blob: 8567f4fad501e5bb44a6acd62f56e1512697cf9c [file] [log] [blame]
/*
* cistpl.c -- 16-bit PCMCIA Card Information Structure parser
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License version 2 as
* published by the Free Software Foundation.
*
* The initial developer of the original code is David A. Hinds
* <dahinds@users.sourceforge.net>. Portions created by David A. Hinds
* are Copyright (C) 1999 David A. Hinds. All Rights Reserved.
*
* (C) 1999 David A. Hinds
*/
#include <linux/config.h>
#include <linux/module.h>
#include <linux/moduleparam.h>
#include <linux/kernel.h>
#include <linux/string.h>
#include <linux/major.h>
#include <linux/errno.h>
#include <linux/timer.h>
#include <linux/slab.h>
#include <linux/mm.h>
#include <linux/sched.h>
#include <linux/pci.h>
#include <linux/ioport.h>
#include <asm/io.h>
#include <asm/byteorder.h>
#include <pcmcia/cs_types.h>
#include <pcmcia/ss.h>
#include <pcmcia/cs.h>
#include <pcmcia/bulkmem.h>
#include <pcmcia/cisreg.h>
#include <pcmcia/cistpl.h>
#include "cs_internal.h"
static const u_char mantissa[] = {
10, 12, 13, 15, 20, 25, 30, 35,
40, 45, 50, 55, 60, 70, 80, 90
};
static const u_int exponent[] = {
1, 10, 100, 1000, 10000, 100000, 1000000, 10000000
};
/* Convert an extended speed byte to a time in nanoseconds */
#define SPEED_CVT(v) \
(mantissa[(((v)>>3)&15)-1] * exponent[(v)&7] / 10)
/* Convert a power byte to a current in 0.1 microamps */
#define POWER_CVT(v) \
(mantissa[((v)>>3)&15] * exponent[(v)&7] / 10)
#define POWER_SCALE(v) (exponent[(v)&7])
/* Upper limit on reasonable # of tuples */
#define MAX_TUPLES 200
/*====================================================================*/
/* Parameters that can be set with 'insmod' */
#define INT_MODULE_PARM(n, v) static int n = v; module_param(n, int, 0444)
INT_MODULE_PARM(cis_width, 0); /* 16-bit CIS? */
void release_cis_mem(struct pcmcia_socket *s)
{
if (s->cis_mem.flags & MAP_ACTIVE) {
s->cis_mem.flags &= ~MAP_ACTIVE;
s->ops->set_mem_map(s, &s->cis_mem);
if (s->cis_mem.res) {
release_resource(s->cis_mem.res);
kfree(s->cis_mem.res);
s->cis_mem.res = NULL;
}
iounmap(s->cis_virt);
s->cis_virt = NULL;
}
}
EXPORT_SYMBOL(release_cis_mem);
/*
* Map the card memory at "card_offset" into virtual space.
* If flags & MAP_ATTRIB, map the attribute space, otherwise
* map the memory space.
*/
static void __iomem *
set_cis_map(struct pcmcia_socket *s, unsigned int card_offset, unsigned int flags)
{
pccard_mem_map *mem = &s->cis_mem;
if (!(s->features & SS_CAP_STATIC_MAP) && mem->res == NULL) {
mem->res = pcmcia_find_mem_region(0, s->map_size, s->map_size, 0, s);
if (mem->res == NULL) {
printk(KERN_NOTICE "cs: unable to map card memory!\n");
return NULL;
}
s->cis_virt = ioremap(mem->res->start, s->map_size);
}
mem->card_start = card_offset;
mem->flags = flags;
s->ops->set_mem_map(s, mem);
if (s->features & SS_CAP_STATIC_MAP) {
if (s->cis_virt)
iounmap(s->cis_virt);
s->cis_virt = ioremap(mem->static_start, s->map_size);
}
return s->cis_virt;
}
/*======================================================================
Low-level functions to read and write CIS memory. I think the
write routine is only useful for writing one-byte registers.
======================================================================*/
/* Bits in attr field */
#define IS_ATTR 1
#define IS_INDIRECT 8
int pcmcia_read_cis_mem(struct pcmcia_socket *s, int attr, u_int addr,
u_int len, void *ptr)
{
void __iomem *sys, *end;
unsigned char *buf = ptr;
cs_dbg(s, 3, "pcmcia_read_cis_mem(%d, %#x, %u)\n", attr, addr, len);
if (attr & IS_INDIRECT) {
/* Indirect accesses use a bunch of special registers at fixed
locations in common memory */
u_char flags = ICTRL0_COMMON|ICTRL0_AUTOINC|ICTRL0_BYTEGRAN;
if (attr & IS_ATTR) {
addr *= 2;
flags = ICTRL0_AUTOINC;
}
sys = set_cis_map(s, 0, MAP_ACTIVE | ((cis_width) ? MAP_16BIT : 0));
if (!sys) {
memset(ptr, 0xff, len);
return -1;
}
writeb(flags, sys+CISREG_ICTRL0);
writeb(addr & 0xff, sys+CISREG_IADDR0);
writeb((addr>>8) & 0xff, sys+CISREG_IADDR1);
writeb((addr>>16) & 0xff, sys+CISREG_IADDR2);
writeb((addr>>24) & 0xff, sys+CISREG_IADDR3);
for ( ; len > 0; len--, buf++)
*buf = readb(sys+CISREG_IDATA0);
} else {
u_int inc = 1, card_offset, flags;
flags = MAP_ACTIVE | ((cis_width) ? MAP_16BIT : 0);
if (attr) {
flags |= MAP_ATTRIB;
inc++;
addr *= 2;
}
card_offset = addr & ~(s->map_size-1);
while (len) {
sys = set_cis_map(s, card_offset, flags);
