| /* |
| * Copyright (c) 2008-2010 Atheros Communications Inc. |
| * |
| * Permission to use, copy, modify, and/or distribute this software for any |
| * purpose with or without fee is hereby granted, provided that the above |
| * copyright notice and this permission notice appear in all copies. |
| * |
| * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES |
| * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF |
| * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR |
| * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES |
| * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN |
| * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF |
| * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE. |
| */ |
| |
| #include <linux/io.h> |
| #include <linux/slab.h> |
| #include <asm/unaligned.h> |
| |
| #include "hw.h" |
| #include "hw-ops.h" |
| #include "rc.h" |
| #include "ar9003_mac.h" |
| |
| static bool ath9k_hw_set_reset_reg(struct ath_hw *ah, u32 type); |
| |
| MODULE_AUTHOR("Atheros Communications"); |
| MODULE_DESCRIPTION("Support for Atheros 802.11n wireless LAN cards."); |
| MODULE_SUPPORTED_DEVICE("Atheros 802.11n WLAN cards"); |
| MODULE_LICENSE("Dual BSD/GPL"); |
| |
| static int __init ath9k_init(void) |
| { |
| return 0; |
| } |
| module_init(ath9k_init); |
| |
| static void __exit ath9k_exit(void) |
| { |
| return; |
| } |
| module_exit(ath9k_exit); |
| |
| /* Private hardware callbacks */ |
| |
| static void ath9k_hw_init_cal_settings(struct ath_hw *ah) |
| { |
| ath9k_hw_private_ops(ah)->init_cal_settings(ah); |
| } |
| |
| static void ath9k_hw_init_mode_regs(struct ath_hw *ah) |
| { |
| ath9k_hw_private_ops(ah)->init_mode_regs(ah); |
| } |
| |
| static bool ath9k_hw_macversion_supported(struct ath_hw *ah) |
| { |
| struct ath_hw_private_ops *priv_ops = ath9k_hw_private_ops(ah); |
| |
| return priv_ops->macversion_supported(ah->hw_version.macVersion); |
| } |
| |
| static u32 ath9k_hw_compute_pll_control(struct ath_hw *ah, |
| struct ath9k_channel *chan) |
| { |
| return ath9k_hw_private_ops(ah)->compute_pll_control(ah, chan); |
| } |
| |
| static void ath9k_hw_init_mode_gain_regs(struct ath_hw *ah) |
| { |
| if (!ath9k_hw_private_ops(ah)->init_mode_gain_regs) |
| return; |
| |
| ath9k_hw_private_ops(ah)->init_mode_gain_regs(ah); |
| } |
| |
| static void ath9k_hw_ani_cache_ini_regs(struct ath_hw *ah) |
| { |
| /* You will not have this callback if using the old ANI */ |
| if (!ath9k_hw_private_ops(ah)->ani_cache_ini_regs) |
| return; |
| |
| ath9k_hw_private_ops(ah)->ani_cache_ini_regs(ah); |
| } |
| |
| /********************/ |
| /* Helper Functions */ |
| /********************/ |
| |
| static void ath9k_hw_set_clockrate(struct ath_hw *ah) |
| { |
| struct ieee80211_conf *conf = &ath9k_hw_common(ah)->hw->conf; |
| struct ath_common *common = ath9k_hw_common(ah); |
| unsigned int clockrate; |
| |
| if (!ah->curchan) /* should really check for CCK instead */ |
| clockrate = ATH9K_CLOCK_RATE_CCK; |
| else if (conf->channel->band == IEEE80211_BAND_2GHZ) |
| clockrate = ATH9K_CLOCK_RATE_2GHZ_OFDM; |
| else if (ah->caps.hw_caps & ATH9K_HW_CAP_FASTCLOCK) |
| clockrate = ATH9K_CLOCK_FAST_RATE_5GHZ_OFDM; |
| else |
| clockrate = ATH9K_CLOCK_RATE_5GHZ_OFDM; |
| |
| if (conf_is_ht40(conf)) |
| clockrate *= 2; |
| |
| common->clockrate = clockrate; |
| } |
| |
| static u32 ath9k_hw_mac_to_clks(struct ath_hw *ah, u32 usecs) |
| { |
| struct ath_common *common = ath9k_hw_common(ah); |
| |
| return usecs * common->clockrate; |
| } |
| |
| bool ath9k_hw_wait(struct ath_hw *ah, u32 reg, u32 mask, u32 val, u32 timeout) |
| { |
| int i; |
| |
| BUG_ON(timeout < AH_TIME_QUANTUM); |
| |
| for (i = 0; i < (timeout / AH_TIME_QUANTUM); i++) { |
| if ((REG_READ(ah, reg) & mask) == val) |
| return true; |
| |
| udelay(AH_TIME_QUANTUM); |
| } |
| |
| ath_dbg(ath9k_hw_common(ah), ATH_DBG_ANY, |
| "timeout (%d us) on reg 0x%x: 0x%08x & 0x%08x != 0x%08x\n", |
| timeout, reg, REG_READ(ah, reg), mask, val); |
| |
| return false; |
| } |
| EXPORT_SYMBOL(ath9k_hw_wait); |
| |
| u32 ath9k_hw_reverse_bits(u32 val, u32 n) |
| { |
| u32 retval; |
| int i; |
| |
| for (i = 0, retval = 0; i < n; i++) { |
| retval = (retval << 1) | (val & 1); |
| val >>= 1; |
| } |
| return retval; |
| } |
| |
| bool ath9k_get_channel_edges(struct ath_hw *ah, |
| u16 flags, u16 *low, |
| u16 *high) |
| { |
| struct ath9k_hw_capabilities *pCap = &ah->caps; |
| |
| if (flags & CHANNEL_5GHZ) { |
| *low = pCap->low_5ghz_chan; |
| *high = pCap->high_5ghz_chan; |
| return true; |
| } |
| if ((flags & CHANNEL_2GHZ)) { |
| *low = pCap->low_2ghz_chan; |
| *high = pCap->high_2ghz_chan; |
| return true; |
| } |
| return false; |
| } |
| |
| u16 ath9k_hw_computetxtime(struct ath_hw *ah, |
| u8 phy, int kbps, |
| u32 frameLen, u16 rateix, |
| bool shortPreamble) |
| { |
| u32 bitsPerSymbol, numBits, numSymbols, phyTime, txTime; |
| |
| if (kbps == 0) |
| return 0; |
| |
| switch (phy) { |
| case WLAN_RC_PHY_CCK: |
| phyTime = CCK_PREAMBLE_BITS + CCK_PLCP_BITS; |
| if (shortPreamble) |
| phyTime >>= 1; |
| numBits = frameLen << 3; |
| txTime = CCK_SIFS_TIME + phyTime + ((numBits * 1000) / kbps); |
| break; |
| case WLAN_RC_PHY_OFDM: |
| if (ah->curchan && IS_CHAN_QUARTER_RATE(ah->curchan)) { |
| bitsPerSymbol = (kbps * OFDM_SYMBOL_TIME_QUARTER) / 1000; |
| numBits = OFDM_PLCP_BITS + (frameLen << 3); |
| numSymbols = DIV_ROUND_UP(numBits, bitsPerSymbol); |
| txTime = OFDM_SIFS_TIME_QUARTER |
| + OFDM_PREAMBLE_TIME_QUARTER |
| + (numSymbols * OFDM_SYMBOL_TIME_QUARTER); |
| } else if (ah->curchan && |
| IS_CHAN_HALF_RATE(ah->curchan)) { |
| bitsPerSymbol = (kbps * OFDM_SYMBOL_TIME_HALF) / 1000; |
| numBits = OFDM_PLCP_BITS + (frameLen << 3); |
| numSymbols = DIV_ROUND_UP(numBits, bitsPerSymbol); |
| txTime = OFDM_SIFS_TIME_HALF + |
| OFDM_PREAMBLE_TIME_HALF |
| + (numSymbols * OFDM_SYMBOL_TIME_HALF); |
| } else { |
| bitsPerSymbol = (kbps * OFDM_SYMBOL_TIME) / 1000; |
| numBits = OFDM_PLCP_BITS + (frameLen << 3); |
| numSymbols = DIV_ROUND_UP(numBits, bitsPerSymbol); |
| txTime = OFDM_SIFS_TIME + OFDM_PREAMBLE_TIME |
| + (numSymbols * OFDM_SYMBOL_TIME); |
| } |
| break; |
| default: |
| ath_err(ath9k_hw_common(ah), |
| "Unknown phy %u (rate ix %u)\n", phy, rateix); |
| txTime = 0; |
| break; |
| } |
| |
| return txTime; |
| } |
| EXPORT_SYMBOL(ath9k_hw_computetxtime); |
| |
| void ath9k_hw_get_channel_centers(struct ath_hw *ah, |
| struct ath9k_channel *chan, |
| struct chan_centers *centers) |
| { |
| int8_t extoff; |
| |
| if (!IS_CHAN_HT40(chan)) { |
| centers->ctl_center = centers->ext_center = |
| centers->synth_center = chan->channel; |
| return; |
| } |
| |
| if ((chan->chanmode == CHANNEL_A_HT40PLUS) || |
| (chan->chanmode == CHANNEL_G_HT40PLUS)) { |
| centers->synth_center = |
| chan->channel + HT40_CHANNEL_CENTER_SHIFT; |
| extoff = 1; |
| } else { |
| centers->synth_center = |
| chan->channel - HT40_CHANNEL_CENTER_SHIFT; |
| extoff = -1; |
| } |
| |
| centers->ctl_center = |
| centers->synth_center - (extoff * HT40_CHANNEL_CENTER_SHIFT); |
| /* 25 MHz spacing is supported by hw but not on upper layers */ |
| centers->ext_center = |
| centers->synth_center + (extoff * HT40_CHANNEL_CENTER_SHIFT); |
| } |
| |
| /******************/ |
| /* Chip Revisions */ |
| /******************/ |
| |
| static void ath9k_hw_read_revisions(struct ath_hw *ah) |
| { |
| u32 val; |
| |
| val = REG_READ(ah, AR_SREV) & AR_SREV_ID; |
| |
| if (val == 0xFF) { |
| val = REG_READ(ah, AR_SREV); |
| ah->hw_version.macVersion = |
| (val & AR_SREV_VERSION2) >> AR_SREV_TYPE2_S; |
| ah->hw_version.macRev = MS(val, AR_SREV_REVISION2); |
| ah->is_pciexpress = (val & AR_SREV_TYPE2_HOST_MODE) ? 0 : 1; |
| } else { |
| if (!AR_SREV_9100(ah)) |
| ah->hw_version.macVersion = MS(val, AR_SREV_VERSION); |
| |
| ah->hw_version.macRev = val & AR_SREV_REVISION; |
| |
| if (ah->hw_version.macVersion == AR_SREV_VERSION_5416_PCIE) |
| ah->is_pciexpress = true; |
| } |
| } |
| |
| /************************************/ |
| /* HW Attach, Detach, Init Routines */ |
| /************************************/ |
| |
| static void ath9k_hw_disablepcie(struct ath_hw *ah) |
| { |
| if (AR_SREV_9100(ah)) |
| return; |
| |
| ENABLE_REGWRITE_BUFFER(ah); |
| |
| REG_WRITE(ah, AR_PCIE_SERDES, 0x9248fc00); |
| REG_WRITE(ah, AR_PCIE_SERDES, 0x24924924); |
| REG_WRITE(ah, AR_PCIE_SERDES, 0x28000029); |
| REG_WRITE(ah, AR_PCIE_SERDES, 0x57160824); |
| REG_WRITE(ah, AR_PCIE_SERDES, 0x25980579); |
| REG_WRITE(ah, AR_PCIE_SERDES, 0x00000000); |
| REG_WRITE(ah, AR_PCIE_SERDES, 0x1aaabe40); |
| REG_WRITE(ah, AR_PCIE_SERDES, 0xbe105554); |
| REG_WRITE(ah, AR_PCIE_SERDES, 0x000e1007); |
| |
| REG_WRITE(ah, AR_PCIE_SERDES2, 0x00000000); |
| |
| REGWRITE_BUFFER_FLUSH(ah); |
| } |
| |
| /* This should work for all families including legacy */ |
| static bool ath9k_hw_chip_test(struct ath_hw *ah) |
| { |
| struct ath_common *common = ath9k_hw_common(ah); |
| u32 regAddr[2] = { AR_STA_ID0 }; |
| u32 regHold[2]; |
| static const u32 patternData[4] = { |
| 0x55555555, 0xaaaaaaaa, 0x66666666, 0x99999999 |
