| /* |
| * Copyright (c) 2000-2005 Silicon Graphics, Inc. |
| * All Rights Reserved. |
| * |
| * This program is free software; you can redistribute it and/or |
| * modify it under the terms of the GNU General Public License as |
| * published by the Free Software Foundation. |
| * |
| * This program is distributed in the hope that it would be useful, |
| * but WITHOUT ANY WARRANTY; without even the implied warranty of |
| * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the |
| * GNU General Public License for more details. |
| * |
| * You should have received a copy of the GNU General Public License |
| * along with this program; if not, write the Free Software Foundation, |
| * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA |
| */ |
| #include "xfs.h" |
| #include "xfs_fs.h" |
| #include "xfs_types.h" |
| #include "xfs_bit.h" |
| #include "xfs_log.h" |
| #include "xfs_inum.h" |
| #include "xfs_trans.h" |
| #include "xfs_sb.h" |
| #include "xfs_ag.h" |
| #include "xfs_dir2.h" |
| #include "xfs_dmapi.h" |
| #include "xfs_mount.h" |
| #include "xfs_bmap_btree.h" |
| #include "xfs_alloc_btree.h" |
| #include "xfs_ialloc_btree.h" |
| #include "xfs_btree.h" |
| #include "xfs_dir2_sf.h" |
| #include "xfs_attr_sf.h" |
| #include "xfs_inode.h" |
| #include "xfs_dinode.h" |
| #include "xfs_error.h" |
| #include "xfs_mru_cache.h" |
| #include "xfs_filestream.h" |
| #include "xfs_vnodeops.h" |
| #include "xfs_utils.h" |
| #include "xfs_buf_item.h" |
| #include "xfs_inode_item.h" |
| #include "xfs_rw.h" |
| |
| #include <linux/kthread.h> |
| #include <linux/freezer.h> |
| |
| /* |
| * xfs_sync flushes any pending I/O to file system vfsp. |
| * |
| * This routine is called by vfs_sync() to make sure that things make it |
| * out to disk eventually, on sync() system calls to flush out everything, |
| * and when the file system is unmounted. For the vfs_sync() case, all |
| * we really need to do is sync out the log to make all of our meta-data |
| * updates permanent (except for timestamps). For calls from pflushd(), |
| * dirty pages are kept moving by calling pdflush() on the inodes |
| * containing them. We also flush the inodes that we can lock without |
| * sleeping and the superblock if we can lock it without sleeping from |
| * vfs_sync() so that items at the tail of the log are always moving out. |
| * |
| * Flags: |
| * SYNC_BDFLUSH - We're being called from vfs_sync() so we don't want |
| * to sleep if we can help it. All we really need |
| * to do is ensure that the log is synced at least |
| * periodically. We also push the inodes and |
| * superblock if we can lock them without sleeping |
| * and they are not pinned. |
| * SYNC_ATTR - We need to flush the inodes. If SYNC_BDFLUSH is not |
| * set, then we really want to lock each inode and flush |
| * it. |
| * SYNC_WAIT - All the flushes that take place in this call should |
| * be synchronous. |
| * SYNC_DELWRI - This tells us to push dirty pages associated with |
| * inodes. SYNC_WAIT and SYNC_BDFLUSH are used to |
| * determine if they should be flushed sync, async, or |
| * delwri. |
| * SYNC_CLOSE - This flag is passed when the system is being |
| * unmounted. We should sync and invalidate everything. |
| * SYNC_FSDATA - This indicates that the caller would like to make |
| * sure the superblock is safe on disk. We can ensure |
| * this by simply making sure the log gets flushed |
| * if SYNC_BDFLUSH is set, and by actually writing it |