if (!sys) {
memset(ptr, 0xff, len);
return -1;
}
end = sys + s->map_size;
sys = sys + (addr & (s->map_size-1));
for ( ; len > 0; len--, buf++, sys += inc) {
if (sys == end)
break;
*buf = readb(sys);
}
card_offset += s->map_size;
addr = 0;
}
}
cs_dbg(s, 3, " %#2.2x %#2.2x %#2.2x %#2.2x ...\n",
*(u_char *)(ptr+0), *(u_char *)(ptr+1),
*(u_char *)(ptr+2), *(u_char *)(ptr+3));
return 0;
}
EXPORT_SYMBOL(pcmcia_read_cis_mem);
void pcmcia_write_cis_mem(struct pcmcia_socket *s, int attr, u_int addr,
u_int len, void *ptr)
{
void __iomem *sys, *end;
unsigned char *buf = ptr;
cs_dbg(s, 3, "pcmcia_write_cis_mem(%d, %#x, %u)\n", attr, addr, len);
if (attr & IS_INDIRECT) {
/* Indirect accesses use a bunch of special registers at fixed
locations in common memory */
u_char flags = ICTRL0_COMMON|ICTRL0_AUTOINC|ICTRL0_BYTEGRAN;
if (attr & IS_ATTR) {
addr *= 2;
flags = ICTRL0_AUTOINC;
}
sys = set_cis_map(s, 0, MAP_ACTIVE | ((cis_width) ? MAP_16BIT : 0));
if (!sys)
return; /* FIXME: Error */
writeb(flags, sys+CISREG_ICTRL0);
writeb(addr & 0xff, sys+CISREG_IADDR0);
writeb((addr>>8) & 0xff, sys+CISREG_IADDR1);
writeb((addr>>16) & 0xff, sys+CISREG_IADDR2);
writeb((addr>>24) & 0xff, sys+CISREG_IADDR3);
for ( ; len > 0; len--, buf++)
writeb(*buf, sys+CISREG_IDATA0);
} else {
u_int inc = 1, card_offset, flags;
flags = MAP_ACTIVE | ((cis_width) ? MAP_16BIT : 0);
if (attr & IS_ATTR) {
flags |= MAP_ATTRIB;
inc++;
addr *= 2;
}
card_offset = addr & ~(s->map_size-1);
while (len) {
sys = set_cis_map(s, card_offset, flags);
if (!sys)
return; /* FIXME: error */
end = sys + s->map_size;
sys = sys + (addr & (s->map_size-1));
for ( ; len > 0; len--, buf++, sys += inc) {
if (sys == end)
break;
writeb(*buf, sys);
}
card_offset += s->map_size;
addr = 0;
}
}
}
EXPORT_SYMBOL(pcmcia_write_cis_mem);
/*======================================================================
This is a wrapper around read_cis_mem, with the same interface,
but which caches information, for cards whose CIS may not be
readable all the time.
======================================================================*/
static void read_cis_cache(struct pcmcia_socket *s, int attr, u_int addr,
u_int len, void *ptr)
{
struct cis_cache_entry *cis;
int ret;
if (s->fake_cis) {
if (s->fake_cis_len > addr+len)
memcpy(ptr, s->fake_cis+addr, len);
else
memset(ptr, 0xff, len);
return;
}
list_for_each_entry(cis, &s->cis_cache, node) {
if (cis->addr == addr && cis->len == len && cis->attr == attr) {
memcpy(ptr, cis->cache, len);
return;
}
}
#ifdef CONFIG_CARDBUS
if (s->state & SOCKET_CARDBUS)
ret = read_cb_mem(s, attr, addr, len, ptr);
else
#endif
ret = pcmcia_read_cis_mem(s, attr, addr, len, ptr);
if (ret == 0) {
/* Copy data into the cache */
cis = kmalloc(sizeof(struct cis_cache_entry) + len, GFP_KERNEL);
if (cis) {
cis->addr = addr;
cis->len = len;
cis->attr = attr;
memcpy(cis->cache, ptr, len);
list_add(&cis->node, &s->cis_cache);
}
}
}
static void
remove_cis_cache(struct pcmcia_socket *s, int attr, u_int addr, u_int len)
{
struct cis_cache_entry *cis;
list_for_each_entry(cis, &s->cis_cache, node)
if (cis->addr == addr && cis->len == len && cis->attr == attr) {
list_del(&cis->node);
kfree(cis);
break;
}
}
void destroy_cis_cache(struct pcmcia_socket *s)
{
struct list_head *l, *n;
list_for_each_safe(l, n, &s->cis_cache) {
struct cis_cache_entry *cis = list_entry(l, struct cis_cache_entry, node);
list_del(&cis->node);
kfree(cis);
}
/*
* If there was a fake CIS, destroy that as well.
*/
if (s->fake_cis) {
kfree(s->fake_cis);
s->fake_cis = NULL;
}
}
EXPORT_SYMBOL(destroy_cis_cache);
/*======================================================================
This verifies if the CIS of a card matches what is in the CIS
cache.
======================================================================*/
int verify_cis_cache(struct pcmcia_socket *s)
{
struct cis_cache_entry *cis;
char *buf;
buf = kmalloc(256, GFP_KERNEL);
if (buf == NULL)
return -1;
list_for_each_entry(cis, &s->cis_cache, node) {
int len = cis->len;
if (len > 256)
len = 256;
#ifdef CONFIG_CARDBUS
if (s->state & SOCKET_CARDBUS)
read_cb_mem(s, cis->attr, cis->addr, len, buf);
else
#endif
pcmcia_read_cis_mem(s, cis->attr, cis->addr, len, buf);
if (memcmp(buf, cis->cache, len) != 0) {
kfree(buf);
return -1;
}
}
kfree(buf);
return 0;
}
/*======================================================================
For really bad cards, we provide a facility for uploading a
replacement CIS.