| }; |
| int i, j, loop_max; |
| |
| if (!AR_SREV_9300_20_OR_LATER(ah)) { |
| loop_max = 2; |
| regAddr[1] = AR_PHY_BASE + (8 << 2); |
| } else |
| loop_max = 1; |
| |
| for (i = 0; i < loop_max; i++) { |
| u32 addr = regAddr[i]; |
| u32 wrData, rdData; |
| |
| regHold[i] = REG_READ(ah, addr); |
| for (j = 0; j < 0x100; j++) { |
| wrData = (j << 16) | j; |
| REG_WRITE(ah, addr, wrData); |
| rdData = REG_READ(ah, addr); |
| if (rdData != wrData) { |
| ath_err(common, |
| "address test failed addr: 0x%08x - wr:0x%08x != rd:0x%08x\n", |
| addr, wrData, rdData); |
| return false; |
| } |
| } |
| for (j = 0; j < 4; j++) { |
| wrData = patternData[j]; |
| REG_WRITE(ah, addr, wrData); |
| rdData = REG_READ(ah, addr); |
| if (wrData != rdData) { |
| ath_err(common, |
| "address test failed addr: 0x%08x - wr:0x%08x != rd:0x%08x\n", |
| addr, wrData, rdData); |
| return false; |
| } |
| } |
| REG_WRITE(ah, regAddr[i], regHold[i]); |
| } |
| udelay(100); |
| |
| return true; |
| } |
| |
| static void ath9k_hw_init_config(struct ath_hw *ah) |
| { |
| int i; |
| |
| ah->config.dma_beacon_response_time = 2; |
| ah->config.sw_beacon_response_time = 10; |
| ah->config.additional_swba_backoff = 0; |
| ah->config.ack_6mb = 0x0; |
| ah->config.cwm_ignore_extcca = 0; |
| ah->config.pcie_powersave_enable = 0; |
| ah->config.pcie_clock_req = 0; |
| ah->config.pcie_waen = 0; |
| ah->config.analog_shiftreg = 1; |
| ah->config.enable_ani = true; |
| |
| for (i = 0; i < AR_EEPROM_MODAL_SPURS; i++) { |
| ah->config.spurchans[i][0] = AR_NO_SPUR; |
| ah->config.spurchans[i][1] = AR_NO_SPUR; |
| } |
| |
| if (ah->hw_version.devid != AR2427_DEVID_PCIE) |
| ah->config.ht_enable = 1; |
| else |
| ah->config.ht_enable = 0; |
| |
| ah->config.rx_intr_mitigation = true; |
| ah->config.pcieSerDesWrite = true; |
| |
| /* |
| * We need this for PCI devices only (Cardbus, PCI, miniPCI) |
| * _and_ if on non-uniprocessor systems (Multiprocessor/HT). |
| * This means we use it for all AR5416 devices, and the few |
| * minor PCI AR9280 devices out there. |
| * |
| * Serialization is required because these devices do not handle |
| * well the case of two concurrent reads/writes due to the latency |
| * involved. During one read/write another read/write can be issued |
| * on another CPU while the previous read/write may still be working |
| * on our hardware, if we hit this case the hardware poops in a loop. |
| * We prevent this by serializing reads and writes. |
| * |
| * This issue is not present on PCI-Express devices or pre-AR5416 |
| * devices (legacy, 802.11abg). |
| */ |
| if (num_possible_cpus() > 1) |
| ah->config.serialize_regmode = SER_REG_MODE_AUTO; |
| } |
| |
| static void ath9k_hw_init_defaults(struct ath_hw *ah) |
| { |
| struct ath_regulatory *regulatory = ath9k_hw_regulatory(ah); |
| |
| regulatory->country_code = CTRY_DEFAULT; |
| regulatory->power_limit = MAX_RATE_POWER; |
| regulatory->tp_scale = ATH9K_TP_SCALE_MAX; |
| |
| ah->hw_version.magic = AR5416_MAGIC; |
| ah->hw_version.subvendorid = 0; |
| |
| ah->atim_window = 0; |
| ah->sta_id1_defaults = |
| AR_STA_ID1_CRPT_MIC_ENABLE | |
| AR_STA_ID1_MCAST_KSRCH; |
| ah->beacon_interval = 100; |
| ah->enable_32kHz_clock = DONT_USE_32KHZ; |
| ah->slottime = (u32) -1; |
| ah->globaltxtimeout = (u32) -1; |
| ah->power_mode = ATH9K_PM_UNDEFINED; |
| } |
| |
| static int ath9k_hw_init_macaddr(struct ath_hw *ah) |
| { |
| struct ath_common *common = ath9k_hw_common(ah); |
| u32 sum; |
| int i; |
| u16 eeval; |
| static const u32 EEP_MAC[] = { EEP_MAC_LSW, EEP_MAC_MID, EEP_MAC_MSW }; |
| |
| sum = 0; |
| for (i = 0; i < 3; i++) { |
| eeval = ah->eep_ops->get_eeprom(ah, EEP_MAC[i]); |
| sum += eeval; |
| common->macaddr[2 * i] = eeval >> 8; |
| common->macaddr[2 * i + 1] = eeval & 0xff; |
| } |
| if (sum == 0 || sum == 0xffff * 3) |
| return -EADDRNOTAVAIL; |
| |
| return 0; |
| } |
| |
| static int ath9k_hw_post_init(struct ath_hw *ah) |
| { |
| int ecode; |
| |
| if (!AR_SREV_9271(ah)) { |
| if (!ath9k_hw_chip_test(ah)) |
| return -ENODEV; |
| } |
| |
| if (!AR_SREV_9300_20_OR_LATER(ah)) { |
| ecode = ar9002_hw_rf_claim(ah); |
| if (ecode != 0) |
| return ecode; |
| } |
| |
| ecode = ath9k_hw_eeprom_init(ah); |
| if (ecode != 0) |
| return ecode; |
| |
| ath_dbg(ath9k_hw_common(ah), ATH_DBG_CONFIG, |
| "Eeprom VER: %d, REV: %d\n", |
| ah->eep_ops->get_eeprom_ver(ah), |
| ah->eep_ops->get_eeprom_rev(ah)); |
| |
| ecode = ath9k_hw_rf_alloc_ext_banks(ah); |
| if (ecode) { |
| ath_err(ath9k_hw_common(ah), |
| "Failed allocating banks for external radio\n"); |
| ath9k_hw_rf_free_ext_banks(ah); |
| return ecode; |
| } |
| |
| if (!AR_SREV_9100(ah)) { |
| ath9k_hw_ani_setup(ah); |
| ath9k_hw_ani_init(ah); |
| } |
| |
| return 0; |
| } |
| |
| static void ath9k_hw_attach_ops(struct ath_hw *ah) |
| { |
| if (AR_SREV_9300_20_OR_LATER(ah)) |
| ar9003_hw_attach_ops(ah); |
| else |
| ar9002_hw_attach_ops(ah); |
| } |
| |
| /* Called for all hardware families */ |
| static int __ath9k_hw_init(struct ath_hw *ah) |
| { |
| struct ath_common *common = ath9k_hw_common(ah); |
| int r = 0; |
| |
| if (ah->hw_version.devid == AR5416_AR9100_DEVID) |
| ah->hw_version.macVersion = AR_SREV_VERSION_9100; |
| |
| if (!ath9k_hw_set_reset_reg(ah, ATH9K_RESET_POWER_ON)) { |
| ath_err(common, "Couldn't reset chip\n"); |
| return -EIO; |
| } |
| |
| ath9k_hw_init_defaults(ah); |
| ath9k_hw_init_config(ah); |
| |
| ath9k_hw_attach_ops(ah); |
| |
| if (!ath9k_hw_setpower(ah, ATH9K_PM_AWAKE)) { |
| ath_err(common, "Couldn't wakeup chip\n"); |
| return -EIO; |
| } |
| |
| if (ah->config.serialize_regmode == SER_REG_MODE_AUTO) { |
| if (ah->hw_version.macVersion == AR_SREV_VERSION_5416_PCI || |
| ((AR_SREV_9160(ah) || AR_SREV_9280(ah)) && |
| !ah->is_pciexpress)) { |
| ah->config.serialize_regmode = |
| SER_REG_MODE_ON; |
| } else { |
| ah->config.serialize_regmode = |
| SER_REG_MODE_OFF; |
| } |
| } |
| |
| ath_dbg(common, ATH_DBG_RESET, "serialize_regmode is %d\n", |
| ah->config.serialize_regmode); |
| |
| if (AR_SREV_9285(ah) || AR_SREV_9271(ah)) |
| ah->config.max_txtrig_level = MAX_TX_FIFO_THRESHOLD >> 1; |
| else |
| ah->config.max_txtrig_level = MAX_TX_FIFO_THRESHOLD; |
| |
| if (!ath9k_hw_macversion_supported(ah)) { |
| ath_err(common, |
| "Mac Chip Rev 0x%02x.%x is not supported by this driver\n", |
| ah->hw_version.macVersion, ah->hw_version.macRev); |
| return -EOPNOTSUPP; |
| } |
| |
| if (AR_SREV_9271(ah) || AR_SREV_9100(ah)) |
| ah->is_pciexpress = false; |
| |
| ah->hw_version.phyRev = REG_READ(ah, AR_PHY_CHIP_ID); |
| ath9k_hw_init_cal_settings(ah); |
| |
| ah->ani_function = ATH9K_ANI_ALL; |
| if (AR_SREV_9280_20_OR_LATER(ah) && !AR_SREV_9300_20_OR_LATER(ah)) |
| ah->ani_function &= ~ATH9K_ANI_NOISE_IMMUNITY_LEVEL; |
| if (!AR_SREV_9300_20_OR_LATER(ah)) |
| ah->ani_function &= ~ATH9K_ANI_MRC_CCK; |
| |
| ath9k_hw_init_mode_regs(ah); |
| |
| /* |
| * Read back AR_WA into a permanent copy and set bits 14 and 17. |
| * We need to do this to avoid RMW of this register. We cannot |
| * read the reg when chip is asleep. |
| */ |
| ah->WARegVal = REG_READ(ah, AR_WA); |
| ah->WARegVal |= (AR_WA_D3_L1_DISABLE | |
| AR_WA_ASPM_TIMER_BASED_DISABLE); |
| |
| if (ah->is_pciexpress) |
| ath9k_hw_configpcipowersave(ah, 0, 0); |
| else |
| ath9k_hw_disablepcie(ah); |
| |
| if (!AR_SREV_9300_20_OR_LATER(ah)) |
| ar9002_hw_cck_chan14_spread(ah); |
| |
| r = ath9k_hw_post_init(ah); |
| if (r) |
| return r; |
| |
| ath9k_hw_init_mode_gain_regs(ah); |
| r = ath9k_hw_fill_cap_info(ah); |
| if (r) |
| return r; |
| |
| r = ath9k_hw_init_macaddr(ah); |
| if (r) { |
| ath_err(common, "Failed to initialize MAC address\n"); |
| return r; |
| } |
| |
| if (AR_SREV_9285(ah) || AR_SREV_9271(ah)) |
| ah->tx_trig_level = (AR_FTRIG_256B >> AR_FTRIG_S); |
| else |
| ah->tx_trig_level = (AR_FTRIG_512B >> AR_FTRIG_S); |
| |
| ah->bb_watchdog_timeout_ms = 25; |
| |
| common->state = ATH_HW_INITIALIZED; |
| |
| return 0; |
| } |
| |
| int ath9k_hw_init(struct ath_hw *ah) |
| { |
| int ret; |
| struct ath_common *common = ath9k_hw_common(ah); |
| |
| /* These are all the AR5008/AR9001/AR9002 hardware family of chipsets */ |
| switch (ah->hw_version.devid) { |
| case AR5416_DEVID_PCI: |
| case AR5416_DEVID_PCIE: |
| case AR5416_AR9100_DEVID: |
| case AR9160_DEVID_PCI: |
| case AR9280_DEVID_PCI: |
| case AR9280_DEVID_PCIE: |
| case AR9285_DEVID_PCIE: |
| case AR9287_DEVID_PCI: |
| case AR9287_DEVID_PCIE: |
| case AR2427_DEVID_PCIE: |
| case AR9300_DEVID_PCIE: |
| break; |
| default: |
| if (common->bus_ops->ath_bus_type == ATH_USB) |
| break; |
| ath_err(common, "Hardware device ID 0x%04x not supported\n", |
| ah->hw_version.devid); |
| return -EOPNOTSUPP; |
| } |
| |
| ret = __ath9k_hw_init(ah); |
| if (ret) { |
| ath_err(common, |
| "Unable to initialize hardware; initialization status: %d\n", |
| ret); |
| return ret; |
| } |
| |
| return 0; |
| } |
| EXPORT_SYMBOL(ath9k_hw_init); |
| |
| static void ath9k_hw_init_qos(struct ath_hw *ah) |
| { |
| ENABLE_REGWRITE_BUFFER(ah); |
| |
| REG_WRITE(ah, AR_MIC_QOS_CONTROL, 0x100aa); |