| * out otherwise. |
| * SYNC_IOWAIT - The caller wants us to wait for all data I/O to complete |
| * before we return (including direct I/O). Forms the drain |
| * side of the write barrier needed to safely quiesce the |
| * filesystem. |
| * |
| */ |
| int |
| xfs_sync( |
| xfs_mount_t *mp, |
| int flags) |
| { |
| int error; |
| |
| /* |
| * Get the Quota Manager to flush the dquots. |
| * |
| * If XFS quota support is not enabled or this filesystem |
| * instance does not use quotas XFS_QM_DQSYNC will always |
| * return zero. |
| */ |
| error = XFS_QM_DQSYNC(mp, flags); |
| if (error) { |
| /* |
| * If we got an IO error, we will be shutting down. |
| * So, there's nothing more for us to do here. |
| */ |
| ASSERT(error != EIO || XFS_FORCED_SHUTDOWN(mp)); |
| if (XFS_FORCED_SHUTDOWN(mp)) |
| return XFS_ERROR(error); |
| } |
| |
| if (flags & SYNC_IOWAIT) |
| xfs_filestream_flush(mp); |
| |
| return xfs_syncsub(mp, flags, NULL); |
| } |
| |
| /* |
| * Sync all the inodes in the given AG according to the |
| * direction given by the flags. |
| */ |
| STATIC int |
| xfs_sync_inodes_ag( |
| xfs_mount_t *mp, |
| int ag, |
| int flags, |
| int *bypassed) |
| { |
| xfs_inode_t *ip = NULL; |
| struct inode *vp = NULL; |
| xfs_perag_t *pag = &mp->m_perag[ag]; |
| boolean_t vnode_refed = B_FALSE; |
| int nr_found; |
| int first_index = 0; |
| int error = 0; |
| int last_error = 0; |
| int fflag = XFS_B_ASYNC; |
| int lock_flags = XFS_ILOCK_SHARED; |
| |
| if (flags & SYNC_DELWRI) |
| fflag = XFS_B_DELWRI; |
| if (flags & SYNC_WAIT) |
| fflag = 0; /* synchronous overrides all */ |
| |
| if (flags & (SYNC_DELWRI | SYNC_CLOSE)) { |
| /* |
| * We need the I/O lock if we're going to call any of |
| * the flush/inval routines. |
| */ |
| lock_flags |= XFS_IOLOCK_SHARED; |
| } |
| |
| do { |
| /* |
| * use a gang lookup to find the next inode in the tree |
| * as the tree is sparse and a gang lookup walks to find |
| * the number of objects requested. |
| */ |
| read_lock(&pag->pag_ici_lock); |
| nr_found = radix_tree_gang_lookup(&pag->pag_ici_root, |
| (void**)&ip, first_index, 1); |
| |
| if (!nr_found) { |
| read_unlock(&pag->pag_ici_lock); |
| break; |
| } |
| |
| /* update the index for the next lookup */ |
| first_index = XFS_INO_TO_AGINO(mp, ip->i_ino + 1); |
| |
| /* |
| * skip inodes in reclaim. Let xfs_syncsub do that for |
| * us so we don't need to worry. |
| */ |
| vp = VFS_I(ip); |
| if (!vp) { |
| read_unlock(&pag->pag_ici_lock); |
| continue; |
| } |
| |
| /* bad inodes are dealt with elsewhere */ |
| if (VN_BAD(vp)) { |
| read_unlock(&pag->pag_ici_lock); |
| continue; |
| } |
| |
| /* nothing to sync during shutdown */ |
| if (XFS_FORCED_SHUTDOWN(mp) && !(flags & SYNC_CLOSE)) { |
| read_unlock(&pag->pag_ici_lock); |
| return 0; |
| } |
| |
| /* |
| * The inode lock here actually coordinates with the almost |
| * spurious inode lock in xfs_ireclaim() to prevent the vnode |
| * we handle here without a reference from being freed while we |
| * reference it. If we lock the inode while it's on the mount |
| * list here, then the spurious inode lock in xfs_ireclaim() |
| * after the inode is pulled from the mount list will sleep |
| * until we release it here. This keeps the vnode from being |
| * freed while we reference it. |
| */ |
| if (xfs_ilock_nowait(ip, lock_flags) == 0) { |
| vp = vn_grab(vp); |
| read_unlock(&pag->pag_ici_lock); |
| if (!vp) |
| continue; |