======================================================================*/
int pcmcia_replace_cis(struct pcmcia_socket *s, cisdump_t *cis)
{
if (s->fake_cis != NULL) {
kfree(s->fake_cis);
s->fake_cis = NULL;
}
if (cis->Length > CISTPL_MAX_CIS_SIZE)
return CS_BAD_SIZE;
s->fake_cis = kmalloc(cis->Length, GFP_KERNEL);
if (s->fake_cis == NULL)
return CS_OUT_OF_RESOURCE;
s->fake_cis_len = cis->Length;
memcpy(s->fake_cis, cis->Data, cis->Length);
return CS_SUCCESS;
}
EXPORT_SYMBOL(pcmcia_replace_cis);
/*======================================================================
The high-level CIS tuple services
======================================================================*/
typedef struct tuple_flags {
u_int link_space:4;
u_int has_link:1;
u_int mfc_fn:3;
u_int space:4;
} tuple_flags;
#define LINK_SPACE(f) (((tuple_flags *)(&(f)))->link_space)
#define HAS_LINK(f) (((tuple_flags *)(&(f)))->has_link)
#define MFC_FN(f) (((tuple_flags *)(&(f)))->mfc_fn)
#define SPACE(f) (((tuple_flags *)(&(f)))->space)
int pccard_get_next_tuple(struct pcmcia_socket *s, unsigned int func, tuple_t *tuple);
int pccard_get_first_tuple(struct pcmcia_socket *s, unsigned int function, tuple_t *tuple)
{
if (!s)
return CS_BAD_HANDLE;
if (!(s->state & SOCKET_PRESENT))
return CS_NO_CARD;
tuple->TupleLink = tuple->Flags = 0;
#ifdef CONFIG_CARDBUS
if (s->state & SOCKET_CARDBUS) {
struct pci_dev *dev = s->cb_dev;
u_int ptr;
pci_bus_read_config_dword(dev->subordinate, 0, PCI_CARDBUS_CIS, &ptr);
tuple->CISOffset = ptr & ~7;
SPACE(tuple->Flags) = (ptr & 7);
} else
#endif
{
/* Assume presence of a LONGLINK_C to address 0 */
tuple->CISOffset = tuple->LinkOffset = 0;
SPACE(tuple->Flags) = HAS_LINK(tuple->Flags) = 1;
}
if (!(s->state & SOCKET_CARDBUS) && (s->functions > 1) &&
!(tuple->Attributes & TUPLE_RETURN_COMMON)) {
cisdata_t req = tuple->DesiredTuple;
tuple->DesiredTuple = CISTPL_LONGLINK_MFC;
if (pccard_get_next_tuple(s, function, tuple) == CS_SUCCESS) {
tuple->DesiredTuple = CISTPL_LINKTARGET;
if (pccard_get_next_tuple(s, function, tuple) != CS_SUCCESS)
return CS_NO_MORE_ITEMS;
} else
tuple->CISOffset = tuple->TupleLink = 0;
tuple->DesiredTuple = req;
}
return pccard_get_next_tuple(s, function, tuple);
}
EXPORT_SYMBOL(pccard_get_first_tuple);
static int follow_link(struct pcmcia_socket *s, tuple_t *tuple)
{
u_char link[5];
u_int ofs;
if (MFC_FN(tuple->Flags)) {
/* Get indirect link from the MFC tuple */
read_cis_cache(s, LINK_SPACE(tuple->Flags),
tuple->LinkOffset, 5, link);
ofs = le32_to_cpu(*(u_int *)(link+1));
SPACE(tuple->Flags) = (link[0] == CISTPL_MFC_ATTR);
/* Move to the next indirect link */
tuple->LinkOffset += 5;
MFC_FN(tuple->Flags)--;
} else if (HAS_LINK(tuple->Flags)) {
ofs = tuple->LinkOffset;
SPACE(tuple->Flags) = LINK_SPACE(tuple->Flags);
HAS_LINK(tuple->Flags) = 0;
} else {
return -1;
}
if (!(s->state & SOCKET_CARDBUS) && SPACE(tuple->Flags)) {
/* This is ugly, but a common CIS error is to code the long
link offset incorrectly, so we check the right spot... */
read_cis_cache(s, SPACE(tuple->Flags), ofs, 5, link);
if ((link[0] == CISTPL_LINKTARGET) && (link[1] >= 3) &&
(strncmp(link+2, "CIS", 3) == 0))
return ofs;
remove_cis_cache(s, SPACE(tuple->Flags), ofs, 5);
/* Then, we try the wrong spot... */
ofs = ofs >> 1;
}
read_cis_cache(s, SPACE(tuple->Flags), ofs, 5, link);
if ((link[0] == CISTPL_LINKTARGET) && (link[1] >= 3) &&
(strncmp(link+2, "CIS", 3) == 0))
return ofs;
remove_cis_cache(s, SPACE(tuple->Flags), ofs, 5);
return -1;
}
int pccard_get_next_tuple(struct pcmcia_socket *s, unsigned int function, tuple_t *tuple)
{
u_char link[2], tmp;
int ofs, i, attr;
if (!s)
return CS_BAD_HANDLE;
if (!(s->state & SOCKET_PRESENT))
return CS_NO_CARD;
link[1] = tuple->TupleLink;
ofs = tuple->CISOffset + tuple->TupleLink;
attr = SPACE(tuple->Flags);
for (i = 0; i < MAX_TUPLES; i++) {
if (link[1] == 0xff) {
link[0] = CISTPL_END;
} else {
read_cis_cache(s, attr, ofs, 2, link);
if (link[0] == CISTPL_NULL) {
ofs++; continue;
}
}
/* End of chain? Follow long link if possible */
if (link[0] == CISTPL_END) {
if ((ofs = follow_link(s, tuple)) < 0)
return CS_NO_MORE_ITEMS;
attr = SPACE(tuple->Flags);
read_cis_cache(s, attr, ofs, 2, link);
}
/* Is this a link tuple? Make a note of it */
if ((link[0] == CISTPL_LONGLINK_A) ||
(link[0] == CISTPL_LONGLINK_C) ||
(link[0] == CISTPL_LONGLINK_MFC) ||
(link[0] == CISTPL_LINKTARGET) ||
(link[0] == CISTPL_INDIRECT) ||
(link[0] == CISTPL_NO_LINK)) {
