| /* |
| * Copyright (c) 2011-2016 Synaptics Incorporated |
| * Copyright (c) 2011 Unixphere |
| * |
| * This driver provides the core support for a single RMI4-based device. |
| * |
| * The RMI4 specification can be found here (URL split for line length): |
| * |
| * http://www.synaptics.com/sites/default/files/ |
| * 511-000136-01-Rev-E-RMI4-Interfacing-Guide.pdf |
| * |
| * This program is free software; you can redistribute it and/or modify it |
| * under the terms of the GNU General Public License version 2 as published by |
| * the Free Software Foundation. |
| */ |
| |
| #include <linux/bitmap.h> |
| #include <linux/delay.h> |
| #include <linux/fs.h> |
| #include <linux/irq.h> |
| #include <linux/kconfig.h> |
| #include <linux/pm.h> |
| #include <linux/slab.h> |
| #include <linux/of.h> |
| #include <uapi/linux/input.h> |
| #include <linux/rmi.h> |
| #include "rmi_bus.h" |
| #include "rmi_driver.h" |
| |
| #define HAS_NONSTANDARD_PDT_MASK 0x40 |
| #define RMI4_MAX_PAGE 0xff |
| #define RMI4_PAGE_SIZE 0x100 |
| #define RMI4_PAGE_MASK 0xFF00 |
| |
| #define RMI_DEVICE_RESET_CMD 0x01 |
| #define DEFAULT_RESET_DELAY_MS 100 |
| |
| static void rmi_free_function_list(struct rmi_device *rmi_dev) |
| { |
| struct rmi_function *fn, *tmp; |
| struct rmi_driver_data *data = dev_get_drvdata(&rmi_dev->dev); |
| |
| rmi_dbg(RMI_DEBUG_CORE, &rmi_dev->dev, "Freeing function list\n"); |
| |
| data->f01_container = NULL; |
| |
| /* Doing it in the reverse order so F01 will be removed last */ |
| list_for_each_entry_safe_reverse(fn, tmp, |
| &data->function_list, node) { |
| list_del(&fn->node); |
| rmi_unregister_function(fn); |
| } |
| } |
| |
| static int reset_one_function(struct rmi_function *fn) |
| { |
| struct rmi_function_handler *fh; |
| int retval = 0; |
| |
| if (!fn || !fn->dev.driver) |
| return 0; |
| |
| fh = to_rmi_function_handler(fn->dev.driver); |
| if (fh->reset) { |
| retval = fh->reset(fn); |
| if (retval < 0) |
| dev_err(&fn->dev, "Reset failed with code %d.\n", |
| retval); |
| } |
| |
| return retval; |
| } |
| |
| static int configure_one_function(struct rmi_function *fn) |
| { |
| struct rmi_function_handler *fh; |
| int retval = 0; |
| |
| if (!fn || !fn->dev.driver) |
| return 0; |
| |
| fh = to_rmi_function_handler(fn->dev.driver); |
| if (fh->config) { |
| retval = fh->config(fn); |
| if (retval < 0) |
| dev_err(&fn->dev, "Config failed with code %d.\n", |
| retval); |
| } |
| |
| return retval; |
| } |
| |
| static int rmi_driver_process_reset_requests(struct rmi_device *rmi_dev) |
| { |
| struct rmi_driver_data *data = dev_get_drvdata(&rmi_dev->dev); |
| struct rmi_function *entry; |
| int retval; |
| |
| list_for_each_entry(entry, &data->function_list, node) { |
| retval = reset_one_function(entry); |
| if (retval < 0) |
| return retval; |
| } |
| |
| return 0; |
| } |
| |
| static int rmi_driver_process_config_requests(struct rmi_device *rmi_dev) |
| { |
| struct rmi_driver_data *data = dev_get_drvdata(&rmi_dev->dev); |
| struct rmi_function *entry; |
| int retval; |
| |
| list_for_each_entry(entry, &data->function_list, node) { |
| retval = configure_one_function(entry); |
| if (retval < 0) |
| return retval; |
| } |
| |
| return 0; |
| } |
| |
| static void process_one_interrupt(struct rmi_driver_data *data, |
| struct rmi_function *fn) |
| { |
| struct rmi_function_handler *fh; |
| |
| if (!fn || !fn->dev.driver) |
| return; |
| |
| fh = to_rmi_function_handler(fn->dev.driver); |
| if (fh->attention) { |
| bitmap_and(data->fn_irq_bits, data->irq_status, fn->irq_mask, |
| data->irq_count); |
| if (!bitmap_empty(data->fn_irq_bits, data->irq_count)) |
| fh->attention(fn, data->fn_irq_bits); |
| } |
| } |
| |
| static int rmi_process_interrupt_requests(struct rmi_device *rmi_dev) |
| { |
| struct rmi_driver_data *data = dev_get_drvdata(&rmi_dev->dev); |
| struct device *dev = &rmi_dev->dev; |
| struct rmi_function *entry; |
| int error; |
| |
| if (!data) |
| return 0; |
| |
| if (!rmi_dev->xport->attn_data) { |
| error = rmi_read_block(rmi_dev, |
