| /* |
| * Copyright © 2008 Intel Corporation |
| * |
| * Permission is hereby granted, free of charge, to any person obtaining a |
| * copy of this software and associated documentation files (the "Software"), |
| * to deal in the Software without restriction, including without limitation |
| * the rights to use, copy, modify, merge, publish, distribute, sublicense, |
| * and/or sell copies of the Software, and to permit persons to whom the |
| * Software is furnished to do so, subject to the following conditions: |
| * |
| * The above copyright notice and this permission notice (including the next |
| * paragraph) shall be included in all copies or substantial portions of the |
| * Software. |
| * |
| * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR |
| * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, |
| * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL |
| * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER |
| * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING |
| * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS |
| * IN THE SOFTWARE. |
| * |
| * Authors: |
| * Keith Packard <keithp@keithp.com> |
| * |
| */ |
| |
| #include <linux/i2c.h> |
| #include <linux/slab.h> |
| #include <linux/export.h> |
| #include <linux/notifier.h> |
| #include <linux/reboot.h> |
| #include <drm/drmP.h> |
| #include <drm/drm_atomic_helper.h> |
| #include <drm/drm_crtc.h> |
| #include <drm/drm_crtc_helper.h> |
| #include <drm/drm_edid.h> |
| #include "intel_drv.h" |
| #include <drm/i915_drm.h> |
| #include "i915_drv.h" |
| |
| #define DP_LINK_CHECK_TIMEOUT (10 * 1000) |
| |
| /* Compliance test status bits */ |
| #define INTEL_DP_RESOLUTION_SHIFT_MASK 0 |
| #define INTEL_DP_RESOLUTION_PREFERRED (1 << INTEL_DP_RESOLUTION_SHIFT_MASK) |
| #define INTEL_DP_RESOLUTION_STANDARD (2 << INTEL_DP_RESOLUTION_SHIFT_MASK) |
| #define INTEL_DP_RESOLUTION_FAILSAFE (3 << INTEL_DP_RESOLUTION_SHIFT_MASK) |
| |
| struct dp_link_dpll { |
| int link_bw; |
| struct dpll dpll; |
| }; |
| |
| static const struct dp_link_dpll gen4_dpll[] = { |
| { DP_LINK_BW_1_62, |
| { .p1 = 2, .p2 = 10, .n = 2, .m1 = 23, .m2 = 8 } }, |
| { DP_LINK_BW_2_7, |
| { .p1 = 1, .p2 = 10, .n = 1, .m1 = 14, .m2 = 2 } } |
| }; |
| |
| static const struct dp_link_dpll pch_dpll[] = { |
| { DP_LINK_BW_1_62, |
| { .p1 = 2, .p2 = 10, .n = 1, .m1 = 12, .m2 = 9 } }, |
| { DP_LINK_BW_2_7, |
| { .p1 = 1, .p2 = 10, .n = 2, .m1 = 14, .m2 = 8 } } |
| }; |
| |
| static const struct dp_link_dpll vlv_dpll[] = { |
| { DP_LINK_BW_1_62, |
| { .p1 = 3, .p2 = 2, .n = 5, .m1 = 3, .m2 = 81 } }, |
| { DP_LINK_BW_2_7, |
| { .p1 = 2, .p2 = 2, .n = 1, .m1 = 2, .m2 = 27 } } |
| }; |
| |
| /* |
| * CHV supports eDP 1.4 that have more link rates. |
| * Below only provides the fixed rate but exclude variable rate. |
| */ |
| static const struct dp_link_dpll chv_dpll[] = { |
| /* |
| * CHV requires to program fractional division for m2. |
| * m2 is stored in fixed point format using formula below |
| * (m2_int << 22) | m2_fraction |
| */ |
| { DP_LINK_BW_1_62, /* m2_int = 32, m2_fraction = 1677722 */ |
| { .p1 = 4, .p2 = 2, .n = 1, .m1 = 2, .m2 = 0x819999a } }, |
| { DP_LINK_BW_2_7, /* m2_int = 27, m2_fraction = 0 */ |
| { .p1 = 4, .p2 = 1, .n = 1, .m1 = 2, .m2 = 0x6c00000 } }, |
| { DP_LINK_BW_5_4, /* m2_int = 27, m2_fraction = 0 */ |
| { .p1 = 2, .p2 = 1, .n = 1, .m1 = 2, .m2 = 0x6c00000 } } |
| }; |
| |
| static const int bxt_rates[] = { 162000, 216000, 243000, 270000, |
| 324000, 432000, 540000 }; |
| static const int skl_rates[] = { 162000, 216000, 270000, |
| 324000, 432000, 540000 }; |
| static const int chv_rates[] = { 162000, 202500, 210000, 216000, |
| 243000, 270000, 324000, 405000, |
| 420000, 432000, 540000 }; |
| static const int default_rates[] = { 162000, 270000, 540000 }; |
| |
| /** |
| * is_edp - is the given port attached to an eDP panel (either CPU or PCH) |
| * @intel_dp: DP struct |
| * |
| * If a CPU or PCH DP output is attached to an eDP panel, this function |
| * will return true, and false otherwise. |
| */ |
| static bool is_edp(struct intel_dp *intel_dp) |
| { |
| struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp); |
| |
| return intel_dig_port->base.type == INTEL_OUTPUT_EDP; |
| } |
| |
| static struct drm_device *intel_dp_to_dev(struct intel_dp *intel_dp) |
| { |
| struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp); |
| |
| return intel_dig_port->base.base.dev; |
| } |
| |
| static struct intel_dp *intel_attached_dp(struct drm_connector *connector) |
| { |
| return enc_to_intel_dp(&intel_attached_encoder(connector)->base); |
| } |
| |
| static void intel_dp_link_down(struct intel_dp *intel_dp); |
| static bool edp_panel_vdd_on(struct intel_dp *intel_dp); |
| static void edp_panel_vdd_off(struct intel_dp *intel_dp, bool sync); |
| static void vlv_init_panel_power_sequencer(struct intel_dp *intel_dp); |
| static void vlv_steal_power_sequencer(struct drm_device *dev, |
| enum pipe pipe); |
| |
| static int |
| intel_dp_max_link_bw(struct intel_dp *intel_dp) |
| { |
| int max_link_bw = intel_dp->dpcd[DP_MAX_LINK_RATE]; |
| |
| switch (max_link_bw) { |
| case DP_LINK_BW_1_62: |
| case DP_LINK_BW_2_7: |
| case DP_LINK_BW_5_4: |
| break; |
| default: |
| WARN(1, "invalid max DP link bw val %x, using 1.62Gbps\n", |
| max_link_bw); |
| max_link_bw = DP_LINK_BW_1_62; |
| break; |
| } |
| return max_link_bw; |
| } |
| |
| static u8 intel_dp_max_lane_count(struct intel_dp *intel_dp) |
| { |
| struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp); |
| struct drm_device *dev = intel_dig_port->base.base.dev; |
| u8 source_max, sink_max; |
| |
| source_max = 4; |
| if (HAS_DDI(dev) && intel_dig_port->port == PORT_A && |
| (intel_dig_port->saved_port_bits & DDI_A_4_LANES) == 0) |
| source_max = 2; |
| |
| sink_max = drm_dp_max_lane_count(intel_dp->dpcd); |
| |
| return min(source_max, sink_max); |
| } |
| |
| /* |
| * The units on the numbers in the next two are... bizarre. Examples will |
| * make it clearer; this one parallels an example in the eDP spec. |
| * |
| * intel_dp_max_data_rate for one lane of 2.7GHz evaluates as: |
| * |
| * 270000 * 1 * 8 / 10 == 216000 |
| * |
| * The actual data capacity of that configuration is 2.16Gbit/s, so the |
| * units are decakilobits. ->clock in a drm_display_mode is in kilohertz - |
| * or equivalently, kilopixels per second - so for 1680x1050R it'd be |
| * 119000. At 18bpp that's 2142000 kilobits per second. |
| * |
| * Thus the strange-looking division by 10 in intel_dp_link_required, to |
| * get the result in decakilobits instead of kilobits. |
| */ |
| |
| static int |
| intel_dp_link_required(int pixel_clock, int bpp) |
| { |
| return (pixel_clock * bpp + 9) / 10; |
| } |
| |
| static int |
| intel_dp_max_data_rate(int max_link_clock, int max_lanes) |
| { |
| return (max_link_clock * max_lanes * 8) / 10; |
| } |
| |
| static enum drm_mode_status |
| intel_dp_mode_valid(struct drm_connector *connector, |
| struct drm_display_mode *mode) |
| { |
| struct intel_dp *intel_dp = intel_attached_dp(connector); |
| struct intel_connector *intel_connector = to_intel_connector(connector); |
| struct drm_display_mode *fixed_mode = intel_connector->panel.fixed_mode; |
| int target_clock = mode->clock; |
| int max_rate, mode_rate, max_lanes, max_link_clock; |
| |
| if (is_edp(intel_dp) && fixed_mode) { |
| if (mode->hdisplay > fixed_mode->hdisplay) |
| return MODE_PANEL; |
| |
| if (mode->vdisplay > fixed_mode->vdisplay) |
| return MODE_PANEL; |
| |
| target_clock = fixed_mode->clock; |
| } |
| |
| max_link_clock = intel_dp_max_link_rate(intel_dp); |
| max_lanes = intel_dp_max_lane_count(intel_dp); |
| |
| max_rate = intel_dp_max_data_rate(max_link_clock, max_lanes); |
| mode_rate = intel_dp_link_required(target_clock, 18); |
| |
| if (mode_rate > max_rate) |
| return MODE_CLOCK_HIGH; |
| |
| if (mode->clock < 10000) |
| return MODE_CLOCK_LOW; |
| |
| if (mode->flags & DRM_MODE_FLAG_DBLCLK) |
| return MODE_H_ILLEGAL; |
| |
| return MODE_OK; |
| } |
| |
| uint32_t intel_dp_pack_aux(const uint8_t *src, int src_bytes) |
| { |
| int i; |
| uint32_t v = 0; |
| |
| if (src_bytes > 4) |
| src_bytes = 4; |
| for (i = 0; i < src_bytes; i++) |
| v |= ((uint32_t) src[i]) << ((3-i) * 8); |
| return v; |
| } |
| |
| static void intel_dp_unpack_aux(uint32_t src, uint8_t *dst, int dst_bytes) |
| { |
| int i; |
| if (dst_bytes > 4) |
| dst_bytes = 4; |
| for (i = 0; i < dst_bytes; i++) |
| dst[i] = src >> ((3-i) * 8); |
| } |
| |
| /* hrawclock is 1/4 the FSB frequency */ |
| static int |
| intel_hrawclk(struct drm_device *dev) |
| { |
| struct drm_i915_private *dev_priv = dev->dev_private; |
| uint32_t clkcfg; |
| |
| /* There is no CLKCFG reg in Valleyview. VLV hrawclk is 200 MHz */ |
| if (IS_VALLEYVIEW(dev)) |
| return 200; |
| |
| clkcfg = I915_READ(CLKCFG); |
| switch (clkcfg & CLKCFG_FSB_MASK) { |
| case CLKCFG_FSB_400: |
| return 100; |
| case CLKCFG_FSB_533: |
| return 133; |
| case CLKCFG_FSB_667: |
| return 166; |
| case CLKCFG_FSB_800: |
| return 200; |
| case CLKCFG_FSB_1067: |
| return 266; |
| case CLKCFG_FSB_1333: |
| return 333; |
| /* these two are just a guess; one of them might be right */ |
| case CLKCFG_FSB_1600: |
| case CLKCFG_FSB_1600_ALT: |
| return 400; |
| default: |
| return 133; |
| } |
| } |
| |
| static void |
| intel_dp_init_panel_power_sequencer(struct drm_device *dev, |
| struct intel_dp *intel_dp); |
| static void |
| intel_dp_init_panel_power_sequencer_registers(struct drm_device *dev, |
| struct intel_dp *intel_dp); |
| |
| static void pps_lock(struct intel_dp *intel_dp) |
| { |
| struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp); |
| struct intel_encoder *encoder = &intel_dig_port->base; |
| struct drm_device *dev = encoder->base.dev; |
| struct drm_i915_private *dev_priv = dev->dev_private; |
| enum intel_display_power_domain power_domain; |
| |
| /* |
| * See vlv_power_sequencer_reset() why we need |
| * a power domain reference here. |
| */ |
| power_domain = intel_display_port_power_domain(encoder); |
| intel_display_power_get(dev_priv, power_domain); |
| |
| mutex_lock(&dev_priv->pps_mutex); |
| } |
| |
| static void pps_unlock(struct intel_dp *intel_dp) |
| { |
| struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp); |
| struct intel_encoder *encoder = &intel_dig_port->base; |
| struct drm_device *dev = encoder->base.dev; |
| struct drm_i915_private *dev_priv = dev->dev_private; |
| enum intel_display_power_domain power_domain; |
| |
| mutex_unlock(&dev_priv->pps_mutex); |
| |
| power_domain = intel_display_port_power_domain(encoder); |
| intel_display_power_put(dev_priv, power_domain); |
| } |
| |
| static void |
| vlv_power_sequencer_kick(struct intel_dp *intel_dp) |
| { |
| struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp); |
| struct drm_device *dev = intel_dig_port->base.base.dev; |
| struct drm_i915_private *dev_priv = dev->dev_private; |
| enum pipe pipe = intel_dp->pps_pipe; |
| bool pll_enabled; |
| uint32_t DP; |
| |
| if (WARN(I915_READ(intel_dp->output_reg) & DP_PORT_EN, |
| "skipping pipe %c power seqeuncer kick due to port %c being active\n", |
| pipe_name(pipe), port_name(intel_dig_port->port))) |
| return; |
| |
| DRM_DEBUG_KMS("kicking pipe %c power sequencer for port %c\n", |
| pipe_name(pipe), port_name(intel_dig_port->port)); |
| |
| /* Preserve the BIOS-computed detected bit. This is |
| * supposed to be read-only. |
| */ |
| DP = I915_READ(intel_dp->output_reg) & DP_DETECTED; |
| DP |= DP_VOLTAGE_0_4 | DP_PRE_EMPHASIS_0; |
| DP |= DP_PORT_WIDTH(1); |
| DP |= DP_LINK_TRAIN_PAT_1; |
| |
| if (IS_CHERRYVIEW(dev)) |
| DP |= DP_PIPE_SELECT_CHV(pipe); |
| else if (pipe == PIPE_B) |
| DP |= DP_PIPEB_SELECT; |
| |
| pll_enabled = I915_READ(DPLL(pipe)) & DPLL_VCO_ENABLE; |
| |
| /* |
| * The DPLL for the pipe must be enabled for this to work. |
| * So enable temporarily it if it's not already enabled. |
| */ |
| if (!pll_enabled) |
| vlv_force_pll_on(dev, pipe, IS_CHERRYVIEW(dev) ? |
| &chv_dpll[0].dpll : &vlv_dpll[0].dpll); |
| |
| /* |
| * Similar magic as in intel_dp_enable_port(). |
| * We _must_ do this port enable + disable trick |
| * to make this power seqeuencer lock onto the port. |
| * Otherwise even VDD force bit won't work. |
| */ |
| I915_WRITE(intel_dp->output_reg, DP); |
| POSTING_READ(intel_dp->output_reg); |
| |
| I915_WRITE(intel_dp->output_reg, DP | DP_PORT_EN); |
| POSTING_READ(intel_dp->output_reg); |
| |
| I915_WRITE(intel_dp->output_reg, DP & ~DP_PORT_EN); |
| POSTING_READ(intel_dp->output_reg); |
| |
| if (!pll_enabled) |
| vlv_force_pll_off(dev, pipe); |
| } |
| |
| static enum pipe |
| vlv_power_sequencer_pipe(struct intel_dp *intel_dp) |
| { |
| struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp); |
| struct drm_device *dev = intel_dig_port->base.base.dev; |
| struct drm_i915_private *dev_priv = dev->dev_private; |
| struct intel_encoder *encoder; |
| unsigned int pipes = (1 << PIPE_A) | (1 << PIPE_B); |
| enum pipe pipe; |
| |
| lockdep_assert_held(&dev_priv->pps_mutex); |
| |
| /* We should never land here with regular DP ports */ |
| WARN_ON(!is_edp(intel_dp)); |
| |
| if (intel_dp->pps_pipe != INVALID_PIPE) |
| return intel_dp->pps_pipe; |
| |
| /* |
| * We don't have power sequencer currently. |
| * Pick one that's not used by other ports. |
| */ |
| list_for_each_entry(encoder, &dev->mode_config.encoder_list, |
| base.head) { |
| struct intel_dp *tmp; |
| |
| if (encoder->type != INTEL_OUTPUT_EDP) |
| continue; |
| |
| tmp = enc_to_intel_dp(&encoder->base); |
| |
| if (tmp->pps_pipe != INVALID_PIPE) |
| pipes &= ~(1 << tmp->pps_pipe); |
| } |
| |
| /* |
| * Didn't find one. This should not happen since there |
| * are two power sequencers and up to two eDP ports. |
| */ |
| if (WARN_ON(pipes == 0)) |
| pipe = PIPE_A; |
| else |
| pipe = ffs(pipes) - 1; |
| |
| vlv_steal_power_sequencer(dev, pipe); |
| intel_dp->pps_pipe = pipe; |
| |
| DRM_DEBUG_KMS("picked pipe %c power sequencer for port %c\n", |
| pipe_name(intel_dp->pps_pipe), |
| port_name(intel_dig_port->port)); |
| |
| /* init power sequencer on this pipe and port */ |
| intel_dp_init_panel_power_sequencer(dev, intel_dp); |
| intel_dp_init_panel_power_sequencer_registers(dev, intel_dp); |
| |
| /* |
| * Even vdd force doesn't work until we've made |
| * the power sequencer lock in on the port. |
| */ |
| vlv_power_sequencer_kick(intel_dp); |
| |
| return intel_dp->pps_pipe; |
| } |
| |
| typedef bool (*vlv_pipe_check)(struct drm_i915_private *dev_priv, |
| enum pipe pipe); |
| |
| static bool vlv_pipe_has_pp_on(struct drm_i915_private *dev_priv, |
| enum pipe pipe) |
| { |
| return I915_READ(VLV_PIPE_PP_STATUS(pipe)) & PP_ON; |
| } |
| |
| static bool vlv_pipe_has_vdd_on(struct drm_i915_private *dev_priv, |
| enum pipe pipe) |
| { |
| return I915_READ(VLV_PIPE_PP_CONTROL(pipe)) & EDP_FORCE_VDD; |
| } |
| |
| static bool vlv_pipe_any(struct drm_i915_private *dev_priv, |
| enum pipe pipe) |
| { |
| return true; |
| } |
| |
| static enum pipe |
| vlv_initial_pps_pipe(struct drm_i915_private *dev_priv, |
| enum port port, |
| vlv_pipe_check pipe_check) |
| { |
| enum pipe pipe; |
| |
| for (pipe = PIPE_A; pipe <= PIPE_B; pipe++) { |
| u32 port_sel = I915_READ(VLV_PIPE_PP_ON_DELAYS(pipe)) & |
| PANEL_PORT_SELECT_MASK; |
| |
| if (port_sel != PANEL_PORT_SELECT_VLV(port)) |
| continue; |
| |
| if (!pipe_check(dev_priv, pipe)) |
| continue; |
| |
| return pipe; |
| } |
| |
| return INVALID_PIPE; |
| } |
| |
| static void |
| vlv_initial_power_sequencer_setup(struct intel_dp *intel_dp) |
| { |
| struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp); |
| struct drm_device *dev = intel_dig_port->base.base.dev; |
| struct drm_i915_private *dev_priv = dev->dev_private; |
| enum port port = intel_dig_port->port; |
| |
| lockdep_assert_held(&dev_priv->pps_mutex); |
| |
| /* try to find a pipe with this port selected */ |
| /* first pick one where the panel is on */ |
| intel_dp->pps_pipe = vlv_initial_pps_pipe(dev_priv, port, |
| vlv_pipe_has_pp_on); |
| /* didn't find one? pick one where vdd is on */ |
| if (intel_dp->pps_pipe == INVALID_PIPE) |
| intel_dp->pps_pipe = vlv_initial_pps_pipe(dev_priv, port, |
| vlv_pipe_has_vdd_on); |
| /* didn't find one? pick one with just the correct port */ |
| if (intel_dp->pps_pipe == INVALID_PIPE) |
| intel_dp->pps_pipe = vlv_initial_pps_pipe(dev_priv, port, |
| vlv_pipe_any); |
| |
| /* didn't find one? just let vlv_power_sequencer_pipe() pick one when needed */ |
| if (intel_dp->pps_pipe == INVALID_PIPE) { |
| DRM_DEBUG_KMS("no initial power sequencer for port %c\n", |
| port_name(port)); |
| return; |
| } |
| |
| DRM_DEBUG_KMS("initial power sequencer for port %c: pipe %c\n", |
| port_name(port), pipe_name(intel_dp->pps_pipe)); |
| |
| intel_dp_init_panel_power_sequencer(dev, intel_dp); |
| intel_dp_init_panel_power_sequencer_registers(dev, intel_dp); |
| } |
| |
| void vlv_power_sequencer_reset(struct drm_i915_private *dev_priv) |
| { |
| struct drm_device *dev = dev_priv->dev; |
| struct intel_encoder *encoder; |
| |
| if (WARN_ON(!IS_VALLEYVIEW(dev))) |
| return; |
| |
| /* |
| * We can't grab pps_mutex here due to deadlock with power_domain |
| * mutex when power_domain functions are called while holding pps_mutex. |
| * That also means that in order to use pps_pipe the code needs to |
| * hold both a power domain reference and pps_mutex, and the power domain |
| * reference get/put must be done while _not_ holding pps_mutex. |
| * pps_{lock,unlock}() do these steps in the correct order, so one |
| * should use them always. |
| */ |
| |
| list_for_each_entry(encoder, &dev->mode_config.encoder_list, base.head) { |
| struct intel_dp *intel_dp; |
| |
| if (encoder->type != INTEL_OUTPUT_EDP) |
| continue; |
| |
| intel_dp = enc_to_intel_dp(&encoder->base); |
| intel_dp->pps_pipe = INVALID_PIPE; |
| } |
| } |
| |
| static u32 _pp_ctrl_reg(struct intel_dp *intel_dp) |
| { |
| struct drm_device *dev = intel_dp_to_dev(intel_dp); |
| |
| if (IS_BROXTON(dev)) |
| return BXT_PP_CONTROL(0); |
| else if (HAS_PCH_SPLIT(dev)) |
| return PCH_PP_CONTROL; |
| else |
| return VLV_PIPE_PP_CONTROL(vlv_power_sequencer_pipe(intel_dp)); |
| } |
| |
| static u32 _pp_stat_reg(struct intel_dp *intel_dp) |
| { |
| struct drm_device *dev = intel_dp_to_dev(intel_dp); |
| |
| if (IS_BROXTON(dev)) |
| return BXT_PP_STATUS(0); |
| else if (HAS_PCH_SPLIT(dev)) |
| return PCH_PP_STATUS; |
| else |
| return VLV_PIPE_PP_STATUS(vlv_power_sequencer_pipe(intel_dp)); |
| } |
| |
| /* Reboot notifier handler to shutdown panel power to guarantee T12 timing |
| This function only applicable when panel PM state is not to be tracked */ |
| static int edp_notify_handler(struct notifier_block *this, unsigned long code, |
| void *unused) |
| { |
| struct intel_dp *intel_dp = container_of(this, typeof(* intel_dp), |
| edp_notifier); |
| struct drm_device *dev = intel_dp_to_dev(intel_dp); |
| struct drm_i915_private *dev_priv = dev->dev_private; |
| u32 pp_div; |
| u32 pp_ctrl_reg, pp_div_reg; |
| |
| if (!is_edp(intel_dp) || code != SYS_RESTART) |
| return 0; |
| |
| pps_lock(intel_dp); |
| |
| if (IS_VALLEYVIEW(dev)) { |
| enum pipe pipe = vlv_power_sequencer_pipe(intel_dp); |
| |
| pp_ctrl_reg = VLV_PIPE_PP_CONTROL(pipe); |
| pp_div_reg = VLV_PIPE_PP_DIVISOR(pipe); |
| pp_div = I915_READ(pp_div_reg); |
| pp_div &= PP_REFERENCE_DIVIDER_MASK; |
| |
| /* 0x1F write to PP_DIV_REG sets max cycle delay */ |
| I915_WRITE(pp_div_reg, pp_div | 0x1F); |
| I915_WRITE(pp_ctrl_reg, PANEL_UNLOCK_REGS | PANEL_POWER_OFF); |
| msleep(intel_dp->panel_power_cycle_delay); |
| } |
| |
| pps_unlock(intel_dp); |
| |
| return 0; |
| } |
| |
| static bool edp_have_panel_power(struct intel_dp *intel_dp) |
| { |
| struct drm_device *dev = intel_dp_to_dev(intel_dp); |
| struct drm_i915_private *dev_priv = dev->dev_private; |
| |
| lockdep_assert_held(&dev_priv->pps_mutex); |
| |
| if (IS_VALLEYVIEW(dev) && |
| intel_dp->pps_pipe == INVALID_PIPE) |
| return false; |
| |
| return (I915_READ(_pp_stat_reg(intel_dp)) & PP_ON) != 0; |
| } |
| |
| static bool edp_have_panel_vdd(struct intel_dp *intel_dp) |
| { |
| struct drm_device *dev = intel_dp_to_dev(intel_dp); |
| struct drm_i915_private *dev_priv = dev->dev_private; |
| |
| lockdep_assert_held(&dev_priv->pps_mutex); |
| |
| if (IS_VALLEYVIEW(dev) && |
| intel_dp->pps_pipe == INVALID_PIPE) |
| return false; |
| |
| return I915_READ(_pp_ctrl_reg(intel_dp)) & EDP_FORCE_VDD; |
| } |
| |
| static void |
| intel_dp_check_edp(struct intel_dp *intel_dp) |
| { |
| struct drm_device *dev = intel_dp_to_dev(intel_dp); |
| struct drm_i915_private *dev_priv = dev->dev_private; |
| |
| if (!is_edp(intel_dp)) |
| return; |
| |
| if (!edp_have_panel_power(intel_dp) && !edp_have_panel_vdd(intel_dp)) { |
| WARN(1, "eDP powered off while attempting aux channel communication.\n"); |
| DRM_DEBUG_KMS("Status 0x%08x Control 0x%08x\n", |
| I915_READ(_pp_stat_reg(intel_dp)), |
| I915_READ(_pp_ctrl_reg(intel_dp))); |
| } |
| } |
| |
| static uint32_t |
| intel_dp_aux_wait_done(struct intel_dp *intel_dp, bool has_aux_irq) |
| { |
| struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp); |
| struct drm_device *dev = intel_dig_port->base.base.dev; |
| struct drm_i915_private *dev_priv = dev->dev_private; |
| uint32_t ch_ctl = intel_dp->aux_ch_ctl_reg; |
| uint32_t status; |
| bool done; |
| |
| #define C (((status = I915_READ_NOTRACE(ch_ctl)) & DP_AUX_CH_CTL_SEND_BUSY) == 0) |
| if (has_aux_irq) |
| done = wait_event_timeout(dev_priv->gmbus_wait_queue, C, |
| msecs_to_jiffies_timeout(10)); |
| else |
| done = wait_for_atomic(C, 10) == 0; |
| if (!done) |
| DRM_ERROR("dp aux hw did not signal timeout (has irq: %i)!\n", |
| has_aux_irq); |
| #undef C |
| |
| return status; |
| } |
| |
| static uint32_t i9xx_get_aux_clock_divider(struct intel_dp *intel_dp, int index) |
| { |
| struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp); |
| struct drm_device *dev = intel_dig_port->base.base.dev; |
| |
| /* |
| * The clock divider is based off the hrawclk, and would like to run at |
| * 2MHz. So, take the hrawclk value and divide by 2 and use that |
| */ |
| return index ? 0 : intel_hrawclk(dev) / 2; |
| } |
| |
| static uint32_t ilk_get_aux_clock_divider(struct intel_dp *intel_dp, int index) |
| { |
| struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp); |
| struct drm_device *dev = intel_dig_port->base.base.dev; |
| struct drm_i915_private *dev_priv = dev->dev_private; |
| |
| if (index) |
| return 0; |
| |
| if (intel_dig_port->port == PORT_A) { |
| return DIV_ROUND_UP(dev_priv->cdclk_freq, 2000); |
| |
| } else { |
| return DIV_ROUND_UP(intel_pch_rawclk(dev), 2); |
| } |
| } |
| |
| static uint32_t hsw_get_aux_clock_divider(struct intel_dp *intel_dp, int index) |
| { |
| struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp); |
| struct drm_device *dev = intel_dig_port->base.base.dev; |
| struct drm_i915_private *dev_priv = dev->dev_private; |
| |
| if (intel_dig_port->port == PORT_A) { |
| if (index) |
| return 0; |
| return DIV_ROUND_CLOSEST(dev_priv->cdclk_freq, 2000); |
| } else if (dev_priv->pch_id == INTEL_PCH_LPT_DEVICE_ID_TYPE) { |
| /* Workaround for non-ULT HSW */ |
| switch (index) { |
| case 0: return 63; |
| case 1: return 72; |
| default: return 0; |
| } |
| } else { |
| return index ? 0 : DIV_ROUND_UP(intel_pch_rawclk(dev), 2); |
| } |
| } |
| |