switch (link[0]) {
case CISTPL_LONGLINK_A:
HAS_LINK(tuple->Flags) = 1;
LINK_SPACE(tuple->Flags) = attr | IS_ATTR;
read_cis_cache(s, attr, ofs+2, 4, &tuple->LinkOffset);
break;
case CISTPL_LONGLINK_C:
HAS_LINK(tuple->Flags) = 1;
LINK_SPACE(tuple->Flags) = attr & ~IS_ATTR;
read_cis_cache(s, attr, ofs+2, 4, &tuple->LinkOffset);
break;
case CISTPL_INDIRECT:
HAS_LINK(tuple->Flags) = 1;
LINK_SPACE(tuple->Flags) = IS_ATTR | IS_INDIRECT;
tuple->LinkOffset = 0;
break;
case CISTPL_LONGLINK_MFC:
tuple->LinkOffset = ofs + 3;
LINK_SPACE(tuple->Flags) = attr;
if (function == BIND_FN_ALL) {
/* Follow all the MFC links */
read_cis_cache(s, attr, ofs+2, 1, &tmp);
MFC_FN(tuple->Flags) = tmp;
} else {
/* Follow exactly one of the links */
MFC_FN(tuple->Flags) = 1;
tuple->LinkOffset += function * 5;
}
break;
case CISTPL_NO_LINK:
HAS_LINK(tuple->Flags) = 0;
break;
}
if ((tuple->Attributes & TUPLE_RETURN_LINK) &&
(tuple->DesiredTuple == RETURN_FIRST_TUPLE))
break;
} else
if (tuple->DesiredTuple == RETURN_FIRST_TUPLE)
break;
if (link[0] == tuple->DesiredTuple)
break;
ofs += link[1] + 2;
}
if (i == MAX_TUPLES) {
cs_dbg(s, 1, "cs: overrun in pcmcia_get_next_tuple\n");
return CS_NO_MORE_ITEMS;
}
tuple->TupleCode = link[0];
tuple->TupleLink = link[1];
tuple->CISOffset = ofs + 2;
return CS_SUCCESS;
}
EXPORT_SYMBOL(pccard_get_next_tuple);
/*====================================================================*/
#define _MIN(a, b) (((a) < (b)) ? (a) : (b))
int pccard_get_tuple_data(struct pcmcia_socket *s, tuple_t *tuple)
{
u_int len;
if (!s)
return CS_BAD_HANDLE;
if (tuple->TupleLink < tuple->TupleOffset)
return CS_NO_MORE_ITEMS;
len = tuple->TupleLink - tuple->TupleOffset;
tuple->TupleDataLen = tuple->TupleLink;
if (len == 0)
return CS_SUCCESS;
read_cis_cache(s, SPACE(tuple->Flags),
tuple->CISOffset + tuple->TupleOffset,
_MIN(len, tuple->TupleDataMax), tuple->TupleData);
return CS_SUCCESS;
}
EXPORT_SYMBOL(pccard_get_tuple_data);
/*======================================================================
Parsing routines for individual tuples
======================================================================*/
static int parse_device(tuple_t *tuple, cistpl_device_t *device)
{
int i;
u_char scale;
u_char *p, *q;
p = (u_char *)tuple->TupleData;
q = p + tuple->TupleDataLen;
device->ndev = 0;
for (i = 0; i < CISTPL_MAX_DEVICES; i++) {
if (*p == 0xff) break;
device->dev[i].type = (*p >> 4);
device->dev[i].wp = (*p & 0x08) ? 1 : 0;
switch (*p & 0x07) {
case 0: device->dev[i].speed = 0; break;
case 1: device->dev[i].speed = 250; break;
case 2: device->dev[i].speed = 200; break;
case 3: device->dev[i].speed = 150; break;
case 4: device->dev[i].speed = 100; break;
case 7:
if (++p == q) return CS_BAD_TUPLE;
device->dev[i].speed = SPEED_CVT(*p);
while (*p & 0x80)
if (++p == q) return CS_BAD_TUPLE;
break;
default:
return CS_BAD_TUPLE;
}
if (++p == q) return CS_BAD_TUPLE;
if (*p == 0xff) break;
scale = *p & 7;
if (scale == 7) return CS_BAD_TUPLE;
device->dev[i].size = ((*p >> 3) + 1) * (512 << (scale*2));
device->ndev++;
if (++p == q) break;
}
return CS_SUCCESS;
}
/*====================================================================*/
static int parse_checksum(tuple_t *tuple, cistpl_checksum_t *csum)
{
u_char *p;
if (tuple->TupleDataLen < 5)
return CS_BAD_TUPLE;
p = (u_char *)tuple->TupleData;
csum->addr = tuple->CISOffset+(short)le16_to_cpu(*(u_short *)p)-2;
csum->len = le16_to_cpu(*(u_short *)(p + 2));
csum->sum = *(p+4);
return CS_SUCCESS;
}
/*====================================================================*/
static int parse_longlink(tuple_t *tuple, cistpl_longlink_t *link)
{
if (tuple->TupleDataLen < 4)
return CS_BAD_TUPLE;
link->addr = le32_to_cpu(*(u_int *)tuple->TupleData);
return CS_SUCCESS;
}
/*====================================================================*/
static int parse_longlink_mfc(tuple_t *tuple,
cistpl_longlink_mfc_t *link)
{
u_char *p;
int i;
p = (u_char *)tuple->TupleData;
link->nfn = *p; p++;
if (tuple->TupleDataLen <= link->nfn*5)
return CS_BAD_TUPLE;
for (i = 0; i < link->nfn; i++) {
link->fn[i].space = *p; p++;
link->fn[i].addr = le32_to_cpu(*(u_int *)p); p += 4;
}
return CS_SUCCESS;
}
/*====================================================================*/
static int parse_strings(u_char *p, u_char *q, int max,
char *s, u_char *ofs, u_char *found)
{
int i, j, ns;
if (p == q) return CS_BAD_TUPLE;
ns = 0; j = 0;
for (i = 0; i < max; i++) {
if (*p == 0xff) break;
