| // SPDX-License-Identifier: GPL-2.0-or-later |
| /* |
| * Copyright (C) 2017 Free Electrons |
| * Copyright (C) 2017 NextThing Co |
| * |
| * Author: Boris Brezillon <boris.brezillon@free-electrons.com> |
| */ |
| |
| #include <linux/slab.h> |
| |
| #include "internals.h" |
| |
| /* |
| * Special Micron status bit 3 indicates that the block has been |
| * corrected by on-die ECC and should be rewritten. |
| */ |
| #define NAND_ECC_STATUS_WRITE_RECOMMENDED BIT(3) |
| |
| /* |
| * On chips with 8-bit ECC and additional bit can be used to distinguish |
| * cases where a errors were corrected without needing a rewrite |
| * |
| * Bit 4 Bit 3 Bit 0 Description |
| * ----- ----- ----- ----------- |
| * 0 0 0 No Errors |
| * 0 0 1 Multiple uncorrected errors |
| * 0 1 0 4 - 6 errors corrected, recommend rewrite |
| * 0 1 1 Reserved |
| * 1 0 0 1 - 3 errors corrected |
| * 1 0 1 Reserved |
| * 1 1 0 7 - 8 errors corrected, recommend rewrite |
| */ |
| #define NAND_ECC_STATUS_MASK (BIT(4) | BIT(3) | BIT(0)) |
| #define NAND_ECC_STATUS_UNCORRECTABLE BIT(0) |
| #define NAND_ECC_STATUS_4_6_CORRECTED BIT(3) |
| #define NAND_ECC_STATUS_1_3_CORRECTED BIT(4) |
| #define NAND_ECC_STATUS_7_8_CORRECTED (BIT(4) | BIT(3)) |
| |
| struct nand_onfi_vendor_micron { |
| u8 two_plane_read; |
| u8 read_cache; |
| u8 read_unique_id; |
| u8 dq_imped; |
| u8 dq_imped_num_settings; |
| u8 dq_imped_feat_addr; |
| u8 rb_pulldown_strength; |
| u8 rb_pulldown_strength_feat_addr; |
| u8 rb_pulldown_strength_num_settings; |
| u8 otp_mode; |
| u8 otp_page_start; |
| u8 otp_data_prot_addr; |
| u8 otp_num_pages; |
| u8 otp_feat_addr; |
| u8 read_retry_options; |
| u8 reserved[72]; |
| u8 param_revision; |
| } __packed; |
| |
| struct micron_on_die_ecc { |
| bool forced; |
| bool enabled; |
| void *rawbuf; |
| }; |
| |
| struct micron_nand { |
| struct micron_on_die_ecc ecc; |
| }; |
| |
| static int micron_nand_setup_read_retry(struct nand_chip *chip, int retry_mode) |
| { |
| u8 feature[ONFI_SUBFEATURE_PARAM_LEN] = {retry_mode}; |
| |
| return nand_set_features(chip, ONFI_FEATURE_ADDR_READ_RETRY, feature); |
| } |
| |
| /* |
| * Configure chip properties from Micron vendor-specific ONFI table |
| */ |
| static int micron_nand_onfi_init(struct nand_chip *chip) |
| { |
| struct nand_parameters *p = &chip->parameters; |
| |
| if (p->onfi) { |
| struct nand_onfi_vendor_micron *micron = (void *)p->onfi->vendor; |
| |
| chip->read_retries = micron->read_retry_options; |
| chip->setup_read_retry = micron_nand_setup_read_retry; |
| } |
| |
| if (p->supports_set_get_features) { |
| set_bit(ONFI_FEATURE_ADDR_READ_RETRY, p->set_feature_list); |
| set_bit(ONFI_FEATURE_ON_DIE_ECC, p->set_feature_list); |
| set_bit(ONFI_FEATURE_ADDR_READ_RETRY, p->get_feature_list); |
| set_bit(ONFI_FEATURE_ON_DIE_ECC, p->get_feature_list); |
| } |
| |
| return 0; |
| } |
| |
| static int micron_nand_on_die_4_ooblayout_ecc(struct mtd_info *mtd, |
| int section, |
| struct mtd_oob_region *oobregion) |
| { |
| if (section >= 4) |
| return -ERANGE; |
| |
| oobregion->offset = (section * 16) + 8; |
| oobregion->length = 8; |
| |
| return 0; |
| } |
| |
| static int micron_nand_on_die_4_ooblayout_free(struct mtd_info *mtd, |
| int section, |
| struct mtd_oob_region *oobregion) |
| { |
| if (section >= 4) |
| return -ERANGE; |
| |
| oobregion->offset = (section * 16) + 2; |
| oobregion->length = 6; |
| |
| return 0; |
| } |
| |
| static const struct mtd_ooblayout_ops micron_nand_on_die_4_ooblayout_ops = { |
| .ecc = micron_nand_on_die_4_ooblayout_ecc, |