| static uint32_t vlv_get_aux_clock_divider(struct intel_dp *intel_dp, int index) |
| { |
| return index ? 0 : 100; |
| } |
| |
| static uint32_t skl_get_aux_clock_divider(struct intel_dp *intel_dp, int index) |
| { |
| /* |
| * SKL doesn't need us to program the AUX clock divider (Hardware will |
| * derive the clock from CDCLK automatically). We still implement the |
| * get_aux_clock_divider vfunc to plug-in into the existing code. |
| */ |
| return index ? 0 : 1; |
| } |
| |
| static uint32_t i9xx_get_aux_send_ctl(struct intel_dp *intel_dp, |
| bool has_aux_irq, |
| int send_bytes, |
| uint32_t aux_clock_divider) |
| { |
| struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp); |
| struct drm_device *dev = intel_dig_port->base.base.dev; |
| uint32_t precharge, timeout; |
| |
| if (IS_GEN6(dev)) |
| precharge = 3; |
| else |
| precharge = 5; |
| |
| if (IS_BROADWELL(dev) && intel_dp->aux_ch_ctl_reg == DPA_AUX_CH_CTL) |
| timeout = DP_AUX_CH_CTL_TIME_OUT_600us; |
| else |
| timeout = DP_AUX_CH_CTL_TIME_OUT_400us; |
| |
| return DP_AUX_CH_CTL_SEND_BUSY | |
| DP_AUX_CH_CTL_DONE | |
| (has_aux_irq ? DP_AUX_CH_CTL_INTERRUPT : 0) | |
| DP_AUX_CH_CTL_TIME_OUT_ERROR | |
| timeout | |
| DP_AUX_CH_CTL_RECEIVE_ERROR | |
| (send_bytes << DP_AUX_CH_CTL_MESSAGE_SIZE_SHIFT) | |
| (precharge << DP_AUX_CH_CTL_PRECHARGE_2US_SHIFT) | |
| (aux_clock_divider << DP_AUX_CH_CTL_BIT_CLOCK_2X_SHIFT); |
| } |
| |
| static uint32_t skl_get_aux_send_ctl(struct intel_dp *intel_dp, |
| bool has_aux_irq, |
| int send_bytes, |
| uint32_t unused) |
| { |
| return DP_AUX_CH_CTL_SEND_BUSY | |
| DP_AUX_CH_CTL_DONE | |
| (has_aux_irq ? DP_AUX_CH_CTL_INTERRUPT : 0) | |
| DP_AUX_CH_CTL_TIME_OUT_ERROR | |
| DP_AUX_CH_CTL_TIME_OUT_1600us | |
| DP_AUX_CH_CTL_RECEIVE_ERROR | |
| (send_bytes << DP_AUX_CH_CTL_MESSAGE_SIZE_SHIFT) | |
| DP_AUX_CH_CTL_SYNC_PULSE_SKL(32); |
| } |
| |
| static int |
| intel_dp_aux_ch(struct intel_dp *intel_dp, |
| const uint8_t *send, int send_bytes, |
| uint8_t *recv, int recv_size) |
| { |
| struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp); |
| struct drm_device *dev = intel_dig_port->base.base.dev; |
| struct drm_i915_private *dev_priv = dev->dev_private; |
| uint32_t ch_ctl = intel_dp->aux_ch_ctl_reg; |
| uint32_t ch_data = ch_ctl + 4; |
| uint32_t aux_clock_divider; |
| int i, ret, recv_bytes; |
| uint32_t status; |
| int try, clock = 0; |
| bool has_aux_irq = HAS_AUX_IRQ(dev); |
| bool vdd; |
| |
| pps_lock(intel_dp); |
| |
| /* |
| * We will be called with VDD already enabled for dpcd/edid/oui reads. |
| * In such cases we want to leave VDD enabled and it's up to upper layers |
| * to turn it off. But for eg. i2c-dev access we need to turn it on/off |
| * ourselves. |
| */ |
| vdd = edp_panel_vdd_on(intel_dp); |
| |
| /* dp aux is extremely sensitive to irq latency, hence request the |
| * lowest possible wakeup latency and so prevent the cpu from going into |
| * deep sleep states. |
| */ |
| pm_qos_update_request(&dev_priv->pm_qos, 0); |
| |
| intel_dp_check_edp(intel_dp); |
| |
| intel_aux_display_runtime_get(dev_priv); |
| |
| /* Try to wait for any previous AUX channel activity */ |
| for (try = 0; try < 3; try++) { |
| status = I915_READ_NOTRACE(ch_ctl); |
| if ((status & DP_AUX_CH_CTL_SEND_BUSY) == 0) |
| break; |
| msleep(1); |
| } |
| |
| if (try == 3) { |
| WARN(1, "dp_aux_ch not started status 0x%08x\n", |
| I915_READ(ch_ctl)); |
| ret = -EBUSY; |
| goto out; |
| } |
| |
| /* Only 5 data registers! */ |
| if (WARN_ON(send_bytes > 20 || recv_size > 20)) { |
| ret = -E2BIG; |
| goto out; |
| } |
| |
| while ((aux_clock_divider = intel_dp->get_aux_clock_divider(intel_dp, clock++))) { |
| u32 send_ctl = intel_dp->get_aux_send_ctl(intel_dp, |
| has_aux_irq, |
| send_bytes, |
| aux_clock_divider); |
| |
| /* Must try at least 3 times according to DP spec */ |
| for (try = 0; try < 5; try++) { |
| /* Load the send data into the aux channel data registers */ |
| for (i = 0; i < send_bytes; i += 4) |
| I915_WRITE(ch_data + i, |
| intel_dp_pack_aux(send + i, |
| send_bytes - i)); |
| |
| /* Send the command and wait for it to complete */ |
| I915_WRITE(ch_ctl, send_ctl); |
| |
| status = intel_dp_aux_wait_done(intel_dp, has_aux_irq); |
| |
| /* Clear done status and any errors */ |
| I915_WRITE(ch_ctl, |
| status | |
| DP_AUX_CH_CTL_DONE | |
| DP_AUX_CH_CTL_TIME_OUT_ERROR | |
| DP_AUX_CH_CTL_RECEIVE_ERROR); |
| |
| if (status & DP_AUX_CH_CTL_TIME_OUT_ERROR) |
| continue; |
| |
| /* DP CTS 1.2 Core Rev 1.1, 4.2.1.1 & 4.2.1.2 |
| * 400us delay required for errors and timeouts |
| * Timeout errors from the HW already meet this |
| * requirement so skip to next iteration |
| */ |
| if (status & DP_AUX_CH_CTL_RECEIVE_ERROR) { |
| usleep_range(400, 500); |
| continue; |
| } |
| if (status & DP_AUX_CH_CTL_DONE) |
| break; |
| } |
| if (status & DP_AUX_CH_CTL_DONE) |
| break; |
| } |
| |
| if ((status & DP_AUX_CH_CTL_DONE) == 0) { |
| DRM_ERROR("dp_aux_ch not done status 0x%08x\n", status); |
| ret = -EBUSY; |
| goto out; |
| } |
| |
| /* Check for timeout or receive error. |
| * Timeouts occur when the sink is not connected |
| */ |
| if (status & DP_AUX_CH_CTL_RECEIVE_ERROR) { |
| DRM_ERROR("dp_aux_ch receive error status 0x%08x\n", status); |
| ret = -EIO; |
| goto out; |
| } |
| |
| /* Timeouts occur when the device isn't connected, so they're |
| * "normal" -- don't fill the kernel log with these */ |
| if (status & DP_AUX_CH_CTL_TIME_OUT_ERROR) { |
| DRM_DEBUG_KMS("dp_aux_ch timeout status 0x%08x\n", status); |
| ret = -ETIMEDOUT; |
| goto out; |
| } |
| |
| /* Unload any bytes sent back from the other side */ |
| recv_bytes = ((status & DP_AUX_CH_CTL_MESSAGE_SIZE_MASK) >> |
| DP_AUX_CH_CTL_MESSAGE_SIZE_SHIFT); |
| if (recv_bytes > recv_size) |
| recv_bytes = recv_size; |
| |
| for (i = 0; i < recv_bytes; i += 4) |
| intel_dp_unpack_aux(I915_READ(ch_data + i), |
| recv + i, recv_bytes - i); |
| |
| ret = recv_bytes; |
| out: |
| pm_qos_update_request(&dev_priv->pm_qos, PM_QOS_DEFAULT_VALUE); |
| intel_aux_display_runtime_put(dev_priv); |
| |
| if (vdd) |
| edp_panel_vdd_off(intel_dp, false); |
| |
| pps_unlock(intel_dp); |
| |
| return ret; |
| } |
| |
| #define BARE_ADDRESS_SIZE 3 |
| #define HEADER_SIZE (BARE_ADDRESS_SIZE + 1) |
| static ssize_t |
| intel_dp_aux_transfer(struct drm_dp_aux *aux, struct drm_dp_aux_msg *msg) |
| { |
| struct intel_dp *intel_dp = container_of(aux, struct intel_dp, aux); |
| uint8_t txbuf[20], rxbuf[20]; |
| size_t txsize, rxsize; |
| int ret; |
| |
| txbuf[0] = (msg->request << 4) | |
| ((msg->address >> 16) & 0xf); |
| txbuf[1] = (msg->address >> 8) & 0xff; |
| txbuf[2] = msg->address & 0xff; |
| txbuf[3] = msg->size - 1; |
| |
| switch (msg->request & ~DP_AUX_I2C_MOT) { |
| case DP_AUX_NATIVE_WRITE: |
| case DP_AUX_I2C_WRITE: |
| txsize = msg->size ? HEADER_SIZE + msg->size : BARE_ADDRESS_SIZE; |
| rxsize = 2; /* 0 or 1 data bytes */ |
| |
| if (WARN_ON(txsize > 20)) |
| return -E2BIG; |
| |
| memcpy(txbuf + HEADER_SIZE, msg->buffer, msg->size); |
| |
| ret = intel_dp_aux_ch(intel_dp, txbuf, txsize, rxbuf, rxsize); |
| if (ret > 0) { |
| msg->reply = rxbuf[0] >> 4; |
| |
| if (ret > 1) { |
| /* Number of bytes written in a short write. */ |
| ret = clamp_t(int, rxbuf[1], 0, msg->size); |
| } else { |
| /* Return payload size. */ |
| ret = msg->size; |
| } |
| } |
| break; |
| |
| case DP_AUX_NATIVE_READ: |
| case DP_AUX_I2C_READ: |
| txsize = msg->size ? HEADER_SIZE : BARE_ADDRESS_SIZE; |
| rxsize = msg->size + 1; |
| |
| if (WARN_ON(rxsize > 20)) |
| return -E2BIG; |
| |
| ret = intel_dp_aux_ch(intel_dp, txbuf, txsize, rxbuf, rxsize); |
| if (ret > 0) { |
| msg->reply = rxbuf[0] >> 4; |
| /* |
| * Assume happy day, and copy the data. The caller is |
| * expected to check msg->reply before touching it. |
| * |
| * Return payload size. |
| */ |
| ret--; |
| memcpy(msg->buffer, rxbuf + 1, ret); |
| } |
| break; |
| |
| default: |
| ret = -EINVAL; |
| break; |
| } |
| |
| return ret; |
| } |
| |
| static void |
| intel_dp_aux_init(struct intel_dp *intel_dp, struct intel_connector *connector) |
| { |
| struct drm_device *dev = intel_dp_to_dev(intel_dp); |
| struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp); |
| enum port port = intel_dig_port->port; |
| const char *name = NULL; |
| int ret; |
| |
| switch (port) { |
| case PORT_A: |
| intel_dp->aux_ch_ctl_reg = DPA_AUX_CH_CTL; |
| name = "DPDDC-A"; |
| break; |
| case PORT_B: |
| intel_dp->aux_ch_ctl_reg = PCH_DPB_AUX_CH_CTL; |
| name = "DPDDC-B"; |
| break; |
| case PORT_C: |
| intel_dp->aux_ch_ctl_reg = PCH_DPC_AUX_CH_CTL; |
| name = "DPDDC-C"; |
| break; |
| case PORT_D: |
| intel_dp->aux_ch_ctl_reg = PCH_DPD_AUX_CH_CTL; |
| name = "DPDDC-D"; |
| break; |
| default: |
| BUG(); |
| } |
| |
| /* |
| * The AUX_CTL register is usually DP_CTL + 0x10. |
| * |
| * On Haswell and Broadwell though: |
| * - Both port A DDI_BUF_CTL and DDI_AUX_CTL are on the CPU |
| * - Port B/C/D AUX channels are on the PCH, DDI_BUF_CTL on the CPU |
| * |
| * Skylake moves AUX_CTL back next to DDI_BUF_CTL, on the CPU. |
| */ |
| if (!IS_HASWELL(dev) && !IS_BROADWELL(dev)) |
| intel_dp->aux_ch_ctl_reg = intel_dp->output_reg + 0x10; |
| |
| intel_dp->aux.name = name; |
| intel_dp->aux.dev = dev->dev; |
| intel_dp->aux.transfer = intel_dp_aux_transfer; |
| |
| DRM_DEBUG_KMS("registering %s bus for %s\n", name, |
| connector->base.kdev->kobj.name); |
| |
| ret = drm_dp_aux_register(&intel_dp->aux); |
| if (ret < 0) { |
| DRM_ERROR("drm_dp_aux_register() for %s failed (%d)\n", |
| name, ret); |
| return; |
| } |
| |
| ret = sysfs_create_link(&connector->base.kdev->kobj, |
| &intel_dp->aux.ddc.dev.kobj, |
| intel_dp->aux.ddc.dev.kobj.name); |
| if (ret < 0) { |
| DRM_ERROR("sysfs_create_link() for %s failed (%d)\n", name, ret); |
| drm_dp_aux_unregister(&intel_dp->aux); |
| } |
| } |
| |
| static void |
| intel_dp_connector_unregister(struct intel_connector *intel_connector) |
| { |
| struct intel_dp *intel_dp = intel_attached_dp(&intel_connector->base); |
| |
| if (!intel_connector->mst_port) |
| sysfs_remove_link(&intel_connector->base.kdev->kobj, |
| intel_dp->aux.ddc.dev.kobj.name); |
| intel_connector_unregister(intel_connector); |
| } |
| |
| static void |
| skl_edp_set_pll_config(struct intel_crtc_state *pipe_config, int link_clock) |
| { |
| u32 ctrl1; |
| |
| memset(&pipe_config->dpll_hw_state, 0, |
| sizeof(pipe_config->dpll_hw_state)); |
| |
| pipe_config->ddi_pll_sel = SKL_DPLL0; |
| pipe_config->dpll_hw_state.cfgcr1 = 0; |
| pipe_config->dpll_hw_state.cfgcr2 = 0; |
| |
| ctrl1 = DPLL_CTRL1_OVERRIDE(SKL_DPLL0); |
| switch (link_clock / 2) { |
| case 81000: |
| ctrl1 |= DPLL_CTRL1_LINK_RATE(DPLL_CTRL1_LINK_RATE_810, |
| SKL_DPLL0); |
| break; |
| case 135000: |
| ctrl1 |= DPLL_CTRL1_LINK_RATE(DPLL_CTRL1_LINK_RATE_1350, |
| SKL_DPLL0); |
| break; |
| case 270000: |
| ctrl1 |= DPLL_CTRL1_LINK_RATE(DPLL_CTRL1_LINK_RATE_2700, |
| SKL_DPLL0); |
| break; |
| case 162000: |
| ctrl1 |= DPLL_CTRL1_LINK_RATE(DPLL_CTRL1_LINK_RATE_1620, |
| SKL_DPLL0); |
| break; |
| /* TBD: For DP link rates 2.16 GHz and 4.32 GHz, VCO is 8640 which |
| results in CDCLK change. Need to handle the change of CDCLK by |
| disabling pipes and re-enabling them */ |
| case 108000: |
| ctrl1 |= DPLL_CTRL1_LINK_RATE(DPLL_CTRL1_LINK_RATE_1080, |
| SKL_DPLL0); |
| break; |
| case 216000: |
| ctrl1 |= DPLL_CTRL1_LINK_RATE(DPLL_CTRL1_LINK_RATE_2160, |
| SKL_DPLL0); |
| break; |
| |
| } |
| pipe_config->dpll_hw_state.ctrl1 = ctrl1; |
| } |
| |
| static void |
| hsw_dp_set_ddi_pll_sel(struct intel_crtc_state *pipe_config, int link_bw) |
| { |
| switch (link_bw) { |
| case DP_LINK_BW_1_62: |
| pipe_config->ddi_pll_sel = PORT_CLK_SEL_LCPLL_810; |
| break; |
| case DP_LINK_BW_2_7: |
| pipe_config->ddi_pll_sel = PORT_CLK_SEL_LCPLL_1350; |
| break; |
| case DP_LINK_BW_5_4: |
| pipe_config->ddi_pll_sel = PORT_CLK_SEL_LCPLL_2700; |
| break; |
| } |
| } |
| |
| static int |
| intel_dp_sink_rates(struct intel_dp *intel_dp, const int **sink_rates) |
| { |
| if (intel_dp->num_sink_rates) { |
| *sink_rates = intel_dp->sink_rates; |
| return intel_dp->num_sink_rates; |
| } |
| |
| *sink_rates = default_rates; |
| |
| return (intel_dp_max_link_bw(intel_dp) >> 3) + 1; |
| } |
| |
| static int |
| intel_dp_source_rates(struct drm_device *dev, const int **source_rates) |
| { |
| if (IS_BROXTON(dev)) { |
| *source_rates = bxt_rates; |
| return ARRAY_SIZE(bxt_rates); |
| } else if (IS_SKYLAKE(dev)) { |
| *source_rates = skl_rates; |
| return ARRAY_SIZE(skl_rates); |
| } else if (IS_CHERRYVIEW(dev)) { |
| *source_rates = chv_rates; |
| return ARRAY_SIZE(chv_rates); |
| } |
| |
| *source_rates = default_rates; |
| |
| if (IS_SKYLAKE(dev) && INTEL_REVID(dev) <= SKL_REVID_B0) |
| /* WaDisableHBR2:skl */ |
| return (DP_LINK_BW_2_7 >> 3) + 1; |
| else if (INTEL_INFO(dev)->gen >= 8 || |
| (IS_HASWELL(dev) && !IS_HSW_ULX(dev))) |
| return (DP_LINK_BW_5_4 >> 3) + 1; |
| else |
| return (DP_LINK_BW_2_7 >> 3) + 1; |
| } |
| |
| static void |
| intel_dp_set_clock(struct intel_encoder *encoder, |
| struct intel_crtc_state *pipe_config, int link_bw) |
| { |
| struct drm_device *dev = encoder->base.dev; |
| const struct dp_link_dpll *divisor = NULL; |
| int i, count = 0; |
| |
| if (IS_G4X(dev)) { |
| divisor = gen4_dpll; |
| count = ARRAY_SIZE(gen4_dpll); |
| } else if (HAS_PCH_SPLIT(dev)) { |
| divisor = pch_dpll; |
| count = ARRAY_SIZE(pch_dpll); |
| } else if (IS_CHERRYVIEW(dev)) { |
| divisor = chv_dpll; |
| count = ARRAY_SIZE(chv_dpll); |
| } else if (IS_VALLEYVIEW(dev)) { |
| divisor = vlv_dpll; |
| count = ARRAY_SIZE(vlv_dpll); |
| } |
| |
| if (divisor && count) { |
| for (i = 0; i < count; i++) { |
| if (link_bw == divisor[i].link_bw) { |
| pipe_config->dpll = divisor[i].dpll; |
| pipe_config->clock_set = true; |
| break; |
| } |
| } |
| } |
| } |
| |
| static int intersect_rates(const int *source_rates, int source_len, |
| const int *sink_rates, int sink_len, |
| int *common_rates) |
| { |
| int i = 0, j = 0, k = 0; |
| |
| while (i < source_len && j < sink_len) { |
| if (source_rates[i] == sink_rates[j]) { |
| if (WARN_ON(k >= DP_MAX_SUPPORTED_RATES)) |
| return k; |
| common_rates[k] = source_rates[i]; |
| ++k; |
| ++i; |
| ++j; |
| } else if (source_rates[i] < sink_rates[j]) { |
| ++i; |
| } else { |
| ++j; |
| } |
| } |
| return k; |
| } |
| |
| static int intel_dp_common_rates(struct intel_dp *intel_dp, |
| int *common_rates) |
| { |
| struct drm_device *dev = intel_dp_to_dev(intel_dp); |
| const int *source_rates, *sink_rates; |
| int source_len, sink_len; |
| |
| sink_len = intel_dp_sink_rates(intel_dp, &sink_rates); |
| source_len = intel_dp_source_rates(dev, &source_rates); |
| |
| return intersect_rates(source_rates, source_len, |
| sink_rates, sink_len, |
| common_rates); |
| } |
| |
| static void snprintf_int_array(char *str, size_t len, |
| const int *array, int nelem) |
| { |
| int i; |
| |
| str[0] = '\0'; |
| |
| for (i = 0; i < nelem; i++) { |
| int r = snprintf(str, len, "%s%d", i ? ", " : "", array[i]); |
| if (r >= len) |
| return; |
| str += r; |
| len -= r; |
| } |
| } |
| |
| static void intel_dp_print_rates(struct intel_dp *intel_dp) |
| { |
| struct drm_device *dev = intel_dp_to_dev(intel_dp); |
| const int *source_rates, *sink_rates; |
| int source_len, sink_len, common_len; |
| int common_rates[DP_MAX_SUPPORTED_RATES]; |
| char str[128]; /* FIXME: too big for stack? */ |
| |
| if ((drm_debug & DRM_UT_KMS) == 0) |
| return; |
| |
| source_len = intel_dp_source_rates(dev, &source_rates); |
| snprintf_int_array(str, sizeof(str), source_rates, source_len); |
| DRM_DEBUG_KMS("source rates: %s\n", str); |
| |
| sink_len = intel_dp_sink_rates(intel_dp, &sink_rates); |
| snprintf_int_array(str, sizeof(str), sink_rates, sink_len); |
| DRM_DEBUG_KMS("sink rates: %s\n", str); |
| |
| common_len = intel_dp_common_rates(intel_dp, common_rates); |
| snprintf_int_array(str, sizeof(str), common_rates, common_len); |
| DRM_DEBUG_KMS("common rates: %s\n", str); |
| } |
| |
| static int rate_to_index(int find, const int *rates) |
| { |
| int i = 0; |
| |
| for (i = 0; i < DP_MAX_SUPPORTED_RATES; ++i) |
| if (find == rates[i]) |
| break; |
| |
| return i; |
| } |
| |
| int |
| intel_dp_max_link_rate(struct intel_dp *intel_dp) |
| { |
| int rates[DP_MAX_SUPPORTED_RATES] = {}; |
| int len; |
| |
| len = intel_dp_common_rates(intel_dp, rates); |
| if (WARN_ON(len <= 0)) |
| return 162000; |
| |
| return rates[rate_to_index(0, rates) - 1]; |
| } |
| |
| int intel_dp_rate_select(struct intel_dp *intel_dp, int rate) |
| { |
| return rate_to_index(rate, intel_dp->sink_rates); |
| } |
| |
| bool |
| intel_dp_compute_config(struct intel_encoder *encoder, |
| struct intel_crtc_state *pipe_config) |
| { |
| struct drm_device *dev = encoder->base.dev; |
| struct drm_i915_private *dev_priv = dev->dev_private; |
| struct drm_display_mode *adjusted_mode = &pipe_config->base.adjusted_mode; |
| struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base); |
| enum port port = dp_to_dig_port(intel_dp)->port; |
| struct intel_crtc *intel_crtc = to_intel_crtc(pipe_config->base.crtc); |
| struct intel_connector *intel_connector = intel_dp->attached_connector; |
| int lane_count, clock; |
| int min_lane_count = 1; |
| int max_lane_count = intel_dp_max_lane_count(intel_dp); |
| /* Conveniently, the link BW constants become indices with a shift...*/ |
| int min_clock = 0; |
| int max_clock; |
| int bpp, mode_rate; |
| int link_avail, link_clock; |
| int common_rates[DP_MAX_SUPPORTED_RATES] = {}; |
| int common_len; |
| |
| common_len = intel_dp_common_rates(intel_dp, common_rates); |
| |
| /* No common link rates between source and sink */ |
| WARN_ON(common_len <= 0); |
| |
| max_clock = common_len - 1; |
| |
| if (HAS_PCH_SPLIT(dev) && !HAS_DDI(dev) && port != PORT_A) |
| pipe_config->has_pch_encoder = true; |
| |
| pipe_config->has_dp_encoder = true; |
| pipe_config->has_drrs = false; |
| pipe_config->has_audio = intel_dp->has_audio && port != PORT_A; |
| |
| if (is_edp(intel_dp) && intel_connector->panel.fixed_mode) { |
| intel_fixed_panel_mode(intel_connector->panel.fixed_mode, |
| adjusted_mode); |
| |
| if (INTEL_INFO(dev)->gen >= 9) { |
| int ret; |
| ret = skl_update_scaler_crtc(pipe_config, 0); |
| if (ret) |
| return ret; |
| } |
| |
| if (!HAS_PCH_SPLIT(dev)) |
| intel_gmch_panel_fitting(intel_crtc, pipe_config, |
| intel_connector->panel.fitting_mode); |
| else |
| intel_pch_panel_fitting(intel_crtc, pipe_config, |
| intel_connector->panel.fitting_mode); |
| } |
| |
| if (adjusted_mode->flags & DRM_MODE_FLAG_DBLCLK) |
| return false; |
| |
| DRM_DEBUG_KMS("DP link computation with max lane count %i " |
| "max bw %d pixel clock %iKHz\n", |
| max_lane_count, common_rates[max_clock], |
| adjusted_mode->crtc_clock); |
| |
| /* Walk through all bpp values. Luckily they're all nicely spaced with 2 |
| * bpc in between. */ |
| bpp = pipe_config->pipe_bpp; |
| if (is_edp(intel_dp)) { |
| if (dev_priv->vbt.edp_bpp && dev_priv->vbt.edp_bpp < bpp) { |
| DRM_DEBUG_KMS("clamping bpp for eDP panel to BIOS-provided %i\n", |
| dev_priv->vbt.edp_bpp); |
| bpp = dev_priv->vbt.edp_bpp; |
| } |
| |
| /* |
| * Use the maximum clock and number of lanes the eDP panel |
| * advertizes being capable of. The panels are generally |
| * designed to support only a single clock and lane |
| * configuration, and typically these values correspond to the |
| * native resolution of the panel. |
| */ |
| min_lane_count = max_lane_count; |
| min_clock = max_clock; |
| } |
| |
| for (; bpp >= 6*3; bpp -= 2*3) { |
| mode_rate = intel_dp_link_required(adjusted_mode->crtc_clock, |
| bpp); |
| |
| for (clock = min_clock; clock <= max_clock; clock++) { |
| for (lane_count = min_lane_count; |
| lane_count <= max_lane_count; |
| lane_count <<= 1) { |
| |
| link_clock = common_rates[clock]; |
| link_avail = intel_dp_max_data_rate(link_clock, |
| lane_count); |
| |
| if (mode_rate <= link_avail) { |
| goto found; |
| } |
| } |
| } |
| } |
| |
| return false; |
| |
| found: |
| if (intel_dp->color_range_auto) { |
| /* |
| * See: |
| * CEA-861-E - 5.1 Default Encoding Parameters |
| * VESA DisplayPort Ver.1.2a - 5.1.1.1 Video Colorimetry |
| */ |
| if (bpp != 18 && drm_match_cea_mode(adjusted_mode) > 1) |
| intel_dp->color_range = DP_COLOR_RANGE_16_235; |
| else |
| intel_dp->color_range = 0; |
| } |
| |
| if (intel_dp->color_range) |
| pipe_config->limited_color_range = true; |
| |
| intel_dp->lane_count = lane_count; |
| |
| if (intel_dp->num_sink_rates) { |
| intel_dp->link_bw = 0; |
| intel_dp->rate_select = |
| intel_dp_rate_select(intel_dp, common_rates[clock]); |
| } else { |
| intel_dp->link_bw = |
| drm_dp_link_rate_to_bw_code(common_rates[clock]); |
| intel_dp->rate_select = 0; |
| } |
| |
| pipe_config->pipe_bpp = bpp; |
| pipe_config->port_clock = common_rates[clock]; |
| |
| DRM_DEBUG_KMS("DP link bw %02x lane count %d clock %d bpp %d\n", |
| intel_dp->link_bw, intel_dp->lane_count, |
| pipe_config->port_clock, bpp); |
| DRM_DEBUG_KMS("DP link bw required %i available %i\n", |
| mode_rate, link_avail); |
| |
| intel_link_compute_m_n(bpp, lane_count, |
| adjusted_mode->crtc_clock, |
| pipe_config->port_clock, |
| &pipe_config->dp_m_n); |
| |
| if (intel_connector->panel.downclock_mode != NULL && |
| dev_priv->drrs.type == SEAMLESS_DRRS_SUPPORT) { |
| pipe_config->has_drrs = true; |
| intel_link_compute_m_n(bpp, lane_count, |
| intel_connector->panel.downclock_mode->clock, |
| pipe_config->port_clock, |
| &pipe_config->dp_m2_n2); |
| } |
| |
| if (IS_SKYLAKE(dev) && is_edp(intel_dp)) |
| skl_edp_set_pll_config(pipe_config, common_rates[clock]); |
| else if (IS_BROXTON(dev)) |
| /* handled in ddi */; |
| else if (IS_HASWELL(dev) || IS_BROADWELL(dev)) |
| hsw_dp_set_ddi_pll_sel(pipe_config, intel_dp->link_bw); |
| else |
| intel_dp_set_clock(encoder, pipe_config, intel_dp->link_bw); |
| |
| return true; |
| } |
| |
| static void ironlake_set_pll_cpu_edp(struct intel_dp *intel_dp) |
| { |
| struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp); |
| struct intel_crtc *crtc = to_intel_crtc(dig_port->base.base.crtc); |
| struct drm_device *dev = crtc->base.dev; |
| struct drm_i915_private *dev_priv = dev->dev_private; |
| u32 dpa_ctl; |
| |
| DRM_DEBUG_KMS("eDP PLL enable for clock %d\n", |
| crtc->config->port_clock); |
| dpa_ctl = I915_READ(DP_A); |
| dpa_ctl &= ~DP_PLL_FREQ_MASK; |
| |
| if (crtc->config->port_clock == 162000) { |
| /* For a long time we've carried around a ILK-DevA w/a for the |
| * 160MHz clock. If we're really unlucky, it's still required. |
| */ |
| DRM_DEBUG_KMS("160MHz cpu eDP clock, might need ilk devA w/a\n"); |
| dpa_ctl |= DP_PLL_FREQ_160MHZ; |
| intel_dp->DP |= DP_PLL_FREQ_160MHZ; |
| } else { |
| dpa_ctl |= DP_PLL_FREQ_270MHZ; |
| intel_dp->DP |= DP_PLL_FREQ_270MHZ; |
| } |
| |
| I915_WRITE(DP_A, dpa_ctl); |
| |
| POSTING_READ(DP_A); |
| udelay(500); |
| } |
| |
| static void intel_dp_prepare(struct intel_encoder *encoder) |
| { |
| struct drm_device *dev = encoder->base.dev; |
| struct drm_i915_private *dev_priv = dev->dev_private; |
| struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base); |
| enum port port = dp_to_dig_port(intel_dp)->port; |
| struct intel_crtc *crtc = to_intel_crtc(encoder->base.crtc); |
| struct drm_display_mode *adjusted_mode = &crtc->config->base.adjusted_mode; |
| |
| /* |
| * There are four kinds of DP registers: |
| * |
| * IBX PCH |
| * SNB CPU |
