;
case WMI_META_VERSION_1:
offset += sizeof(struct wmi_rx_meta_v1);
break;
case WMI_META_VERSION_2:
offset += sizeof(struct wmi_rx_meta_v2);
break;
default:
break;
}
datap = (struct ethhdr *) (skb->data + offset);
conn = ath6kl_find_sta(vif, datap->h_source);
if (!conn) {
dev_kfree_skb(skb);
return;
}
/*
* If there is a change in PS state of the STA,
* take appropriate steps:
*
* 1. If Sleep-->Awake, flush the psq for the STA
* Clear the PVB for the STA.
* 2. If Awake-->Sleep, Starting queueing frames
* the STA.
*/
prev_ps = !!(conn->sta_flags & STA_PS_SLEEP);
if (ps_state)
conn->sta_flags |= STA_PS_SLEEP;
else
conn->sta_flags &= ~STA_PS_SLEEP;
/* Accept trigger only when the station is in sleep */
if ((conn->sta_flags & STA_PS_SLEEP) && trig_state)
ath6kl_uapsd_trigger_frame_rx(vif, conn);
if (prev_ps ^ !!(conn->sta_flags & STA_PS_SLEEP)) {
if (!(conn->sta_flags & STA_PS_SLEEP)) {
struct sk_buff *skbuff = NULL;
bool is_apsdq_empty;
spin_lock_bh(&conn->psq_lock);
while ((skbuff = skb_dequeue(&conn->psq))) {
spin_unlock_bh(&conn->psq_lock);
ath6kl_data_tx(skbuff, vif->ndev);
spin_lock_bh(&conn->psq_lock);
}
is_apsdq_empty = skb_queue_empty(&conn->apsdq);
while ((skbuff = skb_dequeue(&conn->apsdq))) {
spin_unlock_bh(&conn->psq_lock);
ath6kl_data_tx(skbuff, vif->ndev);
spin_lock_bh(&conn->psq_lock);
}
spin_unlock_bh(&conn->psq_lock);
if (!is_apsdq_empty)
ath6kl_wmi_set_apsd_bfrd_traf(
ar->wmi,
vif->fw_vif_idx,
conn->aid, 0, 0);
/* Clear the PVB for this STA */
ath6kl_wmi_set_pvb_cmd(ar->wmi, vif->fw_vif_idx,
conn->aid, 0);
}
}
/* drop NULL data frames here */
if ((packet->act_len < min_hdr_len) ||
(packet->act_len >
WMI_MAX_AMSDU_RX_DATA_FRAME_LENGTH)) {
dev_kfree_skb(skb);
return;
}
}
is_amsdu = wmi_data_hdr_is_amsdu(dhdr) ? true : false;
tid = wmi_data_hdr_get_up(dhdr);
seq_no = wmi_data_hdr_get_seqno(dhdr);
meta_type = wmi_data_hdr_get_meta(dhdr);
dot11_hdr = wmi_data_hdr_get_dot11(dhdr);
skb_pull(skb, sizeof(struct wmi_data_hdr));
switch (meta_type) {
case WMI_META_VERSION_1:
skb_pull(skb, sizeof(struct wmi_rx_meta_v1));
break;
case WMI_META_VERSION_2:
meta = (struct wmi_rx_meta_v2 *) skb->data;
if (meta->csum_flags & 0x1) {
skb->ip_summed = CHECKSUM_COMPLETE;
skb->csum = (__force __wsum) meta->csum;
}
skb_pull(skb, sizeof(struct wmi_rx_meta_v2));
break;
default:
break;
}
if (dot11_hdr)
status = ath6kl_wmi_dot11_hdr_remove(ar->wmi, skb);
else if (!is_amsdu)
status = ath6kl_wmi_dot3_2_dix(skb);
if (status) {
/*
* Drop frames that could not be processed (lack of
* memory, etc.)
*/
dev_kfree_skb(skb);
return;
}
if (!(vif->ndev->flags & IFF_UP)) {
dev_kfree_skb(skb);
return;
}
if (vif->nw_type == AP_NETWORK) {
datap = (struct ethhdr *) skb->data;
if (is_multicast_ether_addr(datap->h_dest))
/*
* Bcast/Mcast frames should be sent to the
* OS stack as well as on the air.
*/
skb1 = skb_copy(skb, GFP_ATOMIC);
else {
/*
* Search for a connected STA with dstMac
* as the Mac address. If found send the
* frame to it on the air else send the
* frame up the stack.