| data->f01_container->fd.data_base_addr + 1, |
| data->irq_status, data->num_of_irq_regs); |
| if (error < 0) { |
| dev_err(dev, "Failed to read irqs, code=%d\n", error); |
| return error; |
| } |
| } |
| |
| mutex_lock(&data->irq_mutex); |
| bitmap_and(data->irq_status, data->irq_status, data->current_irq_mask, |
| data->irq_count); |
| /* |
| * At this point, irq_status has all bits that are set in the |
| * interrupt status register and are enabled. |
| */ |
| mutex_unlock(&data->irq_mutex); |
| |
| /* |
| * It would be nice to be able to use irq_chip to handle these |
| * nested IRQs. Unfortunately, most of the current customers for |
| * this driver are using older kernels (3.0.x) that don't support |
| * the features required for that. Once they've shifted to more |
| * recent kernels (say, 3.3 and higher), this should be switched to |
| * use irq_chip. |
| */ |
| list_for_each_entry(entry, &data->function_list, node) |
| process_one_interrupt(data, entry); |
| |
| if (data->input) |
| input_sync(data->input); |
| |
| return 0; |
| } |
| |
| static irqreturn_t rmi_irq_fn(int irq, void *dev_id) |
| { |
| struct rmi_device *rmi_dev = dev_id; |
| int ret; |
| |
| ret = rmi_process_interrupt_requests(rmi_dev); |
| if (ret) |
| rmi_dbg(RMI_DEBUG_CORE, &rmi_dev->dev, |
| "Failed to process interrupt request: %d\n", ret); |
| |
| return IRQ_HANDLED; |
| } |
| |
| static int rmi_irq_init(struct rmi_device *rmi_dev) |
| { |
| struct rmi_device_platform_data *pdata = rmi_get_platform_data(rmi_dev); |
| int irq_flags = irq_get_trigger_type(pdata->irq); |
| int ret; |
| |
| if (!irq_flags) |
| irq_flags = IRQF_TRIGGER_LOW; |
| |
| ret = devm_request_threaded_irq(&rmi_dev->dev, pdata->irq, NULL, |
| rmi_irq_fn, irq_flags | IRQF_ONESHOT, |
| dev_name(rmi_dev->xport->dev), |
| rmi_dev); |
| if (ret < 0) { |
| dev_err(&rmi_dev->dev, "Failed to register interrupt %d\n", |
| pdata->irq); |
| |
| return ret; |
| } |
| |
| return 0; |
| } |
| |
| static int suspend_one_function(struct rmi_function *fn) |
| { |
| struct rmi_function_handler *fh; |
| int retval = 0; |
| |
| if (!fn || !fn->dev.driver) |
| return 0; |
| |
| fh = to_rmi_function_handler(fn->dev.driver); |
| if (fh->suspend) { |
| retval = fh->suspend(fn); |
| if (retval < 0) |
| dev_err(&fn->dev, "Suspend failed with code %d.\n", |
| retval); |
| } |
| |
| return retval; |
| } |
| |
| static int rmi_suspend_functions(struct rmi_device *rmi_dev) |
| { |
| struct rmi_driver_data *data = dev_get_drvdata(&rmi_dev->dev); |
| struct rmi_function *entry; |
| int retval; |
| |
| list_for_each_entry(entry, &data->function_list, node) { |
| retval = suspend_one_function(entry); |
| if (retval < 0) |
| return retval; |
| } |
| |
| return 0; |
| } |
| |
| static int resume_one_function(struct rmi_function *fn) |
| { |
| struct rmi_function_handler *fh; |
| int retval = 0; |
| |
| if (!fn || !fn->dev.driver) |
| return 0; |
| |
| fh = to_rmi_function_handler(fn->dev.driver); |
| if (fh->resume) { |
| retval = fh->resume(fn); |
| if (retval < 0) |
| dev_err(&fn->dev, "Resume failed with code %d.\n", |
| retval); |
| } |
| |
| return retval; |
| } |
| |
| static int rmi_resume_functions(struct rmi_device *rmi_dev) |
| { |
| struct rmi_driver_data *data = dev_get_drvdata(&rmi_dev->dev); |
| struct rmi_function *entry; |
| int retval; |
| |
| list_for_each_entry(entry, &data->function_list, node) { |
| retval = resume_one_function(entry); |
| if (retval < 0) |
| return retval; |
| } |
| |
| return 0; |
| } |
| |
| static int enable_sensor(struct rmi_device *rmi_dev) |
| { |
| int retval = 0; |
| |
| retval = rmi_driver_process_config_requests(rmi_dev); |
| if (retval < 0) |
| return retval; |
| |
| return rmi_process_interrupt_requests(rmi_dev); |
| } |
| |
| /** |
| * rmi_driver_set_input_params - set input device id and other data. |
| * |
| * @rmi_dev: Pointer to an RMI device |
| * @input: Pointer to input device |
| * |
| */ |
| static int rmi_driver_set_input_params(struct rmi_device *rmi_dev, |
| struct input_dev *input) |
| { |