| REG_WRITE(ah, AR_MIC_QOS_SELECT, 0x3210); |
| |
| REG_WRITE(ah, AR_QOS_NO_ACK, |
| SM(2, AR_QOS_NO_ACK_TWO_BIT) | |
| SM(5, AR_QOS_NO_ACK_BIT_OFF) | |
| SM(0, AR_QOS_NO_ACK_BYTE_OFF)); |
| |
| REG_WRITE(ah, AR_TXOP_X, AR_TXOP_X_VAL); |
| REG_WRITE(ah, AR_TXOP_0_3, 0xFFFFFFFF); |
| REG_WRITE(ah, AR_TXOP_4_7, 0xFFFFFFFF); |
| REG_WRITE(ah, AR_TXOP_8_11, 0xFFFFFFFF); |
| REG_WRITE(ah, AR_TXOP_12_15, 0xFFFFFFFF); |
| |
| REGWRITE_BUFFER_FLUSH(ah); |
| } |
| |
| static void ath9k_hw_init_pll(struct ath_hw *ah, |
| struct ath9k_channel *chan) |
| { |
| u32 pll = ath9k_hw_compute_pll_control(ah, chan); |
| |
| REG_WRITE(ah, AR_RTC_PLL_CONTROL, pll); |
| |
| /* Switch the core clock for ar9271 to 117Mhz */ |
| if (AR_SREV_9271(ah)) { |
| udelay(500); |
| REG_WRITE(ah, 0x50040, 0x304); |
| } |
| |
| udelay(RTC_PLL_SETTLE_DELAY); |
| |
| REG_WRITE(ah, AR_RTC_SLEEP_CLK, AR_RTC_FORCE_DERIVED_CLK); |
| } |
| |
| static void ath9k_hw_init_interrupt_masks(struct ath_hw *ah, |
| enum nl80211_iftype opmode) |
| { |
| u32 imr_reg = AR_IMR_TXERR | |
| AR_IMR_TXURN | |
| AR_IMR_RXERR | |
| AR_IMR_RXORN | |
| AR_IMR_BCNMISC; |
| |
| if (AR_SREV_9300_20_OR_LATER(ah)) { |
| imr_reg |= AR_IMR_RXOK_HP; |
| if (ah->config.rx_intr_mitigation) |
| imr_reg |= AR_IMR_RXINTM | AR_IMR_RXMINTR; |
| else |
| imr_reg |= AR_IMR_RXOK_LP; |
| |
| } else { |
| if (ah->config.rx_intr_mitigation) |
| imr_reg |= AR_IMR_RXINTM | AR_IMR_RXMINTR; |
| else |
| imr_reg |= AR_IMR_RXOK; |
| } |
| |
| if (ah->config.tx_intr_mitigation) |
| imr_reg |= AR_IMR_TXINTM | AR_IMR_TXMINTR; |
| else |
| imr_reg |= AR_IMR_TXOK; |
| |
| if (opmode == NL80211_IFTYPE_AP) |
| imr_reg |= AR_IMR_MIB; |
| |
| ENABLE_REGWRITE_BUFFER(ah); |
| |
| REG_WRITE(ah, AR_IMR, imr_reg); |
| ah->imrs2_reg |= AR_IMR_S2_GTT; |
| REG_WRITE(ah, AR_IMR_S2, ah->imrs2_reg); |
| |
| if (!AR_SREV_9100(ah)) { |
| REG_WRITE(ah, AR_INTR_SYNC_CAUSE, 0xFFFFFFFF); |
| REG_WRITE(ah, AR_INTR_SYNC_ENABLE, AR_INTR_SYNC_DEFAULT); |
| REG_WRITE(ah, AR_INTR_SYNC_MASK, 0); |
| } |
| |
| REGWRITE_BUFFER_FLUSH(ah); |
| |
| if (AR_SREV_9300_20_OR_LATER(ah)) { |
| REG_WRITE(ah, AR_INTR_PRIO_ASYNC_ENABLE, 0); |
| REG_WRITE(ah, AR_INTR_PRIO_ASYNC_MASK, 0); |
| REG_WRITE(ah, AR_INTR_PRIO_SYNC_ENABLE, 0); |
| REG_WRITE(ah, AR_INTR_PRIO_SYNC_MASK, 0); |
| } |
| } |
| |
| static void ath9k_hw_setslottime(struct ath_hw *ah, u32 us) |
| { |
| u32 val = ath9k_hw_mac_to_clks(ah, us); |
| val = min(val, (u32) 0xFFFF); |
| REG_WRITE(ah, AR_D_GBL_IFS_SLOT, val); |
| } |
| |
| static void ath9k_hw_set_ack_timeout(struct ath_hw *ah, u32 us) |
| { |
| u32 val = ath9k_hw_mac_to_clks(ah, us); |
| val = min(val, (u32) MS(0xFFFFFFFF, AR_TIME_OUT_ACK)); |
| REG_RMW_FIELD(ah, AR_TIME_OUT, AR_TIME_OUT_ACK, val); |
| } |
| |
| static void ath9k_hw_set_cts_timeout(struct ath_hw *ah, u32 us) |
| { |
| u32 val = ath9k_hw_mac_to_clks(ah, us); |
| val = min(val, (u32) MS(0xFFFFFFFF, AR_TIME_OUT_CTS)); |
| REG_RMW_FIELD(ah, AR_TIME_OUT, AR_TIME_OUT_CTS, val); |
| } |
| |
| static bool ath9k_hw_set_global_txtimeout(struct ath_hw *ah, u32 tu) |
| { |
| if (tu > 0xFFFF) { |
| ath_dbg(ath9k_hw_common(ah), ATH_DBG_XMIT, |
| "bad global tx timeout %u\n", tu); |
| ah->globaltxtimeout = (u32) -1; |
| return false; |
| } else { |
| REG_RMW_FIELD(ah, AR_GTXTO, AR_GTXTO_TIMEOUT_LIMIT, tu); |
| ah->globaltxtimeout = tu; |
| return true; |
| } |
| } |
| |
| void ath9k_hw_init_global_settings(struct ath_hw *ah) |
| { |
| struct ieee80211_conf *conf = &ath9k_hw_common(ah)->hw->conf; |
| int acktimeout; |
| int slottime; |
| int sifstime; |
| |
| ath_dbg(ath9k_hw_common(ah), ATH_DBG_RESET, "ah->misc_mode 0x%x\n", |
| ah->misc_mode); |
| |
| if (ah->misc_mode != 0) |
| REG_WRITE(ah, AR_PCU_MISC, |
| REG_READ(ah, AR_PCU_MISC) | ah->misc_mode); |
| |
| if (conf->channel && conf->channel->band == IEEE80211_BAND_5GHZ) |
| sifstime = 16; |
| else |
| sifstime = 10; |
| |
| /* As defined by IEEE 802.11-2007 17.3.8.6 */ |
| slottime = ah->slottime + 3 * ah->coverage_class; |
| acktimeout = slottime + sifstime; |
| |
| /* |
| * Workaround for early ACK timeouts, add an offset to match the |
| * initval's 64us ack timeout value. |
| * This was initially only meant to work around an issue with delayed |
| * BA frames in some implementations, but it has been found to fix ACK |
| * timeout issues in other cases as well. |
| */ |
| if (conf->channel && conf->channel->band == IEEE80211_BAND_2GHZ) |
| acktimeout += 64 - sifstime - ah->slottime; |
| |
| ath9k_hw_setslottime(ah, slottime); |
| ath9k_hw_set_ack_timeout(ah, acktimeout); |
| ath9k_hw_set_cts_timeout(ah, acktimeout); |
| if (ah->globaltxtimeout != (u32) -1) |
| ath9k_hw_set_global_txtimeout(ah, ah->globaltxtimeout); |
| } |
| EXPORT_SYMBOL(ath9k_hw_init_global_settings); |
| |
| void ath9k_hw_deinit(struct ath_hw *ah) |
| { |
| struct ath_common *common = ath9k_hw_common(ah); |
| |
| if (common->state < ATH_HW_INITIALIZED) |
| goto free_hw; |
| |
| ath9k_hw_setpower(ah, ATH9K_PM_FULL_SLEEP); |
| |
| free_hw: |
| ath9k_hw_rf_free_ext_banks(ah); |
| } |
| EXPORT_SYMBOL(ath9k_hw_deinit); |
| |
| /*******/ |
| /* INI */ |
| /*******/ |
| |
| u32 ath9k_regd_get_ctl(struct ath_regulatory *reg, struct ath9k_channel *chan) |
| { |
| u32 ctl = ath_regd_get_band_ctl(reg, chan->chan->band); |
| |
| if (IS_CHAN_B(chan)) |
| ctl |= CTL_11B; |
| else if (IS_CHAN_G(chan)) |
| ctl |= CTL_11G; |
| else |
| ctl |= CTL_11A; |
| |
| return ctl; |
| } |
| |
| /****************************************/ |
| /* Reset and Channel Switching Routines */ |
| /****************************************/ |
| |
| static inline void ath9k_hw_set_dma(struct ath_hw *ah) |
| { |
| struct ath_common *common = ath9k_hw_common(ah); |
| u32 regval; |
| |
| ENABLE_REGWRITE_BUFFER(ah); |
| |
| /* |
| * set AHB_MODE not to do cacheline prefetches |
| */ |
| if (!AR_SREV_9300_20_OR_LATER(ah)) { |
| regval = REG_READ(ah, AR_AHB_MODE); |
| REG_WRITE(ah, AR_AHB_MODE, regval | AR_AHB_PREFETCH_RD_EN); |
| } |
| |
| /* |
| * let mac dma reads be in 128 byte chunks |
| */ |
| regval = REG_READ(ah, AR_TXCFG) & ~AR_TXCFG_DMASZ_MASK; |
| REG_WRITE(ah, AR_TXCFG, regval | AR_TXCFG_DMASZ_128B); |
| |
| REGWRITE_BUFFER_FLUSH(ah); |
| |
| /* |
| * Restore TX Trigger Level to its pre-reset value. |
| * The initial value depends on whether aggregation is enabled, and is |
| * adjusted whenever underruns are detected. |
| */ |
| if (!AR_SREV_9300_20_OR_LATER(ah)) |
| REG_RMW_FIELD(ah, AR_TXCFG, AR_FTRIG, ah->tx_trig_level); |
| |
| ENABLE_REGWRITE_BUFFER(ah); |
| |
| /* |
| * let mac dma writes be in 128 byte chunks |
| */ |
| regval = REG_READ(ah, AR_RXCFG) & ~AR_RXCFG_DMASZ_MASK; |
| REG_WRITE(ah, AR_RXCFG, regval | AR_RXCFG_DMASZ_128B); |
| |
| /* |
| * Setup receive FIFO threshold to hold off TX activities |
| */ |
| REG_WRITE(ah, AR_RXFIFO_CFG, 0x200); |
| |
| if (AR_SREV_9300_20_OR_LATER(ah)) { |
| REG_RMW_FIELD(ah, AR_RXBP_THRESH, AR_RXBP_THRESH_HP, 0x1); |
| REG_RMW_FIELD(ah, AR_RXBP_THRESH, AR_RXBP_THRESH_LP, 0x1); |
| |
| ath9k_hw_set_rx_bufsize(ah, common->rx_bufsize - |
| ah->caps.rx_status_len); |
| } |
| |
| /* |
| * reduce the number of usable entries in PCU TXBUF to avoid |
| * wrap around issues. |
| */ |
| if (AR_SREV_9285(ah)) { |
| /* For AR9285 the number of Fifos are reduced to half. |
| * So set the usable tx buf size also to half to |
| * avoid data/delimiter underruns |
| */ |
| REG_WRITE(ah, AR_PCU_TXBUF_CTRL, |
| AR_9285_PCU_TXBUF_CTRL_USABLE_SIZE); |
| } else if (!AR_SREV_9271(ah)) { |
| REG_WRITE(ah, AR_PCU_TXBUF_CTRL, |
| AR_PCU_TXBUF_CTRL_USABLE_SIZE); |
| } |
| |
| REGWRITE_BUFFER_FLUSH(ah); |
| |
| if (AR_SREV_9300_20_OR_LATER(ah)) |
| ath9k_hw_reset_txstatus_ring(ah); |
| } |
| |
| static void ath9k_hw_set_operating_mode(struct ath_hw *ah, int opmode) |
| { |
| u32 val; |
| |
| val = REG_READ(ah, AR_STA_ID1); |
| val &= ~(AR_STA_ID1_STA_AP | AR_STA_ID1_ADHOC); |
| switch (opmode) { |
| case NL80211_IFTYPE_AP: |
| REG_WRITE(ah, AR_STA_ID1, val | AR_STA_ID1_STA_AP |
| | AR_STA_ID1_KSRCH_MODE); |
| REG_CLR_BIT(ah, AR_CFG, AR_CFG_AP_ADHOC_INDICATION); |
| break; |
| case NL80211_IFTYPE_ADHOC: |
| case NL80211_IFTYPE_MESH_POINT: |
| REG_WRITE(ah, AR_STA_ID1, val | AR_STA_ID1_ADHOC |
| | AR_STA_ID1_KSRCH_MODE); |
| REG_SET_BIT(ah, AR_CFG, AR_CFG_AP_ADHOC_INDICATION); |
| break; |
| case NL80211_IFTYPE_STATION: |
| REG_WRITE(ah, AR_STA_ID1, val | AR_STA_ID1_KSRCH_MODE); |
| break; |
| default: |
| if (ah->is_monitoring) |
| REG_WRITE(ah, AR_STA_ID1, val | AR_STA_ID1_KSRCH_MODE); |
| break; |
| } |
| } |
| |
| void ath9k_hw_get_delta_slope_vals(struct ath_hw *ah, u32 coef_scaled, |
| u32 *coef_mantissa, u32 *coef_exponent) |
| { |
| u32 coef_exp, coef_man; |
| |
| for (coef_exp = 31; coef_exp > 0; coef_exp--) |
| if ((coef_scaled >> coef_exp) & 0x1) |
| break; |
| |
| coef_exp = 14 - (coef_exp - COEF_SCALE_S); |
| |
| coef_man = coef_scaled + (1 << (COEF_SCALE_S - coef_exp - 1)); |
| |
| *coef_mantissa = coef_man >> (COEF_SCALE_S - coef_exp); |
| *coef_exponent = coef_exp - 16; |
| } |
| |
| static bool ath9k_hw_set_reset(struct ath_hw *ah, int type) |