| xfs_ilock(ip, lock_flags); |
| |
| ASSERT(vp == VFS_I(ip)); |
| ASSERT(ip->i_mount == mp); |
| |
| vnode_refed = B_TRUE; |
| } else { |
| /* safe to unlock here as we have a reference */ |
| read_unlock(&pag->pag_ici_lock); |
| } |
| /* |
| * If we have to flush data or wait for I/O completion |
| * we need to drop the ilock that we currently hold. |
| * If we need to drop the lock, insert a marker if we |
| * have not already done so. |
| */ |
| if (flags & SYNC_CLOSE) { |
| xfs_iunlock(ip, XFS_ILOCK_SHARED); |
| if (XFS_FORCED_SHUTDOWN(mp)) |
| xfs_tosspages(ip, 0, -1, FI_REMAPF); |
| else |
| error = xfs_flushinval_pages(ip, 0, -1, |
| FI_REMAPF); |
| /* wait for I/O on freeze */ |
| if (flags & SYNC_IOWAIT) |
| vn_iowait(ip); |
| |
| xfs_ilock(ip, XFS_ILOCK_SHARED); |
| } |
| |
| if ((flags & SYNC_DELWRI) && VN_DIRTY(vp)) { |
| xfs_iunlock(ip, XFS_ILOCK_SHARED); |
| error = xfs_flush_pages(ip, 0, -1, fflag, FI_NONE); |
| if (flags & SYNC_IOWAIT) |
| vn_iowait(ip); |
| xfs_ilock(ip, XFS_ILOCK_SHARED); |
| } |
| |
| if ((flags & SYNC_ATTR) && !xfs_inode_clean(ip)) { |
| if (flags & SYNC_WAIT) { |
| xfs_iflock(ip); |
| if (!xfs_inode_clean(ip)) |
| error = xfs_iflush(ip, XFS_IFLUSH_SYNC); |
| else |
| xfs_ifunlock(ip); |
| } else if (xfs_iflock_nowait(ip)) { |
| if (!xfs_inode_clean(ip)) |
| error = xfs_iflush(ip, XFS_IFLUSH_DELWRI); |
| else |
| xfs_ifunlock(ip); |
| } else if (bypassed) { |
| (*bypassed)++; |
| } |
| } |
| |
| if (lock_flags) |
| xfs_iunlock(ip, lock_flags); |
| |
| if (vnode_refed) { |
| IRELE(ip); |
| vnode_refed = B_FALSE; |
| } |
| |
| if (error) |
| last_error = error; |
| /* |
| * bail out if the filesystem is corrupted. |
| */ |
| if (error == EFSCORRUPTED) |
| return XFS_ERROR(error); |
| |
| } while (nr_found); |
| |
| return last_error; |
| } |
| |
| int |
| xfs_sync_inodes( |
| xfs_mount_t *mp, |
| int flags, |
| int *bypassed) |
| { |
| int error; |
| int last_error; |
| int i; |
| |
| if (bypassed) |
| *bypassed = 0; |
| if (mp->m_flags & XFS_MOUNT_RDONLY) |
| return 0; |
| error = 0; |
| last_error = 0; |
| |
| for (i = 0; i < mp->m_sb.sb_agcount; i++) { |
| if (!mp->m_perag[i].pag_ici_init) |
| continue; |
| error = xfs_sync_inodes_ag(mp, i, flags, bypassed); |
| if (error) |
| last_error = error; |
| if (error == EFSCORRUPTED) |
| break; |
| } |
| return XFS_ERROR(last_error); |
| } |
| |
| STATIC int |
| xfs_commit_dummy_trans( |
| struct xfs_mount *mp, |
| uint log_flags) |
| { |
| struct xfs_inode *ip = mp->m_rootip; |
| struct xfs_trans *tp; |
| int error; |
| |
| /* |
| * Put a dummy transaction in the log to tell recovery |
| * that all others are OK. |
| */ |
| tp = xfs_trans_alloc(mp, XFS_TRANS_DUMMY1); |
| error = xfs_trans_reserve(tp, 0, XFS_ICHANGE_LOG_RES(mp), 0, 0, 0); |
| if (error) { |
| xfs_trans_cancel(tp, 0); |
| return error; |
| } |
| |
| xfs_ilock(ip, XFS_ILOCK_EXCL); |
| |
| xfs_trans_ijoin(tp, ip, XFS_ILOCK_EXCL); |
| xfs_trans_ihold(tp, ip); |
| xfs_trans_log_inode(tp, ip, XFS_ILOG_CORE); |
| /* XXX(hch): ignoring the error here.. */ |
| error = xfs_trans_commit(tp, 0); |
| |
| xfs_iunlock(ip, XFS_ILOCK_EXCL); |
| |
| xfs_log_force(mp, 0, log_flags); |
| return 0; |
| } |
| |
| STATIC int |
| xfs_sync_fsdata( |
| struct xfs_mount *mp, |
| int flags) |
| { |
| struct xfs_buf *bp; |
| struct xfs_buf_log_item *bip; |
| int error = 0; |
| |
| /* |
| * If this is xfssyncd() then only sync the superblock if we can |