| * IVB CPU |
| * CPT PCH |
| * |
| * IBX PCH and CPU are the same for almost everything, |
| * except that the CPU DP PLL is configured in this |
| * register |
| * |
| * CPT PCH is quite different, having many bits moved |
| * to the TRANS_DP_CTL register instead. That |
| * configuration happens (oddly) in ironlake_pch_enable |
| */ |
| |
| /* Preserve the BIOS-computed detected bit. This is |
| * supposed to be read-only. |
| */ |
| intel_dp->DP = I915_READ(intel_dp->output_reg) & DP_DETECTED; |
| |
| /* Handle DP bits in common between all three register formats */ |
| intel_dp->DP |= DP_VOLTAGE_0_4 | DP_PRE_EMPHASIS_0; |
| intel_dp->DP |= DP_PORT_WIDTH(intel_dp->lane_count); |
| |
| if (crtc->config->has_audio) |
| intel_dp->DP |= DP_AUDIO_OUTPUT_ENABLE; |
| |
| /* Split out the IBX/CPU vs CPT settings */ |
| |
| if (IS_GEN7(dev) && port == PORT_A) { |
| if (adjusted_mode->flags & DRM_MODE_FLAG_PHSYNC) |
| intel_dp->DP |= DP_SYNC_HS_HIGH; |
| if (adjusted_mode->flags & DRM_MODE_FLAG_PVSYNC) |
| intel_dp->DP |= DP_SYNC_VS_HIGH; |
| intel_dp->DP |= DP_LINK_TRAIN_OFF_CPT; |
| |
| if (drm_dp_enhanced_frame_cap(intel_dp->dpcd)) |
| intel_dp->DP |= DP_ENHANCED_FRAMING; |
| |
| intel_dp->DP |= crtc->pipe << 29; |
| } else if (HAS_PCH_CPT(dev) && port != PORT_A) { |
| u32 trans_dp; |
| |
| intel_dp->DP |= DP_LINK_TRAIN_OFF_CPT; |
| |
| trans_dp = I915_READ(TRANS_DP_CTL(crtc->pipe)); |
| if (drm_dp_enhanced_frame_cap(intel_dp->dpcd)) |
| trans_dp |= TRANS_DP_ENH_FRAMING; |
| else |
| trans_dp &= ~TRANS_DP_ENH_FRAMING; |
| I915_WRITE(TRANS_DP_CTL(crtc->pipe), trans_dp); |
| } else { |
| if (!HAS_PCH_SPLIT(dev) && !IS_VALLEYVIEW(dev)) |
| intel_dp->DP |= intel_dp->color_range; |
| |
| if (adjusted_mode->flags & DRM_MODE_FLAG_PHSYNC) |
| intel_dp->DP |= DP_SYNC_HS_HIGH; |
| if (adjusted_mode->flags & DRM_MODE_FLAG_PVSYNC) |
| intel_dp->DP |= DP_SYNC_VS_HIGH; |
| intel_dp->DP |= DP_LINK_TRAIN_OFF; |
| |
| if (drm_dp_enhanced_frame_cap(intel_dp->dpcd)) |
| intel_dp->DP |= DP_ENHANCED_FRAMING; |
| |
| if (IS_CHERRYVIEW(dev)) |
| intel_dp->DP |= DP_PIPE_SELECT_CHV(crtc->pipe); |
| else if (crtc->pipe == PIPE_B) |
| intel_dp->DP |= DP_PIPEB_SELECT; |
| } |
| } |
| |
| #define IDLE_ON_MASK (PP_ON | PP_SEQUENCE_MASK | 0 | PP_SEQUENCE_STATE_MASK) |
| #define IDLE_ON_VALUE (PP_ON | PP_SEQUENCE_NONE | 0 | PP_SEQUENCE_STATE_ON_IDLE) |
| |
| #define IDLE_OFF_MASK (PP_ON | PP_SEQUENCE_MASK | 0 | 0) |
| #define IDLE_OFF_VALUE (0 | PP_SEQUENCE_NONE | 0 | 0) |
| |
| #define IDLE_CYCLE_MASK (PP_ON | PP_SEQUENCE_MASK | PP_CYCLE_DELAY_ACTIVE | PP_SEQUENCE_STATE_MASK) |
| #define IDLE_CYCLE_VALUE (0 | PP_SEQUENCE_NONE | 0 | PP_SEQUENCE_STATE_OFF_IDLE) |
| |
| static void wait_panel_status(struct intel_dp *intel_dp, |
| u32 mask, |
| u32 value) |
| { |
| struct drm_device *dev = intel_dp_to_dev(intel_dp); |
| struct drm_i915_private *dev_priv = dev->dev_private; |
| u32 pp_stat_reg, pp_ctrl_reg; |
| |
| lockdep_assert_held(&dev_priv->pps_mutex); |
| |
| pp_stat_reg = _pp_stat_reg(intel_dp); |
| pp_ctrl_reg = _pp_ctrl_reg(intel_dp); |
| |
| DRM_DEBUG_KMS("mask %08x value %08x status %08x control %08x\n", |
| mask, value, |
| I915_READ(pp_stat_reg), |
| I915_READ(pp_ctrl_reg)); |
| |
| if (_wait_for((I915_READ(pp_stat_reg) & mask) == value, 5000, 10)) { |
| DRM_ERROR("Panel status timeout: status %08x control %08x\n", |
| I915_READ(pp_stat_reg), |
| I915_READ(pp_ctrl_reg)); |
| } |
| |
| DRM_DEBUG_KMS("Wait complete\n"); |
| } |
| |
| static void wait_panel_on(struct intel_dp *intel_dp) |
| { |
| DRM_DEBUG_KMS("Wait for panel power on\n"); |
| wait_panel_status(intel_dp, IDLE_ON_MASK, IDLE_ON_VALUE); |
| } |
| |
| static void wait_panel_off(struct intel_dp *intel_dp) |
| { |
| DRM_DEBUG_KMS("Wait for panel power off time\n"); |
| wait_panel_status(intel_dp, IDLE_OFF_MASK, IDLE_OFF_VALUE); |
| } |
| |
| static void wait_panel_power_cycle(struct intel_dp *intel_dp) |
| { |
| DRM_DEBUG_KMS("Wait for panel power cycle\n"); |
| |
| /* When we disable the VDD override bit last we have to do the manual |
| * wait. */ |
| wait_remaining_ms_from_jiffies(intel_dp->last_power_cycle, |
| intel_dp->panel_power_cycle_delay); |
| |
| wait_panel_status(intel_dp, IDLE_CYCLE_MASK, IDLE_CYCLE_VALUE); |
| } |
| |
| static void wait_backlight_on(struct intel_dp *intel_dp) |
| { |
| wait_remaining_ms_from_jiffies(intel_dp->last_power_on, |
| intel_dp->backlight_on_delay); |
| } |
| |
| static void edp_wait_backlight_off(struct intel_dp *intel_dp) |
| { |
| wait_remaining_ms_from_jiffies(intel_dp->last_backlight_off, |
| intel_dp->backlight_off_delay); |
| } |
| |
| /* Read the current pp_control value, unlocking the register if it |
| * is locked |
| */ |
| |
| static u32 ironlake_get_pp_control(struct intel_dp *intel_dp) |
| { |
| struct drm_device *dev = intel_dp_to_dev(intel_dp); |
| struct drm_i915_private *dev_priv = dev->dev_private; |
| u32 control; |
| |
| lockdep_assert_held(&dev_priv->pps_mutex); |
| |
| control = I915_READ(_pp_ctrl_reg(intel_dp)); |
| if (!IS_BROXTON(dev)) { |
| control &= ~PANEL_UNLOCK_MASK; |
| control |= PANEL_UNLOCK_REGS; |
| } |
| return control; |
| } |
| |
| /* |
| * Must be paired with edp_panel_vdd_off(). |
| * Must hold pps_mutex around the whole on/off sequence. |
| * Can be nested with intel_edp_panel_vdd_{on,off}() calls. |
| */ |
| static bool edp_panel_vdd_on(struct intel_dp *intel_dp) |
| { |
| struct drm_device *dev = intel_dp_to_dev(intel_dp); |
| struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp); |
| struct intel_encoder *intel_encoder = &intel_dig_port->base; |
| struct drm_i915_private *dev_priv = dev->dev_private; |
| enum intel_display_power_domain power_domain; |
| u32 pp; |
| u32 pp_stat_reg, pp_ctrl_reg; |
| bool need_to_disable = !intel_dp->want_panel_vdd; |
| |
| lockdep_assert_held(&dev_priv->pps_mutex); |
| |
| if (!is_edp(intel_dp)) |
| return false; |
| |
| cancel_delayed_work(&intel_dp->panel_vdd_work); |
| intel_dp->want_panel_vdd = true; |
| |
| if (edp_have_panel_vdd(intel_dp)) |
| return need_to_disable; |
| |
| power_domain = intel_display_port_power_domain(intel_encoder); |
| intel_display_power_get(dev_priv, power_domain); |
| |
| DRM_DEBUG_KMS("Turning eDP port %c VDD on\n", |
| port_name(intel_dig_port->port)); |
| |
| if (!edp_have_panel_power(intel_dp)) |
| wait_panel_power_cycle(intel_dp); |
| |
| pp = ironlake_get_pp_control(intel_dp); |
| pp |= EDP_FORCE_VDD; |
| |
| pp_stat_reg = _pp_stat_reg(intel_dp); |
| pp_ctrl_reg = _pp_ctrl_reg(intel_dp); |
| |
| I915_WRITE(pp_ctrl_reg, pp); |
| POSTING_READ(pp_ctrl_reg); |
| DRM_DEBUG_KMS("PP_STATUS: 0x%08x PP_CONTROL: 0x%08x\n", |
| I915_READ(pp_stat_reg), I915_READ(pp_ctrl_reg)); |
| /* |
| * If the panel wasn't on, delay before accessing aux channel |
| */ |
| if (!edp_have_panel_power(intel_dp)) { |
| DRM_DEBUG_KMS("eDP port %c panel power wasn't enabled\n", |
| port_name(intel_dig_port->port)); |
| msleep(intel_dp->panel_power_up_delay); |
| } |
| |
| return need_to_disable; |
| } |
| |
| /* |
| * Must be paired with intel_edp_panel_vdd_off() or |
| * intel_edp_panel_off(). |
| * Nested calls to these functions are not allowed since |
| * we drop the lock. Caller must use some higher level |
| * locking to prevent nested calls from other threads. |
| */ |
| void intel_edp_panel_vdd_on(struct intel_dp *intel_dp) |
| { |
| bool vdd; |
| |
| if (!is_edp(intel_dp)) |
| return; |
| |
| pps_lock(intel_dp); |
| vdd = edp_panel_vdd_on(intel_dp); |
| pps_unlock(intel_dp); |
| |
| I915_STATE_WARN(!vdd, "eDP port %c VDD already requested on\n", |
| port_name(dp_to_dig_port(intel_dp)->port)); |
| } |
| |
| static void edp_panel_vdd_off_sync(struct intel_dp *intel_dp) |
| { |
| struct drm_device *dev = intel_dp_to_dev(intel_dp); |
| struct drm_i915_private *dev_priv = dev->dev_private; |
| struct intel_digital_port *intel_dig_port = |
| dp_to_dig_port(intel_dp); |
| struct intel_encoder *intel_encoder = &intel_dig_port->base; |
| enum intel_display_power_domain power_domain; |
| u32 pp; |
| u32 pp_stat_reg, pp_ctrl_reg; |
| |
| lockdep_assert_held(&dev_priv->pps_mutex); |
| |
| WARN_ON(intel_dp->want_panel_vdd); |
| |
| if (!edp_have_panel_vdd(intel_dp)) |
| return; |
| |
| DRM_DEBUG_KMS("Turning eDP port %c VDD off\n", |
| port_name(intel_dig_port->port)); |
| |
| pp = ironlake_get_pp_control(intel_dp); |
| pp &= ~EDP_FORCE_VDD; |
| |
| pp_ctrl_reg = _pp_ctrl_reg(intel_dp); |
| pp_stat_reg = _pp_stat_reg(intel_dp); |
| |
| I915_WRITE(pp_ctrl_reg, pp); |
| POSTING_READ(pp_ctrl_reg); |
| |
| /* Make sure sequencer is idle before allowing subsequent activity */ |
| DRM_DEBUG_KMS("PP_STATUS: 0x%08x PP_CONTROL: 0x%08x\n", |
| I915_READ(pp_stat_reg), I915_READ(pp_ctrl_reg)); |
| |
| if ((pp & POWER_TARGET_ON) == 0) |
| intel_dp->last_power_cycle = jiffies; |
| |
| power_domain = intel_display_port_power_domain(intel_encoder); |
| intel_display_power_put(dev_priv, power_domain); |
| } |
| |
| static void edp_panel_vdd_work(struct work_struct *__work) |
| { |
| struct intel_dp *intel_dp = container_of(to_delayed_work(__work), |
| struct intel_dp, panel_vdd_work); |
| |
| pps_lock(intel_dp); |
| if (!intel_dp->want_panel_vdd) |
| edp_panel_vdd_off_sync(intel_dp); |
| pps_unlock(intel_dp); |
| } |
| |
| static void edp_panel_vdd_schedule_off(struct intel_dp *intel_dp) |
| { |
| unsigned long delay; |
| |
| /* |
| * Queue the timer to fire a long time from now (relative to the power |
| * down delay) to keep the panel power up across a sequence of |
| * operations. |
| */ |
| delay = msecs_to_jiffies(intel_dp->panel_power_cycle_delay * 5); |
| schedule_delayed_work(&intel_dp->panel_vdd_work, delay); |
| } |
| |
| /* |
| * Must be paired with edp_panel_vdd_on(). |
| * Must hold pps_mutex around the whole on/off sequence. |
| * Can be nested with intel_edp_panel_vdd_{on,off}() calls. |
| */ |
| static void edp_panel_vdd_off(struct intel_dp *intel_dp, bool sync) |
| { |
| struct drm_i915_private *dev_priv = |
| intel_dp_to_dev(intel_dp)->dev_private; |
| |
| lockdep_assert_held(&dev_priv->pps_mutex); |
| |
| if (!is_edp(intel_dp)) |
| return; |
| |
| I915_STATE_WARN(!intel_dp->want_panel_vdd, "eDP port %c VDD not forced on", |
| port_name(dp_to_dig_port(intel_dp)->port)); |
| |
| intel_dp->want_panel_vdd = false; |
| |
| if (sync) |
| edp_panel_vdd_off_sync(intel_dp); |
| else |
| edp_panel_vdd_schedule_off(intel_dp); |
| } |
| |
| static void edp_panel_on(struct intel_dp *intel_dp) |
| { |
| struct drm_device *dev = intel_dp_to_dev(intel_dp); |
| struct drm_i915_private *dev_priv = dev->dev_private; |
| u32 pp; |
| u32 pp_ctrl_reg; |
| |
| lockdep_assert_held(&dev_priv->pps_mutex); |
| |
| if (!is_edp(intel_dp)) |
| return; |
| |
| DRM_DEBUG_KMS("Turn eDP port %c panel power on\n", |
| port_name(dp_to_dig_port(intel_dp)->port)); |
| |
| if (WARN(edp_have_panel_power(intel_dp), |
| "eDP port %c panel power already on\n", |
| port_name(dp_to_dig_port(intel_dp)->port))) |
| return; |
| |
| wait_panel_power_cycle(intel_dp); |
| |
| pp_ctrl_reg = _pp_ctrl_reg(intel_dp); |
| pp = ironlake_get_pp_control(intel_dp); |
| if (IS_GEN5(dev)) { |
| /* ILK workaround: disable reset around power sequence */ |
| pp &= ~PANEL_POWER_RESET; |
| I915_WRITE(pp_ctrl_reg, pp); |
| POSTING_READ(pp_ctrl_reg); |
| } |
| |
| pp |= POWER_TARGET_ON; |
| if (!IS_GEN5(dev)) |
| pp |= PANEL_POWER_RESET; |
| |
| I915_WRITE(pp_ctrl_reg, pp); |
| POSTING_READ(pp_ctrl_reg); |
| |
| wait_panel_on(intel_dp); |
| intel_dp->last_power_on = jiffies; |
| |
| if (IS_GEN5(dev)) { |
| pp |= PANEL_POWER_RESET; /* restore panel reset bit */ |
| I915_WRITE(pp_ctrl_reg, pp); |
| POSTING_READ(pp_ctrl_reg); |
| } |
| } |
| |
| void intel_edp_panel_on(struct intel_dp *intel_dp) |
| { |
| if (!is_edp(intel_dp)) |
| return; |
| |
| pps_lock(intel_dp); |
| edp_panel_on(intel_dp); |
| pps_unlock(intel_dp); |
| } |
| |
| |
| static void edp_panel_off(struct intel_dp *intel_dp) |
| { |
| struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp); |
| struct intel_encoder *intel_encoder = &intel_dig_port->base; |
| struct drm_device *dev = intel_dp_to_dev(intel_dp); |
| struct drm_i915_private *dev_priv = dev->dev_private; |
| enum intel_display_power_domain power_domain; |
| u32 pp; |
| u32 pp_ctrl_reg; |
| |
| lockdep_assert_held(&dev_priv->pps_mutex); |
| |
| if (!is_edp(intel_dp)) |
| return; |
| |
| DRM_DEBUG_KMS("Turn eDP port %c panel power off\n", |
| port_name(dp_to_dig_port(intel_dp)->port)); |
| |
| WARN(!intel_dp->want_panel_vdd, "Need eDP port %c VDD to turn off panel\n", |
| port_name(dp_to_dig_port(intel_dp)->port)); |
| |
| pp = ironlake_get_pp_control(intel_dp); |
| /* We need to switch off panel power _and_ force vdd, for otherwise some |
| * panels get very unhappy and cease to work. */ |
| pp &= ~(POWER_TARGET_ON | PANEL_POWER_RESET | EDP_FORCE_VDD | |
| EDP_BLC_ENABLE); |
| |
| pp_ctrl_reg = _pp_ctrl_reg(intel_dp); |
| |
| intel_dp->want_panel_vdd = false; |
| |
| I915_WRITE(pp_ctrl_reg, pp); |
| POSTING_READ(pp_ctrl_reg); |
| |
| intel_dp->last_power_cycle = jiffies; |
| wait_panel_off(intel_dp); |
| |
| /* We got a reference when we enabled the VDD. */ |
| power_domain = intel_display_port_power_domain(intel_encoder); |
| intel_display_power_put(dev_priv, power_domain); |
| } |
| |
| void intel_edp_panel_off(struct intel_dp *intel_dp) |
| { |
| if (!is_edp(intel_dp)) |
| return; |
| |
| pps_lock(intel_dp); |
| edp_panel_off(intel_dp); |
| pps_unlock(intel_dp); |
| } |
| |
| /* Enable backlight in the panel power control. */ |
| static void _intel_edp_backlight_on(struct intel_dp *intel_dp) |
| { |
| struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp); |
| struct drm_device *dev = intel_dig_port->base.base.dev; |
| struct drm_i915_private *dev_priv = dev->dev_private; |
| u32 pp; |
| u32 pp_ctrl_reg; |
| |
| /* |
| * If we enable the backlight right away following a panel power |
| * on, we may see slight flicker as the panel syncs with the eDP |
| * link. So delay a bit to make sure the image is solid before |
| * allowing it to appear. |
| */ |
| wait_backlight_on(intel_dp); |
| |
| pps_lock(intel_dp); |
| |
| pp = ironlake_get_pp_control(intel_dp); |
| pp |= EDP_BLC_ENABLE; |
| |
| pp_ctrl_reg = _pp_ctrl_reg(intel_dp); |
| |
| I915_WRITE(pp_ctrl_reg, pp); |
| POSTING_READ(pp_ctrl_reg); |
| |
| pps_unlock(intel_dp); |
| } |
| |
| /* Enable backlight PWM and backlight PP control. */ |
| void intel_edp_backlight_on(struct intel_dp *intel_dp) |
| { |
| if (!is_edp(intel_dp)) |
| return; |
| |
| DRM_DEBUG_KMS("\n"); |
| |
| intel_panel_enable_backlight(intel_dp->attached_connector); |
| _intel_edp_backlight_on(intel_dp); |
| } |
| |
| /* Disable backlight in the panel power control. */ |
| static void _intel_edp_backlight_off(struct intel_dp *intel_dp) |
| { |
| struct drm_device *dev = intel_dp_to_dev(intel_dp); |
| struct drm_i915_private *dev_priv = dev->dev_private; |
| u32 pp; |
| u32 pp_ctrl_reg; |
| |
| if (!is_edp(intel_dp)) |
| return; |
| |
| pps_lock(intel_dp); |
| |
| pp = ironlake_get_pp_control(intel_dp); |
| pp &= ~EDP_BLC_ENABLE; |
| |
| pp_ctrl_reg = _pp_ctrl_reg(intel_dp); |
| |
| I915_WRITE(pp_ctrl_reg, pp); |
| POSTING_READ(pp_ctrl_reg); |
| |
| pps_unlock(intel_dp); |
| |
| intel_dp->last_backlight_off = jiffies; |
| edp_wait_backlight_off(intel_dp); |
| } |
| |
| /* Disable backlight PP control and backlight PWM. */ |
| void intel_edp_backlight_off(struct intel_dp *intel_dp) |
| { |
| if (!is_edp(intel_dp)) |
| return; |
| |
| DRM_DEBUG_KMS("\n"); |
| |
| _intel_edp_backlight_off(intel_dp); |
| intel_panel_disable_backlight(intel_dp->attached_connector); |
| } |
| |
| /* |
| * Hook for controlling the panel power control backlight through the bl_power |
| * sysfs attribute. Take care to handle multiple calls. |
| */ |
| static void intel_edp_backlight_power(struct intel_connector *connector, |
| bool enable) |
| { |
| struct intel_dp *intel_dp = intel_attached_dp(&connector->base); |
| bool is_enabled; |
| |
| pps_lock(intel_dp); |
| is_enabled = ironlake_get_pp_control(intel_dp) & EDP_BLC_ENABLE; |
| pps_unlock(intel_dp); |
| |
| if (is_enabled == enable) |
| return; |
| |
| DRM_DEBUG_KMS("panel power control backlight %s\n", |
| enable ? "enable" : "disable"); |
| |
| if (enable) |
| _intel_edp_backlight_on(intel_dp); |
| else |
| _intel_edp_backlight_off(intel_dp); |
| } |
| |
| static void ironlake_edp_pll_on(struct intel_dp *intel_dp) |
| { |
| struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp); |
| struct drm_crtc *crtc = intel_dig_port->base.base.crtc; |
| struct drm_device *dev = crtc->dev; |
| struct drm_i915_private *dev_priv = dev->dev_private; |
| u32 dpa_ctl; |
| |
| assert_pipe_disabled(dev_priv, |
| to_intel_crtc(crtc)->pipe); |
| |
| DRM_DEBUG_KMS("\n"); |
| dpa_ctl = I915_READ(DP_A); |
| WARN(dpa_ctl & DP_PLL_ENABLE, "dp pll on, should be off\n"); |
| WARN(dpa_ctl & DP_PORT_EN, "dp port still on, should be off\n"); |
| |
| /* We don't adjust intel_dp->DP while tearing down the link, to |
| * facilitate link retraining (e.g. after hotplug). Hence clear all |
| * enable bits here to ensure that we don't enable too much. */ |
| intel_dp->DP &= ~(DP_PORT_EN | DP_AUDIO_OUTPUT_ENABLE); |
| intel_dp->DP |= DP_PLL_ENABLE; |
| I915_WRITE(DP_A, intel_dp->DP); |
| POSTING_READ(DP_A); |
| udelay(200); |
| } |
| |
| static void ironlake_edp_pll_off(struct intel_dp *intel_dp) |
| { |
| struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp); |
| struct drm_crtc *crtc = intel_dig_port->base.base.crtc; |
| struct drm_device *dev = crtc->dev; |
| struct drm_i915_private *dev_priv = dev->dev_private; |
| u32 dpa_ctl; |
| |
| assert_pipe_disabled(dev_priv, |
| to_intel_crtc(crtc)->pipe); |
| |
| dpa_ctl = I915_READ(DP_A); |
| WARN((dpa_ctl & DP_PLL_ENABLE) == 0, |
| "dp pll off, should be on\n"); |
| WARN(dpa_ctl & DP_PORT_EN, "dp port still on, should be off\n"); |
| |
| /* We can't rely on the value tracked for the DP register in |
| * intel_dp->DP because link_down must not change that (otherwise link |
| * re-training will fail. */ |
| dpa_ctl &= ~DP_PLL_ENABLE; |
| I915_WRITE(DP_A, dpa_ctl); |
| POSTING_READ(DP_A); |
| udelay(200); |
| } |
| |
| /* If the sink supports it, try to set the power state appropriately */ |
| void intel_dp_sink_dpms(struct intel_dp *intel_dp, int mode) |
| { |
| int ret, i; |
| |
| /* Should have a valid DPCD by this point */ |
| if (intel_dp->dpcd[DP_DPCD_REV] < 0x11) |
| return; |
| |
| if (mode != DRM_MODE_DPMS_ON) { |
| ret = drm_dp_dpcd_writeb(&intel_dp->aux, DP_SET_POWER, |
| DP_SET_POWER_D3); |
| } else { |
| /* |
| * When turning on, we need to retry for 1ms to give the sink |
| * time to wake up. |
| */ |
| for (i = 0; i < 3; i++) { |
| ret = drm_dp_dpcd_writeb(&intel_dp->aux, DP_SET_POWER, |
| DP_SET_POWER_D0); |
| if (ret == 1) |
| break; |
| msleep(1); |
| } |
| } |
| |
| if (ret != 1) |
| DRM_DEBUG_KMS("failed to %s sink power state\n", |
| mode == DRM_MODE_DPMS_ON ? "enable" : "disable"); |
| } |
| |
| static bool intel_dp_get_hw_state(struct intel_encoder *encoder, |
| enum pipe *pipe) |
| { |
| struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base); |
| enum port port = dp_to_dig_port(intel_dp)->port; |
| struct drm_device *dev = encoder->base.dev; |
| struct drm_i915_private *dev_priv = dev->dev_private; |
| enum intel_display_power_domain power_domain; |
| u32 tmp; |
| |
| power_domain = intel_display_port_power_domain(encoder); |
| if (!intel_display_power_is_enabled(dev_priv, power_domain)) |
| return false; |
| |
| tmp = I915_READ(intel_dp->output_reg); |
| |
| if (!(tmp & DP_PORT_EN)) |
| return false; |
| |
| if (IS_GEN7(dev) && port == PORT_A) { |
| *pipe = PORT_TO_PIPE_CPT(tmp); |
| } else if (HAS_PCH_CPT(dev) && port != PORT_A) { |
| enum pipe p; |
| |
| for_each_pipe(dev_priv, p) { |
| u32 trans_dp = I915_READ(TRANS_DP_CTL(p)); |
| if (TRANS_DP_PIPE_TO_PORT(trans_dp) == port) { |
| *pipe = p; |
| return true; |
| } |
| } |
| |
| DRM_DEBUG_KMS("No pipe for dp port 0x%x found\n", |
| intel_dp->output_reg); |
| } else if (IS_CHERRYVIEW(dev)) { |
| *pipe = DP_PORT_TO_PIPE_CHV(tmp); |
| } else { |
| *pipe = PORT_TO_PIPE(tmp); |
| } |
| |
| return true; |
| } |
| |
| static void intel_dp_get_config(struct intel_encoder *encoder, |
| struct intel_crtc_state *pipe_config) |
| { |
| struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base); |
| u32 tmp, flags = 0; |
| struct drm_device *dev = encoder->base.dev; |
| struct drm_i915_private *dev_priv = dev->dev_private; |
| enum port port = dp_to_dig_port(intel_dp)->port; |
| struct intel_crtc *crtc = to_intel_crtc(encoder->base.crtc); |
| int dotclock; |
| |
| tmp = I915_READ(intel_dp->output_reg); |
| |
| pipe_config->has_audio = tmp & DP_AUDIO_OUTPUT_ENABLE && port != PORT_A; |
| |
| if (HAS_PCH_CPT(dev) && port != PORT_A) { |
| tmp = I915_READ(TRANS_DP_CTL(crtc->pipe)); |
| if (tmp & TRANS_DP_HSYNC_ACTIVE_HIGH) |
| flags |= DRM_MODE_FLAG_PHSYNC; |
| else |
| flags |= DRM_MODE_FLAG_NHSYNC; |
| |
| if (tmp & TRANS_DP_VSYNC_ACTIVE_HIGH) |
| flags |= DRM_MODE_FLAG_PVSYNC; |
| else |
| flags |= DRM_MODE_FLAG_NVSYNC; |
| } else { |
| if (tmp & DP_SYNC_HS_HIGH) |
| flags |= DRM_MODE_FLAG_PHSYNC; |
| else |
| flags |= DRM_MODE_FLAG_NHSYNC; |
| |
| if (tmp & DP_SYNC_VS_HIGH) |
| flags |= DRM_MODE_FLAG_PVSYNC; |
| else |
| flags |= DRM_MODE_FLAG_NVSYNC; |
| } |
| |
| pipe_config->base.adjusted_mode.flags |= flags; |
| |
| if (!HAS_PCH_SPLIT(dev) && !IS_VALLEYVIEW(dev) && |
| tmp & DP_COLOR_RANGE_16_235) |
| pipe_config->limited_color_range = true; |
| |
| pipe_config->has_dp_encoder = true; |
| |
| intel_dp_get_m_n(crtc, pipe_config); |
| |
| if (port == PORT_A) { |
| if ((I915_READ(DP_A) & DP_PLL_FREQ_MASK) == DP_PLL_FREQ_160MHZ) |
| pipe_config->port_clock = 162000; |
| else |
| pipe_config->port_clock = 270000; |
| } |
| |
| dotclock = intel_dotclock_calculate(pipe_config->port_clock, |
| &pipe_config->dp_m_n); |
| |
| if (HAS_PCH_SPLIT(dev_priv->dev) && port != PORT_A) |
| ironlake_check_encoder_dotclock(pipe_config, dotclock); |
| |
| pipe_config->base.adjusted_mode.crtc_clock = dotclock; |
| |
| if (is_edp(intel_dp) && dev_priv->vbt.edp_bpp && |
| pipe_config->pipe_bpp > dev_priv->vbt.edp_bpp) { |
| /* |
| * This is a big fat ugly hack. |
| * |
| * Some machines in UEFI boot mode provide us a VBT that has 18 |
| * bpp and 1.62 GHz link bandwidth for eDP, which for reasons |
| * unknown we fail to light up. Yet the same BIOS boots up with |
| * 24 bpp and 2.7 GHz link. Use the same bpp as the BIOS uses as |
| * max, not what it tells us to use. |
| * |
| * Note: This will still be broken if the eDP panel is not lit |
| * up by the BIOS, and thus we can't get the mode at module |
| * load. |
| */ |
| DRM_DEBUG_KMS("pipe has %d bpp for eDP panel, overriding BIOS-provided max %d bpp\n", |
| pipe_config->pipe_bpp, dev_priv->vbt.edp_bpp); |
| dev_priv->vbt.edp_bpp = pipe_config->pipe_bpp; |
| } |
| } |
| |
| static void intel_disable_dp(struct intel_encoder *encoder) |
| { |
| struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base); |
| struct drm_device *dev = encoder->base.dev; |
| struct intel_crtc *crtc = to_intel_crtc(encoder->base.crtc); |
| |
| if (crtc->config->has_audio) |
| intel_audio_codec_disable(encoder); |
| |
| if (HAS_PSR(dev) && !HAS_DDI(dev)) |
| intel_psr_disable(intel_dp); |
| |
| /* Make sure the panel is off before trying to change the mode. But also |