| { |
| u32 rst_flags; |
| u32 tmpReg; |
| |
| if (AR_SREV_9100(ah)) { |
| u32 val = REG_READ(ah, AR_RTC_DERIVED_CLK); |
| val &= ~AR_RTC_DERIVED_CLK_PERIOD; |
| val |= SM(1, AR_RTC_DERIVED_CLK_PERIOD); |
| REG_WRITE(ah, AR_RTC_DERIVED_CLK, val); |
| (void)REG_READ(ah, AR_RTC_DERIVED_CLK); |
| } |
| |
| ENABLE_REGWRITE_BUFFER(ah); |
| |
| if (AR_SREV_9300_20_OR_LATER(ah)) { |
| REG_WRITE(ah, AR_WA, ah->WARegVal); |
| udelay(10); |
| } |
| |
| REG_WRITE(ah, AR_RTC_FORCE_WAKE, AR_RTC_FORCE_WAKE_EN | |
| AR_RTC_FORCE_WAKE_ON_INT); |
| |
| if (AR_SREV_9100(ah)) { |
| rst_flags = AR_RTC_RC_MAC_WARM | AR_RTC_RC_MAC_COLD | |
| AR_RTC_RC_COLD_RESET | AR_RTC_RC_WARM_RESET; |
| } else { |
| tmpReg = REG_READ(ah, AR_INTR_SYNC_CAUSE); |
| if (tmpReg & |
| (AR_INTR_SYNC_LOCAL_TIMEOUT | |
| AR_INTR_SYNC_RADM_CPL_TIMEOUT)) { |
| u32 val; |
| REG_WRITE(ah, AR_INTR_SYNC_ENABLE, 0); |
| |
| val = AR_RC_HOSTIF; |
| if (!AR_SREV_9300_20_OR_LATER(ah)) |
| val |= AR_RC_AHB; |
| REG_WRITE(ah, AR_RC, val); |
| |
| } else if (!AR_SREV_9300_20_OR_LATER(ah)) |
| REG_WRITE(ah, AR_RC, AR_RC_AHB); |
| |
| rst_flags = AR_RTC_RC_MAC_WARM; |
| if (type == ATH9K_RESET_COLD) |
| rst_flags |= AR_RTC_RC_MAC_COLD; |
| } |
| |
| REG_WRITE(ah, AR_RTC_RC, rst_flags); |
| |
| REGWRITE_BUFFER_FLUSH(ah); |
| |
| udelay(50); |
| |
| REG_WRITE(ah, AR_RTC_RC, 0); |
| if (!ath9k_hw_wait(ah, AR_RTC_RC, AR_RTC_RC_M, 0, AH_WAIT_TIMEOUT)) { |
| ath_dbg(ath9k_hw_common(ah), ATH_DBG_RESET, |
| "RTC stuck in MAC reset\n"); |
| return false; |
| } |
| |
| if (!AR_SREV_9100(ah)) |
| REG_WRITE(ah, AR_RC, 0); |
| |
| if (AR_SREV_9100(ah)) |
| udelay(50); |
| |
| return true; |
| } |
| |
| static bool ath9k_hw_set_reset_power_on(struct ath_hw *ah) |
| { |
| ENABLE_REGWRITE_BUFFER(ah); |
| |
| if (AR_SREV_9300_20_OR_LATER(ah)) { |
| REG_WRITE(ah, AR_WA, ah->WARegVal); |
| udelay(10); |
| } |
| |
| REG_WRITE(ah, AR_RTC_FORCE_WAKE, AR_RTC_FORCE_WAKE_EN | |
| AR_RTC_FORCE_WAKE_ON_INT); |
| |
| if (!AR_SREV_9100(ah) && !AR_SREV_9300_20_OR_LATER(ah)) |
| REG_WRITE(ah, AR_RC, AR_RC_AHB); |
| |
| REG_WRITE(ah, AR_RTC_RESET, 0); |
| udelay(2); |
| |
| REGWRITE_BUFFER_FLUSH(ah); |
| |
| if (!AR_SREV_9300_20_OR_LATER(ah)) |
| udelay(2); |
| |
| if (!AR_SREV_9100(ah) && !AR_SREV_9300_20_OR_LATER(ah)) |
| REG_WRITE(ah, AR_RC, 0); |
| |
| REG_WRITE(ah, AR_RTC_RESET, 1); |
| |
| if (!ath9k_hw_wait(ah, |
| AR_RTC_STATUS, |
| AR_RTC_STATUS_M, |
| AR_RTC_STATUS_ON, |
| AH_WAIT_TIMEOUT)) { |
| ath_dbg(ath9k_hw_common(ah), ATH_DBG_RESET, |
| "RTC not waking up\n"); |
| return false; |
| } |
| |
| ath9k_hw_read_revisions(ah); |
| |
| return ath9k_hw_set_reset(ah, ATH9K_RESET_WARM); |
| } |
| |
| static bool ath9k_hw_set_reset_reg(struct ath_hw *ah, u32 type) |
| { |
| if (AR_SREV_9300_20_OR_LATER(ah)) { |
| REG_WRITE(ah, AR_WA, ah->WARegVal); |
| udelay(10); |
| } |
| |
| REG_WRITE(ah, AR_RTC_FORCE_WAKE, |
| AR_RTC_FORCE_WAKE_EN | AR_RTC_FORCE_WAKE_ON_INT); |
| |
| switch (type) { |
| case ATH9K_RESET_POWER_ON: |
| return ath9k_hw_set_reset_power_on(ah); |
| case ATH9K_RESET_WARM: |
| case ATH9K_RESET_COLD: |
| return ath9k_hw_set_reset(ah, type); |
| default: |
| return false; |
| } |
| } |
| |
| static bool ath9k_hw_chip_reset(struct ath_hw *ah, |
| struct ath9k_channel *chan) |
| { |
| if (AR_SREV_9280(ah) && ah->eep_ops->get_eeprom(ah, EEP_OL_PWRCTRL)) { |
| if (!ath9k_hw_set_reset_reg(ah, ATH9K_RESET_POWER_ON)) |
| return false; |
| } else if (!ath9k_hw_set_reset_reg(ah, ATH9K_RESET_WARM)) |
| return false; |
| |
| if (!ath9k_hw_setpower(ah, ATH9K_PM_AWAKE)) |
| return false; |
| |
| ah->chip_fullsleep = false; |
| ath9k_hw_init_pll(ah, chan); |
| ath9k_hw_set_rfmode(ah, chan); |
| |
| return true; |
| } |
| |
| static bool ath9k_hw_channel_change(struct ath_hw *ah, |
| struct ath9k_channel *chan) |
| { |
| struct ath_regulatory *regulatory = ath9k_hw_regulatory(ah); |
| struct ath_common *common = ath9k_hw_common(ah); |
| struct ieee80211_channel *channel = chan->chan; |
| u32 qnum; |
| int r; |
| |
| for (qnum = 0; qnum < AR_NUM_QCU; qnum++) { |
| if (ath9k_hw_numtxpending(ah, qnum)) { |
| ath_dbg(common, ATH_DBG_QUEUE, |
| "Transmit frames pending on queue %d\n", qnum); |
| return false; |
| } |
| } |
| |
| if (!ath9k_hw_rfbus_req(ah)) { |
| ath_err(common, "Could not kill baseband RX\n"); |
| return false; |
| } |
| |
| ath9k_hw_set_channel_regs(ah, chan); |
| |
| r = ath9k_hw_rf_set_freq(ah, chan); |
| if (r) { |
| ath_err(common, "Failed to set channel\n"); |
| return false; |
| } |
| ath9k_hw_set_clockrate(ah); |
| |
| ah->eep_ops->set_txpower(ah, chan, |
| ath9k_regd_get_ctl(regulatory, chan), |
| channel->max_antenna_gain * 2, |
| channel->max_power * 2, |
| min((u32) MAX_RATE_POWER, |
| (u32) regulatory->power_limit), false); |
| |
| ath9k_hw_rfbus_done(ah); |
| |
| if (IS_CHAN_OFDM(chan) || IS_CHAN_HT(chan)) |
| ath9k_hw_set_delta_slope(ah, chan); |
| |
| ath9k_hw_spur_mitigate_freq(ah, chan); |
| |
| return true; |
| } |
| |
| bool ath9k_hw_check_alive(struct ath_hw *ah) |
| { |
| int count = 50; |
| u32 reg; |
| |
| if (AR_SREV_9285_12_OR_LATER(ah)) |
| return true; |
| |
| do { |
| reg = REG_READ(ah, AR_OBS_BUS_1); |
| |
| if ((reg & 0x7E7FFFEF) == 0x00702400) |
| continue; |
| |
| switch (reg & 0x7E000B00) { |
| case 0x1E000000: |
| case 0x52000B00: |
| case 0x18000B00: |
| continue; |
| default: |
| return true; |
| } |
| } while (count-- > 0); |
| |
| return false; |
| } |
| EXPORT_SYMBOL(ath9k_hw_check_alive); |
| |
| int ath9k_hw_reset(struct ath_hw *ah, struct ath9k_channel *chan, |
| struct ath9k_hw_cal_data *caldata, bool bChannelChange) |
| { |
| struct ath_common *common = ath9k_hw_common(ah); |
| u32 saveLedState; |
| struct ath9k_channel *curchan = ah->curchan; |
| u32 saveDefAntenna; |
| u32 macStaId1; |
| u64 tsf = 0; |
| int i, r; |
| |
| ah->txchainmask = common->tx_chainmask; |
| ah->rxchainmask = common->rx_chainmask; |
| |
| if (!ah->chip_fullsleep) { |
| ath9k_hw_abortpcurecv(ah); |
| if (!ath9k_hw_stopdmarecv(ah)) { |
| ath_dbg(common, ATH_DBG_XMIT, |
| "Failed to stop receive dma\n"); |
| bChannelChange = false; |
| } |
| } |
| |
| if (!ath9k_hw_setpower(ah, ATH9K_PM_AWAKE)) |
| return -EIO; |
| |
| if (curchan && !ah->chip_fullsleep) |
| ath9k_hw_getnf(ah, curchan); |
| |
| ah->caldata = caldata; |
| if (caldata && |
| (chan->channel != caldata->channel || |
| (chan->channelFlags & ~CHANNEL_CW_INT) != |
| (caldata->channelFlags & ~CHANNEL_CW_INT))) { |
| /* Operating channel changed, reset channel calibration data */ |
| memset(caldata, 0, sizeof(*caldata)); |
| ath9k_init_nfcal_hist_buffer(ah, chan); |
| } |
| |
| if (bChannelChange && |
| (ah->chip_fullsleep != true) && |
| (ah->curchan != NULL) && |
| (chan->channel != ah->curchan->channel) && |
| ((chan->channelFlags & CHANNEL_ALL) == |
| (ah->curchan->channelFlags & CHANNEL_ALL)) && |
| (!AR_SREV_9280(ah) || AR_DEVID_7010(ah))) { |
| |
| if (ath9k_hw_channel_change(ah, chan)) { |
| ath9k_hw_loadnf(ah, ah->curchan); |
| ath9k_hw_start_nfcal(ah, true); |
| if (AR_SREV_9271(ah)) |
| ar9002_hw_load_ani_reg(ah, chan); |
| return 0; |
| } |
| } |
| |
| saveDefAntenna = REG_READ(ah, AR_DEF_ANTENNA); |
| if (saveDefAntenna == 0) |
| saveDefAntenna = 1; |
| |
| macStaId1 = REG_READ(ah, AR_STA_ID1) & AR_STA_ID1_BASE_RATE_11B; |
| |
| /* For chips on which RTC reset is done, save TSF before it gets cleared */ |
| if (AR_SREV_9100(ah) || |
| (AR_SREV_9280(ah) && ah->eep_ops->get_eeprom(ah, EEP_OL_PWRCTRL))) |
| tsf = ath9k_hw_gettsf64(ah); |
| |
| saveLedState = REG_READ(ah, AR_CFG_LED) & |
| (AR_CFG_LED_ASSOC_CTL | AR_CFG_LED_MODE_SEL | |
| AR_CFG_LED_BLINK_THRESH_SEL | AR_CFG_LED_BLINK_SLOW); |
| |
| ath9k_hw_mark_phy_inactive(ah); |
| |
| /* Only required on the first reset */ |
| if (AR_SREV_9271(ah) && ah->htc_reset_init) { |
| REG_WRITE(ah, |
| AR9271_RESET_POWER_DOWN_CONTROL, |
| AR9271_RADIO_RF_RST); |
| udelay(50); |
| } |
| |
| if (!ath9k_hw_chip_reset(ah, chan)) { |
| ath_err(common, "Chip reset failed\n"); |
| return -EINVAL; |
| } |
| |
| /* Only required on the first reset */ |
| if (AR_SREV_9271(ah) && ah->htc_reset_init) { |
| ah->htc_reset_init = false; |
| REG_WRITE(ah, |
| AR9271_RESET_POWER_DOWN_CONTROL, |
| AR9271_GATE_MAC_CTL); |
| udelay(50); |
| } |
| |
| /* Restore TSF */ |
| if (tsf) |
| ath9k_hw_settsf64(ah, tsf); |
| |
| if (AR_SREV_9280_20_OR_LATER(ah)) |
| REG_SET_BIT(ah, AR_GPIO_INPUT_EN_VAL, AR_GPIO_JTAG_DISABLE); |
| |
| if (!AR_SREV_9300_20_OR_LATER(ah)) |
| ar9002_hw_enable_async_fifo(ah); |
| |
| r = ath9k_hw_process_ini(ah, chan); |
| if (r) |
| return r; |
| |
| /* |
| * Some AR91xx SoC devices frequently fail to accept TSF writes |
| * right after the chip reset. When that happens, write a new |
| * value after the initvals have been applied, with an offset |
| * based on measured time difference |
| */ |
| if (AR_SREV_9100(ah) && (ath9k_hw_gettsf64(ah) < tsf)) { |
| tsf += 1500; |
| ath9k_hw_settsf64(ah, tsf); |
| } |
| |
| /* Setup MFP options for CCMP */ |
| if (AR_SREV_9280_20_OR_LATER(ah)) { |