| .free = micron_nand_on_die_4_ooblayout_free, |
| }; |
| |
| static int micron_nand_on_die_8_ooblayout_ecc(struct mtd_info *mtd, |
| int section, |
| struct mtd_oob_region *oobregion) |
| { |
| struct nand_chip *chip = mtd_to_nand(mtd); |
| |
| if (section) |
| return -ERANGE; |
| |
| oobregion->offset = mtd->oobsize - chip->ecc.total; |
| oobregion->length = chip->ecc.total; |
| |
| return 0; |
| } |
| |
| static int micron_nand_on_die_8_ooblayout_free(struct mtd_info *mtd, |
| int section, |
| struct mtd_oob_region *oobregion) |
| { |
| struct nand_chip *chip = mtd_to_nand(mtd); |
| |
| if (section) |
| return -ERANGE; |
| |
| oobregion->offset = 2; |
| oobregion->length = mtd->oobsize - chip->ecc.total - 2; |
| |
| return 0; |
| } |
| |
| static const struct mtd_ooblayout_ops micron_nand_on_die_8_ooblayout_ops = { |
| .ecc = micron_nand_on_die_8_ooblayout_ecc, |
| .free = micron_nand_on_die_8_ooblayout_free, |
| }; |
| |
| static int micron_nand_on_die_ecc_setup(struct nand_chip *chip, bool enable) |
| { |
| struct micron_nand *micron = nand_get_manufacturer_data(chip); |
| u8 feature[ONFI_SUBFEATURE_PARAM_LEN] = { 0, }; |
| int ret; |
| |
| if (micron->ecc.forced) |
| return 0; |
| |
| if (micron->ecc.enabled == enable) |
| return 0; |
| |
| if (enable) |
| feature[0] |= ONFI_FEATURE_ON_DIE_ECC_EN; |
| |
| ret = nand_set_features(chip, ONFI_FEATURE_ON_DIE_ECC, feature); |
| if (!ret) |
| micron->ecc.enabled = enable; |
| |
| return ret; |
| } |
| |
| static int micron_nand_on_die_ecc_status_4(struct nand_chip *chip, u8 status, |
| void *buf, int page, |
| int oob_required) |
| { |
| struct micron_nand *micron = nand_get_manufacturer_data(chip); |
| struct mtd_info *mtd = nand_to_mtd(chip); |
| unsigned int step, max_bitflips = 0; |
| int ret; |
| |
| if (!(status & NAND_ECC_STATUS_WRITE_RECOMMENDED)) { |
| if (status & NAND_STATUS_FAIL) |
| mtd->ecc_stats.failed++; |
| |
| return 0; |
| } |
| |
| /* |
| * The internal ECC doesn't tell us the number of bitflips that have |
| * been corrected, but tells us if it recommends to rewrite the block. |
| * If it's the case, we need to read the page in raw mode and compare |
| * its content to the corrected version to extract the actual number of |
| * bitflips. |
| * But before we do that, we must make sure we have all OOB bytes read |
| * in non-raw mode, even if the user did not request those bytes. |
| */ |
| if (!oob_required) { |
| ret = nand_read_data_op(chip, chip->oob_poi, mtd->oobsize, |
| false); |
| if (ret) |
| return ret; |
| } |
| |
| micron_nand_on_die_ecc_setup(chip, false); |
| |
| ret = nand_read_page_op(chip, page, 0, micron->ecc.rawbuf, |
| mtd->writesize + mtd->oobsize); |
| if (ret) |
| return ret; |
| |
| for (step = 0; step < chip->ecc.steps; step++) { |
| unsigned int offs, i, nbitflips = 0; |
| u8 *rawbuf, *corrbuf; |
| |
| offs = step * chip->ecc.size; |
| rawbuf = micron->ecc.rawbuf + offs; |
| corrbuf = buf + offs; |
| |
| for (i = 0; i < chip->ecc.size; i++) |
| nbitflips += hweight8(corrbuf[i] ^ rawbuf[i]); |
| |
| offs = (step * 16) + 4; |
| rawbuf = micron->ecc.rawbuf + mtd->writesize + offs; |
| corrbuf = chip->oob_poi + offs; |
| |
| for (i = 0; i < chip->ecc.bytes + 4; i++) |
| nbitflips += hweight8(corrbuf[i] ^ rawbuf[i]); |
| |
| if (WARN_ON(nbitflips > chip->ecc.strength)) |
| return -EINVAL; |
| |
| max_bitflips = max(nbitflips, max_bitflips); |
| mtd->ecc_stats.corrected += nbitflips; |
| } |
| |
| return max_bitflips; |
| } |
| |
| static int micron_nand_on_die_ecc_status_8(struct nand_chip *chip, u8 status) |
| { |