| * ensure that we have vdd while we switch off the panel. */ |
| intel_edp_panel_vdd_on(intel_dp); |
| intel_edp_backlight_off(intel_dp); |
| intel_dp_sink_dpms(intel_dp, DRM_MODE_DPMS_OFF); |
| intel_edp_panel_off(intel_dp); |
| |
| /* disable the port before the pipe on g4x */ |
| if (INTEL_INFO(dev)->gen < 5) |
| intel_dp_link_down(intel_dp); |
| } |
| |
| static void ilk_post_disable_dp(struct intel_encoder *encoder) |
| { |
| struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base); |
| enum port port = dp_to_dig_port(intel_dp)->port; |
| |
| intel_dp_link_down(intel_dp); |
| if (port == PORT_A) |
| ironlake_edp_pll_off(intel_dp); |
| } |
| |
| static void vlv_post_disable_dp(struct intel_encoder *encoder) |
| { |
| struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base); |
| |
| intel_dp_link_down(intel_dp); |
| } |
| |
| static void chv_post_disable_dp(struct intel_encoder *encoder) |
| { |
| struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base); |
| struct intel_digital_port *dport = dp_to_dig_port(intel_dp); |
| struct drm_device *dev = encoder->base.dev; |
| struct drm_i915_private *dev_priv = dev->dev_private; |
| struct intel_crtc *intel_crtc = |
| to_intel_crtc(encoder->base.crtc); |
| enum dpio_channel ch = vlv_dport_to_channel(dport); |
| enum pipe pipe = intel_crtc->pipe; |
| u32 val; |
| |
| intel_dp_link_down(intel_dp); |
| |
| mutex_lock(&dev_priv->sb_lock); |
| |
| /* Propagate soft reset to data lane reset */ |
| val = vlv_dpio_read(dev_priv, pipe, VLV_PCS01_DW1(ch)); |
| val |= CHV_PCS_REQ_SOFTRESET_EN; |
| vlv_dpio_write(dev_priv, pipe, VLV_PCS01_DW1(ch), val); |
| |
| val = vlv_dpio_read(dev_priv, pipe, VLV_PCS23_DW1(ch)); |
| val |= CHV_PCS_REQ_SOFTRESET_EN; |
| vlv_dpio_write(dev_priv, pipe, VLV_PCS23_DW1(ch), val); |
| |
| val = vlv_dpio_read(dev_priv, pipe, VLV_PCS01_DW0(ch)); |
| val &= ~(DPIO_PCS_TX_LANE2_RESET | DPIO_PCS_TX_LANE1_RESET); |
| vlv_dpio_write(dev_priv, pipe, VLV_PCS01_DW0(ch), val); |
| |
| val = vlv_dpio_read(dev_priv, pipe, VLV_PCS23_DW0(ch)); |
| val &= ~(DPIO_PCS_TX_LANE2_RESET | DPIO_PCS_TX_LANE1_RESET); |
| vlv_dpio_write(dev_priv, pipe, VLV_PCS23_DW0(ch), val); |
| |
| mutex_unlock(&dev_priv->sb_lock); |
| } |
| |
| static void |
| _intel_dp_set_link_train(struct intel_dp *intel_dp, |
| uint32_t *DP, |
| uint8_t dp_train_pat) |
| { |
| struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp); |
| struct drm_device *dev = intel_dig_port->base.base.dev; |
| struct drm_i915_private *dev_priv = dev->dev_private; |
| enum port port = intel_dig_port->port; |
| |
| if (HAS_DDI(dev)) { |
| uint32_t temp = I915_READ(DP_TP_CTL(port)); |
| |
| if (dp_train_pat & DP_LINK_SCRAMBLING_DISABLE) |
| temp |= DP_TP_CTL_SCRAMBLE_DISABLE; |
| else |
| temp &= ~DP_TP_CTL_SCRAMBLE_DISABLE; |
| |
| temp &= ~DP_TP_CTL_LINK_TRAIN_MASK; |
| switch (dp_train_pat & DP_TRAINING_PATTERN_MASK) { |
| case DP_TRAINING_PATTERN_DISABLE: |
| temp |= DP_TP_CTL_LINK_TRAIN_NORMAL; |
| |
| break; |
| case DP_TRAINING_PATTERN_1: |
| temp |= DP_TP_CTL_LINK_TRAIN_PAT1; |
| break; |
| case DP_TRAINING_PATTERN_2: |
| temp |= DP_TP_CTL_LINK_TRAIN_PAT2; |
| break; |
| case DP_TRAINING_PATTERN_3: |
| temp |= DP_TP_CTL_LINK_TRAIN_PAT3; |
| break; |
| } |
| I915_WRITE(DP_TP_CTL(port), temp); |
| |
| } else if ((IS_GEN7(dev) && port == PORT_A) || |
| (HAS_PCH_CPT(dev) && port != PORT_A)) { |
| *DP &= ~DP_LINK_TRAIN_MASK_CPT; |
| |
| switch (dp_train_pat & DP_TRAINING_PATTERN_MASK) { |
| case DP_TRAINING_PATTERN_DISABLE: |
| *DP |= DP_LINK_TRAIN_OFF_CPT; |
| break; |
| case DP_TRAINING_PATTERN_1: |
| *DP |= DP_LINK_TRAIN_PAT_1_CPT; |
| break; |
| case DP_TRAINING_PATTERN_2: |
| *DP |= DP_LINK_TRAIN_PAT_2_CPT; |
| break; |
| case DP_TRAINING_PATTERN_3: |
| DRM_ERROR("DP training pattern 3 not supported\n"); |
| *DP |= DP_LINK_TRAIN_PAT_2_CPT; |
| break; |
| } |
| |
| } else { |
| if (IS_CHERRYVIEW(dev)) |
| *DP &= ~DP_LINK_TRAIN_MASK_CHV; |
| else |
| *DP &= ~DP_LINK_TRAIN_MASK; |
| |
| switch (dp_train_pat & DP_TRAINING_PATTERN_MASK) { |
| case DP_TRAINING_PATTERN_DISABLE: |
| *DP |= DP_LINK_TRAIN_OFF; |
| break; |
| case DP_TRAINING_PATTERN_1: |
| *DP |= DP_LINK_TRAIN_PAT_1; |
| break; |
| case DP_TRAINING_PATTERN_2: |
| *DP |= DP_LINK_TRAIN_PAT_2; |
| break; |
| case DP_TRAINING_PATTERN_3: |
| if (IS_CHERRYVIEW(dev)) { |
| *DP |= DP_LINK_TRAIN_PAT_3_CHV; |
| } else { |
| DRM_ERROR("DP training pattern 3 not supported\n"); |
| *DP |= DP_LINK_TRAIN_PAT_2; |
| } |
| break; |
| } |
| } |
| } |
| |
| static void intel_dp_enable_port(struct intel_dp *intel_dp) |
| { |
| struct drm_device *dev = intel_dp_to_dev(intel_dp); |
| struct drm_i915_private *dev_priv = dev->dev_private; |
| |
| /* enable with pattern 1 (as per spec) */ |
| _intel_dp_set_link_train(intel_dp, &intel_dp->DP, |
| DP_TRAINING_PATTERN_1); |
| |
| I915_WRITE(intel_dp->output_reg, intel_dp->DP); |
| POSTING_READ(intel_dp->output_reg); |
| |
| /* |
| * Magic for VLV/CHV. We _must_ first set up the register |
| * without actually enabling the port, and then do another |
| * write to enable the port. Otherwise link training will |
| * fail when the power sequencer is freshly used for this port. |
| */ |
| intel_dp->DP |= DP_PORT_EN; |
| |
| I915_WRITE(intel_dp->output_reg, intel_dp->DP); |
| POSTING_READ(intel_dp->output_reg); |
| } |
| |
| static void intel_enable_dp(struct intel_encoder *encoder) |
| { |
| struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base); |
| struct drm_device *dev = encoder->base.dev; |
| struct drm_i915_private *dev_priv = dev->dev_private; |
| struct intel_crtc *crtc = to_intel_crtc(encoder->base.crtc); |
| uint32_t dp_reg = I915_READ(intel_dp->output_reg); |
| unsigned int lane_mask = 0x0; |
| |
| if (WARN_ON(dp_reg & DP_PORT_EN)) |
| return; |
| |
| pps_lock(intel_dp); |
| |
| if (IS_VALLEYVIEW(dev)) |
| vlv_init_panel_power_sequencer(intel_dp); |
| |
| intel_dp_enable_port(intel_dp); |
| |
| edp_panel_vdd_on(intel_dp); |
| edp_panel_on(intel_dp); |
| edp_panel_vdd_off(intel_dp, true); |
| |
| pps_unlock(intel_dp); |
| |
| if (IS_VALLEYVIEW(dev)) |
| vlv_wait_port_ready(dev_priv, dp_to_dig_port(intel_dp), |
| lane_mask); |
| |
| intel_dp_sink_dpms(intel_dp, DRM_MODE_DPMS_ON); |
| intel_dp_start_link_train(intel_dp); |
| intel_dp_complete_link_train(intel_dp); |
| intel_dp_stop_link_train(intel_dp); |
| |
| if (crtc->config->has_audio) { |
| DRM_DEBUG_DRIVER("Enabling DP audio on pipe %c\n", |
| pipe_name(crtc->pipe)); |
| intel_audio_codec_enable(encoder); |
| } |
| } |
| |
| static void g4x_enable_dp(struct intel_encoder *encoder) |
| { |
| struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base); |
| |
| intel_enable_dp(encoder); |
| intel_edp_backlight_on(intel_dp); |
| } |
| |
| static void vlv_enable_dp(struct intel_encoder *encoder) |
| { |
| struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base); |
| |
| intel_edp_backlight_on(intel_dp); |
| intel_psr_enable(intel_dp); |
| } |
| |
| static void g4x_pre_enable_dp(struct intel_encoder *encoder) |
| { |
| struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base); |
| struct intel_digital_port *dport = dp_to_dig_port(intel_dp); |
| |
| intel_dp_prepare(encoder); |
| |
| /* Only ilk+ has port A */ |
| if (dport->port == PORT_A) { |
| ironlake_set_pll_cpu_edp(intel_dp); |
| ironlake_edp_pll_on(intel_dp); |
| } |
| } |
| |
| static void vlv_detach_power_sequencer(struct intel_dp *intel_dp) |
| { |
| struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp); |
| struct drm_i915_private *dev_priv = intel_dig_port->base.base.dev->dev_private; |
| enum pipe pipe = intel_dp->pps_pipe; |
| int pp_on_reg = VLV_PIPE_PP_ON_DELAYS(pipe); |
| |
| edp_panel_vdd_off_sync(intel_dp); |
| |
| /* |
| * VLV seems to get confused when multiple power seqeuencers |
| * have the same port selected (even if only one has power/vdd |
| * enabled). The failure manifests as vlv_wait_port_ready() failing |
| * CHV on the other hand doesn't seem to mind having the same port |
| * selected in multiple power seqeuencers, but let's clear the |
| * port select always when logically disconnecting a power sequencer |
| * from a port. |
| */ |
| DRM_DEBUG_KMS("detaching pipe %c power sequencer from port %c\n", |
| pipe_name(pipe), port_name(intel_dig_port->port)); |
| I915_WRITE(pp_on_reg, 0); |
| POSTING_READ(pp_on_reg); |
| |
| intel_dp->pps_pipe = INVALID_PIPE; |
| } |
| |
| static void vlv_steal_power_sequencer(struct drm_device *dev, |
| enum pipe pipe) |
| { |
| struct drm_i915_private *dev_priv = dev->dev_private; |
| struct intel_encoder *encoder; |
| |
| lockdep_assert_held(&dev_priv->pps_mutex); |
| |
| if (WARN_ON(pipe != PIPE_A && pipe != PIPE_B)) |
| return; |
| |
| list_for_each_entry(encoder, &dev->mode_config.encoder_list, |
| base.head) { |
| struct intel_dp *intel_dp; |
| enum port port; |
| |
| if (encoder->type != INTEL_OUTPUT_EDP) |
| continue; |
| |
| intel_dp = enc_to_intel_dp(&encoder->base); |
| port = dp_to_dig_port(intel_dp)->port; |
| |
| if (intel_dp->pps_pipe != pipe) |
| continue; |
| |
| DRM_DEBUG_KMS("stealing pipe %c power sequencer from port %c\n", |
| pipe_name(pipe), port_name(port)); |
| |
| WARN(encoder->connectors_active, |
| "stealing pipe %c power sequencer from active eDP port %c\n", |
| pipe_name(pipe), port_name(port)); |
| |
| /* make sure vdd is off before we steal it */ |
| vlv_detach_power_sequencer(intel_dp); |
| } |
| } |
| |
| static void vlv_init_panel_power_sequencer(struct intel_dp *intel_dp) |
| { |
| struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp); |
| struct intel_encoder *encoder = &intel_dig_port->base; |
| struct drm_device *dev = encoder->base.dev; |
| struct drm_i915_private *dev_priv = dev->dev_private; |
| struct intel_crtc *crtc = to_intel_crtc(encoder->base.crtc); |
| |
| lockdep_assert_held(&dev_priv->pps_mutex); |
| |
| if (!is_edp(intel_dp)) |
| return; |
| |
| if (intel_dp->pps_pipe == crtc->pipe) |
| return; |
| |
| /* |
| * If another power sequencer was being used on this |
| * port previously make sure to turn off vdd there while |
| * we still have control of it. |
| */ |
| if (intel_dp->pps_pipe != INVALID_PIPE) |
| vlv_detach_power_sequencer(intel_dp); |
| |
| /* |
| * We may be stealing the power |
| * sequencer from another port. |
| */ |
| vlv_steal_power_sequencer(dev, crtc->pipe); |
| |
| /* now it's all ours */ |
| intel_dp->pps_pipe = crtc->pipe; |
| |
| DRM_DEBUG_KMS("initializing pipe %c power sequencer for port %c\n", |
| pipe_name(intel_dp->pps_pipe), port_name(intel_dig_port->port)); |
| |
| /* init power sequencer on this pipe and port */ |
| intel_dp_init_panel_power_sequencer(dev, intel_dp); |
| intel_dp_init_panel_power_sequencer_registers(dev, intel_dp); |
| } |
| |
| static void vlv_pre_enable_dp(struct intel_encoder *encoder) |
| { |
| struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base); |
| struct intel_digital_port *dport = dp_to_dig_port(intel_dp); |
| struct drm_device *dev = encoder->base.dev; |
| struct drm_i915_private *dev_priv = dev->dev_private; |
| struct intel_crtc *intel_crtc = to_intel_crtc(encoder->base.crtc); |
| enum dpio_channel port = vlv_dport_to_channel(dport); |
| int pipe = intel_crtc->pipe; |
| u32 val; |
| |
| mutex_lock(&dev_priv->sb_lock); |
| |
| val = vlv_dpio_read(dev_priv, pipe, VLV_PCS01_DW8(port)); |
| val = 0; |
| if (pipe) |
| val |= (1<<21); |
| else |
| val &= ~(1<<21); |
| val |= 0x001000c4; |
| vlv_dpio_write(dev_priv, pipe, VLV_PCS_DW8(port), val); |
| vlv_dpio_write(dev_priv, pipe, VLV_PCS_DW14(port), 0x00760018); |
| vlv_dpio_write(dev_priv, pipe, VLV_PCS_DW23(port), 0x00400888); |
| |
| mutex_unlock(&dev_priv->sb_lock); |
| |
| intel_enable_dp(encoder); |
| } |
| |
| static void vlv_dp_pre_pll_enable(struct intel_encoder *encoder) |
| { |
| struct intel_digital_port *dport = enc_to_dig_port(&encoder->base); |
| struct drm_device *dev = encoder->base.dev; |
| struct drm_i915_private *dev_priv = dev->dev_private; |
| struct intel_crtc *intel_crtc = |
| to_intel_crtc(encoder->base.crtc); |
| enum dpio_channel port = vlv_dport_to_channel(dport); |
| int pipe = intel_crtc->pipe; |
| |
| intel_dp_prepare(encoder); |
| |
| /* Program Tx lane resets to default */ |
| mutex_lock(&dev_priv->sb_lock); |
| vlv_dpio_write(dev_priv, pipe, VLV_PCS_DW0(port), |
| DPIO_PCS_TX_LANE2_RESET | |
| DPIO_PCS_TX_LANE1_RESET); |
| vlv_dpio_write(dev_priv, pipe, VLV_PCS_DW1(port), |
| DPIO_PCS_CLK_CRI_RXEB_EIOS_EN | |
| DPIO_PCS_CLK_CRI_RXDIGFILTSG_EN | |
| (1<<DPIO_PCS_CLK_DATAWIDTH_SHIFT) | |
| DPIO_PCS_CLK_SOFT_RESET); |
| |
| /* Fix up inter-pair skew failure */ |
| vlv_dpio_write(dev_priv, pipe, VLV_PCS_DW12(port), 0x00750f00); |
| vlv_dpio_write(dev_priv, pipe, VLV_TX_DW11(port), 0x00001500); |
| vlv_dpio_write(dev_priv, pipe, VLV_TX_DW14(port), 0x40400000); |
| mutex_unlock(&dev_priv->sb_lock); |
| } |
| |
| static void chv_pre_enable_dp(struct intel_encoder *encoder) |
| { |
| struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base); |
| struct intel_digital_port *dport = dp_to_dig_port(intel_dp); |
| struct drm_device *dev = encoder->base.dev; |
| struct drm_i915_private *dev_priv = dev->dev_private; |
| struct intel_crtc *intel_crtc = |
| to_intel_crtc(encoder->base.crtc); |
| enum dpio_channel ch = vlv_dport_to_channel(dport); |
| int pipe = intel_crtc->pipe; |
| int data, i, stagger; |
| u32 val; |
| |
| mutex_lock(&dev_priv->sb_lock); |
| |
| /* allow hardware to manage TX FIFO reset source */ |
| val = vlv_dpio_read(dev_priv, pipe, VLV_PCS01_DW11(ch)); |
| val &= ~DPIO_LANEDESKEW_STRAP_OVRD; |
| vlv_dpio_write(dev_priv, pipe, VLV_PCS01_DW11(ch), val); |
| |
| val = vlv_dpio_read(dev_priv, pipe, VLV_PCS23_DW11(ch)); |
| val &= ~DPIO_LANEDESKEW_STRAP_OVRD; |
| vlv_dpio_write(dev_priv, pipe, VLV_PCS23_DW11(ch), val); |
| |
| /* Deassert soft data lane reset*/ |
| val = vlv_dpio_read(dev_priv, pipe, VLV_PCS01_DW1(ch)); |
| val |= CHV_PCS_REQ_SOFTRESET_EN; |
| vlv_dpio_write(dev_priv, pipe, VLV_PCS01_DW1(ch), val); |
| |
| val = vlv_dpio_read(dev_priv, pipe, VLV_PCS23_DW1(ch)); |
| val |= CHV_PCS_REQ_SOFTRESET_EN; |
| vlv_dpio_write(dev_priv, pipe, VLV_PCS23_DW1(ch), val); |
| |
| val = vlv_dpio_read(dev_priv, pipe, VLV_PCS01_DW0(ch)); |
| val |= (DPIO_PCS_TX_LANE2_RESET | DPIO_PCS_TX_LANE1_RESET); |
| vlv_dpio_write(dev_priv, pipe, VLV_PCS01_DW0(ch), val); |
| |
| val = vlv_dpio_read(dev_priv, pipe, VLV_PCS23_DW0(ch)); |
| val |= (DPIO_PCS_TX_LANE2_RESET | DPIO_PCS_TX_LANE1_RESET); |
| vlv_dpio_write(dev_priv, pipe, VLV_PCS23_DW0(ch), val); |
| |
| /* Program Tx lane latency optimal setting*/ |
| for (i = 0; i < 4; i++) { |
| /* Set the upar bit */ |
| data = (i == 1) ? 0x0 : 0x1; |
| vlv_dpio_write(dev_priv, pipe, CHV_TX_DW14(ch, i), |
| data << DPIO_UPAR_SHIFT); |
| } |
| |
| /* Data lane stagger programming */ |
| if (intel_crtc->config->port_clock > 270000) |
| stagger = 0x18; |
| else if (intel_crtc->config->port_clock > 135000) |
| stagger = 0xd; |
| else if (intel_crtc->config->port_clock > 67500) |
| stagger = 0x7; |
| else if (intel_crtc->config->port_clock > 33750) |
| stagger = 0x4; |
| else |
| stagger = 0x2; |
| |
| val = vlv_dpio_read(dev_priv, pipe, VLV_PCS01_DW11(ch)); |
| val |= DPIO_TX2_STAGGER_MASK(0x1f); |
| vlv_dpio_write(dev_priv, pipe, VLV_PCS01_DW11(ch), val); |
| |
| val = vlv_dpio_read(dev_priv, pipe, VLV_PCS23_DW11(ch)); |
| val |= DPIO_TX2_STAGGER_MASK(0x1f); |
| vlv_dpio_write(dev_priv, pipe, VLV_PCS23_DW11(ch), val); |
| |
| vlv_dpio_write(dev_priv, pipe, VLV_PCS01_DW12(ch), |
| DPIO_LANESTAGGER_STRAP(stagger) | |
| DPIO_LANESTAGGER_STRAP_OVRD | |
| DPIO_TX1_STAGGER_MASK(0x1f) | |
| DPIO_TX1_STAGGER_MULT(6) | |
| DPIO_TX2_STAGGER_MULT(0)); |
| |
| vlv_dpio_write(dev_priv, pipe, VLV_PCS23_DW12(ch), |
| DPIO_LANESTAGGER_STRAP(stagger) | |
| DPIO_LANESTAGGER_STRAP_OVRD | |
| DPIO_TX1_STAGGER_MASK(0x1f) | |
| DPIO_TX1_STAGGER_MULT(7) | |
| DPIO_TX2_STAGGER_MULT(5)); |
| |
| mutex_unlock(&dev_priv->sb_lock); |
| |
| intel_enable_dp(encoder); |
| } |
| |
| static void chv_dp_pre_pll_enable(struct intel_encoder *encoder) |
| { |
| struct intel_digital_port *dport = enc_to_dig_port(&encoder->base); |
| struct drm_device *dev = encoder->base.dev; |
| struct drm_i915_private *dev_priv = dev->dev_private; |
| struct intel_crtc *intel_crtc = |
| to_intel_crtc(encoder->base.crtc); |
| enum dpio_channel ch = vlv_dport_to_channel(dport); |
| enum pipe pipe = intel_crtc->pipe; |
| u32 val; |
| |
| intel_dp_prepare(encoder); |
| |
| mutex_lock(&dev_priv->sb_lock); |
| |
| /* program left/right clock distribution */ |
| if (pipe != PIPE_B) { |
| val = vlv_dpio_read(dev_priv, pipe, _CHV_CMN_DW5_CH0); |
| val &= ~(CHV_BUFLEFTENA1_MASK | CHV_BUFRIGHTENA1_MASK); |
| if (ch == DPIO_CH0) |
| val |= CHV_BUFLEFTENA1_FORCE; |
| if (ch == DPIO_CH1) |
| val |= CHV_BUFRIGHTENA1_FORCE; |
| vlv_dpio_write(dev_priv, pipe, _CHV_CMN_DW5_CH0, val); |
| } else { |
| val = vlv_dpio_read(dev_priv, pipe, _CHV_CMN_DW1_CH1); |
| val &= ~(CHV_BUFLEFTENA2_MASK | CHV_BUFRIGHTENA2_MASK); |
| if (ch == DPIO_CH0) |
| val |= CHV_BUFLEFTENA2_FORCE; |
| if (ch == DPIO_CH1) |
| val |= CHV_BUFRIGHTENA2_FORCE; |
| vlv_dpio_write(dev_priv, pipe, _CHV_CMN_DW1_CH1, val); |
| } |
| |
| /* program clock channel usage */ |
| val = vlv_dpio_read(dev_priv, pipe, VLV_PCS01_DW8(ch)); |
| val |= CHV_PCS_USEDCLKCHANNEL_OVRRIDE; |
| if (pipe != PIPE_B) |
| val &= ~CHV_PCS_USEDCLKCHANNEL; |
| else |
| val |= CHV_PCS_USEDCLKCHANNEL; |
| vlv_dpio_write(dev_priv, pipe, VLV_PCS01_DW8(ch), val); |
| |
| val = vlv_dpio_read(dev_priv, pipe, VLV_PCS23_DW8(ch)); |
| val |= CHV_PCS_USEDCLKCHANNEL_OVRRIDE; |
| if (pipe != PIPE_B) |
| val &= ~CHV_PCS_USEDCLKCHANNEL; |
| else |
| val |= CHV_PCS_USEDCLKCHANNEL; |
| vlv_dpio_write(dev_priv, pipe, VLV_PCS23_DW8(ch), val); |
| |
| /* |
| * This a a bit weird since generally CL |
| * matches the pipe, but here we need to |
| * pick the CL based on the port. |
| */ |
| val = vlv_dpio_read(dev_priv, pipe, CHV_CMN_DW19(ch)); |
| if (pipe != PIPE_B) |
| val &= ~CHV_CMN_USEDCLKCHANNEL; |
| else |
| val |= CHV_CMN_USEDCLKCHANNEL; |
| vlv_dpio_write(dev_priv, pipe, CHV_CMN_DW19(ch), val); |
| |
| mutex_unlock(&dev_priv->sb_lock); |
| } |
| |
| /* |
| * Native read with retry for link status and receiver capability reads for |
| * cases where the sink may still be asleep. |
| * |
| * Sinks are *supposed* to come up within 1ms from an off state, but we're also |
| * supposed to retry 3 times per the spec. |
| */ |
| static ssize_t |
| intel_dp_dpcd_read_wake(struct drm_dp_aux *aux, unsigned int offset, |
| void *buffer, size_t size) |
| { |
| ssize_t ret; |
| int i; |
| |
| /* |
| * Sometime we just get the same incorrect byte repeated |
| * over the entire buffer. Doing just one throw away read |
| * initially seems to "solve" it. |
| */ |
| drm_dp_dpcd_read(aux, DP_DPCD_REV, buffer, 1); |
| |
| for (i = 0; i < 3; i++) { |
| ret = drm_dp_dpcd_read(aux, offset, buffer, size); |
| if (ret == size) |
| return ret; |
| msleep(1); |
| } |
| |
| return ret; |
| } |
| |
| /* |
| * Fetch AUX CH registers 0x202 - 0x207 which contain |
| * link status information |
| */ |
| static bool |
| intel_dp_get_link_status(struct intel_dp *intel_dp, uint8_t link_status[DP_LINK_STATUS_SIZE]) |
| { |
| return intel_dp_dpcd_read_wake(&intel_dp->aux, |
| DP_LANE0_1_STATUS, |
| link_status, |
| DP_LINK_STATUS_SIZE) == DP_LINK_STATUS_SIZE; |
| } |
| |
| /* These are source-specific values. */ |
| static uint8_t |
| intel_dp_voltage_max(struct intel_dp *intel_dp) |
| { |
| struct drm_device *dev = intel_dp_to_dev(intel_dp); |
| struct drm_i915_private *dev_priv = dev->dev_private; |
| enum port port = dp_to_dig_port(intel_dp)->port; |
| |
| if (IS_BROXTON(dev)) |
| return DP_TRAIN_VOLTAGE_SWING_LEVEL_3; |
| else if (INTEL_INFO(dev)->gen >= 9) { |
| if (dev_priv->edp_low_vswing && port == PORT_A) |
| return DP_TRAIN_VOLTAGE_SWING_LEVEL_3; |
| return DP_TRAIN_VOLTAGE_SWING_LEVEL_2; |
| } else if (IS_VALLEYVIEW(dev)) |
| return DP_TRAIN_VOLTAGE_SWING_LEVEL_3; |
| else if (IS_GEN7(dev) && port == PORT_A) |
| return DP_TRAIN_VOLTAGE_SWING_LEVEL_2; |
| else if (HAS_PCH_CPT(dev) && port != PORT_A) |
| return DP_TRAIN_VOLTAGE_SWING_LEVEL_3; |
| else |
| return DP_TRAIN_VOLTAGE_SWING_LEVEL_2; |
| } |
| |
| static uint8_t |
| intel_dp_pre_emphasis_max(struct intel_dp *intel_dp, uint8_t voltage_swing) |
| { |
| struct drm_device *dev = intel_dp_to_dev(intel_dp); |
| enum port port = dp_to_dig_port(intel_dp)->port; |
| |
| if (INTEL_INFO(dev)->gen >= 9) { |
| switch (voltage_swing & DP_TRAIN_VOLTAGE_SWING_MASK) { |
| case DP_TRAIN_VOLTAGE_SWING_LEVEL_0: |
| return DP_TRAIN_PRE_EMPH_LEVEL_3; |
| case DP_TRAIN_VOLTAGE_SWING_LEVEL_1: |
| return DP_TRAIN_PRE_EMPH_LEVEL_2; |
| case DP_TRAIN_VOLTAGE_SWING_LEVEL_2: |
| return DP_TRAIN_PRE_EMPH_LEVEL_1; |
| case DP_TRAIN_VOLTAGE_SWING_LEVEL_3: |
| return DP_TRAIN_PRE_EMPH_LEVEL_0; |
| default: |
| return DP_TRAIN_PRE_EMPH_LEVEL_0; |
| } |
| } else if (IS_HASWELL(dev) || IS_BROADWELL(dev)) { |
| switch (voltage_swing & DP_TRAIN_VOLTAGE_SWING_MASK) { |
| case DP_TRAIN_VOLTAGE_SWING_LEVEL_0: |
| return DP_TRAIN_PRE_EMPH_LEVEL_3; |
| case DP_TRAIN_VOLTAGE_SWING_LEVEL_1: |
| return DP_TRAIN_PRE_EMPH_LEVEL_2; |
| case DP_TRAIN_VOLTAGE_SWING_LEVEL_2: |
| return DP_TRAIN_PRE_EMPH_LEVEL_1; |
| case DP_TRAIN_VOLTAGE_SWING_LEVEL_3: |
| default: |
| return DP_TRAIN_PRE_EMPH_LEVEL_0; |
| } |
| } else if (IS_VALLEYVIEW(dev)) { |
| switch (voltage_swing & DP_TRAIN_VOLTAGE_SWING_MASK) { |
| case DP_TRAIN_VOLTAGE_SWING_LEVEL_0: |
| return DP_TRAIN_PRE_EMPH_LEVEL_3; |
| case DP_TRAIN_VOLTAGE_SWING_LEVEL_1: |
| return DP_TRAIN_PRE_EMPH_LEVEL_2; |
| case DP_TRAIN_VOLTAGE_SWING_LEVEL_2: |
| return DP_TRAIN_PRE_EMPH_LEVEL_1; |
| case DP_TRAIN_VOLTAGE_SWING_LEVEL_3: |
| default: |
| return DP_TRAIN_PRE_EMPH_LEVEL_0; |
| } |
| } else if (IS_GEN7(dev) && port == PORT_A) { |
| switch (voltage_swing & DP_TRAIN_VOLTAGE_SWING_MASK) { |
| case DP_TRAIN_VOLTAGE_SWING_LEVEL_0: |
| return DP_TRAIN_PRE_EMPH_LEVEL_2; |
| case DP_TRAIN_VOLTAGE_SWING_LEVEL_1: |
| case DP_TRAIN_VOLTAGE_SWING_LEVEL_2: |
| return DP_TRAIN_PRE_EMPH_LEVEL_1; |
| default: |
| return DP_TRAIN_PRE_EMPH_LEVEL_0; |
| } |
| } else { |
| switch (voltage_swing & DP_TRAIN_VOLTAGE_SWING_MASK) { |
| case DP_TRAIN_VOLTAGE_SWING_LEVEL_0: |
| return DP_TRAIN_PRE_EMPH_LEVEL_2; |
| case DP_TRAIN_VOLTAGE_SWING_LEVEL_1: |
| return DP_TRAIN_PRE_EMPH_LEVEL_2; |
| case DP_TRAIN_VOLTAGE_SWING_LEVEL_2: |
| return DP_TRAIN_PRE_EMPH_LEVEL_1; |
| case DP_TRAIN_VOLTAGE_SWING_LEVEL_3: |
| default: |
| return DP_TRAIN_PRE_EMPH_LEVEL_0; |
| } |
| } |
| } |
| |
| static uint32_t vlv_signal_levels(struct intel_dp *intel_dp) |
| { |
| struct drm_device *dev = intel_dp_to_dev(intel_dp); |
| struct drm_i915_private *dev_priv = dev->dev_private; |
| struct intel_digital_port *dport = dp_to_dig_port(intel_dp); |
| struct intel_crtc *intel_crtc = |
| to_intel_crtc(dport->base.base.crtc); |
| unsigned long demph_reg_value, preemph_reg_value, |
| uniqtranscale_reg_value; |
| uint8_t train_set = intel_dp->train_set[0]; |
| enum dpio_channel port = vlv_dport_to_channel(dport); |
| int pipe = intel_crtc->pipe; |
| |
| switch (train_set & DP_TRAIN_PRE_EMPHASIS_MASK) { |
| case DP_TRAIN_PRE_EMPH_LEVEL_0: |
| preemph_reg_value = 0x0004000; |
| switch (train_set & DP_TRAIN_VOLTAGE_SWING_MASK) { |
| case DP_TRAIN_VOLTAGE_SWING_LEVEL_0: |
| demph_reg_value = 0x2B405555; |
| uniqtranscale_reg_value = 0x552AB83A; |