| input->name = SYNAPTICS_INPUT_DEVICE_NAME; |
| input->id.vendor = SYNAPTICS_VENDOR_ID; |
| input->id.bustype = BUS_RMI; |
| return 0; |
| } |
| |
| static void rmi_driver_set_input_name(struct rmi_device *rmi_dev, |
| struct input_dev *input) |
| { |
| struct rmi_driver_data *data = dev_get_drvdata(&rmi_dev->dev); |
| char *device_name = rmi_f01_get_product_ID(data->f01_container); |
| char *name; |
| |
| name = devm_kasprintf(&rmi_dev->dev, GFP_KERNEL, |
| "Synaptics %s", device_name); |
| if (!name) |
| return; |
| |
| input->name = name; |
| } |
| |
| static int rmi_driver_set_irq_bits(struct rmi_device *rmi_dev, |
| unsigned long *mask) |
| { |
| int error = 0; |
| struct rmi_driver_data *data = dev_get_drvdata(&rmi_dev->dev); |
| struct device *dev = &rmi_dev->dev; |
| |
| mutex_lock(&data->irq_mutex); |
| bitmap_or(data->new_irq_mask, |
| data->current_irq_mask, mask, data->irq_count); |
| |
| error = rmi_write_block(rmi_dev, |
| data->f01_container->fd.control_base_addr + 1, |
| data->new_irq_mask, data->num_of_irq_regs); |
| if (error < 0) { |
| dev_err(dev, "%s: Failed to change enabled interrupts!", |
| __func__); |
| goto error_unlock; |
| } |
| bitmap_copy(data->current_irq_mask, data->new_irq_mask, |
| data->num_of_irq_regs); |
| |
| error_unlock: |
| mutex_unlock(&data->irq_mutex); |
| return error; |
| } |
| |
| static int rmi_driver_clear_irq_bits(struct rmi_device *rmi_dev, |
| unsigned long *mask) |
| { |
| int error = 0; |
| struct rmi_driver_data *data = dev_get_drvdata(&rmi_dev->dev); |
| struct device *dev = &rmi_dev->dev; |
| |
| mutex_lock(&data->irq_mutex); |
| bitmap_andnot(data->new_irq_mask, |
| data->current_irq_mask, mask, data->irq_count); |
| |
| error = rmi_write_block(rmi_dev, |
| data->f01_container->fd.control_base_addr + 1, |
| data->new_irq_mask, data->num_of_irq_regs); |
| if (error < 0) { |
| dev_err(dev, "%s: Failed to change enabled interrupts!", |
| __func__); |
| goto error_unlock; |
| } |
| bitmap_copy(data->current_irq_mask, data->new_irq_mask, |
| data->num_of_irq_regs); |
| |
| error_unlock: |
| mutex_unlock(&data->irq_mutex); |
| return error; |
| } |
| |
| static int rmi_driver_reset_handler(struct rmi_device *rmi_dev) |
| { |
| struct rmi_driver_data *data = dev_get_drvdata(&rmi_dev->dev); |
| int error; |
| |
| /* |
| * Can get called before the driver is fully ready to deal with |
| * this situation. |
| */ |
| if (!data || !data->f01_container) { |
| dev_warn(&rmi_dev->dev, |
| "Not ready to handle reset yet!\n"); |
| return 0; |
| } |
| |
| error = rmi_read_block(rmi_dev, |
| data->f01_container->fd.control_base_addr + 1, |
| data->current_irq_mask, data->num_of_irq_regs); |
| if (error < 0) { |
| dev_err(&rmi_dev->dev, "%s: Failed to read current IRQ mask.\n", |
| __func__); |
| return error; |
| } |
| |
| error = rmi_driver_process_reset_requests(rmi_dev); |
| if (error < 0) |
| return error; |
| |
| error = rmi_driver_process_config_requests(rmi_dev); |
| if (error < 0) |
| return error; |
| |
| return 0; |
| } |
| |
| int rmi_read_pdt_entry(struct rmi_device *rmi_dev, struct pdt_entry *entry, |
| u16 pdt_address) |
| { |
| u8 buf[RMI_PDT_ENTRY_SIZE]; |
| int error; |
| |
| error = rmi_read_block(rmi_dev, pdt_address, buf, RMI_PDT_ENTRY_SIZE); |
| if (error) { |
| dev_err(&rmi_dev->dev, "Read PDT entry at %#06x failed, code: %d.\n", |
| pdt_address, error); |
| return error; |
| } |
| |
| entry->page_start = pdt_address & RMI4_PAGE_MASK; |
| entry->query_base_addr = buf[0]; |
| entry->command_base_addr = buf[1]; |
| entry->control_base_addr = buf[2]; |
| entry->data_base_addr = buf[3]; |
| entry->interrupt_source_count = buf[4] & RMI_PDT_INT_SOURCE_COUNT_MASK; |
| entry->function_version = (buf[4] & RMI_PDT_FUNCTION_VERSION_MASK) >> 5; |
| entry->function_number = buf[5]; |
| |
| return 0; |
| } |
| EXPORT_SYMBOL_GPL(rmi_read_pdt_entry); |
| |
| static void rmi_driver_copy_pdt_to_fd(const struct pdt_entry *pdt, |
| struct rmi_function_descriptor *fd) |
| { |
| fd->query_base_addr = pdt->query_base_addr + pdt->page_start; |