*/
conn = ath6kl_find_sta(vif, datap->h_dest);
if (conn && ar->intra_bss) {
skb1 = skb;
skb = NULL;
} else if (conn && !ar->intra_bss) {
dev_kfree_skb(skb);
skb = NULL;
}
}
if (skb1)
ath6kl_data_tx(skb1, vif->ndev);
if (skb == NULL) {
/* nothing to deliver up the stack */
return;
}
}
datap = (struct ethhdr *) skb->data;
if (is_unicast_ether_addr(datap->h_dest)) {
if (vif->nw_type == AP_NETWORK) {
conn = ath6kl_find_sta(vif, datap->h_source);
if (!conn)
return;
aggr_conn = conn->aggr_conn;
} else
aggr_conn = vif->aggr_cntxt->aggr_conn;
if (aggr_process_recv_frm(aggr_conn, tid, seq_no,
is_amsdu, skb)) {
/* aggregation code will handle the skb */
return;
}
}
ath6kl_deliver_frames_to_nw_stack(vif->ndev, skb);
}
static void aggr_timeout(unsigned long arg)
{
u8 i, j;
struct aggr_info_conn *aggr_conn = (struct aggr_info_conn *) arg;
struct rxtid *rxtid;
struct rxtid_stats *stats;
for (i = 0; i < NUM_OF_TIDS; i++) {
rxtid = &aggr_conn->rx_tid[i];
stats = &aggr_conn->stat[i];
if (!rxtid->aggr || !rxtid->timer_mon || rxtid->progress)
continue;
stats->num_timeouts++;
ath6kl_dbg(ATH6KL_DBG_AGGR,
"aggr timeout (st %d end %d)\n",
rxtid->seq_next,
((rxtid->seq_next + rxtid->hold_q_sz-1) &
ATH6KL_MAX_SEQ_NO));
aggr_deque_frms(aggr_conn, i, 0, 0);
}
aggr_conn->timer_scheduled = false;
for (i = 0; i < NUM_OF_TIDS; i++) {
rxtid = &aggr_conn->rx_tid[i];
if (rxtid->aggr && rxtid->hold_q) {
for (j = 0; j < rxtid->hold_q_sz; j++) {
if (rxtid->hold_q[j].skb) {
aggr_conn->timer_scheduled = true;
rxtid->timer_mon = true;
rxtid->progress = false;
break;
}
}
if (j >= rxtid->hold_q_sz)
rxtid->timer_mon = false;
}
}
if (aggr_conn->timer_scheduled)
mod_timer(&aggr_conn->timer,
jiffies + msecs_to_jiffies(AGGR_RX_TIMEOUT));
}
static void aggr_delete_tid_state(struct aggr_info_conn *aggr_conn, u8 tid)
{
struct rxtid *rxtid;
struct rxtid_stats *stats;
if (!aggr_conn || tid >= NUM_OF_TIDS)
return;
rxtid = &aggr_conn->rx_tid[tid];
stats = &aggr_conn->stat[tid];
if (rxtid->aggr)
aggr_deque_frms(aggr_conn, tid, 0, 0);
rxtid->aggr = false;
rxtid->progress = false;
rxtid->timer_mon = false;
rxtid->win_sz = 0;
rxtid->seq_next = 0;
rxtid->hold_q_sz = 0;
kfree(rxtid->hold_q);
rxtid->hold_q = NULL;
memset(stats, 0, sizeof(struct rxtid_stats));
}
void aggr_recv_addba_req_evt(struct ath6kl_vif *vif, u8 tid_mux, u16 seq_no,
u8 win_sz)
{
struct ath6kl_sta *sta;
struct aggr_info_conn *aggr_conn = NULL;
struct rxtid *rxtid;
struct rxtid_stats *stats;
u16 hold_q_size;
u8 tid, aid;
if (vif->nw_type == AP_NETWORK) {
aid = ath6kl_get_aid(tid_mux);
sta = ath6kl_find_sta_by_aid(vif->ar, aid);
if (sta)
aggr_conn = sta->aggr_conn;
} else
aggr_conn = vif->aggr_cntxt->aggr_conn;
if (!aggr_conn)
return;
tid = ath6kl_get_tid(tid_mux);
if (tid >= NUM_OF_TIDS)
return;
rxtid = &aggr_conn->rx_tid[tid];
stats = &aggr_conn->stat[tid];
if (win_sz < AGGR_WIN_SZ_MIN || win_sz > AGGR_WIN_SZ_MAX)
ath6kl_dbg(ATH6KL_DBG_WLAN_RX, "%s: win_sz %d, tid %d\n",
__func__, win_sz, tid);
if (rxtid->aggr)
aggr_delete_tid_state(aggr_conn, tid);