| /* Mask Retry(b11), PwrMgt(b12), MoreData(b13) to 0 in mgmt |
| * frames when constructing CCMP AAD. */ |
| REG_RMW_FIELD(ah, AR_AES_MUTE_MASK1, AR_AES_MUTE_MASK1_FC_MGMT, |
| 0xc7ff); |
| ah->sw_mgmt_crypto = false; |
| } else if (AR_SREV_9160_10_OR_LATER(ah)) { |
| /* Disable hardware crypto for management frames */ |
| REG_CLR_BIT(ah, AR_PCU_MISC_MODE2, |
| AR_PCU_MISC_MODE2_MGMT_CRYPTO_ENABLE); |
| REG_SET_BIT(ah, AR_PCU_MISC_MODE2, |
| AR_PCU_MISC_MODE2_NO_CRYPTO_FOR_NON_DATA_PKT); |
| ah->sw_mgmt_crypto = true; |
| } else |
| ah->sw_mgmt_crypto = true; |
| |
| if (IS_CHAN_OFDM(chan) || IS_CHAN_HT(chan)) |
| ath9k_hw_set_delta_slope(ah, chan); |
| |
| ath9k_hw_spur_mitigate_freq(ah, chan); |
| ah->eep_ops->set_board_values(ah, chan); |
| |
| ath9k_hw_set_operating_mode(ah, ah->opmode); |
| |
| ENABLE_REGWRITE_BUFFER(ah); |
| |
| REG_WRITE(ah, AR_STA_ID0, get_unaligned_le32(common->macaddr)); |
| REG_WRITE(ah, AR_STA_ID1, get_unaligned_le16(common->macaddr + 4) |
| | macStaId1 |
| | AR_STA_ID1_RTS_USE_DEF |
| | (ah->config. |
| ack_6mb ? AR_STA_ID1_ACKCTS_6MB : 0) |
| | ah->sta_id1_defaults); |
| ath_hw_setbssidmask(common); |
| REG_WRITE(ah, AR_DEF_ANTENNA, saveDefAntenna); |
| ath9k_hw_write_associd(ah); |
| REG_WRITE(ah, AR_ISR, ~0); |
| REG_WRITE(ah, AR_RSSI_THR, INIT_RSSI_THR); |
| |
| REGWRITE_BUFFER_FLUSH(ah); |
| |
| r = ath9k_hw_rf_set_freq(ah, chan); |
| if (r) |
| return r; |
| |
| ath9k_hw_set_clockrate(ah); |
| |
| ENABLE_REGWRITE_BUFFER(ah); |
| |
| for (i = 0; i < AR_NUM_DCU; i++) |
| REG_WRITE(ah, AR_DQCUMASK(i), 1 << i); |
| |
| REGWRITE_BUFFER_FLUSH(ah); |
| |
| ah->intr_txqs = 0; |
| for (i = 0; i < ah->caps.total_queues; i++) |
| ath9k_hw_resettxqueue(ah, i); |
| |
| ath9k_hw_init_interrupt_masks(ah, ah->opmode); |
| ath9k_hw_ani_cache_ini_regs(ah); |
| ath9k_hw_init_qos(ah); |
| |
| if (ah->caps.hw_caps & ATH9K_HW_CAP_RFSILENT) |
| ath9k_enable_rfkill(ah); |
| |
| ath9k_hw_init_global_settings(ah); |
| |
| if (!AR_SREV_9300_20_OR_LATER(ah)) { |
| ar9002_hw_update_async_fifo(ah); |
| ar9002_hw_enable_wep_aggregation(ah); |
| } |
| |
| REG_WRITE(ah, AR_STA_ID1, |
| REG_READ(ah, AR_STA_ID1) | AR_STA_ID1_PRESERVE_SEQNUM); |
| |
| ath9k_hw_set_dma(ah); |
| |
| REG_WRITE(ah, AR_OBS, 8); |
| |
| if (ah->config.rx_intr_mitigation) { |
| REG_RMW_FIELD(ah, AR_RIMT, AR_RIMT_LAST, 500); |
| REG_RMW_FIELD(ah, AR_RIMT, AR_RIMT_FIRST, 2000); |
| } |
| |
| if (ah->config.tx_intr_mitigation) { |
| REG_RMW_FIELD(ah, AR_TIMT, AR_TIMT_LAST, 300); |
| REG_RMW_FIELD(ah, AR_TIMT, AR_TIMT_FIRST, 750); |
| } |
| |
| ath9k_hw_init_bb(ah, chan); |
| |
| if (!ath9k_hw_init_cal(ah, chan)) |
| return -EIO; |
| |
| ENABLE_REGWRITE_BUFFER(ah); |
| |
| ath9k_hw_restore_chainmask(ah); |
| REG_WRITE(ah, AR_CFG_LED, saveLedState | AR_CFG_SCLK_32KHZ); |
| |
| REGWRITE_BUFFER_FLUSH(ah); |
| |
| /* |
| * For big endian systems turn on swapping for descriptors |
| */ |
| if (AR_SREV_9100(ah)) { |
| u32 mask; |
| mask = REG_READ(ah, AR_CFG); |
| if (mask & (AR_CFG_SWRB | AR_CFG_SWTB | AR_CFG_SWRG)) { |
| ath_dbg(common, ATH_DBG_RESET, |
| "CFG Byte Swap Set 0x%x\n", mask); |
| } else { |
| mask = |
| INIT_CONFIG_STATUS | AR_CFG_SWRB | AR_CFG_SWTB; |
| REG_WRITE(ah, AR_CFG, mask); |
| ath_dbg(common, ATH_DBG_RESET, |
| "Setting CFG 0x%x\n", REG_READ(ah, AR_CFG)); |
| } |
| } else { |
| if (common->bus_ops->ath_bus_type == ATH_USB) { |
| /* Configure AR9271 target WLAN */ |
| if (AR_SREV_9271(ah)) |
| REG_WRITE(ah, AR_CFG, AR_CFG_SWRB | AR_CFG_SWTB); |
| else |
| REG_WRITE(ah, AR_CFG, AR_CFG_SWTD | AR_CFG_SWRD); |
| } |
| #ifdef __BIG_ENDIAN |
| else |
| REG_WRITE(ah, AR_CFG, AR_CFG_SWTD | AR_CFG_SWRD); |
| #endif |
| } |
| |
| if (ah->btcoex_hw.enabled) |
| ath9k_hw_btcoex_enable(ah); |
| |
| if (AR_SREV_9300_20_OR_LATER(ah)) |
| ar9003_hw_bb_watchdog_config(ah); |
| |
| return 0; |
| } |
| EXPORT_SYMBOL(ath9k_hw_reset); |
| |
| /******************************/ |
| /* Power Management (Chipset) */ |
| /******************************/ |
| |
| /* |
| * Notify Power Mgt is disabled in self-generated frames. |
| * If requested, force chip to sleep. |
| */ |
| static void ath9k_set_power_sleep(struct ath_hw *ah, int setChip) |
| { |
| REG_SET_BIT(ah, AR_STA_ID1, AR_STA_ID1_PWR_SAV); |
| if (setChip) { |
| /* |
| * Clear the RTC force wake bit to allow the |
| * mac to go to sleep. |
| */ |
| REG_CLR_BIT(ah, AR_RTC_FORCE_WAKE, |
| AR_RTC_FORCE_WAKE_EN); |
| if (!AR_SREV_9100(ah) && !AR_SREV_9300_20_OR_LATER(ah)) |
| REG_WRITE(ah, AR_RC, AR_RC_AHB | AR_RC_HOSTIF); |
| |
| /* Shutdown chip. Active low */ |
| if (!AR_SREV_5416(ah) && !AR_SREV_9271(ah)) |
| REG_CLR_BIT(ah, (AR_RTC_RESET), |
| AR_RTC_RESET_EN); |
| } |
| |
| /* Clear Bit 14 of AR_WA after putting chip into Full Sleep mode. */ |
| if (AR_SREV_9300_20_OR_LATER(ah)) |
| REG_WRITE(ah, AR_WA, |
| ah->WARegVal & ~AR_WA_D3_L1_DISABLE); |
| } |
| |
| /* |
| * Notify Power Management is enabled in self-generating |
| * frames. If request, set power mode of chip to |
| * auto/normal. Duration in units of 128us (1/8 TU). |
| */ |
| static void ath9k_set_power_network_sleep(struct ath_hw *ah, int setChip) |
| { |
| REG_SET_BIT(ah, AR_STA_ID1, AR_STA_ID1_PWR_SAV); |
| if (setChip) { |
| struct ath9k_hw_capabilities *pCap = &ah->caps; |
| |
| if (!(pCap->hw_caps & ATH9K_HW_CAP_AUTOSLEEP)) { |
| /* Set WakeOnInterrupt bit; clear ForceWake bit */ |
| REG_WRITE(ah, AR_RTC_FORCE_WAKE, |
| AR_RTC_FORCE_WAKE_ON_INT); |
| } else { |
| /* |
| * Clear the RTC force wake bit to allow the |
| * mac to go to sleep. |
| */ |
| REG_CLR_BIT(ah, AR_RTC_FORCE_WAKE, |
| AR_RTC_FORCE_WAKE_EN); |
| } |
| } |
| |
| /* Clear Bit 14 of AR_WA after putting chip into Net Sleep mode. */ |
| if (AR_SREV_9300_20_OR_LATER(ah)) |
| REG_WRITE(ah, AR_WA, ah->WARegVal & ~AR_WA_D3_L1_DISABLE); |
| } |
| |
| static bool ath9k_hw_set_power_awake(struct ath_hw *ah, int setChip) |
| { |
| u32 val; |
| int i; |
| |
| /* Set Bits 14 and 17 of AR_WA before powering on the chip. */ |
| if (AR_SREV_9300_20_OR_LATER(ah)) { |
| REG_WRITE(ah, AR_WA, ah->WARegVal); |
| udelay(10); |
| } |
| |
| if (setChip) { |
| if ((REG_READ(ah, AR_RTC_STATUS) & |
| AR_RTC_STATUS_M) == AR_RTC_STATUS_SHUTDOWN) { |
| if (ath9k_hw_set_reset_reg(ah, |
| ATH9K_RESET_POWER_ON) != true) { |
| return false; |
| } |
| if (!AR_SREV_9300_20_OR_LATER(ah)) |
| ath9k_hw_init_pll(ah, NULL); |
| } |
| if (AR_SREV_9100(ah)) |
| REG_SET_BIT(ah, AR_RTC_RESET, |
| AR_RTC_RESET_EN); |
| |
| REG_SET_BIT(ah, AR_RTC_FORCE_WAKE, |
| AR_RTC_FORCE_WAKE_EN); |
| udelay(50); |
| |
| for (i = POWER_UP_TIME / 50; i > 0; i--) { |
| val = REG_READ(ah, AR_RTC_STATUS) & AR_RTC_STATUS_M; |
| if (val == AR_RTC_STATUS_ON) |
| break; |
| udelay(50); |
| REG_SET_BIT(ah, AR_RTC_FORCE_WAKE, |
| AR_RTC_FORCE_WAKE_EN); |
| } |
| if (i == 0) { |
| ath_err(ath9k_hw_common(ah), |
| "Failed to wakeup in %uus\n", |
| POWER_UP_TIME / 20); |
| return false; |
| } |
| } |
| |
| REG_CLR_BIT(ah, AR_STA_ID1, AR_STA_ID1_PWR_SAV); |
| |
| return true; |
| } |
| |
| bool ath9k_hw_setpower(struct ath_hw *ah, enum ath9k_power_mode mode) |
| { |
| struct ath_common *common = ath9k_hw_common(ah); |
| int status = true, setChip = true; |
| static const char *modes[] = { |
| "AWAKE", |
| "FULL-SLEEP", |
| "NETWORK SLEEP", |
| "UNDEFINED" |
| }; |
| |
| if (ah->power_mode == mode) |
| return status; |
| |
| ath_dbg(common, ATH_DBG_RESET, "%s -> %s\n", |
| modes[ah->power_mode], modes[mode]); |
| |
| switch (mode) { |
| case ATH9K_PM_AWAKE: |
| status = ath9k_hw_set_power_awake(ah, setChip); |
| break; |
| case ATH9K_PM_FULL_SLEEP: |
| ath9k_set_power_sleep(ah, setChip); |
| ah->chip_fullsleep = true; |
| break; |
| case ATH9K_PM_NETWORK_SLEEP: |
| ath9k_set_power_network_sleep(ah, setChip); |
| break; |
| default: |
| ath_err(common, "Unknown power mode %u\n", mode); |
| return false; |
| } |
| ah->power_mode = mode; |
| |
| return status; |
| } |
| EXPORT_SYMBOL(ath9k_hw_setpower); |
| |
| /*******************/ |
| /* Beacon Handling */ |
| /*******************/ |
| |
| void ath9k_hw_beaconinit(struct ath_hw *ah, u32 next_beacon, u32 beacon_period) |
| { |
| int flags = 0; |
| |
| ah->beacon_interval = beacon_period; |
| |
| ENABLE_REGWRITE_BUFFER(ah); |
| |
| switch (ah->opmode) { |
| case NL80211_IFTYPE_STATION: |
| REG_WRITE(ah, AR_NEXT_TBTT_TIMER, TU_TO_USEC(next_beacon)); |
| REG_WRITE(ah, AR_NEXT_DMA_BEACON_ALERT, 0xffff); |
| REG_WRITE(ah, AR_NEXT_SWBA, 0x7ffff); |
| flags |= AR_TBTT_TIMER_EN; |
| break; |
| case NL80211_IFTYPE_ADHOC: |
| case NL80211_IFTYPE_MESH_POINT: |
| REG_SET_BIT(ah, AR_TXCFG, |
| AR_TXCFG_ADHOC_BEACON_ATIM_TX_POLICY); |
| REG_WRITE(ah, AR_NEXT_NDP_TIMER, |
| TU_TO_USEC(next_beacon + |
| (ah->atim_window ? ah-> |
| atim_window : 1))); |
| flags |= AR_NDP_TIMER_EN; |
| case NL80211_IFTYPE_AP: |
| REG_WRITE(ah, AR_NEXT_TBTT_TIMER, TU_TO_USEC(next_beacon)); |
| REG_WRITE(ah, AR_NEXT_DMA_BEACON_ALERT, |
| TU_TO_USEC(next_beacon - |
| ah->config. |
| dma_beacon_response_time)); |
| REG_WRITE(ah, AR_NEXT_SWBA, |
| TU_TO_USEC(next_beacon - |
| ah->config. |
| sw_beacon_response_time)); |
| flags |= |