| * lock it without sleeping and it is not pinned. |
| */ |
| if (flags & SYNC_BDFLUSH) { |
| ASSERT(!(flags & SYNC_WAIT)); |
| |
| bp = xfs_getsb(mp, XFS_BUF_TRYLOCK); |
| if (!bp) |
| goto out; |
| |
| bip = XFS_BUF_FSPRIVATE(bp, struct xfs_buf_log_item *); |
| if (!bip || !xfs_buf_item_dirty(bip) || XFS_BUF_ISPINNED(bp)) |
| goto out_brelse; |
| } else { |
| bp = xfs_getsb(mp, 0); |
| |
| /* |
| * If the buffer is pinned then push on the log so we won't |
| * get stuck waiting in the write for someone, maybe |
| * ourselves, to flush the log. |
| * |
| * Even though we just pushed the log above, we did not have |
| * the superblock buffer locked at that point so it can |
| * become pinned in between there and here. |
| */ |
| if (XFS_BUF_ISPINNED(bp)) |
| xfs_log_force(mp, 0, XFS_LOG_FORCE); |
| } |
| |
| |
| if (flags & SYNC_WAIT) |
| XFS_BUF_UNASYNC(bp); |
| else |
| XFS_BUF_ASYNC(bp); |
| |
| return xfs_bwrite(mp, bp); |
| |
| out_brelse: |
| xfs_buf_relse(bp); |
| out: |
| return error; |
| } |
| |
| /* |
| * xfs sync routine for internal use |
| * |
| * This routine supports all of the flags defined for the generic vfs_sync |
| * interface as explained above under xfs_sync. |
| * |
| */ |
| int |
| xfs_syncsub( |
| xfs_mount_t *mp, |
| int flags, |
| int *bypassed) |
| { |
| int error = 0; |
| int last_error = 0; |
| uint log_flags = XFS_LOG_FORCE; |
| |
| /* |
| * Sync out the log. This ensures that the log is periodically |
| * flushed even if there is not enough activity to fill it up. |
| */ |
| if (flags & SYNC_WAIT) |
| log_flags |= XFS_LOG_SYNC; |
| |
| xfs_log_force(mp, (xfs_lsn_t)0, log_flags); |
| |
| if (flags & (SYNC_ATTR|SYNC_DELWRI)) { |
| if (flags & SYNC_BDFLUSH) |
| xfs_finish_reclaim_all(mp, 1, XFS_IFLUSH_DELWRI_ELSE_ASYNC); |
| else |
| error = xfs_sync_inodes(mp, flags, bypassed); |
| } |
| |
| /* |
| * Flushing out dirty data above probably generated more |
| * log activity, so if this isn't vfs_sync() then flush |
| * the log again. |
| */ |
| if (flags & SYNC_DELWRI) |
| xfs_log_force(mp, 0, log_flags); |
| |
| if (flags & SYNC_FSDATA) { |
| error = xfs_sync_fsdata(mp, flags); |
| if (error) |
| last_error = error; |
| } |
| |
| /* |
| * Now check to see if the log needs a "dummy" transaction. |
| */ |
| if (!(flags & SYNC_REMOUNT) && xfs_log_need_covered(mp)) { |
| error = xfs_commit_dummy_trans(mp, log_flags); |
| if (error) |
| return error; |
| } |
| |
| /* |
| * When shutting down, we need to insure that the AIL is pushed |
| * to disk or the filesystem can appear corrupt from the PROM. |
| */ |
| if ((flags & (SYNC_CLOSE|SYNC_WAIT)) == (SYNC_CLOSE|SYNC_WAIT)) { |
| XFS_bflush(mp->m_ddev_targp); |
| if (mp->m_rtdev_targp) { |
| XFS_bflush(mp->m_rtdev_targp); |
| } |
| } |
| |
| return XFS_ERROR(last_error); |
| } |
| |
| /* |
| * Enqueue a work item to be picked up by the vfs xfssyncd thread. |
| * Doing this has two advantages: |
| * - It saves on stack space, which is tight in certain situations |
| * - It can be used (with care) as a mechanism to avoid deadlocks. |
| * Flushing while allocating in a full filesystem requires both. |
| */ |
| STATIC void |
| xfs_syncd_queue_work( |
| struct xfs_mount *mp, |
| void *data, |
| void (*syncer)(struct xfs_mount *, void *)) |
| { |
| struct bhv_vfs_sync_work *work; |
| |
| work = kmem_alloc(sizeof(struct bhv_vfs_sync_work), KM_SLEEP); |
| INIT_LIST_HEAD(&work->w_list); |
| work->w_syncer = syncer; |
| work->w_data = data; |