| fd->command_base_addr = pdt->command_base_addr + pdt->page_start; |
| fd->control_base_addr = pdt->control_base_addr + pdt->page_start; |
| fd->data_base_addr = pdt->data_base_addr + pdt->page_start; |
| fd->function_number = pdt->function_number; |
| fd->interrupt_source_count = pdt->interrupt_source_count; |
| fd->function_version = pdt->function_version; |
| } |
| |
| #define RMI_SCAN_CONTINUE 0 |
| #define RMI_SCAN_DONE 1 |
| |
| static int rmi_scan_pdt_page(struct rmi_device *rmi_dev, |
| int page, |
| int *empty_pages, |
| void *ctx, |
| int (*callback)(struct rmi_device *rmi_dev, |
| void *ctx, |
| const struct pdt_entry *entry)) |
| { |
| struct rmi_driver_data *data = dev_get_drvdata(&rmi_dev->dev); |
| struct pdt_entry pdt_entry; |
| u16 page_start = RMI4_PAGE_SIZE * page; |
| u16 pdt_start = page_start + PDT_START_SCAN_LOCATION; |
| u16 pdt_end = page_start + PDT_END_SCAN_LOCATION; |
| u16 addr; |
| int error; |
| int retval; |
| |
| for (addr = pdt_start; addr >= pdt_end; addr -= RMI_PDT_ENTRY_SIZE) { |
| error = rmi_read_pdt_entry(rmi_dev, &pdt_entry, addr); |
| if (error) |
| return error; |
| |
| if (RMI4_END_OF_PDT(pdt_entry.function_number)) |
| break; |
| |
| retval = callback(rmi_dev, ctx, &pdt_entry); |
| if (retval != RMI_SCAN_CONTINUE) |
| return retval; |
| } |
| |
| /* |
| * Count number of empty PDT pages. If a gap of two pages |
| * or more is found, stop scanning. |
| */ |
| if (addr == pdt_start) |
| ++*empty_pages; |
| else |
| *empty_pages = 0; |
| |
| return (data->f01_bootloader_mode || *empty_pages >= 2) ? |
| RMI_SCAN_DONE : RMI_SCAN_CONTINUE; |
| } |
| |
| static int rmi_scan_pdt(struct rmi_device *rmi_dev, void *ctx, |
| int (*callback)(struct rmi_device *rmi_dev, |
| void *ctx, |
| const struct pdt_entry *entry)) |
| { |
| int page; |
| int empty_pages = 0; |
| int retval = RMI_SCAN_DONE; |
| |
| for (page = 0; page <= RMI4_MAX_PAGE; page++) { |
| retval = rmi_scan_pdt_page(rmi_dev, page, &empty_pages, |
| ctx, callback); |
| if (retval != RMI_SCAN_CONTINUE) |
| break; |
| } |
| |
| return retval < 0 ? retval : 0; |
| } |
| |
| int rmi_read_register_desc(struct rmi_device *d, u16 addr, |
| struct rmi_register_descriptor *rdesc) |
| { |
| int ret; |
| u8 size_presence_reg; |
| u8 buf[35]; |
| int presense_offset = 1; |
| u8 *struct_buf; |
| int reg; |
| int offset = 0; |
| int map_offset = 0; |
| int i; |
| int b; |
| |
| /* |
| * The first register of the register descriptor is the size of |
| * the register descriptor's presense register. |
| */ |
| ret = rmi_read(d, addr, &size_presence_reg); |
| if (ret) |
| return ret; |
| ++addr; |
| |
| if (size_presence_reg < 0 || size_presence_reg > 35) |
| return -EIO; |
| |
| memset(buf, 0, sizeof(buf)); |
| |
| /* |
| * The presence register contains the size of the register structure |
| * and a bitmap which identified which packet registers are present |
| * for this particular register type (ie query, control, or data). |
| */ |
| ret = rmi_read_block(d, addr, buf, size_presence_reg); |
| if (ret) |
| return ret; |
| ++addr; |
| |
| if (buf[0] == 0) { |
| presense_offset = 3; |
| rdesc->struct_size = buf[1] | (buf[2] << 8); |
| } else { |
| rdesc->struct_size = buf[0]; |
| } |
| |
| for (i = presense_offset; i < size_presence_reg; i++) { |
| for (b = 0; b < 8; b++) { |
| if (buf[i] & (0x1 << b)) |
| bitmap_set(rdesc->presense_map, map_offset, 1); |
| ++map_offset; |
| } |
| } |
| |
| rdesc->num_registers = bitmap_weight(rdesc->presense_map, |
| RMI_REG_DESC_PRESENSE_BITS); |
| |
| rdesc->registers = devm_kzalloc(&d->dev, rdesc->num_registers * |
| sizeof(struct rmi_register_desc_item), |
| GFP_KERNEL); |
| if (!rdesc->registers) |
| return -ENOMEM; |
| |
| /* |
| * Allocate a temporary buffer to hold the register structure. |
| * I'm not using devm_kzalloc here since it will not be retained |
| * after exiting this function |
| */ |
| struct_buf = kzalloc(rdesc->struct_size, GFP_KERNEL); |
| if (!struct_buf) |
| return -ENOMEM; |
| |
| /* |
| * The register structure contains information about every packet |