| AR_TBTT_TIMER_EN | AR_DBA_TIMER_EN | AR_SWBA_TIMER_EN; |
| break; |
| default: |
| if (ah->is_monitoring) { |
| REG_WRITE(ah, AR_NEXT_TBTT_TIMER, |
| TU_TO_USEC(next_beacon)); |
| REG_WRITE(ah, AR_NEXT_DMA_BEACON_ALERT, 0xffff); |
| REG_WRITE(ah, AR_NEXT_SWBA, 0x7ffff); |
| flags |= AR_TBTT_TIMER_EN; |
| break; |
| } |
| ath_dbg(ath9k_hw_common(ah), ATH_DBG_BEACON, |
| "%s: unsupported opmode: %d\n", |
| __func__, ah->opmode); |
| return; |
| break; |
| } |
| |
| REG_WRITE(ah, AR_BEACON_PERIOD, TU_TO_USEC(beacon_period)); |
| REG_WRITE(ah, AR_DMA_BEACON_PERIOD, TU_TO_USEC(beacon_period)); |
| REG_WRITE(ah, AR_SWBA_PERIOD, TU_TO_USEC(beacon_period)); |
| REG_WRITE(ah, AR_NDP_PERIOD, TU_TO_USEC(beacon_period)); |
| |
| REGWRITE_BUFFER_FLUSH(ah); |
| |
| beacon_period &= ~ATH9K_BEACON_ENA; |
| if (beacon_period & ATH9K_BEACON_RESET_TSF) { |
| ath9k_hw_reset_tsf(ah); |
| } |
| |
| REG_SET_BIT(ah, AR_TIMER_MODE, flags); |
| } |
| EXPORT_SYMBOL(ath9k_hw_beaconinit); |
| |
| void ath9k_hw_set_sta_beacon_timers(struct ath_hw *ah, |
| const struct ath9k_beacon_state *bs) |
| { |
| u32 nextTbtt, beaconintval, dtimperiod, beacontimeout; |
| struct ath9k_hw_capabilities *pCap = &ah->caps; |
| struct ath_common *common = ath9k_hw_common(ah); |
| |
| ENABLE_REGWRITE_BUFFER(ah); |
| |
| REG_WRITE(ah, AR_NEXT_TBTT_TIMER, TU_TO_USEC(bs->bs_nexttbtt)); |
| |
| REG_WRITE(ah, AR_BEACON_PERIOD, |
| TU_TO_USEC(bs->bs_intval & ATH9K_BEACON_PERIOD)); |
| REG_WRITE(ah, AR_DMA_BEACON_PERIOD, |
| TU_TO_USEC(bs->bs_intval & ATH9K_BEACON_PERIOD)); |
| |
| REGWRITE_BUFFER_FLUSH(ah); |
| |
| REG_RMW_FIELD(ah, AR_RSSI_THR, |
| AR_RSSI_THR_BM_THR, bs->bs_bmissthreshold); |
| |
| beaconintval = bs->bs_intval & ATH9K_BEACON_PERIOD; |
| |
| if (bs->bs_sleepduration > beaconintval) |
| beaconintval = bs->bs_sleepduration; |
| |
| dtimperiod = bs->bs_dtimperiod; |
| if (bs->bs_sleepduration > dtimperiod) |
| dtimperiod = bs->bs_sleepduration; |
| |
| if (beaconintval == dtimperiod) |
| nextTbtt = bs->bs_nextdtim; |
| else |
| nextTbtt = bs->bs_nexttbtt; |
| |
| ath_dbg(common, ATH_DBG_BEACON, "next DTIM %d\n", bs->bs_nextdtim); |
| ath_dbg(common, ATH_DBG_BEACON, "next beacon %d\n", nextTbtt); |
| ath_dbg(common, ATH_DBG_BEACON, "beacon period %d\n", beaconintval); |
| ath_dbg(common, ATH_DBG_BEACON, "DTIM period %d\n", dtimperiod); |
| |
| ENABLE_REGWRITE_BUFFER(ah); |
| |
| REG_WRITE(ah, AR_NEXT_DTIM, |
| TU_TO_USEC(bs->bs_nextdtim - SLEEP_SLOP)); |
| REG_WRITE(ah, AR_NEXT_TIM, TU_TO_USEC(nextTbtt - SLEEP_SLOP)); |
| |
| REG_WRITE(ah, AR_SLEEP1, |
| SM((CAB_TIMEOUT_VAL << 3), AR_SLEEP1_CAB_TIMEOUT) |
| | AR_SLEEP1_ASSUME_DTIM); |
| |
| if (pCap->hw_caps & ATH9K_HW_CAP_AUTOSLEEP) |
| beacontimeout = (BEACON_TIMEOUT_VAL << 3); |
| else |
| beacontimeout = MIN_BEACON_TIMEOUT_VAL; |
| |
| REG_WRITE(ah, AR_SLEEP2, |
| SM(beacontimeout, AR_SLEEP2_BEACON_TIMEOUT)); |
| |
| REG_WRITE(ah, AR_TIM_PERIOD, TU_TO_USEC(beaconintval)); |
| REG_WRITE(ah, AR_DTIM_PERIOD, TU_TO_USEC(dtimperiod)); |
| |
| REGWRITE_BUFFER_FLUSH(ah); |
| |
| REG_SET_BIT(ah, AR_TIMER_MODE, |
| AR_TBTT_TIMER_EN | AR_TIM_TIMER_EN | |
| AR_DTIM_TIMER_EN); |
| |
| /* TSF Out of Range Threshold */ |
| REG_WRITE(ah, AR_TSFOOR_THRESHOLD, bs->bs_tsfoor_threshold); |
| } |
| EXPORT_SYMBOL(ath9k_hw_set_sta_beacon_timers); |
| |
| /*******************/ |
| /* HW Capabilities */ |
| /*******************/ |
| |
| int ath9k_hw_fill_cap_info(struct ath_hw *ah) |
| { |
| struct ath9k_hw_capabilities *pCap = &ah->caps; |
| struct ath_regulatory *regulatory = ath9k_hw_regulatory(ah); |
| struct ath_common *common = ath9k_hw_common(ah); |
| struct ath_btcoex_hw *btcoex_hw = &ah->btcoex_hw; |
| |
| u16 capField = 0, eeval; |
| u8 ant_div_ctl1; |
| |
| eeval = ah->eep_ops->get_eeprom(ah, EEP_REG_0); |
| regulatory->current_rd = eeval; |
| |
| eeval = ah->eep_ops->get_eeprom(ah, EEP_REG_1); |
| if (AR_SREV_9285_12_OR_LATER(ah)) |
| eeval |= AR9285_RDEXT_DEFAULT; |
| regulatory->current_rd_ext = eeval; |
| |
| capField = ah->eep_ops->get_eeprom(ah, EEP_OP_CAP); |
| |
| if (ah->opmode != NL80211_IFTYPE_AP && |
| ah->hw_version.subvendorid == AR_SUBVENDOR_ID_NEW_A) { |
| if (regulatory->current_rd == 0x64 || |
| regulatory->current_rd == 0x65) |
| regulatory->current_rd += 5; |
| else if (regulatory->current_rd == 0x41) |
| regulatory->current_rd = 0x43; |
| ath_dbg(common, ATH_DBG_REGULATORY, |
| "regdomain mapped to 0x%x\n", regulatory->current_rd); |
| } |
| |
| eeval = ah->eep_ops->get_eeprom(ah, EEP_OP_MODE); |
| if ((eeval & (AR5416_OPFLAGS_11G | AR5416_OPFLAGS_11A)) == 0) { |
| ath_err(common, |
| "no band has been marked as supported in EEPROM\n"); |
| return -EINVAL; |
| } |
| |
| if (eeval & AR5416_OPFLAGS_11A) |
| pCap->hw_caps |= ATH9K_HW_CAP_5GHZ; |
| |
| if (eeval & AR5416_OPFLAGS_11G) |
| pCap->hw_caps |= ATH9K_HW_CAP_2GHZ; |
| |
| pCap->tx_chainmask = ah->eep_ops->get_eeprom(ah, EEP_TX_MASK); |
| /* |
| * For AR9271 we will temporarilly uses the rx chainmax as read from |
| * the EEPROM. |
| */ |
| if ((ah->hw_version.devid == AR5416_DEVID_PCI) && |
| !(eeval & AR5416_OPFLAGS_11A) && |
| !(AR_SREV_9271(ah))) |
| /* CB71: GPIO 0 is pulled down to indicate 3 rx chains */ |
| pCap->rx_chainmask = ath9k_hw_gpio_get(ah, 0) ? 0x5 : 0x7; |
| else |
| /* Use rx_chainmask from EEPROM. */ |
| pCap->rx_chainmask = ah->eep_ops->get_eeprom(ah, EEP_RX_MASK); |
| |
| ah->misc_mode |= AR_PCU_MIC_NEW_LOC_ENA; |
| |
| /* enable key search for every frame in an aggregate */ |
| if (AR_SREV_9300_20_OR_LATER(ah)) |
| ah->misc_mode |= AR_PCU_ALWAYS_PERFORM_KEYSEARCH; |
| |
| pCap->low_2ghz_chan = 2312; |
| pCap->high_2ghz_chan = 2732; |
| |
| pCap->low_5ghz_chan = 4920; |
| pCap->high_5ghz_chan = 6100; |
| |
| common->crypt_caps |= ATH_CRYPT_CAP_CIPHER_AESCCM; |
| |
| if (ah->config.ht_enable) |
| pCap->hw_caps |= ATH9K_HW_CAP_HT; |
| else |
| pCap->hw_caps &= ~ATH9K_HW_CAP_HT; |
| |
| if (capField & AR_EEPROM_EEPCAP_MAXQCU) |
| pCap->total_queues = |
| MS(capField, AR_EEPROM_EEPCAP_MAXQCU); |
| else |
| pCap->total_queues = ATH9K_NUM_TX_QUEUES; |
| |
| if (capField & AR_EEPROM_EEPCAP_KC_ENTRIES) |
| pCap->keycache_size = |
| 1 << MS(capField, AR_EEPROM_EEPCAP_KC_ENTRIES); |
| else |
| pCap->keycache_size = AR_KEYTABLE_SIZE; |
| |
| if (AR_SREV_9285(ah) || AR_SREV_9271(ah)) |
| pCap->tx_triglevel_max = MAX_TX_FIFO_THRESHOLD >> 1; |
| else |
| pCap->tx_triglevel_max = MAX_TX_FIFO_THRESHOLD; |
| |
| if (AR_SREV_9271(ah)) |
| pCap->num_gpio_pins = AR9271_NUM_GPIO; |
| else if (AR_DEVID_7010(ah)) |
| pCap->num_gpio_pins = AR7010_NUM_GPIO; |
| else if (AR_SREV_9285_12_OR_LATER(ah)) |
| pCap->num_gpio_pins = AR9285_NUM_GPIO; |
| else if (AR_SREV_9280_20_OR_LATER(ah)) |
| pCap->num_gpio_pins = AR928X_NUM_GPIO; |
| else |
| pCap->num_gpio_pins = AR_NUM_GPIO; |
| |
| if (AR_SREV_9160_10_OR_LATER(ah) || AR_SREV_9100(ah)) { |
| pCap->hw_caps |= ATH9K_HW_CAP_CST; |
| pCap->rts_aggr_limit = ATH_AMPDU_LIMIT_MAX; |
| } else { |
| pCap->rts_aggr_limit = (8 * 1024); |
| } |
| |
| pCap->hw_caps |= ATH9K_HW_CAP_ENHANCEDPM; |
| |
| #if defined(CONFIG_RFKILL) || defined(CONFIG_RFKILL_MODULE) |
| ah->rfsilent = ah->eep_ops->get_eeprom(ah, EEP_RF_SILENT); |
| if (ah->rfsilent & EEP_RFSILENT_ENABLED) { |
| ah->rfkill_gpio = |
| MS(ah->rfsilent, EEP_RFSILENT_GPIO_SEL); |
| ah->rfkill_polarity = |
| MS(ah->rfsilent, EEP_RFSILENT_POLARITY); |
| |
| pCap->hw_caps |= ATH9K_HW_CAP_RFSILENT; |
| } |
| #endif |
| if (AR_SREV_9271(ah) || AR_SREV_9300_20_OR_LATER(ah)) |
| pCap->hw_caps |= ATH9K_HW_CAP_AUTOSLEEP; |
| else |
| pCap->hw_caps &= ~ATH9K_HW_CAP_AUTOSLEEP; |
| |
| if (AR_SREV_9280(ah) || AR_SREV_9285(ah)) |
| pCap->hw_caps &= ~ATH9K_HW_CAP_4KB_SPLITTRANS; |
| else |
| pCap->hw_caps |= ATH9K_HW_CAP_4KB_SPLITTRANS; |
| |
| if (regulatory->current_rd_ext & (1 << REG_EXT_JAPAN_MIDBAND)) { |
| pCap->reg_cap = |
| AR_EEPROM_EEREGCAP_EN_KK_NEW_11A | |
| AR_EEPROM_EEREGCAP_EN_KK_U1_EVEN | |
| AR_EEPROM_EEREGCAP_EN_KK_U2 | |
| AR_EEPROM_EEREGCAP_EN_KK_MIDBAND; |
| } else { |
| pCap->reg_cap = |
| AR_EEPROM_EEREGCAP_EN_KK_NEW_11A | |
| AR_EEPROM_EEREGCAP_EN_KK_U1_EVEN; |
| } |
| |
| /* Advertise midband for AR5416 with FCC midband set in eeprom */ |
| if (regulatory->current_rd_ext & (1 << REG_EXT_FCC_MIDBAND) && |
| AR_SREV_5416(ah)) |
| pCap->reg_cap |= AR_EEPROM_EEREGCAP_EN_FCC_MIDBAND; |
| |
| pCap->num_antcfg_5ghz = |
| ah->eep_ops->get_num_ant_config(ah, ATH9K_HAL_FREQ_BAND_5GHZ); |
| pCap->num_antcfg_2ghz = |
| ah->eep_ops->get_num_ant_config(ah, ATH9K_HAL_FREQ_BAND_2GHZ); |
| |
| if (AR_SREV_9280_20_OR_LATER(ah) && common->btcoex_enabled) { |
| btcoex_hw->btactive_gpio = ATH_BTACTIVE_GPIO; |
| btcoex_hw->wlanactive_gpio = ATH_WLANACTIVE_GPIO; |
| |
| if (AR_SREV_9285(ah)) { |
| btcoex_hw->scheme = ATH_BTCOEX_CFG_3WIRE; |
| btcoex_hw->btpriority_gpio = ATH_BTPRIORITY_GPIO; |
| } else { |
| btcoex_hw->scheme = ATH_BTCOEX_CFG_2WIRE; |
| } |
| } else { |
| btcoex_hw->scheme = ATH_BTCOEX_CFG_NONE; |
| } |
| |
| if (AR_SREV_9300_20_OR_LATER(ah)) { |
| pCap->hw_caps |= ATH9K_HW_CAP_EDMA | ATH9K_HW_CAP_LDPC | |