| break; |
| case DP_TRAIN_VOLTAGE_SWING_LEVEL_1: |
| demph_reg_value = 0x2B404040; |
| uniqtranscale_reg_value = 0x5548B83A; |
| break; |
| case DP_TRAIN_VOLTAGE_SWING_LEVEL_2: |
| demph_reg_value = 0x2B245555; |
| uniqtranscale_reg_value = 0x5560B83A; |
| break; |
| case DP_TRAIN_VOLTAGE_SWING_LEVEL_3: |
| demph_reg_value = 0x2B405555; |
| uniqtranscale_reg_value = 0x5598DA3A; |
| break; |
| default: |
| return 0; |
| } |
| break; |
| case DP_TRAIN_PRE_EMPH_LEVEL_1: |
| preemph_reg_value = 0x0002000; |
| switch (train_set & DP_TRAIN_VOLTAGE_SWING_MASK) { |
| case DP_TRAIN_VOLTAGE_SWING_LEVEL_0: |
| demph_reg_value = 0x2B404040; |
| uniqtranscale_reg_value = 0x5552B83A; |
| break; |
| case DP_TRAIN_VOLTAGE_SWING_LEVEL_1: |
| demph_reg_value = 0x2B404848; |
| uniqtranscale_reg_value = 0x5580B83A; |
| break; |
| case DP_TRAIN_VOLTAGE_SWING_LEVEL_2: |
| demph_reg_value = 0x2B404040; |
| uniqtranscale_reg_value = 0x55ADDA3A; |
| break; |
| default: |
| return 0; |
| } |
| break; |
| case DP_TRAIN_PRE_EMPH_LEVEL_2: |
| preemph_reg_value = 0x0000000; |
| switch (train_set & DP_TRAIN_VOLTAGE_SWING_MASK) { |
| case DP_TRAIN_VOLTAGE_SWING_LEVEL_0: |
| demph_reg_value = 0x2B305555; |
| uniqtranscale_reg_value = 0x5570B83A; |
| break; |
| case DP_TRAIN_VOLTAGE_SWING_LEVEL_1: |
| demph_reg_value = 0x2B2B4040; |
| uniqtranscale_reg_value = 0x55ADDA3A; |
| break; |
| default: |
| return 0; |
| } |
| break; |
| case DP_TRAIN_PRE_EMPH_LEVEL_3: |
| preemph_reg_value = 0x0006000; |
| switch (train_set & DP_TRAIN_VOLTAGE_SWING_MASK) { |
| case DP_TRAIN_VOLTAGE_SWING_LEVEL_0: |
| demph_reg_value = 0x1B405555; |
| uniqtranscale_reg_value = 0x55ADDA3A; |
| break; |
| default: |
| return 0; |
| } |
| break; |
| default: |
| return 0; |
| } |
| |
| mutex_lock(&dev_priv->sb_lock); |
| vlv_dpio_write(dev_priv, pipe, VLV_TX_DW5(port), 0x00000000); |
| vlv_dpio_write(dev_priv, pipe, VLV_TX_DW4(port), demph_reg_value); |
| vlv_dpio_write(dev_priv, pipe, VLV_TX_DW2(port), |
| uniqtranscale_reg_value); |
| vlv_dpio_write(dev_priv, pipe, VLV_TX_DW3(port), 0x0C782040); |
| vlv_dpio_write(dev_priv, pipe, VLV_PCS_DW11(port), 0x00030000); |
| vlv_dpio_write(dev_priv, pipe, VLV_PCS_DW9(port), preemph_reg_value); |
| vlv_dpio_write(dev_priv, pipe, VLV_TX_DW5(port), 0x80000000); |
| mutex_unlock(&dev_priv->sb_lock); |
| |
| return 0; |
| } |
| |
| static uint32_t chv_signal_levels(struct intel_dp *intel_dp) |
| { |
| struct drm_device *dev = intel_dp_to_dev(intel_dp); |
| struct drm_i915_private *dev_priv = dev->dev_private; |
| struct intel_digital_port *dport = dp_to_dig_port(intel_dp); |
| struct intel_crtc *intel_crtc = to_intel_crtc(dport->base.base.crtc); |
| u32 deemph_reg_value, margin_reg_value, val; |
| uint8_t train_set = intel_dp->train_set[0]; |
| enum dpio_channel ch = vlv_dport_to_channel(dport); |
| enum pipe pipe = intel_crtc->pipe; |
| int i; |
| |
| switch (train_set & DP_TRAIN_PRE_EMPHASIS_MASK) { |
| case DP_TRAIN_PRE_EMPH_LEVEL_0: |
| switch (train_set & DP_TRAIN_VOLTAGE_SWING_MASK) { |
| case DP_TRAIN_VOLTAGE_SWING_LEVEL_0: |
| deemph_reg_value = 128; |
| margin_reg_value = 52; |
| break; |
| case DP_TRAIN_VOLTAGE_SWING_LEVEL_1: |
| deemph_reg_value = 128; |
| margin_reg_value = 77; |
| break; |
| case DP_TRAIN_VOLTAGE_SWING_LEVEL_2: |
| deemph_reg_value = 128; |
| margin_reg_value = 102; |
| break; |
| case DP_TRAIN_VOLTAGE_SWING_LEVEL_3: |
| deemph_reg_value = 128; |
| margin_reg_value = 154; |
| /* FIXME extra to set for 1200 */ |
| break; |
| default: |
| return 0; |
| } |
| break; |
| case DP_TRAIN_PRE_EMPH_LEVEL_1: |
| switch (train_set & DP_TRAIN_VOLTAGE_SWING_MASK) { |
| case DP_TRAIN_VOLTAGE_SWING_LEVEL_0: |
| deemph_reg_value = 85; |
| margin_reg_value = 78; |
| break; |
| case DP_TRAIN_VOLTAGE_SWING_LEVEL_1: |
| deemph_reg_value = 85; |
| margin_reg_value = 116; |
| break; |
| case DP_TRAIN_VOLTAGE_SWING_LEVEL_2: |
| deemph_reg_value = 85; |
| margin_reg_value = 154; |
| break; |
| default: |
| return 0; |
| } |
| break; |
| case DP_TRAIN_PRE_EMPH_LEVEL_2: |
| switch (train_set & DP_TRAIN_VOLTAGE_SWING_MASK) { |
| case DP_TRAIN_VOLTAGE_SWING_LEVEL_0: |
| deemph_reg_value = 64; |
| margin_reg_value = 104; |
| break; |
| case DP_TRAIN_VOLTAGE_SWING_LEVEL_1: |
| deemph_reg_value = 64; |
| margin_reg_value = 154; |
| break; |
| default: |
| return 0; |
| } |
| break; |
| case DP_TRAIN_PRE_EMPH_LEVEL_3: |
| switch (train_set & DP_TRAIN_VOLTAGE_SWING_MASK) { |
| case DP_TRAIN_VOLTAGE_SWING_LEVEL_0: |
| deemph_reg_value = 43; |
| margin_reg_value = 154; |
| break; |
| default: |
| return 0; |
| } |
| break; |
| default: |
| return 0; |
| } |
| |
| mutex_lock(&dev_priv->sb_lock); |
| |
| /* Clear calc init */ |
| val = vlv_dpio_read(dev_priv, pipe, VLV_PCS01_DW10(ch)); |
| val &= ~(DPIO_PCS_SWING_CALC_TX0_TX2 | DPIO_PCS_SWING_CALC_TX1_TX3); |
| val &= ~(DPIO_PCS_TX1DEEMP_MASK | DPIO_PCS_TX2DEEMP_MASK); |
| val |= DPIO_PCS_TX1DEEMP_9P5 | DPIO_PCS_TX2DEEMP_9P5; |
| vlv_dpio_write(dev_priv, pipe, VLV_PCS01_DW10(ch), val); |
| |
| val = vlv_dpio_read(dev_priv, pipe, VLV_PCS23_DW10(ch)); |
| val &= ~(DPIO_PCS_SWING_CALC_TX0_TX2 | DPIO_PCS_SWING_CALC_TX1_TX3); |
| val &= ~(DPIO_PCS_TX1DEEMP_MASK | DPIO_PCS_TX2DEEMP_MASK); |
| val |= DPIO_PCS_TX1DEEMP_9P5 | DPIO_PCS_TX2DEEMP_9P5; |
| vlv_dpio_write(dev_priv, pipe, VLV_PCS23_DW10(ch), val); |
| |
| val = vlv_dpio_read(dev_priv, pipe, VLV_PCS01_DW9(ch)); |
| val &= ~(DPIO_PCS_TX1MARGIN_MASK | DPIO_PCS_TX2MARGIN_MASK); |
| val |= DPIO_PCS_TX1MARGIN_000 | DPIO_PCS_TX2MARGIN_000; |
| vlv_dpio_write(dev_priv, pipe, VLV_PCS01_DW9(ch), val); |
| |
| val = vlv_dpio_read(dev_priv, pipe, VLV_PCS23_DW9(ch)); |
| val &= ~(DPIO_PCS_TX1MARGIN_MASK | DPIO_PCS_TX2MARGIN_MASK); |
| val |= DPIO_PCS_TX1MARGIN_000 | DPIO_PCS_TX2MARGIN_000; |
| vlv_dpio_write(dev_priv, pipe, VLV_PCS23_DW9(ch), val); |
| |
| /* Program swing deemph */ |
| for (i = 0; i < 4; i++) { |
| val = vlv_dpio_read(dev_priv, pipe, CHV_TX_DW4(ch, i)); |
| val &= ~DPIO_SWING_DEEMPH9P5_MASK; |
| val |= deemph_reg_value << DPIO_SWING_DEEMPH9P5_SHIFT; |
| vlv_dpio_write(dev_priv, pipe, CHV_TX_DW4(ch, i), val); |
| } |
| |
| /* Program swing margin */ |
| for (i = 0; i < 4; i++) { |
| val = vlv_dpio_read(dev_priv, pipe, CHV_TX_DW2(ch, i)); |
| val &= ~DPIO_SWING_MARGIN000_MASK; |
| val |= margin_reg_value << DPIO_SWING_MARGIN000_SHIFT; |
| vlv_dpio_write(dev_priv, pipe, CHV_TX_DW2(ch, i), val); |
| } |
| |
| /* Disable unique transition scale */ |
| for (i = 0; i < 4; i++) { |
| val = vlv_dpio_read(dev_priv, pipe, CHV_TX_DW3(ch, i)); |
| val &= ~DPIO_TX_UNIQ_TRANS_SCALE_EN; |
| vlv_dpio_write(dev_priv, pipe, CHV_TX_DW3(ch, i), val); |
| } |
| |
| if (((train_set & DP_TRAIN_PRE_EMPHASIS_MASK) |
| == DP_TRAIN_PRE_EMPH_LEVEL_0) && |
| ((train_set & DP_TRAIN_VOLTAGE_SWING_MASK) |
| == DP_TRAIN_VOLTAGE_SWING_LEVEL_3)) { |
| |
| /* |
| * The document said it needs to set bit 27 for ch0 and bit 26 |
| * for ch1. Might be a typo in the doc. |
| * For now, for this unique transition scale selection, set bit |
| * 27 for ch0 and ch1. |
| */ |
| for (i = 0; i < 4; i++) { |
| val = vlv_dpio_read(dev_priv, pipe, CHV_TX_DW3(ch, i)); |
| val |= DPIO_TX_UNIQ_TRANS_SCALE_EN; |
| vlv_dpio_write(dev_priv, pipe, CHV_TX_DW3(ch, i), val); |
| } |
| |
| for (i = 0; i < 4; i++) { |
| val = vlv_dpio_read(dev_priv, pipe, CHV_TX_DW2(ch, i)); |
| val &= ~(0xff << DPIO_UNIQ_TRANS_SCALE_SHIFT); |
| val |= (0x9a << DPIO_UNIQ_TRANS_SCALE_SHIFT); |
| vlv_dpio_write(dev_priv, pipe, CHV_TX_DW2(ch, i), val); |
| } |
| } |
| |
| /* Start swing calculation */ |
| val = vlv_dpio_read(dev_priv, pipe, VLV_PCS01_DW10(ch)); |
| val |= DPIO_PCS_SWING_CALC_TX0_TX2 | DPIO_PCS_SWING_CALC_TX1_TX3; |
| vlv_dpio_write(dev_priv, pipe, VLV_PCS01_DW10(ch), val); |
| |
| val = vlv_dpio_read(dev_priv, pipe, VLV_PCS23_DW10(ch)); |
| val |= DPIO_PCS_SWING_CALC_TX0_TX2 | DPIO_PCS_SWING_CALC_TX1_TX3; |
| vlv_dpio_write(dev_priv, pipe, VLV_PCS23_DW10(ch), val); |
| |
| /* LRC Bypass */ |
| val = vlv_dpio_read(dev_priv, pipe, CHV_CMN_DW30); |
| val |= DPIO_LRC_BYPASS; |
| vlv_dpio_write(dev_priv, pipe, CHV_CMN_DW30, val); |
| |
| mutex_unlock(&dev_priv->sb_lock); |
| |
| return 0; |
| } |
| |
| static void |
| intel_get_adjust_train(struct intel_dp *intel_dp, |
| const uint8_t link_status[DP_LINK_STATUS_SIZE]) |
| { |
| uint8_t v = 0; |
| uint8_t p = 0; |
| int lane; |
| uint8_t voltage_max; |
| uint8_t preemph_max; |
| |
| for (lane = 0; lane < intel_dp->lane_count; lane++) { |
| uint8_t this_v = drm_dp_get_adjust_request_voltage(link_status, lane); |
| uint8_t this_p = drm_dp_get_adjust_request_pre_emphasis(link_status, lane); |
| |
| if (this_v > v) |
| v = this_v; |
| if (this_p > p) |
| p = this_p; |
| } |
| |
| voltage_max = intel_dp_voltage_max(intel_dp); |
| if (v >= voltage_max) |
| v = voltage_max | DP_TRAIN_MAX_SWING_REACHED; |
| |
| preemph_max = intel_dp_pre_emphasis_max(intel_dp, v); |
| if (p >= preemph_max) |
| p = preemph_max | DP_TRAIN_MAX_PRE_EMPHASIS_REACHED; |
| |
| for (lane = 0; lane < 4; lane++) |
| intel_dp->train_set[lane] = v | p; |
| } |
| |
| static uint32_t |
| gen4_signal_levels(uint8_t train_set) |
| { |
| uint32_t signal_levels = 0; |
| |
| switch (train_set & DP_TRAIN_VOLTAGE_SWING_MASK) { |
| case DP_TRAIN_VOLTAGE_SWING_LEVEL_0: |
| default: |
| signal_levels |= DP_VOLTAGE_0_4; |
| break; |
| case DP_TRAIN_VOLTAGE_SWING_LEVEL_1: |
| signal_levels |= DP_VOLTAGE_0_6; |
| break; |
| case DP_TRAIN_VOLTAGE_SWING_LEVEL_2: |
| signal_levels |= DP_VOLTAGE_0_8; |
| break; |
| case DP_TRAIN_VOLTAGE_SWING_LEVEL_3: |
| signal_levels |= DP_VOLTAGE_1_2; |
| break; |
| } |
| switch (train_set & DP_TRAIN_PRE_EMPHASIS_MASK) { |
| case DP_TRAIN_PRE_EMPH_LEVEL_0: |
| default: |
| signal_levels |= DP_PRE_EMPHASIS_0; |
| break; |
| case DP_TRAIN_PRE_EMPH_LEVEL_1: |
| signal_levels |= DP_PRE_EMPHASIS_3_5; |
| break; |
| case DP_TRAIN_PRE_EMPH_LEVEL_2: |
| signal_levels |= DP_PRE_EMPHASIS_6; |
| break; |
| case DP_TRAIN_PRE_EMPH_LEVEL_3: |
| signal_levels |= DP_PRE_EMPHASIS_9_5; |
| break; |
| } |
| return signal_levels; |
| } |
| |
| /* Gen6's DP voltage swing and pre-emphasis control */ |
| static uint32_t |
| gen6_edp_signal_levels(uint8_t train_set) |
| { |
| int signal_levels = train_set & (DP_TRAIN_VOLTAGE_SWING_MASK | |
| DP_TRAIN_PRE_EMPHASIS_MASK); |
| switch (signal_levels) { |
| case DP_TRAIN_VOLTAGE_SWING_LEVEL_0 | DP_TRAIN_PRE_EMPH_LEVEL_0: |
| case DP_TRAIN_VOLTAGE_SWING_LEVEL_1 | DP_TRAIN_PRE_EMPH_LEVEL_0: |
| return EDP_LINK_TRAIN_400_600MV_0DB_SNB_B; |
| case DP_TRAIN_VOLTAGE_SWING_LEVEL_0 | DP_TRAIN_PRE_EMPH_LEVEL_1: |
| return EDP_LINK_TRAIN_400MV_3_5DB_SNB_B; |
| case DP_TRAIN_VOLTAGE_SWING_LEVEL_0 | DP_TRAIN_PRE_EMPH_LEVEL_2: |
| case DP_TRAIN_VOLTAGE_SWING_LEVEL_1 | DP_TRAIN_PRE_EMPH_LEVEL_2: |
| return EDP_LINK_TRAIN_400_600MV_6DB_SNB_B; |
| case DP_TRAIN_VOLTAGE_SWING_LEVEL_1 | DP_TRAIN_PRE_EMPH_LEVEL_1: |
| case DP_TRAIN_VOLTAGE_SWING_LEVEL_2 | DP_TRAIN_PRE_EMPH_LEVEL_1: |
| return EDP_LINK_TRAIN_600_800MV_3_5DB_SNB_B; |
| case DP_TRAIN_VOLTAGE_SWING_LEVEL_2 | DP_TRAIN_PRE_EMPH_LEVEL_0: |
| case DP_TRAIN_VOLTAGE_SWING_LEVEL_3 | DP_TRAIN_PRE_EMPH_LEVEL_0: |
| return EDP_LINK_TRAIN_800_1200MV_0DB_SNB_B; |
| default: |
| DRM_DEBUG_KMS("Unsupported voltage swing/pre-emphasis level:" |
| "0x%x\n", signal_levels); |
| return EDP_LINK_TRAIN_400_600MV_0DB_SNB_B; |
| } |
| } |
| |
| /* Gen7's DP voltage swing and pre-emphasis control */ |
| static uint32_t |
| gen7_edp_signal_levels(uint8_t train_set) |
| { |
| int signal_levels = train_set & (DP_TRAIN_VOLTAGE_SWING_MASK | |
| DP_TRAIN_PRE_EMPHASIS_MASK); |
| switch (signal_levels) { |
| case DP_TRAIN_VOLTAGE_SWING_LEVEL_0 | DP_TRAIN_PRE_EMPH_LEVEL_0: |
| return EDP_LINK_TRAIN_400MV_0DB_IVB; |
| case DP_TRAIN_VOLTAGE_SWING_LEVEL_0 | DP_TRAIN_PRE_EMPH_LEVEL_1: |
| return EDP_LINK_TRAIN_400MV_3_5DB_IVB; |
| case DP_TRAIN_VOLTAGE_SWING_LEVEL_0 | DP_TRAIN_PRE_EMPH_LEVEL_2: |
| return EDP_LINK_TRAIN_400MV_6DB_IVB; |
| |
| case DP_TRAIN_VOLTAGE_SWING_LEVEL_1 | DP_TRAIN_PRE_EMPH_LEVEL_0: |
| return EDP_LINK_TRAIN_600MV_0DB_IVB; |
| case DP_TRAIN_VOLTAGE_SWING_LEVEL_1 | DP_TRAIN_PRE_EMPH_LEVEL_1: |
| return EDP_LINK_TRAIN_600MV_3_5DB_IVB; |
| |
| case DP_TRAIN_VOLTAGE_SWING_LEVEL_2 | DP_TRAIN_PRE_EMPH_LEVEL_0: |
| return EDP_LINK_TRAIN_800MV_0DB_IVB; |
| case DP_TRAIN_VOLTAGE_SWING_LEVEL_2 | DP_TRAIN_PRE_EMPH_LEVEL_1: |
| return EDP_LINK_TRAIN_800MV_3_5DB_IVB; |
| |
| default: |
| DRM_DEBUG_KMS("Unsupported voltage swing/pre-emphasis level:" |
| "0x%x\n", signal_levels); |
| return EDP_LINK_TRAIN_500MV_0DB_IVB; |
| } |
| } |
| |
| /* Gen7.5's (HSW) DP voltage swing and pre-emphasis control */ |
| static uint32_t |
| hsw_signal_levels(uint8_t train_set) |
| { |
| int signal_levels = train_set & (DP_TRAIN_VOLTAGE_SWING_MASK | |
| DP_TRAIN_PRE_EMPHASIS_MASK); |
| switch (signal_levels) { |
| case DP_TRAIN_VOLTAGE_SWING_LEVEL_0 | DP_TRAIN_PRE_EMPH_LEVEL_0: |
| return DDI_BUF_TRANS_SELECT(0); |
| case DP_TRAIN_VOLTAGE_SWING_LEVEL_0 | DP_TRAIN_PRE_EMPH_LEVEL_1: |
| return DDI_BUF_TRANS_SELECT(1); |
| case DP_TRAIN_VOLTAGE_SWING_LEVEL_0 | DP_TRAIN_PRE_EMPH_LEVEL_2: |
| return DDI_BUF_TRANS_SELECT(2); |
| case DP_TRAIN_VOLTAGE_SWING_LEVEL_0 | DP_TRAIN_PRE_EMPH_LEVEL_3: |
| return DDI_BUF_TRANS_SELECT(3); |
| |
| case DP_TRAIN_VOLTAGE_SWING_LEVEL_1 | DP_TRAIN_PRE_EMPH_LEVEL_0: |
| return DDI_BUF_TRANS_SELECT(4); |
| case DP_TRAIN_VOLTAGE_SWING_LEVEL_1 | DP_TRAIN_PRE_EMPH_LEVEL_1: |
| return DDI_BUF_TRANS_SELECT(5); |
| case DP_TRAIN_VOLTAGE_SWING_LEVEL_1 | DP_TRAIN_PRE_EMPH_LEVEL_2: |
| return DDI_BUF_TRANS_SELECT(6); |
| |
| case DP_TRAIN_VOLTAGE_SWING_LEVEL_2 | DP_TRAIN_PRE_EMPH_LEVEL_0: |
| return DDI_BUF_TRANS_SELECT(7); |
| case DP_TRAIN_VOLTAGE_SWING_LEVEL_2 | DP_TRAIN_PRE_EMPH_LEVEL_1: |
| return DDI_BUF_TRANS_SELECT(8); |
| |
| case DP_TRAIN_VOLTAGE_SWING_LEVEL_3 | DP_TRAIN_PRE_EMPH_LEVEL_0: |
| return DDI_BUF_TRANS_SELECT(9); |
| default: |
| DRM_DEBUG_KMS("Unsupported voltage swing/pre-emphasis level:" |
| "0x%x\n", signal_levels); |
| return DDI_BUF_TRANS_SELECT(0); |
| } |
| } |
| |
| static void bxt_signal_levels(struct intel_dp *intel_dp) |
| { |
| struct intel_digital_port *dport = dp_to_dig_port(intel_dp); |
| enum port port = dport->port; |
| struct drm_device *dev = dport->base.base.dev; |
| struct intel_encoder *encoder = &dport->base; |
| uint8_t train_set = intel_dp->train_set[0]; |
| uint32_t level = 0; |
| |
| int signal_levels = train_set & (DP_TRAIN_VOLTAGE_SWING_MASK | |
| DP_TRAIN_PRE_EMPHASIS_MASK); |
| switch (signal_levels) { |
| default: |
| DRM_DEBUG_KMS("Unsupported voltage swing/pre-emph level\n"); |
| case DP_TRAIN_VOLTAGE_SWING_LEVEL_0 | DP_TRAIN_PRE_EMPH_LEVEL_0: |
| level = 0; |
| break; |
| case DP_TRAIN_VOLTAGE_SWING_LEVEL_0 | DP_TRAIN_PRE_EMPH_LEVEL_1: |
| level = 1; |
| break; |
| case DP_TRAIN_VOLTAGE_SWING_LEVEL_0 | DP_TRAIN_PRE_EMPH_LEVEL_2: |
| level = 2; |
| break; |
| case DP_TRAIN_VOLTAGE_SWING_LEVEL_0 | DP_TRAIN_PRE_EMPH_LEVEL_3: |
| level = 3; |
| break; |
| case DP_TRAIN_VOLTAGE_SWING_LEVEL_1 | DP_TRAIN_PRE_EMPH_LEVEL_0: |
| level = 4; |
| break; |
| case DP_TRAIN_VOLTAGE_SWING_LEVEL_1 | DP_TRAIN_PRE_EMPH_LEVEL_1: |
| level = 5; |
| break; |
| case DP_TRAIN_VOLTAGE_SWING_LEVEL_1 | DP_TRAIN_PRE_EMPH_LEVEL_2: |
| level = 6; |
| break; |
| case DP_TRAIN_VOLTAGE_SWING_LEVEL_2 | DP_TRAIN_PRE_EMPH_LEVEL_0: |
| level = 7; |
| break; |
| case DP_TRAIN_VOLTAGE_SWING_LEVEL_2 | DP_TRAIN_PRE_EMPH_LEVEL_1: |
| level = 8; |
| break; |
| case DP_TRAIN_VOLTAGE_SWING_LEVEL_3 | DP_TRAIN_PRE_EMPH_LEVEL_0: |
| level = 9; |
| break; |
| } |
| |
| bxt_ddi_vswing_sequence(dev, level, port, encoder->type); |
| } |
| |
| /* Properly updates "DP" with the correct signal levels. */ |
| static void |
| intel_dp_set_signal_levels(struct intel_dp *intel_dp, uint32_t *DP) |
| { |
| struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp); |
| enum port port = intel_dig_port->port; |
| struct drm_device *dev = intel_dig_port->base.base.dev; |
| uint32_t signal_levels, mask; |
| uint8_t train_set = intel_dp->train_set[0]; |
| |
| if (IS_BROXTON(dev)) { |
| signal_levels = 0; |
| bxt_signal_levels(intel_dp); |
| mask = 0; |
| } else if (HAS_DDI(dev)) { |
| signal_levels = hsw_signal_levels(train_set); |
| mask = DDI_BUF_EMP_MASK; |
| } else if (IS_CHERRYVIEW(dev)) { |
| signal_levels = chv_signal_levels(intel_dp); |
| mask = 0; |
| } else if (IS_VALLEYVIEW(dev)) { |
| signal_levels = vlv_signal_levels(intel_dp); |
| mask = 0; |
| } else if (IS_GEN7(dev) && port == PORT_A) { |
| signal_levels = gen7_edp_signal_levels(train_set); |
| mask = EDP_LINK_TRAIN_VOL_EMP_MASK_IVB; |
| } else if (IS_GEN6(dev) && port == PORT_A) { |
| signal_levels = gen6_edp_signal_levels(train_set); |
| mask = EDP_LINK_TRAIN_VOL_EMP_MASK_SNB; |
| } else { |
| signal_levels = gen4_signal_levels(train_set); |
| mask = DP_VOLTAGE_MASK | DP_PRE_EMPHASIS_MASK; |
| } |
| |
| if (mask) |
| DRM_DEBUG_KMS("Using signal levels %08x\n", signal_levels); |
| |
| DRM_DEBUG_KMS("Using vswing level %d\n", |
| train_set & DP_TRAIN_VOLTAGE_SWING_MASK); |
| DRM_DEBUG_KMS("Using pre-emphasis level %d\n", |
| (train_set & DP_TRAIN_PRE_EMPHASIS_MASK) >> |
| DP_TRAIN_PRE_EMPHASIS_SHIFT); |
| |
| *DP = (*DP & ~mask) | signal_levels; |
| } |
| |
| static bool |
| intel_dp_set_link_train(struct intel_dp *intel_dp, |
| uint32_t *DP, |
| uint8_t dp_train_pat) |
| { |
| struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp); |
| struct drm_device *dev = intel_dig_port->base.base.dev; |
| struct drm_i915_private *dev_priv = dev->dev_private; |
| uint8_t buf[sizeof(intel_dp->train_set) + 1]; |
| int ret, len; |
| |
| _intel_dp_set_link_train(intel_dp, DP, dp_train_pat); |
| |
| I915_WRITE(intel_dp->output_reg, *DP); |
| POSTING_READ(intel_dp->output_reg); |
| |
| buf[0] = dp_train_pat; |
| if ((dp_train_pat & DP_TRAINING_PATTERN_MASK) == |
| DP_TRAINING_PATTERN_DISABLE) { |
| /* don't write DP_TRAINING_LANEx_SET on disable */ |
| len = 1; |
| } else { |
| /* DP_TRAINING_LANEx_SET follow DP_TRAINING_PATTERN_SET */ |
| memcpy(buf + 1, intel_dp->train_set, intel_dp->lane_count); |
| len = intel_dp->lane_count + 1; |
| } |
| |
| ret = drm_dp_dpcd_write(&intel_dp->aux, DP_TRAINING_PATTERN_SET, |
| buf, len); |
| |
| return ret == len; |
| } |
| |
| static bool |
| intel_dp_reset_link_train(struct intel_dp *intel_dp, uint32_t *DP, |
| uint8_t dp_train_pat) |
| { |
| if (!intel_dp->train_set_valid) |
| memset(intel_dp->train_set, 0, sizeof(intel_dp->train_set)); |
| intel_dp_set_signal_levels(intel_dp, DP); |
| return intel_dp_set_link_train(intel_dp, DP, dp_train_pat); |
| } |
| |
| static bool |
| intel_dp_update_link_train(struct intel_dp *intel_dp, uint32_t *DP, |
| const uint8_t link_status[DP_LINK_STATUS_SIZE]) |
| { |
| struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp); |
| struct drm_device *dev = intel_dig_port->base.base.dev; |
| struct drm_i915_private *dev_priv = dev->dev_private; |
| int ret; |
| |
| intel_get_adjust_train(intel_dp, link_status); |
| intel_dp_set_signal_levels(intel_dp, DP); |
| |
| I915_WRITE(intel_dp->output_reg, *DP); |
| POSTING_READ(intel_dp->output_reg); |
| |
| ret = drm_dp_dpcd_write(&intel_dp->aux, DP_TRAINING_LANE0_SET, |
| intel_dp->train_set, intel_dp->lane_count); |
| |
| return ret == intel_dp->lane_count; |
| } |
| |
| static void intel_dp_set_idle_link_train(struct intel_dp *intel_dp) |
| { |
| struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp); |
| struct drm_device *dev = intel_dig_port->base.base.dev; |
| struct drm_i915_private *dev_priv = dev->dev_private; |
| enum port port = intel_dig_port->port; |
| uint32_t val; |
| |
| if (!HAS_DDI(dev)) |
| return; |
| |
| val = I915_READ(DP_TP_CTL(port)); |
| val &= ~DP_TP_CTL_LINK_TRAIN_MASK; |
| val |= DP_TP_CTL_LINK_TRAIN_IDLE; |
| I915_WRITE(DP_TP_CTL(port), val); |
| |
| /* |
| * On PORT_A we can have only eDP in SST mode. There the only reason |
| * we need to set idle transmission mode is to work around a HW issue |
| * where we enable the pipe while not in idle link-training mode. |
| * In this case there is requirement to wait for a minimum number of |
| * idle patterns to be sent. |
| */ |
| if (port == PORT_A) |
| return; |
| |
| if (wait_for((I915_READ(DP_TP_STATUS(port)) & DP_TP_STATUS_IDLE_DONE), |
| 1)) |
| DRM_ERROR("Timed out waiting for DP idle patterns\n"); |
| } |
| |
| /* Enable corresponding port and start training pattern 1 */ |
| void |
| intel_dp_start_link_train(struct intel_dp *intel_dp) |
| { |
| struct drm_encoder *encoder = &dp_to_dig_port(intel_dp)->base.base; |
| struct drm_device *dev = encoder->dev; |
| int i; |
| uint8_t voltage; |
| int voltage_tries, loop_tries; |
| uint32_t DP = intel_dp->DP; |
| uint8_t link_config[2]; |
| |
| if (HAS_DDI(dev)) |
| intel_ddi_prepare_link_retrain(encoder); |
| |
| /* Write the link configuration data */ |
| link_config[0] = intel_dp->link_bw; |
| link_config[1] = intel_dp->lane_count; |
| if (drm_dp_enhanced_frame_cap(intel_dp->dpcd)) |
| link_config[1] |= DP_LANE_COUNT_ENHANCED_FRAME_EN; |
| drm_dp_dpcd_write(&intel_dp->aux, DP_LINK_BW_SET, link_config, 2); |
| if (intel_dp->num_sink_rates) |
| drm_dp_dpcd_write(&intel_dp->aux, DP_LINK_RATE_SET, |
| &intel_dp->rate_select, 1); |
| |
| link_config[0] = 0; |
| link_config[1] = DP_SET_ANSI_8B10B; |
| drm_dp_dpcd_write(&intel_dp->aux, DP_DOWNSPREAD_CTRL, link_config, 2); |
| |
| DP |= DP_PORT_EN; |
| |
| /* clock recovery */ |
| if (!intel_dp_reset_link_train(intel_dp, &DP, |
| DP_TRAINING_PATTERN_1 | |
| DP_LINK_SCRAMBLING_DISABLE)) { |
| DRM_ERROR("failed to enable link training\n"); |
| return; |
| } |
| |
| voltage = 0xff; |
| voltage_tries = 0; |
| loop_tries = 0; |
| for (;;) { |
| uint8_t link_status[DP_LINK_STATUS_SIZE]; |
| |
| drm_dp_link_train_clock_recovery_delay(intel_dp->dpcd); |
| if (!intel_dp_get_link_status(intel_dp, link_status)) { |
| DRM_ERROR("failed to get link status\n"); |
| break; |
| } |
| |
| if (drm_dp_clock_recovery_ok(link_status, intel_dp->lane_count)) { |
| DRM_DEBUG_KMS("clock recovery OK\n"); |
| break; |
| } |
| |
| /* |
| * if we used previously trained voltage and pre-emphasis values |
| * and we don't get clock recovery, reset link training values |
| */ |
| if (intel_dp->train_set_valid) { |
| DRM_DEBUG_KMS("clock recovery not ok, reset"); |
| /* clear the flag as we are not reusing train set */ |
| intel_dp->train_set_valid = false; |
| if (!intel_dp_reset_link_train(intel_dp, &DP, |
| DP_TRAINING_PATTERN_1 | |
| DP_LINK_SCRAMBLING_DISABLE)) { |
| DRM_ERROR("failed to enable link training\n"); |
| return; |
| } |
| continue; |
| } |
| |
| /* Check to see if we've tried the max voltage */ |
| for (i = 0; i < intel_dp->lane_count; i++) |
| if ((intel_dp->train_set[i] & DP_TRAIN_MAX_SWING_REACHED) == 0) |
| break; |
| if (i == intel_dp->lane_count) { |
| ++loop_tries; |
| if (loop_tries == 5) { |
| DRM_ERROR("too many full retries, give up\n"); |
| break; |
| } |
| intel_dp_reset_link_train(intel_dp, &DP, |
| DP_TRAINING_PATTERN_1 | |
| DP_LINK_SCRAMBLING_DISABLE); |
| voltage_tries = 0; |
| continue; |
| } |
| |
| /* Check to see if we've tried the same voltage 5 times */ |
| if ((intel_dp->train_set[0] & DP_TRAIN_VOLTAGE_SWING_MASK) == voltage) { |
| ++voltage_tries; |
| if (voltage_tries == 5) { |
| DRM_ERROR("too many voltage retries, give up\n"); |
| break; |
| } |
| } else |
| voltage_tries = 0; |
| voltage = intel_dp->train_set[0] & DP_TRAIN_VOLTAGE_SWING_MASK; |