| * register of this type. This includes the size of the packet |
| * register and a bitmap of all subpackets contained in the packet |
| * register. |
| */ |
| ret = rmi_read_block(d, addr, struct_buf, rdesc->struct_size); |
| if (ret) |
| goto free_struct_buff; |
| |
| reg = find_first_bit(rdesc->presense_map, RMI_REG_DESC_PRESENSE_BITS); |
| for (i = 0; i < rdesc->num_registers; i++) { |
| struct rmi_register_desc_item *item = &rdesc->registers[i]; |
| int reg_size = struct_buf[offset]; |
| |
| ++offset; |
| if (reg_size == 0) { |
| reg_size = struct_buf[offset] | |
| (struct_buf[offset + 1] << 8); |
| offset += 2; |
| } |
| |
| if (reg_size == 0) { |
| reg_size = struct_buf[offset] | |
| (struct_buf[offset + 1] << 8) | |
| (struct_buf[offset + 2] << 16) | |
| (struct_buf[offset + 3] << 24); |
| offset += 4; |
| } |
| |
| item->reg = reg; |
| item->reg_size = reg_size; |
| |
| map_offset = 0; |
| |
| do { |
| for (b = 0; b < 7; b++) { |
| if (struct_buf[offset] & (0x1 << b)) |
| bitmap_set(item->subpacket_map, |
| map_offset, 1); |
| ++map_offset; |
| } |
| } while (struct_buf[offset++] & 0x80); |
| |
| item->num_subpackets = bitmap_weight(item->subpacket_map, |
| RMI_REG_DESC_SUBPACKET_BITS); |
| |
| rmi_dbg(RMI_DEBUG_CORE, &d->dev, |
| "%s: reg: %d reg size: %ld subpackets: %d\n", __func__, |
| item->reg, item->reg_size, item->num_subpackets); |
| |
| reg = find_next_bit(rdesc->presense_map, |
| RMI_REG_DESC_PRESENSE_BITS, reg + 1); |
| } |
| |
| free_struct_buff: |
| kfree(struct_buf); |
| return ret; |
| } |
| EXPORT_SYMBOL_GPL(rmi_read_register_desc); |
| |
| const struct rmi_register_desc_item *rmi_get_register_desc_item( |
| struct rmi_register_descriptor *rdesc, u16 reg) |
| { |
| const struct rmi_register_desc_item *item; |
| int i; |
| |
| for (i = 0; i < rdesc->num_registers; i++) { |
| item = &rdesc->registers[i]; |
| if (item->reg == reg) |
| return item; |
| } |
| |
| return NULL; |
| } |
| EXPORT_SYMBOL_GPL(rmi_get_register_desc_item); |
| |
| size_t rmi_register_desc_calc_size(struct rmi_register_descriptor *rdesc) |
| { |
| const struct rmi_register_desc_item *item; |
| int i; |
| size_t size = 0; |
| |
| for (i = 0; i < rdesc->num_registers; i++) { |
| item = &rdesc->registers[i]; |
| size += item->reg_size; |
| } |
| return size; |
| } |
| EXPORT_SYMBOL_GPL(rmi_register_desc_calc_size); |
| |
| /* Compute the register offset relative to the base address */ |
| int rmi_register_desc_calc_reg_offset( |
| struct rmi_register_descriptor *rdesc, u16 reg) |
| { |
| const struct rmi_register_desc_item *item; |
| int offset = 0; |
| int i; |
| |
| for (i = 0; i < rdesc->num_registers; i++) { |
| item = &rdesc->registers[i]; |
| if (item->reg == reg) |
| return offset; |
| ++offset; |
| } |
| return -1; |
| } |
| EXPORT_SYMBOL_GPL(rmi_register_desc_calc_reg_offset); |
| |
| bool rmi_register_desc_has_subpacket(const struct rmi_register_desc_item *item, |
| u8 subpacket) |
| { |
| return find_next_bit(item->subpacket_map, RMI_REG_DESC_PRESENSE_BITS, |
| subpacket) == subpacket; |
| } |
| |
| /* Indicates that flash programming is enabled (bootloader mode). */ |
| #define RMI_F01_STATUS_BOOTLOADER(status) (!!((status) & 0x40)) |
| |
| /* |
| * Given the PDT entry for F01, read the device status register to determine |
| * if we're stuck in bootloader mode or not. |
| * |
| */ |
| static int rmi_check_bootloader_mode(struct rmi_device *rmi_dev, |
| const struct pdt_entry *pdt) |
| { |
| int error; |
| u8 device_status; |
| |
| error = rmi_read(rmi_dev, pdt->data_base_addr + pdt->page_start, |
| &device_status); |
| if (error) { |
| dev_err(&rmi_dev->dev, |
| "Failed to read device status: %d.\n", error); |
| return error; |
| } |
| |
| return RMI_F01_STATUS_BOOTLOADER(device_status); |
| } |
| |
| static int rmi_count_irqs(struct rmi_device *rmi_dev, |
| void *ctx, const struct pdt_entry *pdt) |
| { |
| struct rmi_driver_data *data = dev_get_drvdata(&rmi_dev->dev); |
| int *irq_count = ctx; |
| |
| *irq_count += pdt->interrupt_source_count; |
| if (pdt->function_number == 0x01) { |