ofs[i] = j;
ns++;
for (;;) {
s[j++] = (*p == 0xff) ? '\0' : *p;
if ((*p == '\0') || (*p == 0xff)) break;
if (++p == q) return CS_BAD_TUPLE;
}
if ((*p == 0xff) || (++p == q)) break;
}
if (found) {
*found = ns;
return CS_SUCCESS;
} else {
return (ns == max) ? CS_SUCCESS : CS_BAD_TUPLE;
}
}
/*====================================================================*/
static int parse_vers_1(tuple_t *tuple, cistpl_vers_1_t *vers_1)
{
u_char *p, *q;
p = (u_char *)tuple->TupleData;
q = p + tuple->TupleDataLen;
vers_1->major = *p; p++;
vers_1->minor = *p; p++;
if (p >= q) return CS_BAD_TUPLE;
return parse_strings(p, q, CISTPL_VERS_1_MAX_PROD_STRINGS,
vers_1->str, vers_1->ofs, &vers_1->ns);
}
/*====================================================================*/
static int parse_altstr(tuple_t *tuple, cistpl_altstr_t *altstr)
{
u_char *p, *q;
p = (u_char *)tuple->TupleData;
q = p + tuple->TupleDataLen;
return parse_strings(p, q, CISTPL_MAX_ALTSTR_STRINGS,
altstr->str, altstr->ofs, &altstr->ns);
}
/*====================================================================*/
static int parse_jedec(tuple_t *tuple, cistpl_jedec_t *jedec)
{
u_char *p, *q;
int nid;
p = (u_char *)tuple->TupleData;
q = p + tuple->TupleDataLen;
for (nid = 0; nid < CISTPL_MAX_DEVICES; nid++) {
if (p > q-2) break;
jedec->id[nid].mfr = p[0];
jedec->id[nid].info = p[1];
p += 2;
}
jedec->nid = nid;
return CS_SUCCESS;
}
/*====================================================================*/
static int parse_manfid(tuple_t *tuple, cistpl_manfid_t *m)
{
u_short *p;
if (tuple->TupleDataLen < 4)
return CS_BAD_TUPLE;
p = (u_short *)tuple->TupleData;
m->manf = le16_to_cpu(p[0]);
m->card = le16_to_cpu(p[1]);
return CS_SUCCESS;
}
/*====================================================================*/
static int parse_funcid(tuple_t *tuple, cistpl_funcid_t *f)
{
u_char *p;
if (tuple->TupleDataLen < 2)
return CS_BAD_TUPLE;
p = (u_char *)tuple->TupleData;
f->func = p[0];
f->sysinit = p[1];
return CS_SUCCESS;
}
/*====================================================================*/
static int parse_funce(tuple_t *tuple, cistpl_funce_t *f)
{
u_char *p;
int i;
if (tuple->TupleDataLen < 1)
return CS_BAD_TUPLE;
p = (u_char *)tuple->TupleData;
f->type = p[0];
for (i = 1; i < tuple->TupleDataLen; i++)
f->data[i-1] = p[i];
return CS_SUCCESS;
}
/*====================================================================*/
static int parse_config(tuple_t *tuple, cistpl_config_t *config)
{
int rasz, rmsz, i;
u_char *p;
p = (u_char *)tuple->TupleData;
rasz = *p & 0x03;
rmsz = (*p & 0x3c) >> 2;
if (tuple->TupleDataLen < rasz+rmsz+4)
return CS_BAD_TUPLE;
config->last_idx = *(++p);
p++;
config->base = 0;
for (i = 0; i <= rasz; i++)
config->base += p[i] << (8*i);
p += rasz+1;
for (i = 0; i < 4; i++)
config->rmask[i] = 0;
for (i = 0; i <= rmsz; i++)
config->rmask[i>>2] += p[i] << (8*(i%4));
config->subtuples = tuple->TupleDataLen - (rasz+rmsz+4);
return CS_SUCCESS;
}
/*======================================================================
The following routines are all used to parse the nightmarish
config table entries.
======================================================================*/
static u_char *parse_power(u_char *p, u_char *q,
cistpl_power_t *pwr)
{
int i;
u_int scale;
if (p == q) return NULL;
pwr->present = *p;
pwr->flags = 0;
p++;
for (i = 0; i < 7; i++)
if (pwr->present & (1<<i)) {
if (p == q) return NULL;
pwr->param[i] = POWER_CVT(*p);
scale = POWER_SCALE(*p);
while (*p & 0x80) {
if (++p == q) return NULL;
if ((*p & 0x7f) < 100)
pwr->param[i] += (*p & 0x7f) * scale / 100;
else if (*p == 0x7d)
pwr->flags |= CISTPL_POWER_HIGHZ_OK;
else if (*p == 0x7e)
pwr->param[i] = 0;
else if (*p == 0x7f)
pwr->flags |= CISTPL_POWER_HIGHZ_REQ;
else
return NULL;
}
p++;
}
return p;
}
/*====================================================================*/
static u_char *parse_timing(u_char *p, u_char *q,
cistpl_timing_t *timing)
{
u_char scale;
if (p == q) return NULL;
scale = *p;
if ((scale & 3) != 3) {
if (++p == q) return NULL;
timing->wait = SPEED_CVT(*p);
timing->waitscale = exponent[scale & 3];
} else
timing->wait = 0;
scale >>= 2;
if ((scale & 7) != 7) {
if (++p == q) return NULL;
timing->ready = SPEED_CVT(*p);
timing->rdyscale = exponent[scale & 7];
} else
timing->ready = 0;
scale >>= 3;
if (scale != 7) {
if (++p == q) return NULL;
timing->reserved = SPEED_CVT(*p);
timing->rsvscale = exponent[scale];
} else
timing->reserved = 0;