| |
| /* Update training set as requested by target */ |
| if (!intel_dp_update_link_train(intel_dp, &DP, link_status)) { |
| DRM_ERROR("failed to update link training\n"); |
| break; |
| } |
| } |
| |
| intel_dp->DP = DP; |
| } |
| |
| void |
| intel_dp_complete_link_train(struct intel_dp *intel_dp) |
| { |
| bool channel_eq = false; |
| int tries, cr_tries; |
| uint32_t DP = intel_dp->DP; |
| uint32_t training_pattern = DP_TRAINING_PATTERN_2; |
| |
| /* Training Pattern 3 for HBR2 ot 1.2 devices that support it*/ |
| if (intel_dp->link_bw == DP_LINK_BW_5_4 || intel_dp->use_tps3) |
| training_pattern = DP_TRAINING_PATTERN_3; |
| |
| /* channel equalization */ |
| if (!intel_dp_set_link_train(intel_dp, &DP, |
| training_pattern | |
| DP_LINK_SCRAMBLING_DISABLE)) { |
| DRM_ERROR("failed to start channel equalization\n"); |
| return; |
| } |
| |
| tries = 0; |
| cr_tries = 0; |
| channel_eq = false; |
| for (;;) { |
| uint8_t link_status[DP_LINK_STATUS_SIZE]; |
| |
| if (cr_tries > 5) { |
| DRM_ERROR("failed to train DP, aborting\n"); |
| break; |
| } |
| |
| drm_dp_link_train_channel_eq_delay(intel_dp->dpcd); |
| if (!intel_dp_get_link_status(intel_dp, link_status)) { |
| DRM_ERROR("failed to get link status\n"); |
| break; |
| } |
| |
| /* Make sure clock is still ok */ |
| if (!drm_dp_clock_recovery_ok(link_status, intel_dp->lane_count)) { |
| intel_dp->train_set_valid = false; |
| intel_dp_start_link_train(intel_dp); |
| intel_dp_set_link_train(intel_dp, &DP, |
| training_pattern | |
| DP_LINK_SCRAMBLING_DISABLE); |
| cr_tries++; |
| continue; |
| } |
| |
| if (drm_dp_channel_eq_ok(link_status, intel_dp->lane_count)) { |
| channel_eq = true; |
| break; |
| } |
| |
| /* Try 5 times, then try clock recovery if that fails */ |
| if (tries > 5) { |
| intel_dp->train_set_valid = false; |
| intel_dp_start_link_train(intel_dp); |
| intel_dp_set_link_train(intel_dp, &DP, |
| training_pattern | |
| DP_LINK_SCRAMBLING_DISABLE); |
| tries = 0; |
| cr_tries++; |
| continue; |
| } |
| |
| /* Update training set as requested by target */ |
| if (!intel_dp_update_link_train(intel_dp, &DP, link_status)) { |
| DRM_ERROR("failed to update link training\n"); |
| break; |
| } |
| ++tries; |
| } |
| |
| intel_dp_set_idle_link_train(intel_dp); |
| |
| intel_dp->DP = DP; |
| |
| if (channel_eq) { |
| intel_dp->train_set_valid = true; |
| DRM_DEBUG_KMS("Channel EQ done. DP Training successful\n"); |
| } |
| } |
| |
| void intel_dp_stop_link_train(struct intel_dp *intel_dp) |
| { |
| intel_dp_set_link_train(intel_dp, &intel_dp->DP, |
| DP_TRAINING_PATTERN_DISABLE); |
| } |
| |
| static void |
| intel_dp_link_down(struct intel_dp *intel_dp) |
| { |
| struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp); |
| struct intel_crtc *crtc = to_intel_crtc(intel_dig_port->base.base.crtc); |
| enum port port = intel_dig_port->port; |
| struct drm_device *dev = intel_dig_port->base.base.dev; |
| struct drm_i915_private *dev_priv = dev->dev_private; |
| uint32_t DP = intel_dp->DP; |
| |
| if (WARN_ON(HAS_DDI(dev))) |
| return; |
| |
| if (WARN_ON((I915_READ(intel_dp->output_reg) & DP_PORT_EN) == 0)) |
| return; |
| |
| DRM_DEBUG_KMS("\n"); |
| |
| if ((IS_GEN7(dev) && port == PORT_A) || |
| (HAS_PCH_CPT(dev) && port != PORT_A)) { |
| DP &= ~DP_LINK_TRAIN_MASK_CPT; |
| DP |= DP_LINK_TRAIN_PAT_IDLE_CPT; |
| } else { |
| if (IS_CHERRYVIEW(dev)) |
| DP &= ~DP_LINK_TRAIN_MASK_CHV; |
| else |
| DP &= ~DP_LINK_TRAIN_MASK; |
| DP |= DP_LINK_TRAIN_PAT_IDLE; |
| } |
| I915_WRITE(intel_dp->output_reg, DP); |
| POSTING_READ(intel_dp->output_reg); |
| |
| DP &= ~(DP_PORT_EN | DP_AUDIO_OUTPUT_ENABLE); |
| I915_WRITE(intel_dp->output_reg, DP); |
| POSTING_READ(intel_dp->output_reg); |
| |
| /* |
| * HW workaround for IBX, we need to move the port |
| * to transcoder A after disabling it to allow the |
| * matching HDMI port to be enabled on transcoder A. |
| */ |
| if (HAS_PCH_IBX(dev) && crtc->pipe == PIPE_B && port != PORT_A) { |
| /* always enable with pattern 1 (as per spec) */ |
| DP &= ~(DP_PIPEB_SELECT | DP_LINK_TRAIN_MASK); |
| DP |= DP_PORT_EN | DP_LINK_TRAIN_PAT_1; |
| I915_WRITE(intel_dp->output_reg, DP); |
| POSTING_READ(intel_dp->output_reg); |
| |
| DP &= ~DP_PORT_EN; |
| I915_WRITE(intel_dp->output_reg, DP); |
| POSTING_READ(intel_dp->output_reg); |
| } |
| |
| msleep(intel_dp->panel_power_down_delay); |
| } |
| |
| static bool |
| intel_dp_get_dpcd(struct intel_dp *intel_dp) |
| { |
| struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp); |
| struct drm_device *dev = dig_port->base.base.dev; |
| struct drm_i915_private *dev_priv = dev->dev_private; |
| uint8_t rev; |
| |
| if (intel_dp_dpcd_read_wake(&intel_dp->aux, 0x000, intel_dp->dpcd, |
| sizeof(intel_dp->dpcd)) < 0) |
| return false; /* aux transfer failed */ |
| |
| DRM_DEBUG_KMS("DPCD: %*ph\n", (int) sizeof(intel_dp->dpcd), intel_dp->dpcd); |
| |
| if (intel_dp->dpcd[DP_DPCD_REV] == 0) |
| return false; /* DPCD not present */ |
| |
| /* Check if the panel supports PSR */ |
| memset(intel_dp->psr_dpcd, 0, sizeof(intel_dp->psr_dpcd)); |
| if (is_edp(intel_dp)) { |
| intel_dp_dpcd_read_wake(&intel_dp->aux, DP_PSR_SUPPORT, |
| intel_dp->psr_dpcd, |
| sizeof(intel_dp->psr_dpcd)); |
| if (intel_dp->psr_dpcd[0] & DP_PSR_IS_SUPPORTED) { |
| dev_priv->psr.sink_support = true; |
| DRM_DEBUG_KMS("Detected EDP PSR Panel.\n"); |
| } |
| |
| if (INTEL_INFO(dev)->gen >= 9 && |
| (intel_dp->psr_dpcd[0] & DP_PSR2_IS_SUPPORTED)) { |
| uint8_t frame_sync_cap; |
| |
| dev_priv->psr.sink_support = true; |
| intel_dp_dpcd_read_wake(&intel_dp->aux, |
| DP_SINK_DEVICE_AUX_FRAME_SYNC_CAP, |
| &frame_sync_cap, 1); |
| dev_priv->psr.aux_frame_sync = frame_sync_cap ? true : false; |
| /* PSR2 needs frame sync as well */ |
| dev_priv->psr.psr2_support = dev_priv->psr.aux_frame_sync; |
| DRM_DEBUG_KMS("PSR2 %s on sink", |
| dev_priv->psr.psr2_support ? "supported" : "not supported"); |
| } |
| } |
| |
| /* Training Pattern 3 support, both source and sink */ |
| if (intel_dp->dpcd[DP_DPCD_REV] >= 0x12 && |
| intel_dp->dpcd[DP_MAX_LANE_COUNT] & DP_TPS3_SUPPORTED && |
| (IS_HASWELL(dev_priv) || INTEL_INFO(dev_priv)->gen >= 8)) { |
| intel_dp->use_tps3 = true; |
| DRM_DEBUG_KMS("Displayport TPS3 supported\n"); |
| } else |
| intel_dp->use_tps3 = false; |
| |
| /* Intermediate frequency support */ |
| if (is_edp(intel_dp) && |
| (intel_dp->dpcd[DP_EDP_CONFIGURATION_CAP] & DP_DPCD_DISPLAY_CONTROL_CAPABLE) && |
| (intel_dp_dpcd_read_wake(&intel_dp->aux, DP_EDP_DPCD_REV, &rev, 1) == 1) && |
| (rev >= 0x03)) { /* eDp v1.4 or higher */ |
| __le16 sink_rates[DP_MAX_SUPPORTED_RATES]; |
| int i; |
| |
| intel_dp_dpcd_read_wake(&intel_dp->aux, |
| DP_SUPPORTED_LINK_RATES, |
| sink_rates, |
| sizeof(sink_rates)); |
| |
| for (i = 0; i < ARRAY_SIZE(sink_rates); i++) { |
| int val = le16_to_cpu(sink_rates[i]); |
| |
| if (val == 0) |
| break; |
| |
| /* Value read is in kHz while drm clock is saved in deca-kHz */ |
| intel_dp->sink_rates[i] = (val * 200) / 10; |
| } |
| intel_dp->num_sink_rates = i; |
| } |
| |
| intel_dp_print_rates(intel_dp); |
| |
| if (!(intel_dp->dpcd[DP_DOWNSTREAMPORT_PRESENT] & |
| DP_DWN_STRM_PORT_PRESENT)) |
| return true; /* native DP sink */ |
| |
| if (intel_dp->dpcd[DP_DPCD_REV] == 0x10) |
| return true; /* no per-port downstream info */ |
| |
| if (intel_dp_dpcd_read_wake(&intel_dp->aux, DP_DOWNSTREAM_PORT_0, |
| intel_dp->downstream_ports, |
| DP_MAX_DOWNSTREAM_PORTS) < 0) |
| return false; /* downstream port status fetch failed */ |
| |
| return true; |
| } |
| |
| static void |
| intel_dp_probe_oui(struct intel_dp *intel_dp) |
| { |
| u8 buf[3]; |
| |
| if (!(intel_dp->dpcd[DP_DOWN_STREAM_PORT_COUNT] & DP_OUI_SUPPORT)) |
| return; |
| |
| if (intel_dp_dpcd_read_wake(&intel_dp->aux, DP_SINK_OUI, buf, 3) == 3) |
| DRM_DEBUG_KMS("Sink OUI: %02hx%02hx%02hx\n", |
| buf[0], buf[1], buf[2]); |
| |
| if (intel_dp_dpcd_read_wake(&intel_dp->aux, DP_BRANCH_OUI, buf, 3) == 3) |
| DRM_DEBUG_KMS("Branch OUI: %02hx%02hx%02hx\n", |
| buf[0], buf[1], buf[2]); |
| } |
| |
| static bool |
| intel_dp_probe_mst(struct intel_dp *intel_dp) |
| { |
| u8 buf[1]; |
| |
| if (!intel_dp->can_mst) |
| return false; |
| |
| if (intel_dp->dpcd[DP_DPCD_REV] < 0x12) |
| return false; |
| |
| if (intel_dp_dpcd_read_wake(&intel_dp->aux, DP_MSTM_CAP, buf, 1)) { |
| if (buf[0] & DP_MST_CAP) { |
| DRM_DEBUG_KMS("Sink is MST capable\n"); |
| intel_dp->is_mst = true; |
| } else { |
| DRM_DEBUG_KMS("Sink is not MST capable\n"); |
| intel_dp->is_mst = false; |
| } |
| } |
| |
| drm_dp_mst_topology_mgr_set_mst(&intel_dp->mst_mgr, intel_dp->is_mst); |
| return intel_dp->is_mst; |
| } |
| |
| int intel_dp_sink_crc(struct intel_dp *intel_dp, u8 *crc) |
| { |
| struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp); |
| struct drm_device *dev = intel_dig_port->base.base.dev; |
| struct intel_crtc *intel_crtc = |
| to_intel_crtc(intel_dig_port->base.base.crtc); |
| u8 buf; |
| int test_crc_count; |
| int attempts = 6; |
| int ret = 0; |
| |
| hsw_disable_ips(intel_crtc); |
| |
| if (drm_dp_dpcd_readb(&intel_dp->aux, DP_TEST_SINK_MISC, &buf) < 0) { |
| ret = -EIO; |
| goto out; |
| } |
| |
| if (!(buf & DP_TEST_CRC_SUPPORTED)) { |
| ret = -ENOTTY; |
| goto out; |
| } |
| |
| if (drm_dp_dpcd_readb(&intel_dp->aux, DP_TEST_SINK, &buf) < 0) { |
| ret = -EIO; |
| goto out; |
| } |
| |
| if (drm_dp_dpcd_writeb(&intel_dp->aux, DP_TEST_SINK, |
| buf | DP_TEST_SINK_START) < 0) { |
| ret = -EIO; |
| goto out; |
| } |
| |
| if (drm_dp_dpcd_readb(&intel_dp->aux, DP_TEST_SINK_MISC, &buf) < 0) { |
| ret = -EIO; |
| goto out; |
| } |
| |
| test_crc_count = buf & DP_TEST_COUNT_MASK; |
| |
| do { |
| if (drm_dp_dpcd_readb(&intel_dp->aux, |
| DP_TEST_SINK_MISC, &buf) < 0) { |
| ret = -EIO; |
| goto out; |
| } |
| intel_wait_for_vblank(dev, intel_crtc->pipe); |
| } while (--attempts && (buf & DP_TEST_COUNT_MASK) == test_crc_count); |
| |
| if (attempts == 0) { |
| DRM_DEBUG_KMS("Panel is unable to calculate CRC after 6 vblanks\n"); |
| ret = -ETIMEDOUT; |
| goto out; |
| } |
| |
| if (drm_dp_dpcd_read(&intel_dp->aux, DP_TEST_CRC_R_CR, crc, 6) < 0) { |
| ret = -EIO; |
| goto out; |
| } |
| |
| if (drm_dp_dpcd_readb(&intel_dp->aux, DP_TEST_SINK, &buf) < 0) { |
| ret = -EIO; |
| goto out; |
| } |
| if (drm_dp_dpcd_writeb(&intel_dp->aux, DP_TEST_SINK, |
| buf & ~DP_TEST_SINK_START) < 0) { |
| ret = -EIO; |
| goto out; |
| } |
| out: |
| hsw_enable_ips(intel_crtc); |
| return ret; |
| } |
| |
| static bool |
| intel_dp_get_sink_irq(struct intel_dp *intel_dp, u8 *sink_irq_vector) |
| { |
| return intel_dp_dpcd_read_wake(&intel_dp->aux, |
| DP_DEVICE_SERVICE_IRQ_VECTOR, |
| sink_irq_vector, 1) == 1; |
| } |
| |
| static bool |
| intel_dp_get_sink_irq_esi(struct intel_dp *intel_dp, u8 *sink_irq_vector) |
| { |
| int ret; |
| |
| ret = intel_dp_dpcd_read_wake(&intel_dp->aux, |
| DP_SINK_COUNT_ESI, |
| sink_irq_vector, 14); |
| if (ret != 14) |
| return false; |
| |
| return true; |
| } |
| |
| static uint8_t intel_dp_autotest_link_training(struct intel_dp *intel_dp) |
| { |
| uint8_t test_result = DP_TEST_ACK; |
| return test_result; |
| } |
| |
| static uint8_t intel_dp_autotest_video_pattern(struct intel_dp *intel_dp) |
| { |
| uint8_t test_result = DP_TEST_NAK; |
| return test_result; |
| } |
| |
| static uint8_t intel_dp_autotest_edid(struct intel_dp *intel_dp) |
| { |
| uint8_t test_result = DP_TEST_NAK; |
| struct intel_connector *intel_connector = intel_dp->attached_connector; |
| struct drm_connector *connector = &intel_connector->base; |
| |
| if (intel_connector->detect_edid == NULL || |
| connector->edid_corrupt || |
| intel_dp->aux.i2c_defer_count > 6) { |
| /* Check EDID read for NACKs, DEFERs and corruption |
| * (DP CTS 1.2 Core r1.1) |
| * 4.2.2.4 : Failed EDID read, I2C_NAK |
| * 4.2.2.5 : Failed EDID read, I2C_DEFER |
| * 4.2.2.6 : EDID corruption detected |
| * Use failsafe mode for all cases |
| */ |
| if (intel_dp->aux.i2c_nack_count > 0 || |
| intel_dp->aux.i2c_defer_count > 0) |
| DRM_DEBUG_KMS("EDID read had %d NACKs, %d DEFERs\n", |
| intel_dp->aux.i2c_nack_count, |
| intel_dp->aux.i2c_defer_count); |
| intel_dp->compliance_test_data = INTEL_DP_RESOLUTION_FAILSAFE; |
| } else { |
| if (!drm_dp_dpcd_write(&intel_dp->aux, |
| DP_TEST_EDID_CHECKSUM, |
| &intel_connector->detect_edid->checksum, |
| 1)) |
| DRM_DEBUG_KMS("Failed to write EDID checksum\n"); |
| |
| test_result = DP_TEST_ACK | DP_TEST_EDID_CHECKSUM_WRITE; |
| intel_dp->compliance_test_data = INTEL_DP_RESOLUTION_STANDARD; |
| } |
| |
| /* Set test active flag here so userspace doesn't interrupt things */ |
| intel_dp->compliance_test_active = 1; |
| |
| return test_result; |
| } |
| |
| static uint8_t intel_dp_autotest_phy_pattern(struct intel_dp *intel_dp) |
| { |
| uint8_t test_result = DP_TEST_NAK; |
| return test_result; |
| } |
| |
| static void intel_dp_handle_test_request(struct intel_dp *intel_dp) |
| { |
| uint8_t response = DP_TEST_NAK; |
| uint8_t rxdata = 0; |
| int status = 0; |
| |
| intel_dp->compliance_test_active = 0; |
| intel_dp->compliance_test_type = 0; |
| intel_dp->compliance_test_data = 0; |
| |
| intel_dp->aux.i2c_nack_count = 0; |
| intel_dp->aux.i2c_defer_count = 0; |
| |
| status = drm_dp_dpcd_read(&intel_dp->aux, DP_TEST_REQUEST, &rxdata, 1); |
| if (status <= 0) { |
| DRM_DEBUG_KMS("Could not read test request from sink\n"); |
| goto update_status; |
| } |
| |
| switch (rxdata) { |
| case DP_TEST_LINK_TRAINING: |
| DRM_DEBUG_KMS("LINK_TRAINING test requested\n"); |
| intel_dp->compliance_test_type = DP_TEST_LINK_TRAINING; |
| response = intel_dp_autotest_link_training(intel_dp); |
| break; |
| case DP_TEST_LINK_VIDEO_PATTERN: |
| DRM_DEBUG_KMS("TEST_PATTERN test requested\n"); |
| intel_dp->compliance_test_type = DP_TEST_LINK_VIDEO_PATTERN; |
| response = intel_dp_autotest_video_pattern(intel_dp); |
| break; |
| case DP_TEST_LINK_EDID_READ: |
| DRM_DEBUG_KMS("EDID test requested\n"); |
| intel_dp->compliance_test_type = DP_TEST_LINK_EDID_READ; |
| response = intel_dp_autotest_edid(intel_dp); |
| break; |
| case DP_TEST_LINK_PHY_TEST_PATTERN: |
| DRM_DEBUG_KMS("PHY_PATTERN test requested\n"); |
| intel_dp->compliance_test_type = DP_TEST_LINK_PHY_TEST_PATTERN; |
| response = intel_dp_autotest_phy_pattern(intel_dp); |
| break; |
| default: |
| DRM_DEBUG_KMS("Invalid test request '%02x'\n", rxdata); |
| break; |
| } |
| |
| update_status: |
| status = drm_dp_dpcd_write(&intel_dp->aux, |
| DP_TEST_RESPONSE, |
| &response, 1); |
| if (status <= 0) |
| DRM_DEBUG_KMS("Could not write test response to sink\n"); |
| } |
| |
| static int |
| intel_dp_check_mst_status(struct intel_dp *intel_dp) |
| { |
| bool bret; |
| |
| if (intel_dp->is_mst) { |
| u8 esi[16] = { 0 }; |
| int ret = 0; |
| int retry; |
| bool handled; |
| bret = intel_dp_get_sink_irq_esi(intel_dp, esi); |
| go_again: |
| if (bret == true) { |
| |
| /* check link status - esi[10] = 0x200c */ |
| if (intel_dp->active_mst_links && !drm_dp_channel_eq_ok(&esi[10], intel_dp->lane_count)) { |
| DRM_DEBUG_KMS("channel EQ not ok, retraining\n"); |
| intel_dp_start_link_train(intel_dp); |
| intel_dp_complete_link_train(intel_dp); |
| intel_dp_stop_link_train(intel_dp); |
| } |
| |
| DRM_DEBUG_KMS("got esi %3ph\n", esi); |
| ret = drm_dp_mst_hpd_irq(&intel_dp->mst_mgr, esi, &handled); |
| |
| if (handled) { |
| for (retry = 0; retry < 3; retry++) { |
| int wret; |
| wret = drm_dp_dpcd_write(&intel_dp->aux, |
| DP_SINK_COUNT_ESI+1, |
| &esi[1], 3); |
| if (wret == 3) { |
| break; |
| } |
| } |
| |
| bret = intel_dp_get_sink_irq_esi(intel_dp, esi); |
| if (bret == true) { |
| DRM_DEBUG_KMS("got esi2 %3ph\n", esi); |
| goto go_again; |
| } |
| } else |
| ret = 0; |
| |
| return ret; |
| } else { |
| struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp); |
| DRM_DEBUG_KMS("failed to get ESI - device may have failed\n"); |
| intel_dp->is_mst = false; |
| drm_dp_mst_topology_mgr_set_mst(&intel_dp->mst_mgr, intel_dp->is_mst); |
| /* send a hotplug event */ |
| drm_kms_helper_hotplug_event(intel_dig_port->base.base.dev); |
| } |
| } |
| return -EINVAL; |
| } |
| |
| /* |
| * According to DP spec |
| * 5.1.2: |
| * 1. Read DPCD |
| * 2. Configure link according to Receiver Capabilities |
| * 3. Use Link Training from 2.5.3.3 and 3.5.1.3 |
| * 4. Check link status on receipt of hot-plug interrupt |
| */ |
| static void |
| intel_dp_check_link_status(struct intel_dp *intel_dp) |
| { |
| struct drm_device *dev = intel_dp_to_dev(intel_dp); |
| struct intel_encoder *intel_encoder = &dp_to_dig_port(intel_dp)->base; |
| u8 sink_irq_vector; |
| u8 link_status[DP_LINK_STATUS_SIZE]; |
| |
| WARN_ON(!drm_modeset_is_locked(&dev->mode_config.connection_mutex)); |
| |
| if (!intel_encoder->connectors_active) |
| return; |
| |
| if (WARN_ON(!intel_encoder->base.crtc)) |
| return; |
| |
| if (!to_intel_crtc(intel_encoder->base.crtc)->active) |
| return; |
| |
| /* Try to read receiver status if the link appears to be up */ |
| if (!intel_dp_get_link_status(intel_dp, link_status)) { |
| return; |
| } |
| |
| /* Now read the DPCD to see if it's actually running */ |
| if (!intel_dp_get_dpcd(intel_dp)) { |
| return; |
| } |
| |
| /* Try to read the source of the interrupt */ |
| if (intel_dp->dpcd[DP_DPCD_REV] >= 0x11 && |
| intel_dp_get_sink_irq(intel_dp, &sink_irq_vector)) { |
| /* Clear interrupt source */ |
| drm_dp_dpcd_writeb(&intel_dp->aux, |
| DP_DEVICE_SERVICE_IRQ_VECTOR, |
| sink_irq_vector); |
| |
| if (sink_irq_vector & DP_AUTOMATED_TEST_REQUEST) |
| DRM_DEBUG_DRIVER("Test request in short pulse not handled\n"); |
| if (sink_irq_vector & (DP_CP_IRQ | DP_SINK_SPECIFIC_IRQ)) |
| DRM_DEBUG_DRIVER("CP or sink specific irq unhandled\n"); |
| } |
| |
| if (!drm_dp_channel_eq_ok(link_status, intel_dp->lane_count)) { |
| DRM_DEBUG_KMS("%s: channel EQ not ok, retraining\n", |
| intel_encoder->base.name); |
| intel_dp_start_link_train(intel_dp); |
| intel_dp_complete_link_train(intel_dp); |
| intel_dp_stop_link_train(intel_dp); |
| } |
| } |
| |
| /* XXX this is probably wrong for multiple downstream ports */ |
| static enum drm_connector_status |
| intel_dp_detect_dpcd(struct intel_dp *intel_dp) |
| { |
| uint8_t *dpcd = intel_dp->dpcd; |
| uint8_t type; |
| |
| if (!intel_dp_get_dpcd(intel_dp)) |
| return connector_status_disconnected; |
| |
| /* if there's no downstream port, we're done */ |
| if (!(dpcd[DP_DOWNSTREAMPORT_PRESENT] & DP_DWN_STRM_PORT_PRESENT)) |
| return connector_status_connected; |
| |
| /* If we're HPD-aware, SINK_COUNT changes dynamically */ |
| if (intel_dp->dpcd[DP_DPCD_REV] >= 0x11 && |
| intel_dp->downstream_ports[0] & DP_DS_PORT_HPD) { |
| uint8_t reg; |
| |
| if (intel_dp_dpcd_read_wake(&intel_dp->aux, DP_SINK_COUNT, |
| ®, 1) < 0) |
| return connector_status_unknown; |
| |
| return DP_GET_SINK_COUNT(reg) ? connector_status_connected |
| : connector_status_disconnected; |
| } |
| |
| /* If no HPD, poke DDC gently */ |
| if (drm_probe_ddc(&intel_dp->aux.ddc)) |
| return connector_status_connected; |
| |
| /* Well we tried, say unknown for unreliable port types */ |
| if (intel_dp->dpcd[DP_DPCD_REV] >= 0x11) { |
| type = intel_dp->downstream_ports[0] & DP_DS_PORT_TYPE_MASK; |
| if (type == DP_DS_PORT_TYPE_VGA || |
| type == DP_DS_PORT_TYPE_NON_EDID) |
| return connector_status_unknown; |
| } else { |
| type = intel_dp->dpcd[DP_DOWNSTREAMPORT_PRESENT] & |
| DP_DWN_STRM_PORT_TYPE_MASK; |
| if (type == DP_DWN_STRM_PORT_TYPE_ANALOG || |
| type == DP_DWN_STRM_PORT_TYPE_OTHER) |
| return connector_status_unknown; |
| } |
| |
| /* Anything else is out of spec, warn and ignore */ |
| DRM_DEBUG_KMS("Broken DP branch device, ignoring\n"); |
| return connector_status_disconnected; |
| } |
| |
| static enum drm_connector_status |
| edp_detect(struct intel_dp *intel_dp) |
| { |
| struct drm_device *dev = intel_dp_to_dev(intel_dp); |
| enum drm_connector_status status; |
| |
| status = intel_panel_detect(dev); |
| if (status == connector_status_unknown) |
| status = connector_status_connected; |
| |
| return status; |
| } |
| |
| static enum drm_connector_status |
| ironlake_dp_detect(struct intel_dp *intel_dp) |
| { |
| struct drm_device *dev = intel_dp_to_dev(intel_dp); |
| struct drm_i915_private *dev_priv = dev->dev_private; |
| struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp); |
| |
| if (!ibx_digital_port_connected(dev_priv, intel_dig_port)) |
| return connector_status_disconnected; |
| |
| return intel_dp_detect_dpcd(intel_dp); |
| } |
| |
| static int g4x_digital_port_connected(struct drm_device *dev, |
| struct intel_digital_port *intel_dig_port) |
| { |
| struct drm_i915_private *dev_priv = dev->dev_private; |
| uint32_t bit; |
| |
| if (IS_VALLEYVIEW(dev)) { |
| switch (intel_dig_port->port) { |
| case PORT_B: |
| bit = PORTB_HOTPLUG_LIVE_STATUS_VLV; |
| break; |
| case PORT_C: |
| bit = PORTC_HOTPLUG_LIVE_STATUS_VLV; |
| break; |
| case PORT_D: |
| bit = PORTD_HOTPLUG_LIVE_STATUS_VLV; |
| break; |
| default: |
| return -EINVAL; |
| } |
| } else { |
| switch (intel_dig_port->port) { |
| case PORT_B: |
| bit = PORTB_HOTPLUG_LIVE_STATUS_G4X; |
| break; |
| case PORT_C: |
| bit = PORTC_HOTPLUG_LIVE_STATUS_G4X; |
| break; |
| case PORT_D: |
| bit = PORTD_HOTPLUG_LIVE_STATUS_G4X; |
| break; |
| default: |
| return -EINVAL; |
| } |
| } |
| |
| if ((I915_READ(PORT_HOTPLUG_STAT) & bit) == 0) |
| return 0; |
| return 1; |
| } |
| |
| static enum drm_connector_status |
| g4x_dp_detect(struct intel_dp *intel_dp) |
| { |
| struct drm_device *dev = intel_dp_to_dev(intel_dp); |
| struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp); |
| int ret; |
| |
| /* Can't disconnect eDP, but you can close the lid... */ |
| if (is_edp(intel_dp)) { |
| enum drm_connector_status status; |
| |
| status = intel_panel_detect(dev); |
| if (status == connector_status_unknown) |
| status = connector_status_connected; |
| return status; |
| } |
| |
| ret = g4x_digital_port_connected(dev, intel_dig_port); |
| if (ret == -EINVAL) |
| return connector_status_unknown; |
| else if (ret == 0) |
| return connector_status_disconnected; |
| |
| return intel_dp_detect_dpcd(intel_dp); |
| } |
| |
| static struct edid * |
| intel_dp_get_edid(struct intel_dp *intel_dp) |
| { |
| struct intel_connector *intel_connector = intel_dp->attached_connector; |
| |
| /* use cached edid if we have one */ |
| if (intel_connector->edid) { |
| /* invalid edid */ |
| if (IS_ERR(intel_connector->edid)) |
| return NULL; |
| |
| return drm_edid_duplicate(intel_connector->edid); |
| } else |
| return drm_get_edid(&intel_connector->base, |
| &intel_dp->aux.ddc); |
| } |
| |
| static void |
| intel_dp_set_edid(struct intel_dp *intel_dp) |
| { |
| struct intel_connector *intel_connector = intel_dp->attached_connector; |
| struct edid *edid; |
| |
| edid = intel_dp_get_edid(intel_dp); |
| intel_connector->detect_edid = edid; |
| |
| if (intel_dp->force_audio != HDMI_AUDIO_AUTO) |
| intel_dp->has_audio = intel_dp->force_audio == HDMI_AUDIO_ON; |
| else |
| intel_dp->has_audio = drm_detect_monitor_audio(edid); |
| } |
| |
| static void |
| intel_dp_unset_edid(struct intel_dp *intel_dp) |
| { |
| struct intel_connector *intel_connector = intel_dp->attached_connector; |
| |
| kfree(intel_connector->detect_edid); |
| intel_connector->detect_edid = NULL; |
| |
| intel_dp->has_audio = false; |
| } |
| |
| static enum intel_display_power_domain |
| intel_dp_power_get(struct intel_dp *dp) |