| data->f01_bootloader_mode = |
| rmi_check_bootloader_mode(rmi_dev, pdt); |
| if (data->f01_bootloader_mode) |
| dev_warn(&rmi_dev->dev, |
| "WARNING: RMI4 device is in bootloader mode!\n"); |
| } |
| |
| return RMI_SCAN_CONTINUE; |
| } |
| |
| static int rmi_initial_reset(struct rmi_device *rmi_dev, |
| void *ctx, const struct pdt_entry *pdt) |
| { |
| int error; |
| |
| if (pdt->function_number == 0x01) { |
| u16 cmd_addr = pdt->page_start + pdt->command_base_addr; |
| u8 cmd_buf = RMI_DEVICE_RESET_CMD; |
| const struct rmi_device_platform_data *pdata = |
| rmi_get_platform_data(rmi_dev); |
| |
| if (rmi_dev->xport->ops->reset) { |
| error = rmi_dev->xport->ops->reset(rmi_dev->xport, |
| cmd_addr); |
| if (error) |
| return error; |
| |
| return RMI_SCAN_DONE; |
| } |
| |
| rmi_dbg(RMI_DEBUG_CORE, &rmi_dev->dev, "Sending reset\n"); |
| error = rmi_write_block(rmi_dev, cmd_addr, &cmd_buf, 1); |
| if (error) { |
| dev_err(&rmi_dev->dev, |
| "Initial reset failed. Code = %d.\n", error); |
| return error; |
| } |
| |
| mdelay(pdata->reset_delay_ms ?: DEFAULT_RESET_DELAY_MS); |
| |
| return RMI_SCAN_DONE; |
| } |
| |
| /* F01 should always be on page 0. If we don't find it there, fail. */ |
| return pdt->page_start == 0 ? RMI_SCAN_CONTINUE : -ENODEV; |
| } |
| |
| static int rmi_create_function(struct rmi_device *rmi_dev, |
| void *ctx, const struct pdt_entry *pdt) |
| { |
| struct device *dev = &rmi_dev->dev; |
| struct rmi_driver_data *data = dev_get_drvdata(&rmi_dev->dev); |
| int *current_irq_count = ctx; |
| struct rmi_function *fn; |
| int i; |
| int error; |
| |
| rmi_dbg(RMI_DEBUG_CORE, dev, "Initializing F%02X.\n", |
| pdt->function_number); |
| |
| fn = kzalloc(sizeof(struct rmi_function) + |
| BITS_TO_LONGS(data->irq_count) * sizeof(unsigned long), |
| GFP_KERNEL); |
| if (!fn) { |
| dev_err(dev, "Failed to allocate memory for F%02X\n", |
| pdt->function_number); |
| return -ENOMEM; |
| } |
| |
| INIT_LIST_HEAD(&fn->node); |
| rmi_driver_copy_pdt_to_fd(pdt, &fn->fd); |
| |
| fn->rmi_dev = rmi_dev; |
| |
| fn->num_of_irqs = pdt->interrupt_source_count; |
| fn->irq_pos = *current_irq_count; |
| *current_irq_count += fn->num_of_irqs; |
| |
| for (i = 0; i < fn->num_of_irqs; i++) |
| set_bit(fn->irq_pos + i, fn->irq_mask); |
| |
| error = rmi_register_function(fn); |
| if (error) |
| goto err_put_fn; |
| |
| if (pdt->function_number == 0x01) |
| data->f01_container = fn; |
| |
| list_add_tail(&fn->node, &data->function_list); |
| |
| return RMI_SCAN_CONTINUE; |
| |
| err_put_fn: |
| put_device(&fn->dev); |
| return error; |
| } |
| |
| int rmi_driver_suspend(struct rmi_device *rmi_dev, bool enable_wake) |
| { |
| struct rmi_device_platform_data *pdata = rmi_get_platform_data(rmi_dev); |
| int irq = pdata->irq; |
| int retval = 0; |
| |
| retval = rmi_suspend_functions(rmi_dev); |
| if (retval) |
| dev_warn(&rmi_dev->dev, "Failed to suspend functions: %d\n", |
| retval); |
| |
| disable_irq(irq); |
| if (enable_wake && device_may_wakeup(rmi_dev->xport->dev)) { |
| retval = enable_irq_wake(irq); |
| if (!retval) |
| dev_warn(&rmi_dev->dev, |
| "Failed to enable irq for wake: %d\n", |
| retval); |
| } |
| return retval; |
| } |
| EXPORT_SYMBOL_GPL(rmi_driver_suspend); |
| |
| int rmi_driver_resume(struct rmi_device *rmi_dev, bool clear_wake) |
| { |
| struct rmi_device_platform_data *pdata = rmi_get_platform_data(rmi_dev); |
| int irq = pdata->irq; |
| int retval; |
| |
| enable_irq(irq); |
| if (clear_wake && device_may_wakeup(rmi_dev->xport->dev)) { |
| retval = disable_irq_wake(irq); |
| if (!retval) |
| dev_warn(&rmi_dev->dev, |
| "Failed to disable irq for wake: %d\n", |
| retval); |
| } |
| |
| retval = rmi_resume_functions(rmi_dev); |
| if (retval) |
| dev_warn(&rmi_dev->dev, "Failed to suspend functions: %d\n", |
| retval); |
| |
| return retval; |
| } |
| EXPORT_SYMBOL_GPL(rmi_driver_resume); |
| |
| static int rmi_driver_remove(struct device *dev) |
| { |
| struct rmi_device *rmi_dev = to_rmi_device(dev); |
| struct rmi_device_platform_data *pdata = rmi_get_platform_data(rmi_dev); |