p++;
return p;
}
/*====================================================================*/
static u_char *parse_io(u_char *p, u_char *q, cistpl_io_t *io)
{
int i, j, bsz, lsz;
if (p == q) return NULL;
io->flags = *p;
if (!(*p & 0x80)) {
io->nwin = 1;
io->win[0].base = 0;
io->win[0].len = (1 << (io->flags & CISTPL_IO_LINES_MASK));
return p+1;
}
if (++p == q) return NULL;
io->nwin = (*p & 0x0f) + 1;
bsz = (*p & 0x30) >> 4;
if (bsz == 3) bsz++;
lsz = (*p & 0xc0) >> 6;
if (lsz == 3) lsz++;
p++;
for (i = 0; i < io->nwin; i++) {
io->win[i].base = 0;
io->win[i].len = 1;
for (j = 0; j < bsz; j++, p++) {
if (p == q) return NULL;
io->win[i].base += *p << (j*8);
}
for (j = 0; j < lsz; j++, p++) {
if (p == q) return NULL;
io->win[i].len += *p << (j*8);
}
}
return p;
}
/*====================================================================*/
static u_char *parse_mem(u_char *p, u_char *q, cistpl_mem_t *mem)
{
int i, j, asz, lsz, has_ha;
u_int len, ca, ha;
if (p == q) return NULL;
mem->nwin = (*p & 0x07) + 1;
lsz = (*p & 0x18) >> 3;
asz = (*p & 0x60) >> 5;
has_ha = (*p & 0x80);
if (++p == q) return NULL;
for (i = 0; i < mem->nwin; i++) {
len = ca = ha = 0;
for (j = 0; j < lsz; j++, p++) {
if (p == q) return NULL;
len += *p << (j*8);
}
for (j = 0; j < asz; j++, p++) {
if (p == q) return NULL;
ca += *p << (j*8);
}
if (has_ha)
for (j = 0; j < asz; j++, p++) {
if (p == q) return NULL;
ha += *p << (j*8);
}
mem->win[i].len = len << 8;
mem->win[i].card_addr = ca << 8;
mem->win[i].host_addr = ha << 8;
}
return p;
}
/*====================================================================*/
static u_char *parse_irq(u_char *p, u_char *q, cistpl_irq_t *irq)
{
if (p == q) return NULL;
irq->IRQInfo1 = *p; p++;
if (irq->IRQInfo1 & IRQ_INFO2_VALID) {
if (p+2 > q) return NULL;
irq->IRQInfo2 = (p[1]<<8) + p[0];
p += 2;
}
return p;
}
/*====================================================================*/
static int parse_cftable_entry(tuple_t *tuple,
cistpl_cftable_entry_t *entry)
{
u_char *p, *q, features;
p = tuple->TupleData;
q = p + tuple->TupleDataLen;
entry->index = *p & 0x3f;
entry->flags = 0;
if (*p & 0x40)
entry->flags |= CISTPL_CFTABLE_DEFAULT;
if (*p & 0x80) {
if (++p == q) return CS_BAD_TUPLE;
if (*p & 0x10)
entry->flags |= CISTPL_CFTABLE_BVDS;
if (*p & 0x20)
entry->flags |= CISTPL_CFTABLE_WP;
if (*p & 0x40)
entry->flags |= CISTPL_CFTABLE_RDYBSY;
if (*p & 0x80)
entry->flags |= CISTPL_CFTABLE_MWAIT;
entry->interface = *p & 0x0f;
} else
entry->interface = 0;
/* Process optional features */
if (++p == q) return CS_BAD_TUPLE;
features = *p; p++;
/* Power options */
if ((features & 3) > 0) {
p = parse_power(p, q, &entry->vcc);
if (p == NULL) return CS_BAD_TUPLE;
} else
entry->vcc.present = 0;
if ((features & 3) > 1) {
p = parse_power(p, q, &entry->vpp1);
if (p == NULL) return CS_BAD_TUPLE;
} else
entry->vpp1.present = 0;
if ((features & 3) > 2) {
p = parse_power(p, q, &entry->vpp2);
if (p == NULL) return CS_BAD_TUPLE;
} else
entry->vpp2.present = 0;
/* Timing options */
if (features & 0x04) {
p = parse_timing(p, q, &entry->timing);
if (p == NULL) return CS_BAD_TUPLE;
} else {
entry->timing.wait = 0;
entry->timing.ready = 0;
entry->timing.reserved = 0;
}
/* I/O window options */
if (features & 0x08) {
p = parse_io(p, q, &entry->io);
if (p == NULL) return CS_BAD_TUPLE;
} else
entry->io.nwin = 0;
/* Interrupt options */
if (features & 0x10) {
p = parse_irq(p, q, &entry->irq);
if (p == NULL) return CS_BAD_TUPLE;
} else
entry->irq.IRQInfo1 = 0;
switch (features & 0x60) {
case 0x00:
entry->mem.nwin = 0;
break;
case 0x20:
entry->mem.nwin = 1;
entry->mem.win[0].len = le16_to_cpu(*(u_short *)p) << 8;
entry->mem.win[0].card_addr = 0;
entry->mem.win[0].host_addr = 0;
p += 2;
if (p > q) return CS_BAD_TUPLE;
break;
case 0x40:
entry->mem.nwin = 1;
entry->mem.win[0].len = le16_to_cpu(*(u_short *)p) << 8;
entry->mem.win[0].card_addr =
le16_to_cpu(*(u_short *)(p+2)) << 8;
entry->mem.win[0].host_addr = 0;
p += 4;
if (p > q) return CS_BAD_TUPLE;
break;
case 0x60:
p = parse_mem(p, q, &entry->mem);
if (p == NULL) return CS_BAD_TUPLE;
break;
}
/* Misc features */
if (features & 0x80) {
if (p == q) return CS_BAD_TUPLE;
entry->flags |= (*p << 8);
while (*p & 0x80)
if (++p == q) return CS_BAD_TUPLE;
p++;
}
entry->subtuples = q-p;
return CS_SUCCESS;
}
/*====================================================================*/
#ifdef CONFIG_CARDBUS
static int parse_bar(tuple_t *tuple, cistpl_bar_t *bar)
{
u_char *p;