| { |
| struct intel_encoder *encoder = &dp_to_dig_port(dp)->base; |
| enum intel_display_power_domain power_domain; |
| |
| power_domain = intel_display_port_power_domain(encoder); |
| intel_display_power_get(to_i915(encoder->base.dev), power_domain); |
| |
| return power_domain; |
| } |
| |
| static void |
| intel_dp_power_put(struct intel_dp *dp, |
| enum intel_display_power_domain power_domain) |
| { |
| struct intel_encoder *encoder = &dp_to_dig_port(dp)->base; |
| intel_display_power_put(to_i915(encoder->base.dev), power_domain); |
| } |
| |
| static enum drm_connector_status |
| intel_dp_detect(struct drm_connector *connector, bool force) |
| { |
| struct intel_dp *intel_dp = intel_attached_dp(connector); |
| struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp); |
| struct intel_encoder *intel_encoder = &intel_dig_port->base; |
| struct drm_device *dev = connector->dev; |
| enum drm_connector_status status; |
| enum intel_display_power_domain power_domain; |
| bool ret; |
| u8 sink_irq_vector; |
| |
| DRM_DEBUG_KMS("[CONNECTOR:%d:%s]\n", |
| connector->base.id, connector->name); |
| intel_dp_unset_edid(intel_dp); |
| |
| if (intel_dp->is_mst) { |
| /* MST devices are disconnected from a monitor POV */ |
| if (intel_encoder->type != INTEL_OUTPUT_EDP) |
| intel_encoder->type = INTEL_OUTPUT_DISPLAYPORT; |
| return connector_status_disconnected; |
| } |
| |
| power_domain = intel_dp_power_get(intel_dp); |
| |
| /* Can't disconnect eDP, but you can close the lid... */ |
| if (is_edp(intel_dp)) |
| status = edp_detect(intel_dp); |
| else if (HAS_PCH_SPLIT(dev)) |
| status = ironlake_dp_detect(intel_dp); |
| else |
| status = g4x_dp_detect(intel_dp); |
| if (status != connector_status_connected) |
| goto out; |
| |
| intel_dp_probe_oui(intel_dp); |
| |
| ret = intel_dp_probe_mst(intel_dp); |
| if (ret) { |
| /* if we are in MST mode then this connector |
| won't appear connected or have anything with EDID on it */ |
| if (intel_encoder->type != INTEL_OUTPUT_EDP) |
| intel_encoder->type = INTEL_OUTPUT_DISPLAYPORT; |
| status = connector_status_disconnected; |
| goto out; |
| } |
| |
| intel_dp_set_edid(intel_dp); |
| |
| if (intel_encoder->type != INTEL_OUTPUT_EDP) |
| intel_encoder->type = INTEL_OUTPUT_DISPLAYPORT; |
| status = connector_status_connected; |
| |
| /* Try to read the source of the interrupt */ |
| if (intel_dp->dpcd[DP_DPCD_REV] >= 0x11 && |
| intel_dp_get_sink_irq(intel_dp, &sink_irq_vector)) { |
| /* Clear interrupt source */ |
| drm_dp_dpcd_writeb(&intel_dp->aux, |
| DP_DEVICE_SERVICE_IRQ_VECTOR, |
| sink_irq_vector); |
| |
| if (sink_irq_vector & DP_AUTOMATED_TEST_REQUEST) |
| intel_dp_handle_test_request(intel_dp); |
| if (sink_irq_vector & (DP_CP_IRQ | DP_SINK_SPECIFIC_IRQ)) |
| DRM_DEBUG_DRIVER("CP or sink specific irq unhandled\n"); |
| } |
| |
| out: |
| intel_dp_power_put(intel_dp, power_domain); |
| return status; |
| } |
| |
| static void |
| intel_dp_force(struct drm_connector *connector) |
| { |
| struct intel_dp *intel_dp = intel_attached_dp(connector); |
| struct intel_encoder *intel_encoder = &dp_to_dig_port(intel_dp)->base; |
| enum intel_display_power_domain power_domain; |
| |
| DRM_DEBUG_KMS("[CONNECTOR:%d:%s]\n", |
| connector->base.id, connector->name); |
| intel_dp_unset_edid(intel_dp); |
| |
| if (connector->status != connector_status_connected) |
| return; |
| |
| power_domain = intel_dp_power_get(intel_dp); |
| |
| intel_dp_set_edid(intel_dp); |
| |
| intel_dp_power_put(intel_dp, power_domain); |
| |
| if (intel_encoder->type != INTEL_OUTPUT_EDP) |
| intel_encoder->type = INTEL_OUTPUT_DISPLAYPORT; |
| } |
| |
| static int intel_dp_get_modes(struct drm_connector *connector) |
| { |
| struct intel_connector *intel_connector = to_intel_connector(connector); |
| struct edid *edid; |
| |
| edid = intel_connector->detect_edid; |
| if (edid) { |
| int ret = intel_connector_update_modes(connector, edid); |
| if (ret) |
| return ret; |
| } |
| |
| /* if eDP has no EDID, fall back to fixed mode */ |
| if (is_edp(intel_attached_dp(connector)) && |
| intel_connector->panel.fixed_mode) { |
| struct drm_display_mode *mode; |
| |
| mode = drm_mode_duplicate(connector->dev, |
| intel_connector->panel.fixed_mode); |
| if (mode) { |
| drm_mode_probed_add(connector, mode); |
| return 1; |
| } |
| } |
| |
| return 0; |
| } |
| |
| static bool |
| intel_dp_detect_audio(struct drm_connector *connector) |
| { |
| bool has_audio = false; |
| struct edid *edid; |
| |
| edid = to_intel_connector(connector)->detect_edid; |
| if (edid) |
| has_audio = drm_detect_monitor_audio(edid); |
| |
| return has_audio; |
| } |
| |
| static int |
| intel_dp_set_property(struct drm_connector *connector, |
| struct drm_property *property, |
| uint64_t val) |
| { |
| struct drm_i915_private *dev_priv = connector->dev->dev_private; |
| struct intel_connector *intel_connector = to_intel_connector(connector); |
| struct intel_encoder *intel_encoder = intel_attached_encoder(connector); |
| struct intel_dp *intel_dp = enc_to_intel_dp(&intel_encoder->base); |
| int ret; |
| |
| ret = drm_object_property_set_value(&connector->base, property, val); |
| if (ret) |
| return ret; |
| |
| if (property == dev_priv->force_audio_property) { |
| int i = val; |
| bool has_audio; |
| |
| if (i == intel_dp->force_audio) |
| return 0; |
| |
| intel_dp->force_audio = i; |
| |
| if (i == HDMI_AUDIO_AUTO) |
| has_audio = intel_dp_detect_audio(connector); |
| else |
| has_audio = (i == HDMI_AUDIO_ON); |
| |
| if (has_audio == intel_dp->has_audio) |
| return 0; |
| |
| intel_dp->has_audio = has_audio; |
| goto done; |
| } |
| |
| if (property == dev_priv->broadcast_rgb_property) { |
| bool old_auto = intel_dp->color_range_auto; |
| uint32_t old_range = intel_dp->color_range; |
| |
| switch (val) { |
| case INTEL_BROADCAST_RGB_AUTO: |
| intel_dp->color_range_auto = true; |
| break; |
| case INTEL_BROADCAST_RGB_FULL: |
| intel_dp->color_range_auto = false; |
| intel_dp->color_range = 0; |
| break; |
| case INTEL_BROADCAST_RGB_LIMITED: |
| intel_dp->color_range_auto = false; |
| intel_dp->color_range = DP_COLOR_RANGE_16_235; |
| break; |
| default: |
| return -EINVAL; |
| } |
| |
| if (old_auto == intel_dp->color_range_auto && |
| old_range == intel_dp->color_range) |
| return 0; |
| |
| goto done; |
| } |
| |
| if (is_edp(intel_dp) && |
| property == connector->dev->mode_config.scaling_mode_property) { |
| if (val == DRM_MODE_SCALE_NONE) { |
| DRM_DEBUG_KMS("no scaling not supported\n"); |
| return -EINVAL; |
| } |
| |
| if (intel_connector->panel.fitting_mode == val) { |
| /* the eDP scaling property is not changed */ |
| return 0; |
| } |
| intel_connector->panel.fitting_mode = val; |
| |
| goto done; |
| } |
| |
| return -EINVAL; |
| |
| done: |
| if (intel_encoder->base.crtc) |
| intel_crtc_restore_mode(intel_encoder->base.crtc); |
| |
| return 0; |
| } |
| |
| static void |
| intel_dp_connector_destroy(struct drm_connector *connector) |
| { |
| struct intel_connector *intel_connector = to_intel_connector(connector); |
| |
| kfree(intel_connector->detect_edid); |
| |
| if (!IS_ERR_OR_NULL(intel_connector->edid)) |
| kfree(intel_connector->edid); |
| |
| /* Can't call is_edp() since the encoder may have been destroyed |
| * already. */ |
| if (connector->connector_type == DRM_MODE_CONNECTOR_eDP) |
| intel_panel_fini(&intel_connector->panel); |
| |
| drm_connector_cleanup(connector); |
| kfree(connector); |
| } |
| |
| void intel_dp_encoder_destroy(struct drm_encoder *encoder) |
| { |
| struct intel_digital_port *intel_dig_port = enc_to_dig_port(encoder); |
| struct intel_dp *intel_dp = &intel_dig_port->dp; |
| |
| drm_dp_aux_unregister(&intel_dp->aux); |
| intel_dp_mst_encoder_cleanup(intel_dig_port); |
| if (is_edp(intel_dp)) { |
| cancel_delayed_work_sync(&intel_dp->panel_vdd_work); |
| /* |
| * vdd might still be enabled do to the delayed vdd off. |
| * Make sure vdd is actually turned off here. |
| */ |
| pps_lock(intel_dp); |
| edp_panel_vdd_off_sync(intel_dp); |
| pps_unlock(intel_dp); |
| |
| if (intel_dp->edp_notifier.notifier_call) { |
| unregister_reboot_notifier(&intel_dp->edp_notifier); |
| intel_dp->edp_notifier.notifier_call = NULL; |
| } |
| } |
| drm_encoder_cleanup(encoder); |
| kfree(intel_dig_port); |
| } |
| |
| static void intel_dp_encoder_suspend(struct intel_encoder *intel_encoder) |
| { |
| struct intel_dp *intel_dp = enc_to_intel_dp(&intel_encoder->base); |
| |
| if (!is_edp(intel_dp)) |
| return; |
| |
| /* |
| * vdd might still be enabled do to the delayed vdd off. |
| * Make sure vdd is actually turned off here. |
| */ |
| cancel_delayed_work_sync(&intel_dp->panel_vdd_work); |
| pps_lock(intel_dp); |
| edp_panel_vdd_off_sync(intel_dp); |
| pps_unlock(intel_dp); |
| } |
| |
| static void intel_edp_panel_vdd_sanitize(struct intel_dp *intel_dp) |
| { |
| struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp); |
| struct drm_device *dev = intel_dig_port->base.base.dev; |
| struct drm_i915_private *dev_priv = dev->dev_private; |
| enum intel_display_power_domain power_domain; |
| |
| lockdep_assert_held(&dev_priv->pps_mutex); |
| |
| if (!edp_have_panel_vdd(intel_dp)) |
| return; |
| |
| /* |
| * The VDD bit needs a power domain reference, so if the bit is |
| * already enabled when we boot or resume, grab this reference and |
| * schedule a vdd off, so we don't hold on to the reference |
| * indefinitely. |
| */ |
| DRM_DEBUG_KMS("VDD left on by BIOS, adjusting state tracking\n"); |
| power_domain = intel_display_port_power_domain(&intel_dig_port->base); |
| intel_display_power_get(dev_priv, power_domain); |
| |
| edp_panel_vdd_schedule_off(intel_dp); |
| } |
| |
| static void intel_dp_encoder_reset(struct drm_encoder *encoder) |
| { |
| struct intel_dp *intel_dp; |
| |
| if (to_intel_encoder(encoder)->type != INTEL_OUTPUT_EDP) |
| return; |
| |
| intel_dp = enc_to_intel_dp(encoder); |
| |
| pps_lock(intel_dp); |
| |
| /* |
| * Read out the current power sequencer assignment, |
| * in case the BIOS did something with it. |
| */ |
| if (IS_VALLEYVIEW(encoder->dev)) |
| vlv_initial_power_sequencer_setup(intel_dp); |
| |
| intel_edp_panel_vdd_sanitize(intel_dp); |
| |
| pps_unlock(intel_dp); |
| } |
| |
| static const struct drm_connector_funcs intel_dp_connector_funcs = { |
| .dpms = intel_connector_dpms, |
| .detect = intel_dp_detect, |
| .force = intel_dp_force, |
| .fill_modes = drm_helper_probe_single_connector_modes, |
| .set_property = intel_dp_set_property, |
| .atomic_get_property = intel_connector_atomic_get_property, |
| .destroy = intel_dp_connector_destroy, |
| .atomic_destroy_state = drm_atomic_helper_connector_destroy_state, |
| .atomic_duplicate_state = drm_atomic_helper_connector_duplicate_state, |
| }; |
| |
| static const struct drm_connector_helper_funcs intel_dp_connector_helper_funcs = { |
| .get_modes = intel_dp_get_modes, |
| .mode_valid = intel_dp_mode_valid, |
| .best_encoder = intel_best_encoder, |
| }; |
| |
| static const struct drm_encoder_funcs intel_dp_enc_funcs = { |
| .reset = intel_dp_encoder_reset, |
| .destroy = intel_dp_encoder_destroy, |
| }; |
| |
| enum irqreturn |
| intel_dp_hpd_pulse(struct intel_digital_port *intel_dig_port, bool long_hpd) |
| { |
| struct intel_dp *intel_dp = &intel_dig_port->dp; |
| struct intel_encoder *intel_encoder = &intel_dig_port->base; |
| struct drm_device *dev = intel_dig_port->base.base.dev; |
| struct drm_i915_private *dev_priv = dev->dev_private; |
| enum intel_display_power_domain power_domain; |
| enum irqreturn ret = IRQ_NONE; |
| |
| if (intel_dig_port->base.type != INTEL_OUTPUT_EDP) |
| intel_dig_port->base.type = INTEL_OUTPUT_DISPLAYPORT; |
| |
| if (long_hpd && intel_dig_port->base.type == INTEL_OUTPUT_EDP) { |
| /* |
| * vdd off can generate a long pulse on eDP which |
| * would require vdd on to handle it, and thus we |
| * would end up in an endless cycle of |
| * "vdd off -> long hpd -> vdd on -> detect -> vdd off -> ..." |
| */ |
| DRM_DEBUG_KMS("ignoring long hpd on eDP port %c\n", |
| port_name(intel_dig_port->port)); |
| return IRQ_HANDLED; |
| } |
| |
| DRM_DEBUG_KMS("got hpd irq on port %c - %s\n", |
| port_name(intel_dig_port->port), |
| long_hpd ? "long" : "short"); |
| |
| power_domain = intel_display_port_power_domain(intel_encoder); |
| intel_display_power_get(dev_priv, power_domain); |
| |
| if (long_hpd) { |
| /* indicate that we need to restart link training */ |
| intel_dp->train_set_valid = false; |
| |
| if (HAS_PCH_SPLIT(dev)) { |
| if (!ibx_digital_port_connected(dev_priv, intel_dig_port)) |
| goto mst_fail; |
| } else { |
| if (g4x_digital_port_connected(dev, intel_dig_port) != 1) |
| goto mst_fail; |
| } |
| |
| if (!intel_dp_get_dpcd(intel_dp)) { |
| goto mst_fail; |
| } |
| |
| intel_dp_probe_oui(intel_dp); |
| |
| if (!intel_dp_probe_mst(intel_dp)) |
| goto mst_fail; |
| |
| } else { |
| if (intel_dp->is_mst) { |
| if (intel_dp_check_mst_status(intel_dp) == -EINVAL) |
| goto mst_fail; |
| } |
| |
| if (!intel_dp->is_mst) { |
| /* |
| * we'll check the link status via the normal hot plug path later - |
| * but for short hpds we should check it now |
| */ |
| drm_modeset_lock(&dev->mode_config.connection_mutex, NULL); |
| intel_dp_check_link_status(intel_dp); |
| drm_modeset_unlock(&dev->mode_config.connection_mutex); |
| } |
| } |
| |
| ret = IRQ_HANDLED; |
| |
| goto put_power; |
| mst_fail: |
| /* if we were in MST mode, and device is not there get out of MST mode */ |
| if (intel_dp->is_mst) { |
| DRM_DEBUG_KMS("MST device may have disappeared %d vs %d\n", intel_dp->is_mst, intel_dp->mst_mgr.mst_state); |
| intel_dp->is_mst = false; |
| drm_dp_mst_topology_mgr_set_mst(&intel_dp->mst_mgr, intel_dp->is_mst); |
| } |
| put_power: |
| intel_display_power_put(dev_priv, power_domain); |
| |
| return ret; |
| } |
| |
| /* Return which DP Port should be selected for Transcoder DP control */ |
| int |
| intel_trans_dp_port_sel(struct drm_crtc *crtc) |
| { |
| struct drm_device *dev = crtc->dev; |
| struct intel_encoder *intel_encoder; |
| struct intel_dp *intel_dp; |
| |
| for_each_encoder_on_crtc(dev, crtc, intel_encoder) { |
| intel_dp = enc_to_intel_dp(&intel_encoder->base); |
| |
| if (intel_encoder->type == INTEL_OUTPUT_DISPLAYPORT || |
| intel_encoder->type == INTEL_OUTPUT_EDP) |
| return intel_dp->output_reg; |
| } |
| |
| return -1; |
| } |
| |
| /* check the VBT to see whether the eDP is on DP-D port */ |
| bool intel_dp_is_edp(struct drm_device *dev, enum port port) |
| { |
| struct drm_i915_private *dev_priv = dev->dev_private; |
| union child_device_config *p_child; |
| int i; |
| static const short port_mapping[] = { |
| [PORT_B] = PORT_IDPB, |
| [PORT_C] = PORT_IDPC, |
| [PORT_D] = PORT_IDPD, |
| }; |
| |
| if (port == PORT_A) |
| return true; |
| |
| if (!dev_priv->vbt.child_dev_num) |
| return false; |
| |
| for (i = 0; i < dev_priv->vbt.child_dev_num; i++) { |
| p_child = dev_priv->vbt.child_dev + i; |
| |
| if (p_child->common.dvo_port == port_mapping[port] && |
| (p_child->common.device_type & DEVICE_TYPE_eDP_BITS) == |
| (DEVICE_TYPE_eDP & DEVICE_TYPE_eDP_BITS)) |
| return true; |
| } |
| return false; |
| } |
| |
| void |
| intel_dp_add_properties(struct intel_dp *intel_dp, struct drm_connector *connector) |
| { |
| struct intel_connector *intel_connector = to_intel_connector(connector); |
| |
| intel_attach_force_audio_property(connector); |
| intel_attach_broadcast_rgb_property(connector); |
| intel_dp->color_range_auto = true; |
| |
| if (is_edp(intel_dp)) { |
| drm_mode_create_scaling_mode_property(connector->dev); |
| drm_object_attach_property( |
| &connector->base, |
| connector->dev->mode_config.scaling_mode_property, |
| DRM_MODE_SCALE_ASPECT); |
| intel_connector->panel.fitting_mode = DRM_MODE_SCALE_ASPECT; |
| } |
| } |
| |
| static void intel_dp_init_panel_power_timestamps(struct intel_dp *intel_dp) |
| { |
| intel_dp->last_power_cycle = jiffies; |
| intel_dp->last_power_on = jiffies; |
| intel_dp->last_backlight_off = jiffies; |
| } |
| |
| static void |
| intel_dp_init_panel_power_sequencer(struct drm_device *dev, |
| struct intel_dp *intel_dp) |
| { |
| struct drm_i915_private *dev_priv = dev->dev_private; |
| struct edp_power_seq cur, vbt, spec, |
| *final = &intel_dp->pps_delays; |
| u32 pp_on, pp_off, pp_div = 0, pp_ctl = 0; |
| int pp_ctrl_reg, pp_on_reg, pp_off_reg, pp_div_reg = 0; |
| |
| lockdep_assert_held(&dev_priv->pps_mutex); |
| |
| /* already initialized? */ |
| if (final->t11_t12 != 0) |
| return; |
| |
| if (IS_BROXTON(dev)) { |
| /* |
| * TODO: BXT has 2 sets of PPS registers. |
| * Correct Register for Broxton need to be identified |
| * using VBT. hardcoding for now |
| */ |
| pp_ctrl_reg = BXT_PP_CONTROL(0); |
| pp_on_reg = BXT_PP_ON_DELAYS(0); |
| pp_off_reg = BXT_PP_OFF_DELAYS(0); |
| } else if (HAS_PCH_SPLIT(dev)) { |
| pp_ctrl_reg = PCH_PP_CONTROL; |
| pp_on_reg = PCH_PP_ON_DELAYS; |
| pp_off_reg = PCH_PP_OFF_DELAYS; |
| pp_div_reg = PCH_PP_DIVISOR; |
| } else { |
| enum pipe pipe = vlv_power_sequencer_pipe(intel_dp); |
| |
| pp_ctrl_reg = VLV_PIPE_PP_CONTROL(pipe); |
| pp_on_reg = VLV_PIPE_PP_ON_DELAYS(pipe); |
| pp_off_reg = VLV_PIPE_PP_OFF_DELAYS(pipe); |
| pp_div_reg = VLV_PIPE_PP_DIVISOR(pipe); |
| } |
| |
| /* Workaround: Need to write PP_CONTROL with the unlock key as |
| * the very first thing. */ |
| pp_ctl = ironlake_get_pp_control(intel_dp); |
| |
| pp_on = I915_READ(pp_on_reg); |
| pp_off = I915_READ(pp_off_reg); |
| if (!IS_BROXTON(dev)) { |
| I915_WRITE(pp_ctrl_reg, pp_ctl); |
| pp_div = I915_READ(pp_div_reg); |
| } |
| |
| /* Pull timing values out of registers */ |
| cur.t1_t3 = (pp_on & PANEL_POWER_UP_DELAY_MASK) >> |
| PANEL_POWER_UP_DELAY_SHIFT; |
| |
| cur.t8 = (pp_on & PANEL_LIGHT_ON_DELAY_MASK) >> |
| PANEL_LIGHT_ON_DELAY_SHIFT; |
| |
| cur.t9 = (pp_off & PANEL_LIGHT_OFF_DELAY_MASK) >> |
| PANEL_LIGHT_OFF_DELAY_SHIFT; |
| |
| cur.t10 = (pp_off & PANEL_POWER_DOWN_DELAY_MASK) >> |
| PANEL_POWER_DOWN_DELAY_SHIFT; |
| |
| if (IS_BROXTON(dev)) { |
| u16 tmp = (pp_ctl & BXT_POWER_CYCLE_DELAY_MASK) >> |
| BXT_POWER_CYCLE_DELAY_SHIFT; |
| if (tmp > 0) |
| cur.t11_t12 = (tmp - 1) * 1000; |
| else |
| cur.t11_t12 = 0; |
| } else { |
| cur.t11_t12 = ((pp_div & PANEL_POWER_CYCLE_DELAY_MASK) >> |
| PANEL_POWER_CYCLE_DELAY_SHIFT) * 1000; |
| } |
| |
| DRM_DEBUG_KMS("cur t1_t3 %d t8 %d t9 %d t10 %d t11_t12 %d\n", |
| cur.t1_t3, cur.t8, cur.t9, cur.t10, cur.t11_t12); |
| |
| vbt = dev_priv->vbt.edp_pps; |
| |
| /* Upper limits from eDP 1.3 spec. Note that we use the clunky units of |
| * our hw here, which are all in 100usec. */ |
| spec.t1_t3 = 210 * 10; |
| spec.t8 = 50 * 10; /* no limit for t8, use t7 instead */ |
| spec.t9 = 50 * 10; /* no limit for t9, make it symmetric with t8 */ |
| spec.t10 = 500 * 10; |
| /* This one is special and actually in units of 100ms, but zero |
| * based in the hw (so we need to add 100 ms). But the sw vbt |
| * table multiplies it with 1000 to make it in units of 100usec, |
| * too. */ |
| spec.t11_t12 = (510 + 100) * 10; |
| |
| DRM_DEBUG_KMS("vbt t1_t3 %d t8 %d t9 %d t10 %d t11_t12 %d\n", |
| vbt.t1_t3, vbt.t8, vbt.t9, vbt.t10, vbt.t11_t12); |
| |
| /* Use the max of the register settings and vbt. If both are |
| * unset, fall back to the spec limits. */ |
| #define assign_final(field) final->field = (max(cur.field, vbt.field) == 0 ? \ |
| spec.field : \ |
| max(cur.field, vbt.field)) |
| assign_final(t1_t3); |
| assign_final(t8); |
| assign_final(t9); |
| assign_final(t10); |
| assign_final(t11_t12); |
| #undef assign_final |
| |
| #define get_delay(field) (DIV_ROUND_UP(final->field, 10)) |
| intel_dp->panel_power_up_delay = get_delay(t1_t3); |
| intel_dp->backlight_on_delay = get_delay(t8); |
| intel_dp->backlight_off_delay = get_delay(t9); |
| intel_dp->panel_power_down_delay = get_delay(t10); |
| intel_dp->panel_power_cycle_delay = get_delay(t11_t12); |
| #undef get_delay |
| |
| DRM_DEBUG_KMS("panel power up delay %d, power down delay %d, power cycle delay %d\n", |
| intel_dp->panel_power_up_delay, intel_dp->panel_power_down_delay, |
| intel_dp->panel_power_cycle_delay); |
| |
| DRM_DEBUG_KMS("backlight on delay %d, off delay %d\n", |
| intel_dp->backlight_on_delay, intel_dp->backlight_off_delay); |
| } |
| |
| static void |
| intel_dp_init_panel_power_sequencer_registers(struct drm_device *dev, |
| struct intel_dp *intel_dp) |
| { |
| struct drm_i915_private *dev_priv = dev->dev_private; |
| u32 pp_on, pp_off, pp_div, port_sel = 0; |
| int div = HAS_PCH_SPLIT(dev) ? intel_pch_rawclk(dev) : intel_hrawclk(dev); |
| int pp_on_reg, pp_off_reg, pp_div_reg = 0, pp_ctrl_reg; |
| enum port port = dp_to_dig_port(intel_dp)->port; |
| const struct edp_power_seq *seq = &intel_dp->pps_delays; |
| |
| lockdep_assert_held(&dev_priv->pps_mutex); |
| |
| if (IS_BROXTON(dev)) { |
| /* |
| * TODO: BXT has 2 sets of PPS registers. |
| * Correct Register for Broxton need to be identified |
| * using VBT. hardcoding for now |
| */ |
| pp_ctrl_reg = BXT_PP_CONTROL(0); |
| pp_on_reg = BXT_PP_ON_DELAYS(0); |
| pp_off_reg = BXT_PP_OFF_DELAYS(0); |
| |
| } else if (HAS_PCH_SPLIT(dev)) { |
| pp_on_reg = PCH_PP_ON_DELAYS; |
| pp_off_reg = PCH_PP_OFF_DELAYS; |
| pp_div_reg = PCH_PP_DIVISOR; |
| } else { |
| enum pipe pipe = vlv_power_sequencer_pipe(intel_dp); |
| |
| pp_on_reg = VLV_PIPE_PP_ON_DELAYS(pipe); |
| pp_off_reg = VLV_PIPE_PP_OFF_DELAYS(pipe); |
| pp_div_reg = VLV_PIPE_PP_DIVISOR(pipe); |
| } |
| |
| /* |
| * And finally store the new values in the power sequencer. The |
| * backlight delays are set to 1 because we do manual waits on them. For |
| * T8, even BSpec recommends doing it. For T9, if we don't do this, |
| * we'll end up waiting for the backlight off delay twice: once when we |
| * do the manual sleep, and once when we disable the panel and wait for |
| * the PP_STATUS bit to become zero. |
| */ |
| pp_on = (seq->t1_t3 << PANEL_POWER_UP_DELAY_SHIFT) | |
| (1 << PANEL_LIGHT_ON_DELAY_SHIFT); |
| pp_off = (1 << PANEL_LIGHT_OFF_DELAY_SHIFT) | |
| (seq->t10 << PANEL_POWER_DOWN_DELAY_SHIFT); |
| /* Compute the divisor for the pp clock, simply match the Bspec |
| * formula. */ |
| if (IS_BROXTON(dev)) { |
| pp_div = I915_READ(pp_ctrl_reg); |
| pp_div &= ~BXT_POWER_CYCLE_DELAY_MASK; |
| pp_div |= (DIV_ROUND_UP((seq->t11_t12 + 1), 1000) |
| << BXT_POWER_CYCLE_DELAY_SHIFT); |
| } else { |
| pp_div = ((100 * div)/2 - 1) << PP_REFERENCE_DIVIDER_SHIFT; |
| pp_div |= (DIV_ROUND_UP(seq->t11_t12, 1000) |
| << PANEL_POWER_CYCLE_DELAY_SHIFT); |
| } |
| |
| /* Haswell doesn't have any port selection bits for the panel |
| * power sequencer any more. */ |
| if (IS_VALLEYVIEW(dev)) { |
| port_sel = PANEL_PORT_SELECT_VLV(port); |
| } else if (HAS_PCH_IBX(dev) || HAS_PCH_CPT(dev)) { |
| if (port == PORT_A) |
| port_sel = PANEL_PORT_SELECT_DPA; |
| else |
| port_sel = PANEL_PORT_SELECT_DPD; |
| } |
| |
| pp_on |= port_sel; |
| |
| I915_WRITE(pp_on_reg, pp_on); |
| I915_WRITE(pp_off_reg, pp_off); |
| if (IS_BROXTON(dev)) |
| I915_WRITE(pp_ctrl_reg, pp_div); |
| else |
| I915_WRITE(pp_div_reg, pp_div); |
| |
| DRM_DEBUG_KMS("panel power sequencer register settings: PP_ON %#x, PP_OFF %#x, PP_DIV %#x\n", |
| I915_READ(pp_on_reg), |
| I915_READ(pp_off_reg), |
| IS_BROXTON(dev) ? |
| (I915_READ(pp_ctrl_reg) & BXT_POWER_CYCLE_DELAY_MASK) : |
| I915_READ(pp_div_reg)); |
| } |
| |
| /** |
| * intel_dp_set_drrs_state - program registers for RR switch to take effect |
| * @dev: DRM device |