| work->w_mount = mp; |
| spin_lock(&mp->m_sync_lock); |
| list_add_tail(&work->w_list, &mp->m_sync_list); |
| spin_unlock(&mp->m_sync_lock); |
| wake_up_process(mp->m_sync_task); |
| } |
| |
| /* |
| * Flush delayed allocate data, attempting to free up reserved space |
| * from existing allocations. At this point a new allocation attempt |
| * has failed with ENOSPC and we are in the process of scratching our |
| * heads, looking about for more room... |
| */ |
| STATIC void |
| xfs_flush_inode_work( |
| struct xfs_mount *mp, |
| void *arg) |
| { |
| struct inode *inode = arg; |
| filemap_flush(inode->i_mapping); |
| iput(inode); |
| } |
| |
| void |
| xfs_flush_inode( |
| xfs_inode_t *ip) |
| { |
| struct inode *inode = VFS_I(ip); |
| |
| igrab(inode); |
| xfs_syncd_queue_work(ip->i_mount, inode, xfs_flush_inode_work); |
| delay(msecs_to_jiffies(500)); |
| } |
| |
| /* |
| * This is the "bigger hammer" version of xfs_flush_inode_work... |
| * (IOW, "If at first you don't succeed, use a Bigger Hammer"). |
| */ |
| STATIC void |
| xfs_flush_device_work( |
| struct xfs_mount *mp, |
| void *arg) |
| { |
| struct inode *inode = arg; |
| sync_blockdev(mp->m_super->s_bdev); |
| iput(inode); |
| } |
| |
| void |
| xfs_flush_device( |
| xfs_inode_t *ip) |
| { |
| struct inode *inode = VFS_I(ip); |
| |
| igrab(inode); |
| xfs_syncd_queue_work(ip->i_mount, inode, xfs_flush_device_work); |
| delay(msecs_to_jiffies(500)); |
| xfs_log_force(ip->i_mount, (xfs_lsn_t)0, XFS_LOG_FORCE|XFS_LOG_SYNC); |
| } |
| |
| STATIC void |
| xfs_sync_worker( |
| struct xfs_mount *mp, |
| void *unused) |
| { |
| int error; |
| |
| if (!(mp->m_flags & XFS_MOUNT_RDONLY)) |
| error = xfs_sync(mp, SYNC_FSDATA | SYNC_BDFLUSH | SYNC_ATTR); |
| mp->m_sync_seq++; |
| wake_up(&mp->m_wait_single_sync_task); |
| } |
| |
| STATIC int |
| xfssyncd( |
| void *arg) |
| { |
| struct xfs_mount *mp = arg; |
| long timeleft; |
| bhv_vfs_sync_work_t *work, *n; |
| LIST_HEAD (tmp); |
| |
| set_freezable(); |
| timeleft = xfs_syncd_centisecs * msecs_to_jiffies(10); |
| for (;;) { |
| timeleft = schedule_timeout_interruptible(timeleft); |
| /* swsusp */ |
| try_to_freeze(); |
| if (kthread_should_stop() && list_empty(&mp->m_sync_list)) |
| break; |
| |
| spin_lock(&mp->m_sync_lock); |
| /* |
| * We can get woken by laptop mode, to do a sync - |
| * that's the (only!) case where the list would be |
| * empty with time remaining. |
| */ |
| if (!timeleft || list_empty(&mp->m_sync_list)) { |
| if (!timeleft) |
| timeleft = xfs_syncd_centisecs * |
| msecs_to_jiffies(10); |
| INIT_LIST_HEAD(&mp->m_sync_work.w_list); |
| list_add_tail(&mp->m_sync_work.w_list, |
| &mp->m_sync_list); |
| } |
| list_for_each_entry_safe(work, n, &mp->m_sync_list, w_list) |
| list_move(&work->w_list, &tmp); |
| spin_unlock(&mp->m_sync_lock); |
| |
| list_for_each_entry_safe(work, n, &tmp, w_list) { |
| (*work->w_syncer)(mp, work->w_data); |
| list_del(&work->w_list); |
| if (work == &mp->m_sync_work) |
| continue; |
| kmem_free(work); |
| } |
| } |
| |
| return 0; |
| } |
| |
| int |
| xfs_syncd_init( |
| struct xfs_mount *mp) |
| { |
| mp->m_sync_work.w_syncer = xfs_sync_worker; |
| mp->m_sync_work.w_mount = mp; |
| mp->m_sync_task = kthread_run(xfssyncd, mp, "xfssyncd"); |
| if (IS_ERR(mp->m_sync_task)) |
| return -PTR_ERR(mp->m_sync_task); |
| return 0; |
| } |
| |
| void |
| xfs_syncd_stop( |
| struct xfs_mount *mp) |
| { |
| kthread_stop(mp->m_sync_task); |
| } |
| |