if (tuple->TupleDataLen < 6)
return CS_BAD_TUPLE;
p = (u_char *)tuple->TupleData;
bar->attr = *p;
p += 2;
bar->size = le32_to_cpu(*(u_int *)p);
return CS_SUCCESS;
}
static int parse_config_cb(tuple_t *tuple, cistpl_config_t *config)
{
u_char *p;
p = (u_char *)tuple->TupleData;
if ((*p != 3) || (tuple->TupleDataLen < 6))
return CS_BAD_TUPLE;
config->last_idx = *(++p);
p++;
config->base = le32_to_cpu(*(u_int *)p);
config->subtuples = tuple->TupleDataLen - 6;
return CS_SUCCESS;
}
static int parse_cftable_entry_cb(tuple_t *tuple,
cistpl_cftable_entry_cb_t *entry)
{
u_char *p, *q, features;
p = tuple->TupleData;
q = p + tuple->TupleDataLen;
entry->index = *p & 0x3f;
entry->flags = 0;
if (*p & 0x40)
entry->flags |= CISTPL_CFTABLE_DEFAULT;
/* Process optional features */
if (++p == q) return CS_BAD_TUPLE;
features = *p; p++;
/* Power options */
if ((features & 3) > 0) {
p = parse_power(p, q, &entry->vcc);
if (p == NULL) return CS_BAD_TUPLE;
} else
entry->vcc.present = 0;
if ((features & 3) > 1) {
p = parse_power(p, q, &entry->vpp1);
if (p == NULL) return CS_BAD_TUPLE;
} else
entry->vpp1.present = 0;
if ((features & 3) > 2) {
p = parse_power(p, q, &entry->vpp2);
if (p == NULL) return CS_BAD_TUPLE;
} else
entry->vpp2.present = 0;
/* I/O window options */
if (features & 0x08) {
if (p == q) return CS_BAD_TUPLE;
entry->io = *p; p++;
} else
entry->io = 0;
/* Interrupt options */
if (features & 0x10) {
p = parse_irq(p, q, &entry->irq);
if (p == NULL) return CS_BAD_TUPLE;
} else
entry->irq.IRQInfo1 = 0;
if (features & 0x20) {
if (p == q) return CS_BAD_TUPLE;
entry->mem = *p; p++;
} else
entry->mem = 0;
/* Misc features */
if (features & 0x80) {
if (p == q) return CS_BAD_TUPLE;
entry->flags |= (*p << 8);
if (*p & 0x80) {
if (++p == q) return CS_BAD_TUPLE;
entry->flags |= (*p << 16);
}
while (*p & 0x80)
if (++p == q) return CS_BAD_TUPLE;
p++;
}
entry->subtuples = q-p;
return CS_SUCCESS;
}
#endif
/*====================================================================*/
static int parse_device_geo(tuple_t *tuple, cistpl_device_geo_t *geo)
{
u_char *p, *q;
int n;
p = (u_char *)tuple->TupleData;
q = p + tuple->TupleDataLen;
for (n = 0; n < CISTPL_MAX_DEVICES; n++) {
if (p > q-6) break;
geo->geo[n].buswidth = p[0];
geo->geo[n].erase_block = 1 << (p[1]-1);
geo->geo[n].read_block = 1 << (p[2]-1);
geo->geo[n].write_block = 1 << (p[3]-1);
geo->geo[n].partition = 1 << (p[4]-1);
geo->geo[n].interleave = 1 << (p[5]-1);
p += 6;
}
geo->ngeo = n;
return CS_SUCCESS;
}
/*====================================================================*/
static int parse_vers_2(tuple_t *tuple, cistpl_vers_2_t *v2)
{
u_char *p, *q;
if (tuple->TupleDataLen < 10)
return CS_BAD_TUPLE;
p = tuple->TupleData;
q = p + tuple->TupleDataLen;
v2->vers = p[0];
v2->comply = p[1];
v2->dindex = le16_to_cpu(*(u_short *)(p+2));
v2->vspec8 = p[6];
v2->vspec9 = p[7];
v2->nhdr = p[8];
p += 9;
return parse_strings(p, q, 2, v2->str, &v2->vendor, NULL);
}
/*====================================================================*/
static int parse_org(tuple_t *tuple, cistpl_org_t *org)
{
u_char *p, *q;
int i;
p = tuple->TupleData;
q = p + tuple->TupleDataLen;
if (p == q) return CS_BAD_TUPLE;
org->data_org = *p;
if (++p == q) return CS_BAD_TUPLE;
for (i = 0; i < 30; i++) {
org->desc[i] = *p;
if (*p == '\0') break;
if (++p == q) return CS_BAD_TUPLE;
}
return CS_SUCCESS;
}
/*====================================================================*/
static int parse_format(tuple_t *tuple, cistpl_format_t *fmt)
{
u_char *p;
if (tuple->TupleDataLen < 10)
return CS_BAD_TUPLE;
p = tuple->TupleData;
fmt->type = p[0];
fmt->edc = p[1];
fmt->offset = le32_to_cpu(*(u_int *)(p+2));
fmt->length = le32_to_cpu(*(u_int *)(p+6));
return CS_SUCCESS;
}
/*====================================================================*/
int pccard_parse_tuple(tuple_t *tuple, cisparse_t *parse)
{
int ret = CS_SUCCESS;
if (tuple->TupleDataLen > tuple->TupleDataMax)
return CS_BAD_TUPLE;
switch (tuple->TupleCode) {
case CISTPL_DEVICE:
case CISTPL_DEVICE_A:
ret = parse_device(tuple, &parse->device);
break;
#ifdef CONFIG_CARDBUS
case CISTPL_BAR:
ret = parse_bar(tuple, &parse->bar);
break;
case CISTPL_CONFIG_CB:
ret = parse_config_cb(tuple, &parse->config);
break;
case CISTPL_CFTABLE_ENTRY_CB:
ret = parse_cftable_entry_cb(tuple, &parse->cftable_entry_cb);
break;
#endif
case CISTPL_CHECKSUM:
ret = parse_checksum(tuple, &parse->checksum);
break;
case CISTPL_LONGLINK_A:
case CISTPL_LONGLINK_C:
ret = parse_longlink(tuple, &parse->longlink);
break;
case CISTPL_LONGLINK_MFC:
ret = parse_longlink_mfc(tuple, &parse->longlink_mfc);
break;
case CISTPL_VERS_1:
ret = parse_vers_1(tuple, &parse->version_1);
break;
case CISTPL_ALTSTR:
ret = parse_altstr(tuple, &parse->altstr);
break;
case CISTPL_JEDEC_A:
case CISTPL_JEDEC_C:
ret = parse_jedec(tuple, &parse->jedec);
break;
case CISTPL_MANFID:
ret = parse_manfid(tuple, &parse->manfid);
break;
case CISTPL_FUNCID:
ret = parse_funcid(tuple, &parse->funcid);
break;
case CISTPL_FUNCE:
ret = parse_funce(tuple, &parse->funce);
break;
case CISTPL_CONFIG:
ret = parse_config(tuple, &parse->config);
break;
case CISTPL_CFTABLE_ENTRY:
ret = parse_cftable_entry(tuple, &parse->cftable_entry);
break;
case CISTPL_DEVICE_GEO:
case CISTPL_DEVICE_GEO_A:
ret = parse_device_geo(tuple, &parse->device_geo);
break;
case CISTPL_VERS_2:
ret = parse_vers_2(tuple, &parse->vers_2);
break;
case CISTPL_ORG:
ret = parse_org(tuple, &parse->org);
break;
case CISTPL_FORMAT:
case CISTPL_FORMAT_A:
ret = parse_format(tuple, &parse->format);
break;
case CISTPL_NO_LINK:
case CISTPL_LINKTARGET:
ret = CS_SUCCESS;
break;
default:
ret = CS_UNSUPPORTED_FUNCTION;
break;
}
return ret;
}
EXPORT_SYMBOL(pccard_parse_tuple);
/*======================================================================
This is used internally by Card Services to look up CIS stuff.
======================================================================*/
int pccard_read_tuple(struct pcmcia_socket *s, unsigned int function, cisdata_t code, void *parse)
{
tuple_t tuple;
cisdata_t *buf;
int ret;
buf = kmalloc(256, GFP_KERNEL);
if (buf == NULL)
return CS_OUT_OF_RESOURCE;
tuple.DesiredTuple = code;
tuple.Attributes = TUPLE_RETURN_COMMON;
ret = pccard_get_first_tuple(s, function, &tuple);
if (ret != CS_SUCCESS) goto done;
tuple.TupleData = buf;
tuple.TupleOffset = 0;
tuple.TupleDataMax = 255;
ret = pccard_get_tuple_data(s, &tuple);
if (ret != CS_SUCCESS) goto done;
ret = pccard_parse_tuple(&tuple, parse);
done:
kfree(buf);
return ret;
}
EXPORT_SYMBOL(pccard_read_tuple);
/*======================================================================
This tries to determine if a card has a sensible CIS. It returns
the number of tuples in the CIS, or 0 if the CIS looks bad. The
checks include making sure several critical tuples are present and
valid; seeing if the total number of tuples is reasonable; and
looking for tuples that use reserved codes.
======================================================================*/
int pccard_validate_cis(struct pcmcia_socket *s, unsigned int function, cisinfo_t *info)
{
tuple_t *tuple;
cisparse_t *p;
int ret, reserved, dev_ok = 0, ident_ok = 0;
if (!s)
return CS_BAD_HANDLE;
tuple = kmalloc(sizeof(*tuple), GFP_KERNEL);
if (tuple == NULL)
return CS_OUT_OF_RESOURCE;
p = kmalloc(sizeof(*p), GFP_KERNEL);
if (p == NULL) {
kfree(tuple);
return CS_OUT_OF_RESOURCE;
}
info->Chains = reserved = 0;
tuple->DesiredTuple = RETURN_FIRST_TUPLE;
tuple->Attributes = TUPLE_RETURN_COMMON;
ret = pccard_get_first_tuple(s, function, tuple);
if (ret != CS_SUCCESS)
goto done;
/* First tuple should be DEVICE; we should really have either that
or a CFTABLE_ENTRY of some sort */
if ((tuple->TupleCode == CISTPL_DEVICE) ||
(pccard_read_tuple(s, function, CISTPL_CFTABLE_ENTRY, p) == CS_SUCCESS) ||
(pccard_read_tuple(s, function, CISTPL_CFTABLE_ENTRY_CB, p) == CS_SUCCESS))
dev_ok++;
/* All cards should have a MANFID tuple, and/or a VERS_1 or VERS_2
tuple, for card identification. Certain old D-Link and Linksys
cards have only a broken VERS_2 tuple; hence the bogus test. */
if ((pccard_read_tuple(s, function, CISTPL_MANFID, p) == CS_SUCCESS) ||
(pccard_read_tuple(s, function, CISTPL_VERS_1, p) == CS_SUCCESS) ||
(pccard_read_tuple(s, function, CISTPL_VERS_2, p) != CS_NO_MORE_ITEMS))
ident_ok++;
if (!dev_ok && !ident_ok)
goto done;
for (info->Chains = 1; info->Chains < MAX_TUPLES; info->Chains++) {
ret = pccard_get_next_tuple(s, function, tuple);
if (ret != CS_SUCCESS) break;
if (((tuple->TupleCode > 0x23) && (tuple->TupleCode < 0x40)) ||
((tuple->TupleCode > 0x47) && (tuple->TupleCode < 0x80)) ||
((tuple->TupleCode > 0x90) && (tuple->TupleCode < 0xff)))
reserved++;
}
if ((info->Chains == MAX_TUPLES) || (reserved > 5) ||
((!dev_ok || !ident_ok) && (info->Chains > 10)))
info->Chains = 0;
done:
kfree(tuple);
kfree(p);
return CS_SUCCESS;
}
EXPORT_SYMBOL(pccard_validate_cis);