| * @refresh_rate: RR to be programmed |
| * |
| * This function gets called when refresh rate (RR) has to be changed from |
| * one frequency to another. Switches can be between high and low RR |
| * supported by the panel or to any other RR based on media playback (in |
| * this case, RR value needs to be passed from user space). |
| * |
| * The caller of this function needs to take a lock on dev_priv->drrs. |
| */ |
| static void intel_dp_set_drrs_state(struct drm_device *dev, int refresh_rate) |
| { |
| struct drm_i915_private *dev_priv = dev->dev_private; |
| struct intel_encoder *encoder; |
| struct intel_digital_port *dig_port = NULL; |
| struct intel_dp *intel_dp = dev_priv->drrs.dp; |
| struct intel_crtc_state *config = NULL; |
| struct intel_crtc *intel_crtc = NULL; |
| u32 reg, val; |
| enum drrs_refresh_rate_type index = DRRS_HIGH_RR; |
| |
| if (refresh_rate <= 0) { |
| DRM_DEBUG_KMS("Refresh rate should be positive non-zero.\n"); |
| return; |
| } |
| |
| if (intel_dp == NULL) { |
| DRM_DEBUG_KMS("DRRS not supported.\n"); |
| return; |
| } |
| |
| /* |
| * FIXME: This needs proper synchronization with psr state for some |
| * platforms that cannot have PSR and DRRS enabled at the same time. |
| */ |
| |
| dig_port = dp_to_dig_port(intel_dp); |
| encoder = &dig_port->base; |
| intel_crtc = to_intel_crtc(encoder->base.crtc); |
| |
| if (!intel_crtc) { |
| DRM_DEBUG_KMS("DRRS: intel_crtc not initialized\n"); |
| return; |
| } |
| |
| config = intel_crtc->config; |
| |
| if (dev_priv->drrs.type < SEAMLESS_DRRS_SUPPORT) { |
| DRM_DEBUG_KMS("Only Seamless DRRS supported.\n"); |
| return; |
| } |
| |
| if (intel_dp->attached_connector->panel.downclock_mode->vrefresh == |
| refresh_rate) |
| index = DRRS_LOW_RR; |
| |
| if (index == dev_priv->drrs.refresh_rate_type) { |
| DRM_DEBUG_KMS( |
| "DRRS requested for previously set RR...ignoring\n"); |
| return; |
| } |
| |
| if (!intel_crtc->active) { |
| DRM_DEBUG_KMS("eDP encoder disabled. CRTC not Active\n"); |
| return; |
| } |
| |
| if (INTEL_INFO(dev)->gen >= 8 && !IS_CHERRYVIEW(dev)) { |
| switch (index) { |
| case DRRS_HIGH_RR: |
| intel_dp_set_m_n(intel_crtc, M1_N1); |
| break; |
| case DRRS_LOW_RR: |
| intel_dp_set_m_n(intel_crtc, M2_N2); |
| break; |
| case DRRS_MAX_RR: |
| default: |
| DRM_ERROR("Unsupported refreshrate type\n"); |
| } |
| } else if (INTEL_INFO(dev)->gen > 6) { |
| reg = PIPECONF(intel_crtc->config->cpu_transcoder); |
| val = I915_READ(reg); |
| |
| if (index > DRRS_HIGH_RR) { |
| if (IS_VALLEYVIEW(dev)) |
| val |= PIPECONF_EDP_RR_MODE_SWITCH_VLV; |
| else |
| val |= PIPECONF_EDP_RR_MODE_SWITCH; |
| } else { |
| if (IS_VALLEYVIEW(dev)) |
| val &= ~PIPECONF_EDP_RR_MODE_SWITCH_VLV; |
| else |
| val &= ~PIPECONF_EDP_RR_MODE_SWITCH; |
| } |
| I915_WRITE(reg, val); |
| } |
| |
| dev_priv->drrs.refresh_rate_type = index; |
| |
| DRM_DEBUG_KMS("eDP Refresh Rate set to : %dHz\n", refresh_rate); |
| } |
| |
| /** |
| * intel_edp_drrs_enable - init drrs struct if supported |
| * @intel_dp: DP struct |
| * |
| * Initializes frontbuffer_bits and drrs.dp |
| */ |
| void intel_edp_drrs_enable(struct intel_dp *intel_dp) |
| { |
| struct drm_device *dev = intel_dp_to_dev(intel_dp); |
| struct drm_i915_private *dev_priv = dev->dev_private; |
| struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp); |
| struct drm_crtc *crtc = dig_port->base.base.crtc; |
| struct intel_crtc *intel_crtc = to_intel_crtc(crtc); |
| |
| if (!intel_crtc->config->has_drrs) { |
| DRM_DEBUG_KMS("Panel doesn't support DRRS\n"); |
| return; |
| } |
| |
| mutex_lock(&dev_priv->drrs.mutex); |
| if (WARN_ON(dev_priv->drrs.dp)) { |
| DRM_ERROR("DRRS already enabled\n"); |
| goto unlock; |
| } |
| |
| dev_priv->drrs.busy_frontbuffer_bits = 0; |
| |
| dev_priv->drrs.dp = intel_dp; |
| |
| unlock: |
| mutex_unlock(&dev_priv->drrs.mutex); |
| } |
| |
| /** |
| * intel_edp_drrs_disable - Disable DRRS |
| * @intel_dp: DP struct |
| * |
| */ |
| void intel_edp_drrs_disable(struct intel_dp *intel_dp) |
| { |
| struct drm_device *dev = intel_dp_to_dev(intel_dp); |
| struct drm_i915_private *dev_priv = dev->dev_private; |
| struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp); |
| struct drm_crtc *crtc = dig_port->base.base.crtc; |
| struct intel_crtc *intel_crtc = to_intel_crtc(crtc); |
| |
| if (!intel_crtc->config->has_drrs) |
| return; |
| |
| mutex_lock(&dev_priv->drrs.mutex); |
| if (!dev_priv->drrs.dp) { |
| mutex_unlock(&dev_priv->drrs.mutex); |
| return; |
| } |
| |
| if (dev_priv->drrs.refresh_rate_type == DRRS_LOW_RR) |
| intel_dp_set_drrs_state(dev_priv->dev, |
| intel_dp->attached_connector->panel. |
| fixed_mode->vrefresh); |
| |
| dev_priv->drrs.dp = NULL; |
| mutex_unlock(&dev_priv->drrs.mutex); |
| |
| cancel_delayed_work_sync(&dev_priv->drrs.work); |
| } |
| |
| static void intel_edp_drrs_downclock_work(struct work_struct *work) |
| { |
| struct drm_i915_private *dev_priv = |
| container_of(work, typeof(*dev_priv), drrs.work.work); |
| struct intel_dp *intel_dp; |
| |
| mutex_lock(&dev_priv->drrs.mutex); |
| |
| intel_dp = dev_priv->drrs.dp; |
| |
| if (!intel_dp) |
| goto unlock; |
| |
| /* |
| * The delayed work can race with an invalidate hence we need to |
| * recheck. |
| */ |
| |
| if (dev_priv->drrs.busy_frontbuffer_bits) |
| goto unlock; |
| |
| if (dev_priv->drrs.refresh_rate_type != DRRS_LOW_RR) |
| intel_dp_set_drrs_state(dev_priv->dev, |
| intel_dp->attached_connector->panel. |
| downclock_mode->vrefresh); |
| |
| unlock: |
| mutex_unlock(&dev_priv->drrs.mutex); |
| } |
| |
| /** |
| * intel_edp_drrs_invalidate - Disable Idleness DRRS |
| * @dev: DRM device |
| * @frontbuffer_bits: frontbuffer plane tracking bits |
| * |
| * This function gets called everytime rendering on the given planes start. |
| * Hence DRRS needs to be Upclocked, i.e. (LOW_RR -> HIGH_RR). |
| * |
| * Dirty frontbuffers relevant to DRRS are tracked in busy_frontbuffer_bits. |
| */ |
| void intel_edp_drrs_invalidate(struct drm_device *dev, |
| unsigned frontbuffer_bits) |
| { |
| struct drm_i915_private *dev_priv = dev->dev_private; |
| struct drm_crtc *crtc; |
| enum pipe pipe; |
| |
| if (dev_priv->drrs.type == DRRS_NOT_SUPPORTED) |
| return; |
| |
| cancel_delayed_work(&dev_priv->drrs.work); |
| |
| mutex_lock(&dev_priv->drrs.mutex); |
| if (!dev_priv->drrs.dp) { |
| mutex_unlock(&dev_priv->drrs.mutex); |
| return; |
| } |
| |
| crtc = dp_to_dig_port(dev_priv->drrs.dp)->base.base.crtc; |
| pipe = to_intel_crtc(crtc)->pipe; |
| |
| /* invalidate means busy screen hence upclock */ |
| if (dev_priv->drrs.refresh_rate_type == DRRS_LOW_RR) { |
| intel_dp_set_drrs_state(dev_priv->dev, |
| dev_priv->drrs.dp->attached_connector->panel. |
| fixed_mode->vrefresh); |
| } |
| |
| frontbuffer_bits &= INTEL_FRONTBUFFER_ALL_MASK(pipe); |
| |
| dev_priv->drrs.busy_frontbuffer_bits |= frontbuffer_bits; |
| mutex_unlock(&dev_priv->drrs.mutex); |
| } |
| |
| /** |
| * intel_edp_drrs_flush - Restart Idleness DRRS |
| * @dev: DRM device |
| * @frontbuffer_bits: frontbuffer plane tracking bits |
| * |
| * This function gets called every time rendering on the given planes has |
| * completed or flip on a crtc is completed. So DRRS should be upclocked |
| * (LOW_RR -> HIGH_RR). And also Idleness detection should be started again, |
| * if no other planes are dirty. |
| * |
| * Dirty frontbuffers relevant to DRRS are tracked in busy_frontbuffer_bits. |
| */ |
| void intel_edp_drrs_flush(struct drm_device *dev, |
| unsigned frontbuffer_bits) |
| { |
| struct drm_i915_private *dev_priv = dev->dev_private; |
| struct drm_crtc *crtc; |
| enum pipe pipe; |
| |
| if (dev_priv->drrs.type == DRRS_NOT_SUPPORTED) |
| return; |
| |
| cancel_delayed_work(&dev_priv->drrs.work); |
| |
| mutex_lock(&dev_priv->drrs.mutex); |
| if (!dev_priv->drrs.dp) { |
| mutex_unlock(&dev_priv->drrs.mutex); |
| return; |
| } |
| |
| crtc = dp_to_dig_port(dev_priv->drrs.dp)->base.base.crtc; |
| pipe = to_intel_crtc(crtc)->pipe; |
| dev_priv->drrs.busy_frontbuffer_bits &= ~frontbuffer_bits; |
| |
| /* flush means busy screen hence upclock */ |
| if (dev_priv->drrs.refresh_rate_type == DRRS_LOW_RR) |
| intel_dp_set_drrs_state(dev_priv->dev, |
| dev_priv->drrs.dp->attached_connector->panel. |
| fixed_mode->vrefresh); |
| |
| /* |
| * flush also means no more activity hence schedule downclock, if all |
| * other fbs are quiescent too |
| */ |
| if (!dev_priv->drrs.busy_frontbuffer_bits) |
| schedule_delayed_work(&dev_priv->drrs.work, |
| msecs_to_jiffies(1000)); |
| mutex_unlock(&dev_priv->drrs.mutex); |
| } |
| |
| /** |
| * DOC: Display Refresh Rate Switching (DRRS) |
| * |
| * Display Refresh Rate Switching (DRRS) is a power conservation feature |
| * which enables swtching between low and high refresh rates, |
| * dynamically, based on the usage scenario. This feature is applicable |
| * for internal panels. |
| * |
| * Indication that the panel supports DRRS is given by the panel EDID, which |
| * would list multiple refresh rates for one resolution. |
| * |
| * DRRS is of 2 types - static and seamless. |
| * Static DRRS involves changing refresh rate (RR) by doing a full modeset |
| * (may appear as a blink on screen) and is used in dock-undock scenario. |
| * Seamless DRRS involves changing RR without any visual effect to the user |
| * and can be used during normal system usage. This is done by programming |
| * certain registers. |
| * |
| * Support for static/seamless DRRS may be indicated in the VBT based on |
| * inputs from the panel spec. |
| * |
| * DRRS saves power by switching to low RR based on usage scenarios. |
| * |
| * eDP DRRS:- |
| * The implementation is based on frontbuffer tracking implementation. |
| * When there is a disturbance on the screen triggered by user activity or a |
| * periodic system activity, DRRS is disabled (RR is changed to high RR). |
| * When there is no movement on screen, after a timeout of 1 second, a switch |
| * to low RR is made. |
| * For integration with frontbuffer tracking code, |
| * intel_edp_drrs_invalidate() and intel_edp_drrs_flush() are called. |
| * |
| * DRRS can be further extended to support other internal panels and also |
| * the scenario of video playback wherein RR is set based on the rate |
| * requested by userspace. |
| */ |
| |
| /** |
| * intel_dp_drrs_init - Init basic DRRS work and mutex. |
| * @intel_connector: eDP connector |
| * @fixed_mode: preferred mode of panel |
| * |
| * This function is called only once at driver load to initialize basic |
| * DRRS stuff. |
| * |
| * Returns: |
| * Downclock mode if panel supports it, else return NULL. |
| * DRRS support is determined by the presence of downclock mode (apart |
| * from VBT setting). |
| */ |
| static struct drm_display_mode * |
| intel_dp_drrs_init(struct intel_connector *intel_connector, |
| struct drm_display_mode *fixed_mode) |
| { |
| struct drm_connector *connector = &intel_connector->base; |
| struct drm_device *dev = connector->dev; |
| struct drm_i915_private *dev_priv = dev->dev_private; |
| struct drm_display_mode *downclock_mode = NULL; |
| |
| INIT_DELAYED_WORK(&dev_priv->drrs.work, intel_edp_drrs_downclock_work); |
| mutex_init(&dev_priv->drrs.mutex); |
| |
| if (INTEL_INFO(dev)->gen <= 6) { |
| DRM_DEBUG_KMS("DRRS supported for Gen7 and above\n"); |
| return NULL; |
| } |
| |
| if (dev_priv->vbt.drrs_type != SEAMLESS_DRRS_SUPPORT) { |
| DRM_DEBUG_KMS("VBT doesn't support DRRS\n"); |
| return NULL; |
| } |
| |
| downclock_mode = intel_find_panel_downclock |
| (dev, fixed_mode, connector); |
| |
| if (!downclock_mode) { |
| DRM_DEBUG_KMS("Downclock mode is not found. DRRS not supported\n"); |
| return NULL; |
| } |
| |
| dev_priv->drrs.type = dev_priv->vbt.drrs_type; |
| |
| dev_priv->drrs.refresh_rate_type = DRRS_HIGH_RR; |
| DRM_DEBUG_KMS("seamless DRRS supported for eDP panel.\n"); |
| return downclock_mode; |
| } |
| |
| static bool intel_edp_init_connector(struct intel_dp *intel_dp, |
| struct intel_connector *intel_connector) |
| { |
| struct drm_connector *connector = &intel_connector->base; |
| struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp); |
| struct intel_encoder *intel_encoder = &intel_dig_port->base; |
| struct drm_device *dev = intel_encoder->base.dev; |
| struct drm_i915_private *dev_priv = dev->dev_private; |
| struct drm_display_mode *fixed_mode = NULL; |
| struct drm_display_mode *downclock_mode = NULL; |
| bool has_dpcd; |
| struct drm_display_mode *scan; |
| struct edid *edid; |
| enum pipe pipe = INVALID_PIPE; |
| |
| if (!is_edp(intel_dp)) |
| return true; |
| |
| pps_lock(intel_dp); |
| intel_edp_panel_vdd_sanitize(intel_dp); |
| pps_unlock(intel_dp); |
| |
| /* Cache DPCD and EDID for edp. */ |
| has_dpcd = intel_dp_get_dpcd(intel_dp); |
| |
| if (has_dpcd) { |
| if (intel_dp->dpcd[DP_DPCD_REV] >= 0x11) |
| dev_priv->no_aux_handshake = |
| intel_dp->dpcd[DP_MAX_DOWNSPREAD] & |
| DP_NO_AUX_HANDSHAKE_LINK_TRAINING; |
| } else { |
| /* if this fails, presume the device is a ghost */ |
| DRM_INFO("failed to retrieve link info, disabling eDP\n"); |
| return false; |
| } |
| |
| /* We now know it's not a ghost, init power sequence regs. */ |
| pps_lock(intel_dp); |
| intel_dp_init_panel_power_sequencer_registers(dev, intel_dp); |
| pps_unlock(intel_dp); |
| |
| mutex_lock(&dev->mode_config.mutex); |
| edid = drm_get_edid(connector, &intel_dp->aux.ddc); |
| if (edid) { |
| if (drm_add_edid_modes(connector, edid)) { |
| drm_mode_connector_update_edid_property(connector, |
| edid); |
| drm_edid_to_eld(connector, edid); |
| } else { |
| kfree(edid); |
| edid = ERR_PTR(-EINVAL); |
| } |
| } else { |
| edid = ERR_PTR(-ENOENT); |
| } |
| intel_connector->edid = edid; |
| |
| /* prefer fixed mode from EDID if available */ |
| list_for_each_entry(scan, &connector->probed_modes, head) { |
| if ((scan->type & DRM_MODE_TYPE_PREFERRED)) { |
| fixed_mode = drm_mode_duplicate(dev, scan); |
| downclock_mode = intel_dp_drrs_init( |
| intel_connector, fixed_mode); |
| break; |
| } |
| } |
| |
| /* fallback to VBT if available for eDP */ |
| if (!fixed_mode && dev_priv->vbt.lfp_lvds_vbt_mode) { |
| fixed_mode = drm_mode_duplicate(dev, |
| dev_priv->vbt.lfp_lvds_vbt_mode); |
| if (fixed_mode) |
| fixed_mode->type |= DRM_MODE_TYPE_PREFERRED; |
| } |
| mutex_unlock(&dev->mode_config.mutex); |
| |
| if (IS_VALLEYVIEW(dev)) { |
| intel_dp->edp_notifier.notifier_call = edp_notify_handler; |
| register_reboot_notifier(&intel_dp->edp_notifier); |
| |
| /* |
| * Figure out the current pipe for the initial backlight setup. |
| * If the current pipe isn't valid, try the PPS pipe, and if that |
| * fails just assume pipe A. |
| */ |
| if (IS_CHERRYVIEW(dev)) |
| pipe = DP_PORT_TO_PIPE_CHV(intel_dp->DP); |
| else |
| pipe = PORT_TO_PIPE(intel_dp->DP); |
| |
| if (pipe != PIPE_A && pipe != PIPE_B) |
| pipe = intel_dp->pps_pipe; |
| |
| if (pipe != PIPE_A && pipe != PIPE_B) |
| pipe = PIPE_A; |
| |
| DRM_DEBUG_KMS("using pipe %c for initial backlight setup\n", |
| pipe_name(pipe)); |
| } |
| |
| intel_panel_init(&intel_connector->panel, fixed_mode, downclock_mode); |
| intel_connector->panel.backlight_power = intel_edp_backlight_power; |
| intel_panel_setup_backlight(connector, pipe); |
| |
| return true; |
| } |
| |
| bool |
| intel_dp_init_connector(struct intel_digital_port *intel_dig_port, |
| struct intel_connector *intel_connector) |
| { |
| struct drm_connector *connector = &intel_connector->base; |
| struct intel_dp *intel_dp = &intel_dig_port->dp; |
| struct intel_encoder *intel_encoder = &intel_dig_port->base; |
| struct drm_device *dev = intel_encoder->base.dev; |
| struct drm_i915_private *dev_priv = dev->dev_private; |
| enum port port = intel_dig_port->port; |
| int type; |
| |
| intel_dp->pps_pipe = INVALID_PIPE; |
| |
| /* intel_dp vfuncs */ |
| if (INTEL_INFO(dev)->gen >= 9) |
| intel_dp->get_aux_clock_divider = skl_get_aux_clock_divider; |
| else if (IS_VALLEYVIEW(dev)) |
| intel_dp->get_aux_clock_divider = vlv_get_aux_clock_divider; |
| else if (IS_HASWELL(dev) || IS_BROADWELL(dev)) |
| intel_dp->get_aux_clock_divider = hsw_get_aux_clock_divider; |
| else if (HAS_PCH_SPLIT(dev)) |
| intel_dp->get_aux_clock_divider = ilk_get_aux_clock_divider; |
| else |
| intel_dp->get_aux_clock_divider = i9xx_get_aux_clock_divider; |
| |
| if (INTEL_INFO(dev)->gen >= 9) |
| intel_dp->get_aux_send_ctl = skl_get_aux_send_ctl; |
| else |
| intel_dp->get_aux_send_ctl = i9xx_get_aux_send_ctl; |
| |
| /* Preserve the current hw state. */ |
| intel_dp->DP = I915_READ(intel_dp->output_reg); |
| intel_dp->attached_connector = intel_connector; |
| |
| if (intel_dp_is_edp(dev, port)) |
| type = DRM_MODE_CONNECTOR_eDP; |
| else |
| type = DRM_MODE_CONNECTOR_DisplayPort; |
| |
| /* |
| * For eDP we always set the encoder type to INTEL_OUTPUT_EDP, but |
| * for DP the encoder type can be set by the caller to |
| * INTEL_OUTPUT_UNKNOWN for DDI, so don't rewrite it. |
| */ |
| if (type == DRM_MODE_CONNECTOR_eDP) |
| intel_encoder->type = INTEL_OUTPUT_EDP; |
| |
| /* eDP only on port B and/or C on vlv/chv */ |
| if (WARN_ON(IS_VALLEYVIEW(dev) && is_edp(intel_dp) && |
| port != PORT_B && port != PORT_C)) |
| return false; |
| |
| DRM_DEBUG_KMS("Adding %s connector on port %c\n", |
| type == DRM_MODE_CONNECTOR_eDP ? "eDP" : "DP", |
| port_name(port)); |
| |
| drm_connector_init(dev, connector, &intel_dp_connector_funcs, type); |
| drm_connector_helper_add(connector, &intel_dp_connector_helper_funcs); |
| |
| connector->interlace_allowed = true; |
| connector->doublescan_allowed = 0; |
| |
| INIT_DELAYED_WORK(&intel_dp->panel_vdd_work, |
| edp_panel_vdd_work); |
| |
| intel_connector_attach_encoder(intel_connector, intel_encoder); |
| drm_connector_register(connector); |
| |
| if (HAS_DDI(dev)) |
| intel_connector->get_hw_state = intel_ddi_connector_get_hw_state; |
| else |
| intel_connector->get_hw_state = intel_connector_get_hw_state; |
| intel_connector->unregister = intel_dp_connector_unregister; |
| |
| /* Set up the hotplug pin. */ |
| switch (port) { |
| case PORT_A: |
| intel_encoder->hpd_pin = HPD_PORT_A; |
| break; |
| case PORT_B: |
| intel_encoder->hpd_pin = HPD_PORT_B; |
| break; |
| case PORT_C: |
| intel_encoder->hpd_pin = HPD_PORT_C; |
| break; |
| case PORT_D: |
| intel_encoder->hpd_pin = HPD_PORT_D; |
| break; |
| default: |
| BUG(); |
| } |
| |
| if (is_edp(intel_dp)) { |
| pps_lock(intel_dp); |
| intel_dp_init_panel_power_timestamps(intel_dp); |
| if (IS_VALLEYVIEW(dev)) |
| vlv_initial_power_sequencer_setup(intel_dp); |
| else |
| intel_dp_init_panel_power_sequencer(dev, intel_dp); |
| pps_unlock(intel_dp); |
| } |
| |
| intel_dp_aux_init(intel_dp, intel_connector); |
| |
| /* init MST on ports that can support it */ |
| if (HAS_DP_MST(dev) && |
| (port == PORT_B || port == PORT_C || port == PORT_D)) |
| intel_dp_mst_encoder_init(intel_dig_port, |
| intel_connector->base.base.id); |
| |
| if (!intel_edp_init_connector(intel_dp, intel_connector)) { |
| drm_dp_aux_unregister(&intel_dp->aux); |
| if (is_edp(intel_dp)) { |
| cancel_delayed_work_sync(&intel_dp->panel_vdd_work); |
| /* |
| * vdd might still be enabled do to the delayed vdd off. |
| * Make sure vdd is actually turned off here. |
| */ |
| pps_lock(intel_dp); |
| edp_panel_vdd_off_sync(intel_dp); |
| pps_unlock(intel_dp); |
| } |
| drm_connector_unregister(connector); |
| drm_connector_cleanup(connector); |
| return false; |
| } |
| |
| intel_dp_add_properties(intel_dp, connector); |
| |
| /* For G4X desktop chip, PEG_BAND_GAP_DATA 3:0 must first be written |
| * 0xd. Failure to do so will result in spurious interrupts being |
| * generated on the port when a cable is not attached. |
| */ |
| if (IS_G4X(dev) && !IS_GM45(dev)) { |
| u32 temp = I915_READ(PEG_BAND_GAP_DATA); |
| I915_WRITE(PEG_BAND_GAP_DATA, (temp & ~0xf) | 0xd); |
| } |
| |
| i915_debugfs_connector_add(connector); |
| |
| return true; |
| } |
| |
| void |
| intel_dp_init(struct drm_device *dev, int output_reg, enum port port) |
| { |
| struct drm_i915_private *dev_priv = dev->dev_private; |
| struct intel_digital_port *intel_dig_port; |
| struct intel_encoder *intel_encoder; |
| struct drm_encoder *encoder; |
| struct intel_connector *intel_connector; |
| |
| intel_dig_port = kzalloc(sizeof(*intel_dig_port), GFP_KERNEL); |
| if (!intel_dig_port) |
| return; |
| |
| intel_connector = intel_connector_alloc(); |
| if (!intel_connector) { |
| kfree(intel_dig_port); |
| return; |
| } |
| |
| intel_encoder = &intel_dig_port->base; |
| encoder = &intel_encoder->base; |
| |
| drm_encoder_init(dev, &intel_encoder->base, &intel_dp_enc_funcs, |
| DRM_MODE_ENCODER_TMDS); |
| |
| intel_encoder->compute_config = intel_dp_compute_config; |
| intel_encoder->disable = intel_disable_dp; |
| intel_encoder->get_hw_state = intel_dp_get_hw_state; |
| intel_encoder->get_config = intel_dp_get_config; |
| intel_encoder->suspend = intel_dp_encoder_suspend; |
| if (IS_CHERRYVIEW(dev)) { |
| intel_encoder->pre_pll_enable = chv_dp_pre_pll_enable; |
| intel_encoder->pre_enable = chv_pre_enable_dp; |
| intel_encoder->enable = vlv_enable_dp; |
| intel_encoder->post_disable = chv_post_disable_dp; |
| } else if (IS_VALLEYVIEW(dev)) { |
| intel_encoder->pre_pll_enable = vlv_dp_pre_pll_enable; |
| intel_encoder->pre_enable = vlv_pre_enable_dp; |
| intel_encoder->enable = vlv_enable_dp; |
| intel_encoder->post_disable = vlv_post_disable_dp; |
| } else { |
| intel_encoder->pre_enable = g4x_pre_enable_dp; |
| intel_encoder->enable = g4x_enable_dp; |
| if (INTEL_INFO(dev)->gen >= 5) |
| intel_encoder->post_disable = ilk_post_disable_dp; |
| } |
| |
| intel_dig_port->port = port; |
| intel_dig_port->dp.output_reg = output_reg; |
| |
| intel_encoder->type = INTEL_OUTPUT_DISPLAYPORT; |
| if (IS_CHERRYVIEW(dev)) { |
| if (port == PORT_D) |
| intel_encoder->crtc_mask = 1 << 2; |
| else |
| intel_encoder->crtc_mask = (1 << 0) | (1 << 1); |
| } else { |
| intel_encoder->crtc_mask = (1 << 0) | (1 << 1) | (1 << 2); |
| } |
| intel_encoder->cloneable = 0; |
| |
| intel_dig_port->hpd_pulse = intel_dp_hpd_pulse; |
| dev_priv->hotplug.irq_port[port] = intel_dig_port; |
| |
| if (!intel_dp_init_connector(intel_dig_port, intel_connector)) { |
| drm_encoder_cleanup(encoder); |
| kfree(intel_dig_port); |
| kfree(intel_connector); |
| } |
| } |
| |
| void intel_dp_mst_suspend(struct drm_device *dev) |
| { |
| struct drm_i915_private *dev_priv = dev->dev_private; |
| int i; |
| |
| /* disable MST */ |
| for (i = 0; i < I915_MAX_PORTS; i++) { |
| struct intel_digital_port *intel_dig_port = dev_priv->hotplug.irq_port[i]; |
| if (!intel_dig_port) |
| continue; |
| |
| if (intel_dig_port->base.type == INTEL_OUTPUT_DISPLAYPORT) { |
| if (!intel_dig_port->dp.can_mst) |
| continue; |
| if (intel_dig_port->dp.is_mst) |
| drm_dp_mst_topology_mgr_suspend(&intel_dig_port->dp.mst_mgr); |
| } |
| } |
| } |
| |
| void intel_dp_mst_resume(struct drm_device *dev) |
| { |
| struct drm_i915_private *dev_priv = dev->dev_private; |
| int i; |
| |
| for (i = 0; i < I915_MAX_PORTS; i++) { |
| struct intel_digital_port *intel_dig_port = dev_priv->hotplug.irq_port[i]; |
| if (!intel_dig_port) |
| continue; |
| if (intel_dig_port->base.type == INTEL_OUTPUT_DISPLAYPORT) { |
| int ret; |
| |
| if (!intel_dig_port->dp.can_mst) |
| continue; |
| |
| ret = drm_dp_mst_topology_mgr_resume(&intel_dig_port->dp.mst_mgr); |
| if (ret != 0) { |
| intel_dp_check_mst_status(&intel_dig_port->dp); |
| } |
| } |
| } |
| } |