| int irq = pdata->irq; |
| |
| disable_irq(irq); |
| |
| rmi_free_function_list(rmi_dev); |
| |
| return 0; |
| } |
| |
| #ifdef CONFIG_OF |
| static int rmi_driver_of_probe(struct device *dev, |
| struct rmi_device_platform_data *pdata) |
| { |
| int retval; |
| |
| retval = rmi_of_property_read_u32(dev, &pdata->reset_delay_ms, |
| "syna,reset-delay-ms", 1); |
| if (retval) |
| return retval; |
| |
| return 0; |
| } |
| #else |
| static inline int rmi_driver_of_probe(struct device *dev, |
| struct rmi_device_platform_data *pdata) |
| { |
| return -ENODEV; |
| } |
| #endif |
| |
| static int rmi_probe_interrupts(struct rmi_driver_data *data) |
| { |
| struct rmi_device *rmi_dev = data->rmi_dev; |
| struct device *dev = &rmi_dev->dev; |
| int irq_count; |
| size_t size; |
| void *irq_memory; |
| int retval; |
| |
| /* |
| * We need to count the IRQs and allocate their storage before scanning |
| * the PDT and creating the function entries, because adding a new |
| * function can trigger events that result in the IRQ related storage |
| * being accessed. |
| */ |
| rmi_dbg(RMI_DEBUG_CORE, dev, "%s: Counting IRQs.\n", __func__); |
| irq_count = 0; |
| retval = rmi_scan_pdt(rmi_dev, &irq_count, rmi_count_irqs); |
| if (retval < 0) { |
| dev_err(dev, "IRQ counting failed with code %d.\n", retval); |
| return retval; |
| } |
| data->irq_count = irq_count; |
| data->num_of_irq_regs = (data->irq_count + 7) / 8; |
| |
| size = BITS_TO_LONGS(data->irq_count) * sizeof(unsigned long); |
| irq_memory = devm_kzalloc(dev, size * 4, GFP_KERNEL); |
| if (!irq_memory) { |
| dev_err(dev, "Failed to allocate memory for irq masks.\n"); |
| return retval; |
| } |
| |
| data->irq_status = irq_memory + size * 0; |
| data->fn_irq_bits = irq_memory + size * 1; |
| data->current_irq_mask = irq_memory + size * 2; |
| data->new_irq_mask = irq_memory + size * 3; |
| |
| return retval; |
| } |
| |
| static int rmi_init_functions(struct rmi_driver_data *data) |
| { |
| struct rmi_device *rmi_dev = data->rmi_dev; |
| struct device *dev = &rmi_dev->dev; |
| int irq_count; |
| int retval; |
| |
| irq_count = 0; |
| rmi_dbg(RMI_DEBUG_CORE, dev, "%s: Creating functions.\n", __func__); |
| retval = rmi_scan_pdt(rmi_dev, &irq_count, rmi_create_function); |
| if (retval < 0) { |
| dev_err(dev, "Function creation failed with code %d.\n", |
| retval); |
| goto err_destroy_functions; |
| } |
| |
| if (!data->f01_container) { |
| dev_err(dev, "Missing F01 container!\n"); |
| retval = -EINVAL; |
| goto err_destroy_functions; |
| } |
| |
| retval = rmi_read_block(rmi_dev, |
| data->f01_container->fd.control_base_addr + 1, |
| data->current_irq_mask, data->num_of_irq_regs); |
| if (retval < 0) { |
| dev_err(dev, "%s: Failed to read current IRQ mask.\n", |
| __func__); |
| goto err_destroy_functions; |
| } |
| |
| return 0; |
| |
| err_destroy_functions: |
| rmi_free_function_list(rmi_dev); |
| return retval; |
| } |
| |
| static int rmi_driver_probe(struct device *dev) |
| { |
| struct rmi_driver *rmi_driver; |
| struct rmi_driver_data *data; |
| struct rmi_device_platform_data *pdata; |
| struct rmi_device *rmi_dev; |
| int retval; |
| |
| rmi_dbg(RMI_DEBUG_CORE, dev, "%s: Starting probe.\n", |
| __func__); |
| |
| if (!rmi_is_physical_device(dev)) { |
| rmi_dbg(RMI_DEBUG_CORE, dev, "Not a physical device.\n"); |
| return -ENODEV; |
| } |
| |
| rmi_dev = to_rmi_device(dev); |
| rmi_driver = to_rmi_driver(dev->driver); |
| rmi_dev->driver = rmi_driver; |
| |
| pdata = rmi_get_platform_data(rmi_dev); |
| |
| if (rmi_dev->xport->dev->of_node) { |
| retval = rmi_driver_of_probe(rmi_dev->xport->dev, pdata); |
| if (retval) |
| return retval; |
| } |
| |
| data = devm_kzalloc(dev, sizeof(struct rmi_driver_data), GFP_KERNEL); |
| if (!data) |
| return -ENOMEM; |
| |
| INIT_LIST_HEAD(&data->function_list); |
| data->rmi_dev = rmi_dev; |
| dev_set_drvdata(&rmi_dev->dev, data); |
| |
| /* |
| * Right before a warm boot, the sensor might be in some unusual state, |
| * such as F54 diagnostics, or F34 bootloader mode after a firmware |