| ATH9K_HW_CAP_FASTCLOCK; |
| pCap->rx_hp_qdepth = ATH9K_HW_RX_HP_QDEPTH; |
| pCap->rx_lp_qdepth = ATH9K_HW_RX_LP_QDEPTH; |
| pCap->rx_status_len = sizeof(struct ar9003_rxs); |
| pCap->tx_desc_len = sizeof(struct ar9003_txc); |
| pCap->txs_len = sizeof(struct ar9003_txs); |
| if (ah->eep_ops->get_eeprom(ah, EEP_PAPRD)) |
| pCap->hw_caps |= ATH9K_HW_CAP_PAPRD; |
| } else { |
| pCap->tx_desc_len = sizeof(struct ath_desc); |
| if (AR_SREV_9280_20(ah) && |
| ((ah->eep_ops->get_eeprom(ah, EEP_MINOR_REV) <= |
| AR5416_EEP_MINOR_VER_16) || |
| ah->eep_ops->get_eeprom(ah, EEP_FSTCLK_5G))) |
| pCap->hw_caps |= ATH9K_HW_CAP_FASTCLOCK; |
| } |
| |
| if (AR_SREV_9300_20_OR_LATER(ah)) |
| pCap->hw_caps |= ATH9K_HW_CAP_RAC_SUPPORTED; |
| |
| if (AR_SREV_9300_20_OR_LATER(ah)) |
| ah->ent_mode = REG_READ(ah, AR_ENT_OTP); |
| |
| if (AR_SREV_9287_11_OR_LATER(ah) || AR_SREV_9271(ah)) |
| pCap->hw_caps |= ATH9K_HW_CAP_SGI_20; |
| |
| if (AR_SREV_9285(ah)) |
| if (ah->eep_ops->get_eeprom(ah, EEP_MODAL_VER) >= 3) { |
| ant_div_ctl1 = |
| ah->eep_ops->get_eeprom(ah, EEP_ANT_DIV_CTL1); |
| if ((ant_div_ctl1 & 0x1) && ((ant_div_ctl1 >> 3) & 0x1)) |
| pCap->hw_caps |= ATH9K_HW_CAP_ANT_DIV_COMB; |
| } |
| if (AR_SREV_9300_20_OR_LATER(ah)) { |
| if (ah->eep_ops->get_eeprom(ah, EEP_CHAIN_MASK_REDUCE)) |
| pCap->hw_caps |= ATH9K_HW_CAP_APM; |
| } |
| |
| |
| |
| return 0; |
| } |
| |
| /****************************/ |
| /* GPIO / RFKILL / Antennae */ |
| /****************************/ |
| |
| static void ath9k_hw_gpio_cfg_output_mux(struct ath_hw *ah, |
| u32 gpio, u32 type) |
| { |
| int addr; |
| u32 gpio_shift, tmp; |
| |
| if (gpio > 11) |
| addr = AR_GPIO_OUTPUT_MUX3; |
| else if (gpio > 5) |
| addr = AR_GPIO_OUTPUT_MUX2; |
| else |
| addr = AR_GPIO_OUTPUT_MUX1; |
| |
| gpio_shift = (gpio % 6) * 5; |
| |
| if (AR_SREV_9280_20_OR_LATER(ah) |
| || (addr != AR_GPIO_OUTPUT_MUX1)) { |
| REG_RMW(ah, addr, (type << gpio_shift), |
| (0x1f << gpio_shift)); |
| } else { |
| tmp = REG_READ(ah, addr); |
| tmp = ((tmp & 0x1F0) << 1) | (tmp & ~0x1F0); |
| tmp &= ~(0x1f << gpio_shift); |
| tmp |= (type << gpio_shift); |
| REG_WRITE(ah, addr, tmp); |
| } |
| } |
| |
| void ath9k_hw_cfg_gpio_input(struct ath_hw *ah, u32 gpio) |
| { |
| u32 gpio_shift; |
| |
| BUG_ON(gpio >= ah->caps.num_gpio_pins); |
| |
| if (AR_DEVID_7010(ah)) { |
| gpio_shift = gpio; |
| REG_RMW(ah, AR7010_GPIO_OE, |
| (AR7010_GPIO_OE_AS_INPUT << gpio_shift), |
| (AR7010_GPIO_OE_MASK << gpio_shift)); |
| return; |
| } |
| |
| gpio_shift = gpio << 1; |
| REG_RMW(ah, |
| AR_GPIO_OE_OUT, |
| (AR_GPIO_OE_OUT_DRV_NO << gpio_shift), |
| (AR_GPIO_OE_OUT_DRV << gpio_shift)); |
| } |
| EXPORT_SYMBOL(ath9k_hw_cfg_gpio_input); |
| |
| u32 ath9k_hw_gpio_get(struct ath_hw *ah, u32 gpio) |
| { |
| #define MS_REG_READ(x, y) \ |
| (MS(REG_READ(ah, AR_GPIO_IN_OUT), x##_GPIO_IN_VAL) & (AR_GPIO_BIT(y))) |
| |
| if (gpio >= ah->caps.num_gpio_pins) |
| return 0xffffffff; |
| |
| if (AR_DEVID_7010(ah)) { |
| u32 val; |
| val = REG_READ(ah, AR7010_GPIO_IN); |
| return (MS(val, AR7010_GPIO_IN_VAL) & AR_GPIO_BIT(gpio)) == 0; |
| } else if (AR_SREV_9300_20_OR_LATER(ah)) |
| return (MS(REG_READ(ah, AR_GPIO_IN), AR9300_GPIO_IN_VAL) & |
| AR_GPIO_BIT(gpio)) != 0; |
| else if (AR_SREV_9271(ah)) |
| return MS_REG_READ(AR9271, gpio) != 0; |
| else if (AR_SREV_9287_11_OR_LATER(ah)) |
| return MS_REG_READ(AR9287, gpio) != 0; |
| else if (AR_SREV_9285_12_OR_LATER(ah)) |
| return MS_REG_READ(AR9285, gpio) != 0; |
| else if (AR_SREV_9280_20_OR_LATER(ah)) |
| return MS_REG_READ(AR928X, gpio) != 0; |
| else |
| return MS_REG_READ(AR, gpio) != 0; |
| } |
| EXPORT_SYMBOL(ath9k_hw_gpio_get); |
| |
| void ath9k_hw_cfg_output(struct ath_hw *ah, u32 gpio, |
| u32 ah_signal_type) |
| { |
| u32 gpio_shift; |
| |
| if (AR_DEVID_7010(ah)) { |
| gpio_shift = gpio; |
| REG_RMW(ah, AR7010_GPIO_OE, |
| (AR7010_GPIO_OE_AS_OUTPUT << gpio_shift), |
| (AR7010_GPIO_OE_MASK << gpio_shift)); |
| return; |
| } |
| |
| ath9k_hw_gpio_cfg_output_mux(ah, gpio, ah_signal_type); |
| gpio_shift = 2 * gpio; |
| REG_RMW(ah, |
| AR_GPIO_OE_OUT, |
| (AR_GPIO_OE_OUT_DRV_ALL << gpio_shift), |
| (AR_GPIO_OE_OUT_DRV << gpio_shift)); |
| } |
| EXPORT_SYMBOL(ath9k_hw_cfg_output); |
| |
| void ath9k_hw_set_gpio(struct ath_hw *ah, u32 gpio, u32 val) |
| { |
| if (AR_DEVID_7010(ah)) { |
| val = val ? 0 : 1; |
| REG_RMW(ah, AR7010_GPIO_OUT, ((val&1) << gpio), |
| AR_GPIO_BIT(gpio)); |
| return; |
| } |
| |
| if (AR_SREV_9271(ah)) |
| val = ~val; |
| |
| REG_RMW(ah, AR_GPIO_IN_OUT, ((val & 1) << gpio), |
| AR_GPIO_BIT(gpio)); |
| } |
| EXPORT_SYMBOL(ath9k_hw_set_gpio); |
| |
| u32 ath9k_hw_getdefantenna(struct ath_hw *ah) |
| { |
| return REG_READ(ah, AR_DEF_ANTENNA) & 0x7; |
| } |
| EXPORT_SYMBOL(ath9k_hw_getdefantenna); |
| |
| void ath9k_hw_setantenna(struct ath_hw *ah, u32 antenna) |
| { |
| REG_WRITE(ah, AR_DEF_ANTENNA, (antenna & 0x7)); |
| } |
| EXPORT_SYMBOL(ath9k_hw_setantenna); |
| |
| /*********************/ |
| /* General Operation */ |
| /*********************/ |
| |
| u32 ath9k_hw_getrxfilter(struct ath_hw *ah) |
| { |
| u32 bits = REG_READ(ah, AR_RX_FILTER); |
| u32 phybits = REG_READ(ah, AR_PHY_ERR); |
| |
| if (phybits & AR_PHY_ERR_RADAR) |
| bits |= ATH9K_RX_FILTER_PHYRADAR; |
| if (phybits & (AR_PHY_ERR_OFDM_TIMING | AR_PHY_ERR_CCK_TIMING)) |
| bits |= ATH9K_RX_FILTER_PHYERR; |
| |
| return bits; |
| } |
| EXPORT_SYMBOL(ath9k_hw_getrxfilter); |
| |
| void ath9k_hw_setrxfilter(struct ath_hw *ah, u32 bits) |
| { |
| u32 phybits; |
| |
| ENABLE_REGWRITE_BUFFER(ah); |
| |
| REG_WRITE(ah, AR_RX_FILTER, bits); |
| |
| phybits = 0; |
| if (bits & ATH9K_RX_FILTER_PHYRADAR) |
| phybits |= AR_PHY_ERR_RADAR; |
| if (bits & ATH9K_RX_FILTER_PHYERR) |
| phybits |= AR_PHY_ERR_OFDM_TIMING | AR_PHY_ERR_CCK_TIMING; |
| REG_WRITE(ah, AR_PHY_ERR, phybits); |
| |
| if (phybits) |
| REG_WRITE(ah, AR_RXCFG, |
| REG_READ(ah, AR_RXCFG) | AR_RXCFG_ZLFDMA); |
| else |
| REG_WRITE(ah, AR_RXCFG, |
| REG_READ(ah, AR_RXCFG) & ~AR_RXCFG_ZLFDMA); |
| |
| REGWRITE_BUFFER_FLUSH(ah); |
| } |
| EXPORT_SYMBOL(ath9k_hw_setrxfilter); |
| |
| bool ath9k_hw_phy_disable(struct ath_hw *ah) |
| { |
| if (!ath9k_hw_set_reset_reg(ah, ATH9K_RESET_WARM)) |
| return false; |
| |
| ath9k_hw_init_pll(ah, NULL); |
| return true; |
| } |
| EXPORT_SYMBOL(ath9k_hw_phy_disable); |
| |
| bool ath9k_hw_disable(struct ath_hw *ah) |
| { |
| if (!ath9k_hw_setpower(ah, ATH9K_PM_AWAKE)) |
| return false; |
| |
| if (!ath9k_hw_set_reset_reg(ah, ATH9K_RESET_COLD)) |
| return false; |
| |
| ath9k_hw_init_pll(ah, NULL); |
| return true; |
| } |
| EXPORT_SYMBOL(ath9k_hw_disable); |
| |
| void ath9k_hw_set_txpowerlimit(struct ath_hw *ah, u32 limit, bool test) |
| { |
| struct ath_regulatory *regulatory = ath9k_hw_regulatory(ah); |
| struct ath9k_channel *chan = ah->curchan; |
| struct ieee80211_channel *channel = chan->chan; |
| |
| regulatory->power_limit = min(limit, (u32) MAX_RATE_POWER); |
| |
| ah->eep_ops->set_txpower(ah, chan, |
| ath9k_regd_get_ctl(regulatory, chan), |
| channel->max_antenna_gain * 2, |
| channel->max_power * 2, |
| min((u32) MAX_RATE_POWER, |
| (u32) regulatory->power_limit), test); |
| } |
| EXPORT_SYMBOL(ath9k_hw_set_txpowerlimit); |
| |
| void ath9k_hw_setopmode(struct ath_hw *ah) |
| { |
| ath9k_hw_set_operating_mode(ah, ah->opmode); |
| } |
| EXPORT_SYMBOL(ath9k_hw_setopmode); |
| |
| void ath9k_hw_setmcastfilter(struct ath_hw *ah, u32 filter0, u32 filter1) |
| { |
| REG_WRITE(ah, AR_MCAST_FIL0, filter0); |
| REG_WRITE(ah, AR_MCAST_FIL1, filter1); |
| } |
| EXPORT_SYMBOL(ath9k_hw_setmcastfilter); |
| |
| void ath9k_hw_write_associd(struct ath_hw *ah) |
| { |
| struct ath_common *common = ath9k_hw_common(ah); |
| |
| REG_WRITE(ah, AR_BSS_ID0, get_unaligned_le32(common->curbssid)); |
| REG_WRITE(ah, AR_BSS_ID1, get_unaligned_le16(common->curbssid + 4) | |
| ((common->curaid & 0x3fff) << AR_BSS_ID1_AID_S)); |
| } |
| EXPORT_SYMBOL(ath9k_hw_write_associd); |
| |
| #define ATH9K_MAX_TSF_READ 10 |
| |
| u64 ath9k_hw_gettsf64(struct ath_hw *ah) |
| { |
| u32 tsf_lower, tsf_upper1, tsf_upper2; |
| int i; |
| |
| tsf_upper1 = REG_READ(ah, AR_TSF_U32); |
| for (i = 0; i < ATH9K_MAX_TSF_READ; i++) { |
| tsf_lower = REG_READ(ah, AR_TSF_L32); |
| tsf_upper2 = REG_READ(ah, AR_TSF_U32); |
| if (tsf_upper2 == tsf_upper1) |
| break; |
| tsf_upper1 = tsf_upper2; |
| } |
| |
| WARN_ON( i == ATH9K_MAX_TSF_READ ); |
| |
| return (((u64)tsf_upper1 << 32) | tsf_lower); |
| } |
| EXPORT_SYMBOL(ath9k_hw_gettsf64); |
| |
| void ath9k_hw_settsf64(struct ath_hw *ah, u64 tsf64) |
| { |
| REG_WRITE(ah, AR_TSF_L32, tsf64 & 0xffffffff); |
| REG_WRITE(ah, AR_TSF_U32, (tsf64 >> 32) & 0xffffffff); |
| } |
| EXPORT_SYMBOL(ath9k_hw_settsf64); |
| |
| void ath9k_hw_reset_tsf(struct ath_hw *ah) |
| { |
| if (!ath9k_hw_wait(ah, AR_SLP32_MODE, AR_SLP32_TSF_WRITE_STATUS, 0, |
| AH_TSF_WRITE_TIMEOUT)) |
| ath_dbg(ath9k_hw_common(ah), ATH_DBG_RESET, |
| "AR_SLP32_TSF_WRITE_STATUS limit exceeded\n"); |
| |
| REG_WRITE(ah, AR_RESET_TSF, AR_RESET_TSF_ONCE); |
| } |
| EXPORT_SYMBOL(ath9k_hw_reset_tsf); |
| |