rxtid->seq_next = seq_no;
hold_q_size = TID_WINDOW_SZ(win_sz) * sizeof(struct skb_hold_q);
rxtid->hold_q = kzalloc(hold_q_size, GFP_KERNEL);
if (!rxtid->hold_q)
return;
rxtid->win_sz = win_sz;
rxtid->hold_q_sz = TID_WINDOW_SZ(win_sz);
if (!skb_queue_empty(&rxtid->q))
return;
rxtid->aggr = true;
}
void aggr_conn_init(struct ath6kl_vif *vif, struct aggr_info *aggr_info,
struct aggr_info_conn *aggr_conn)
{
struct rxtid *rxtid;
u8 i;
aggr_conn->aggr_sz = AGGR_SZ_DEFAULT;
aggr_conn->dev = vif->ndev;
init_timer(&aggr_conn->timer);
aggr_conn->timer.function = aggr_timeout;
aggr_conn->timer.data = (unsigned long) aggr_conn;
aggr_conn->aggr_info = aggr_info;
aggr_conn->timer_scheduled = false;
for (i = 0; i < NUM_OF_TIDS; i++) {
rxtid = &aggr_conn->rx_tid[i];
rxtid->aggr = false;
rxtid->progress = false;
rxtid->timer_mon = false;
skb_queue_head_init(&rxtid->q);
spin_lock_init(&rxtid->lock);
}
}
struct aggr_info *aggr_init(struct ath6kl_vif *vif)
{
struct aggr_info *p_aggr = NULL;
p_aggr = kzalloc(sizeof(struct aggr_info), GFP_KERNEL);
if (!p_aggr) {
ath6kl_err("failed to alloc memory for aggr_node\n");
return NULL;
}
p_aggr->aggr_conn = kzalloc(sizeof(struct aggr_info_conn), GFP_KERNEL);
if (!p_aggr->aggr_conn) {
ath6kl_err("failed to alloc memory for connection specific aggr info\n");
kfree(p_aggr);
return NULL;
}
aggr_conn_init(vif, p_aggr, p_aggr->aggr_conn);
skb_queue_head_init(&p_aggr->rx_amsdu_freeq);
ath6kl_alloc_netbufs(&p_aggr->rx_amsdu_freeq, AGGR_NUM_OF_FREE_NETBUFS);
return p_aggr;
}
void aggr_recv_delba_req_evt(struct ath6kl_vif *vif, u8 tid_mux)
{
struct ath6kl_sta *sta;
struct rxtid *rxtid;
struct aggr_info_conn *aggr_conn = NULL;
u8 tid, aid;
if (vif->nw_type == AP_NETWORK) {
aid = ath6kl_get_aid(tid_mux);
sta = ath6kl_find_sta_by_aid(vif->ar, aid);
if (sta)
aggr_conn = sta->aggr_conn;
} else
aggr_conn = vif->aggr_cntxt->aggr_conn;
if (!aggr_conn)
return;
tid = ath6kl_get_tid(tid_mux);
if (tid >= NUM_OF_TIDS)
return;
rxtid = &aggr_conn->rx_tid[tid];
if (rxtid->aggr)
aggr_delete_tid_state(aggr_conn, tid);
}
void aggr_reset_state(struct aggr_info_conn *aggr_conn)
{
u8 tid;
if (!aggr_conn)
return;
if (aggr_conn->timer_scheduled) {
del_timer(&aggr_conn->timer);
aggr_conn->timer_scheduled = false;
}
for (tid = 0; tid < NUM_OF_TIDS; tid++)
aggr_delete_tid_state(aggr_conn, tid);
}
/* clean up our amsdu buffer list */
void ath6kl_cleanup_amsdu_rxbufs(struct ath6kl *ar)
{
struct htc_packet *packet, *tmp_pkt;
spin_lock_bh(&ar->lock);
if (list_empty(&ar->amsdu_rx_buffer_queue)) {
spin_unlock_bh(&ar->lock);
return;
}
list_for_each_entry_safe(packet, tmp_pkt, &ar->amsdu_rx_buffer_queue,
list) {
list_del(&packet->list);
spin_unlock_bh(&ar->lock);
dev_kfree_skb(packet->pkt_cntxt);
spin_lock_bh(&ar->lock);
}
spin_unlock_bh(&ar->lock);
}
void aggr_module_destroy(struct aggr_info *aggr_info)
{
if (!aggr_info)
return;
aggr_reset_state(aggr_info->aggr_conn);
skb_queue_purge(&aggr_info->rx_amsdu_freeq);
kfree(aggr_info->aggr_conn);
kfree(aggr_info);
}