| * or configuration update. In order to clear the sensor to a known |
| * state and/or apply any updates, we issue a initial reset to clear any |
| * previous settings and force it into normal operation. |
| * |
| * We have to do this before actually building the PDT because |
| * the reflash updates (if any) might cause various registers to move |
| * around. |
| * |
| * For a number of reasons, this initial reset may fail to return |
| * within the specified time, but we'll still be able to bring up the |
| * driver normally after that failure. This occurs most commonly in |
| * a cold boot situation (where then firmware takes longer to come up |
| * than from a warm boot) and the reset_delay_ms in the platform data |
| * has been set too short to accommodate that. Since the sensor will |
| * eventually come up and be usable, we don't want to just fail here |
| * and leave the customer's device unusable. So we warn them, and |
| * continue processing. |
| */ |
| retval = rmi_scan_pdt(rmi_dev, NULL, rmi_initial_reset); |
| if (retval < 0) |
| dev_warn(dev, "RMI initial reset failed! Continuing in spite of this.\n"); |
| |
| retval = rmi_read(rmi_dev, PDT_PROPERTIES_LOCATION, &data->pdt_props); |
| if (retval < 0) { |
| /* |
| * we'll print out a warning and continue since |
| * failure to get the PDT properties is not a cause to fail |
| */ |
| dev_warn(dev, "Could not read PDT properties from %#06x (code %d). Assuming 0x00.\n", |
| PDT_PROPERTIES_LOCATION, retval); |
| } |
| |
| mutex_init(&data->irq_mutex); |
| |
| retval = rmi_probe_interrupts(data); |
| if (retval) |
| goto err; |
| |
| if (rmi_dev->xport->input) { |
| /* |
| * The transport driver already has an input device. |
| * In some cases it is preferable to reuse the transport |
| * devices input device instead of creating a new one here. |
| * One example is some HID touchpads report "pass-through" |
| * button events are not reported by rmi registers. |
| */ |
| data->input = rmi_dev->xport->input; |
| } else { |
| data->input = devm_input_allocate_device(dev); |
| if (!data->input) { |
| dev_err(dev, "%s: Failed to allocate input device.\n", |
| __func__); |
| retval = -ENOMEM; |
| goto err; |
| } |
| rmi_driver_set_input_params(rmi_dev, data->input); |
| data->input->phys = devm_kasprintf(dev, GFP_KERNEL, |
| "%s/input0", dev_name(dev)); |
| } |
| |
| retval = rmi_init_functions(data); |
| if (retval) |
| goto err; |
| |
| if (data->input) { |
| rmi_driver_set_input_name(rmi_dev, data->input); |
| if (!rmi_dev->xport->input) { |
| if (input_register_device(data->input)) { |
| dev_err(dev, "%s: Failed to register input device.\n", |
| __func__); |
| goto err_destroy_functions; |
| } |
| } |
| } |
| |
| retval = rmi_irq_init(rmi_dev); |
| if (retval < 0) |
| goto err_destroy_functions; |
| |
| if (data->f01_container->dev.driver) |
| /* Driver already bound, so enable ATTN now. */ |
| return enable_sensor(rmi_dev); |
| |
| return 0; |
| |
| err_destroy_functions: |
| rmi_free_function_list(rmi_dev); |
| err: |
| return retval < 0 ? retval : 0; |
| } |
| |
| static struct rmi_driver rmi_physical_driver = { |
| .driver = { |
| .owner = THIS_MODULE, |
| .name = "rmi4_physical", |
| .bus = &rmi_bus_type, |
| .probe = rmi_driver_probe, |
| .remove = rmi_driver_remove, |
| }, |
| .reset_handler = rmi_driver_reset_handler, |
| .clear_irq_bits = rmi_driver_clear_irq_bits, |
| .set_irq_bits = rmi_driver_set_irq_bits, |
| .set_input_params = rmi_driver_set_input_params, |
| }; |
| |
| bool rmi_is_physical_driver(struct device_driver *drv) |
| { |
| return drv == &rmi_physical_driver.driver; |
| } |
| |
| int __init rmi_register_physical_driver(void) |
| { |
| int error; |
| |
| error = driver_register(&rmi_physical_driver.driver); |
| if (error) { |
| pr_err("%s: driver register failed, code=%d.\n", __func__, |
| error); |
| return error; |
| } |
| |
| return 0; |
| } |
| |
| void __exit rmi_unregister_physical_driver(void) |
| { |
| driver_unregister(&rmi_physical_driver.driver); |
| } |