| void ath9k_hw_set_tsfadjust(struct ath_hw *ah, u32 setting) |
| { |
| if (setting) |
| ah->misc_mode |= AR_PCU_TX_ADD_TSF; |
| else |
| ah->misc_mode &= ~AR_PCU_TX_ADD_TSF; |
| } |
| EXPORT_SYMBOL(ath9k_hw_set_tsfadjust); |
| |
| void ath9k_hw_set11nmac2040(struct ath_hw *ah) |
| { |
| struct ieee80211_conf *conf = &ath9k_hw_common(ah)->hw->conf; |
| u32 macmode; |
| |
| if (conf_is_ht40(conf) && !ah->config.cwm_ignore_extcca) |
| macmode = AR_2040_JOINED_RX_CLEAR; |
| else |
| macmode = 0; |
| |
| REG_WRITE(ah, AR_2040_MODE, macmode); |
| } |
| |
| /* HW Generic timers configuration */ |
| |
| static const struct ath_gen_timer_configuration gen_tmr_configuration[] = |
| { |
| {AR_NEXT_NDP_TIMER, AR_NDP_PERIOD, AR_TIMER_MODE, 0x0080}, |
| {AR_NEXT_NDP_TIMER, AR_NDP_PERIOD, AR_TIMER_MODE, 0x0080}, |
| {AR_NEXT_NDP_TIMER, AR_NDP_PERIOD, AR_TIMER_MODE, 0x0080}, |
| {AR_NEXT_NDP_TIMER, AR_NDP_PERIOD, AR_TIMER_MODE, 0x0080}, |
| {AR_NEXT_NDP_TIMER, AR_NDP_PERIOD, AR_TIMER_MODE, 0x0080}, |
| {AR_NEXT_NDP_TIMER, AR_NDP_PERIOD, AR_TIMER_MODE, 0x0080}, |
| {AR_NEXT_NDP_TIMER, AR_NDP_PERIOD, AR_TIMER_MODE, 0x0080}, |
| {AR_NEXT_NDP_TIMER, AR_NDP_PERIOD, AR_TIMER_MODE, 0x0080}, |
| {AR_NEXT_NDP2_TIMER, AR_NDP2_PERIOD, AR_NDP2_TIMER_MODE, 0x0001}, |
| {AR_NEXT_NDP2_TIMER + 1*4, AR_NDP2_PERIOD + 1*4, |
| AR_NDP2_TIMER_MODE, 0x0002}, |
| {AR_NEXT_NDP2_TIMER + 2*4, AR_NDP2_PERIOD + 2*4, |
| AR_NDP2_TIMER_MODE, 0x0004}, |
| {AR_NEXT_NDP2_TIMER + 3*4, AR_NDP2_PERIOD + 3*4, |
| AR_NDP2_TIMER_MODE, 0x0008}, |
| {AR_NEXT_NDP2_TIMER + 4*4, AR_NDP2_PERIOD + 4*4, |
| AR_NDP2_TIMER_MODE, 0x0010}, |
| {AR_NEXT_NDP2_TIMER + 5*4, AR_NDP2_PERIOD + 5*4, |
| AR_NDP2_TIMER_MODE, 0x0020}, |
| {AR_NEXT_NDP2_TIMER + 6*4, AR_NDP2_PERIOD + 6*4, |
| AR_NDP2_TIMER_MODE, 0x0040}, |
| {AR_NEXT_NDP2_TIMER + 7*4, AR_NDP2_PERIOD + 7*4, |
| AR_NDP2_TIMER_MODE, 0x0080} |
| }; |
| |
| /* HW generic timer primitives */ |
| |
| /* compute and clear index of rightmost 1 */ |
| static u32 rightmost_index(struct ath_gen_timer_table *timer_table, u32 *mask) |
| { |
| u32 b; |
| |
| b = *mask; |
| b &= (0-b); |
| *mask &= ~b; |
| b *= debruijn32; |
| b >>= 27; |
| |
| return timer_table->gen_timer_index[b]; |
| } |
| |
| static u32 ath9k_hw_gettsf32(struct ath_hw *ah) |
| { |
| return REG_READ(ah, AR_TSF_L32); |
| } |
| |
| struct ath_gen_timer *ath_gen_timer_alloc(struct ath_hw *ah, |
| void (*trigger)(void *), |
| void (*overflow)(void *), |
| void *arg, |
| u8 timer_index) |
| { |
| struct ath_gen_timer_table *timer_table = &ah->hw_gen_timers; |
| struct ath_gen_timer *timer; |
| |
| timer = kzalloc(sizeof(struct ath_gen_timer), GFP_KERNEL); |
| |
| if (timer == NULL) { |
| ath_err(ath9k_hw_common(ah), |
| "Failed to allocate memory for hw timer[%d]\n", |
| timer_index); |
| return NULL; |
| } |
| |
| /* allocate a hardware generic timer slot */ |
| timer_table->timers[timer_index] = timer; |
| timer->index = timer_index; |
| timer->trigger = trigger; |
| timer->overflow = overflow; |
| timer->arg = arg; |
| |
| return timer; |
| } |
| EXPORT_SYMBOL(ath_gen_timer_alloc); |
| |
| void ath9k_hw_gen_timer_start(struct ath_hw *ah, |
| struct ath_gen_timer *timer, |
| u32 timer_next, |
| u32 timer_period) |
| { |
| struct ath_gen_timer_table *timer_table = &ah->hw_gen_timers; |
| u32 tsf; |
| |
| BUG_ON(!timer_period); |
| |
| set_bit(timer->index, &timer_table->timer_mask.timer_bits); |
| |
| tsf = ath9k_hw_gettsf32(ah); |
| |
| ath_dbg(ath9k_hw_common(ah), ATH_DBG_HWTIMER, |
| "current tsf %x period %x timer_next %x\n", |
| tsf, timer_period, timer_next); |
| |
| /* |
| * Pull timer_next forward if the current TSF already passed it |
| * because of software latency |
| */ |
| if (timer_next < tsf) |
| timer_next = tsf + timer_period; |
| |
| /* |
| * Program generic timer registers |
| */ |
| REG_WRITE(ah, gen_tmr_configuration[timer->index].next_addr, |
| timer_next); |
| REG_WRITE(ah, gen_tmr_configuration[timer->index].period_addr, |
| timer_period); |
| REG_SET_BIT(ah, gen_tmr_configuration[timer->index].mode_addr, |
| gen_tmr_configuration[timer->index].mode_mask); |
| |
| /* Enable both trigger and thresh interrupt masks */ |
| REG_SET_BIT(ah, AR_IMR_S5, |
| (SM(AR_GENTMR_BIT(timer->index), AR_IMR_S5_GENTIMER_THRESH) | |
| SM(AR_GENTMR_BIT(timer->index), AR_IMR_S5_GENTIMER_TRIG))); |
| } |
| EXPORT_SYMBOL(ath9k_hw_gen_timer_start); |
| |
| void ath9k_hw_gen_timer_stop(struct ath_hw *ah, struct ath_gen_timer *timer) |
| { |
| struct ath_gen_timer_table *timer_table = &ah->hw_gen_timers; |
| |
| if ((timer->index < AR_FIRST_NDP_TIMER) || |
| (timer->index >= ATH_MAX_GEN_TIMER)) { |
| return; |
| } |
| |
| /* Clear generic timer enable bits. */ |
| REG_CLR_BIT(ah, gen_tmr_configuration[timer->index].mode_addr, |
| gen_tmr_configuration[timer->index].mode_mask); |
| |
| /* Disable both trigger and thresh interrupt masks */ |
| REG_CLR_BIT(ah, AR_IMR_S5, |
| (SM(AR_GENTMR_BIT(timer->index), AR_IMR_S5_GENTIMER_THRESH) | |
| SM(AR_GENTMR_BIT(timer->index), AR_IMR_S5_GENTIMER_TRIG))); |
| |
| clear_bit(timer->index, &timer_table->timer_mask.timer_bits); |
| } |
| EXPORT_SYMBOL(ath9k_hw_gen_timer_stop); |
| |
| void ath_gen_timer_free(struct ath_hw *ah, struct ath_gen_timer *timer) |
| { |
| struct ath_gen_timer_table *timer_table = &ah->hw_gen_timers; |
| |
| /* free the hardware generic timer slot */ |
| timer_table->timers[timer->index] = NULL; |
| kfree(timer); |
| } |
| EXPORT_SYMBOL(ath_gen_timer_free); |
| |
| /* |
| * Generic Timer Interrupts handling |
| */ |
| void ath_gen_timer_isr(struct ath_hw *ah) |
| { |
| struct ath_gen_timer_table *timer_table = &ah->hw_gen_timers; |
| struct ath_gen_timer *timer; |
| struct ath_common *common = ath9k_hw_common(ah); |
| u32 trigger_mask, thresh_mask, index; |
| |
| /* get hardware generic timer interrupt status */ |
| trigger_mask = ah->intr_gen_timer_trigger; |
| thresh_mask = ah->intr_gen_timer_thresh; |
| trigger_mask &= timer_table->timer_mask.val; |
| thresh_mask &= timer_table->timer_mask.val; |
| |
| trigger_mask &= ~thresh_mask; |
| |
| while (thresh_mask) { |
| index = rightmost_index(timer_table, &thresh_mask); |
| timer = timer_table->timers[index]; |
| BUG_ON(!timer); |
| ath_dbg(common, ATH_DBG_HWTIMER, |
| "TSF overflow for Gen timer %d\n", index); |
| timer->overflow(timer->arg); |
| } |
| |
| while (trigger_mask) { |
| index = rightmost_index(timer_table, &trigger_mask); |
| timer = timer_table->timers[index]; |
| BUG_ON(!timer); |
| ath_dbg(common, ATH_DBG_HWTIMER, |
| "Gen timer[%d] trigger\n", index); |
| timer->trigger(timer->arg); |
| } |
| } |
| EXPORT_SYMBOL(ath_gen_timer_isr); |
| |
| /********/ |
| /* HTC */ |
| /********/ |
| |
| void ath9k_hw_htc_resetinit(struct ath_hw *ah) |
| { |
| ah->htc_reset_init = true; |
| } |
| EXPORT_SYMBOL(ath9k_hw_htc_resetinit); |
| |
| static struct { |
| u32 version; |
| const char * name; |
| } ath_mac_bb_names[] = { |
| /* Devices with external radios */ |
| { AR_SREV_VERSION_5416_PCI, "5416" }, |
| { AR_SREV_VERSION_5416_PCIE, "5418" }, |
| { AR_SREV_VERSION_9100, "9100" }, |
| { AR_SREV_VERSION_9160, "9160" }, |
| /* Single-chip solutions */ |
| { AR_SREV_VERSION_9280, "9280" }, |
| { AR_SREV_VERSION_9285, "9285" }, |
| { AR_SREV_VERSION_9287, "9287" }, |
| { AR_SREV_VERSION_9271, "9271" }, |
| { AR_SREV_VERSION_9300, "9300" }, |
| }; |
| |
| /* For devices with external radios */ |
| static struct { |
| u16 version; |
| const char * name; |
| } ath_rf_names[] = { |
| { 0, "5133" }, |
| { AR_RAD5133_SREV_MAJOR, "5133" }, |
| { AR_RAD5122_SREV_MAJOR, "5122" }, |
| { AR_RAD2133_SREV_MAJOR, "2133" }, |
| { AR_RAD2122_SREV_MAJOR, "2122" } |
| }; |
| |
| /* |
| * Return the MAC/BB name. "????" is returned if the MAC/BB is unknown. |
| */ |
| static const char *ath9k_hw_mac_bb_name(u32 mac_bb_version) |
| { |
| int i; |
| |
| for (i=0; i<ARRAY_SIZE(ath_mac_bb_names); i++) { |
| if (ath_mac_bb_names[i].version == mac_bb_version) { |
| return ath_mac_bb_names[i].name; |
| } |
| } |
| |
| return "????"; |
| } |
| |
| /* |
| * Return the RF name. "????" is returned if the RF is unknown. |
| * Used for devices with external radios. |
| */ |
| static const char *ath9k_hw_rf_name(u16 rf_version) |
| { |
| int i; |
| |
| for (i=0; i<ARRAY_SIZE(ath_rf_names); i++) { |
| if (ath_rf_names[i].version == rf_version) { |
| return ath_rf_names[i].name; |
| } |
| } |
| |
| return "????"; |
| } |
| |
| void ath9k_hw_name(struct ath_hw *ah, char *hw_name, size_t len) |
| { |
| int used; |
| |
| /* chipsets >= AR9280 are single-chip */ |
| if (AR_SREV_9280_20_OR_LATER(ah)) { |
| used = snprintf(hw_name, len, |
| "Atheros AR%s Rev:%x", |
| ath9k_hw_mac_bb_name(ah->hw_version.macVersion), |
| ah->hw_version.macRev); |
| } |
| else { |
| used = snprintf(hw_name, len, |
| "Atheros AR%s MAC/BB Rev:%x AR%s RF Rev:%x", |
| ath9k_hw_mac_bb_name(ah->hw_version.macVersion), |
| ah->hw_version.macRev, |
| ath9k_hw_rf_name((ah->hw_version.analog5GhzRev & |
| AR_RADIO_SREV_MAJOR)), |
| ah->hw_version.phyRev); |
| } |
| |
| hw_name[used] = '\0'; |
| } |
| EXPORT_SYMBOL(ath9k_hw_name); |