| struct mtd_info *mtd = nand_to_mtd(chip); |
| |
| /* |
| * With 8/512 we have more information but still don't know precisely |
| * how many bit-flips were seen. |
| */ |
| switch (status & NAND_ECC_STATUS_MASK) { |
| case NAND_ECC_STATUS_UNCORRECTABLE: |
| mtd->ecc_stats.failed++; |
| return 0; |
| case NAND_ECC_STATUS_1_3_CORRECTED: |
| mtd->ecc_stats.corrected += 3; |
| return 3; |
| case NAND_ECC_STATUS_4_6_CORRECTED: |
| mtd->ecc_stats.corrected += 6; |
| /* rewrite recommended */ |
| return 6; |
| case NAND_ECC_STATUS_7_8_CORRECTED: |
| mtd->ecc_stats.corrected += 8; |
| /* rewrite recommended */ |
| return 8; |
| default: |
| return 0; |
| } |
| } |
| |
| static int |
| micron_nand_read_page_on_die_ecc(struct nand_chip *chip, uint8_t *buf, |
| int oob_required, int page) |
| { |
| struct mtd_info *mtd = nand_to_mtd(chip); |
| u8 status; |
| int ret, max_bitflips = 0; |
| |
| ret = micron_nand_on_die_ecc_setup(chip, true); |
| if (ret) |
| return ret; |
| |
| ret = nand_read_page_op(chip, page, 0, NULL, 0); |
| if (ret) |
| goto out; |
| |
| ret = nand_status_op(chip, &status); |
| if (ret) |
| goto out; |
| |
| ret = nand_exit_status_op(chip); |
| if (ret) |
| goto out; |
| |
| ret = nand_read_data_op(chip, buf, mtd->writesize, false); |
| if (!ret && oob_required) |
| ret = nand_read_data_op(chip, chip->oob_poi, mtd->oobsize, |
| false); |
| |
| if (chip->ecc.strength == 4) |
| max_bitflips = micron_nand_on_die_ecc_status_4(chip, status, |
| buf, page, |
| oob_required); |
| else |
| max_bitflips = micron_nand_on_die_ecc_status_8(chip, status); |
| |
| out: |
| micron_nand_on_die_ecc_setup(chip, false); |
| |
| return ret ? ret : max_bitflips; |
| } |
| |
| static int |
| micron_nand_write_page_on_die_ecc(struct nand_chip *chip, const uint8_t *buf, |
| int oob_required, int page) |
| { |
| int ret; |
| |
| ret = micron_nand_on_die_ecc_setup(chip, true); |
| if (ret) |
| return ret; |
| |
| ret = nand_write_page_raw(chip, buf, oob_required, page); |
| micron_nand_on_die_ecc_setup(chip, false); |
| |
| return ret; |
| } |
| |
| enum { |
| /* The NAND flash doesn't support on-die ECC */ |
| MICRON_ON_DIE_UNSUPPORTED, |
| |
| /* |
| * The NAND flash supports on-die ECC and it can be |
| * enabled/disabled by a set features command. |
| */ |
| MICRON_ON_DIE_SUPPORTED, |
| |
| /* |
| * The NAND flash supports on-die ECC, and it cannot be |
| * disabled. |
| */ |
| MICRON_ON_DIE_MANDATORY, |
| }; |
| |
| #define MICRON_ID_INTERNAL_ECC_MASK GENMASK(1, 0) |
| #define MICRON_ID_ECC_ENABLED BIT(7) |
| |
| /* |
| * Try to detect if the NAND support on-die ECC. To do this, we enable |
| * the feature, and read back if it has been enabled as expected. We |
| * also check if it can be disabled, because some Micron NANDs do not |
| * allow disabling the on-die ECC and we don't support such NANDs for |
| * now. |
| * |
| * This function also has the side effect of disabling on-die ECC if |
| * it had been left enabled by the firmware/bootloader. |
| */ |
| static int micron_supports_on_die_ecc(struct nand_chip *chip) |
| { |
| u8 id[5]; |
| int ret; |
| |
| if (!chip->parameters.onfi) |
| return MICRON_ON_DIE_UNSUPPORTED; |
| |
| if (nanddev_bits_per_cell(&chip->base) != 1) |
| return MICRON_ON_DIE_UNSUPPORTED; |
| |
| /* |
| * We only support on-die ECC of 4/512 or 8/512 |
| */ |
| if (chip->base.eccreq.strength != 4 && chip->base.eccreq.strength != 8) |
| return MICRON_ON_DIE_UNSUPPORTED; |
| |
| /* 0x2 means on-die ECC is available. */ |
| if (chip->id.len != 5 || |
| (chip->id.data[4] & MICRON_ID_INTERNAL_ECC_MASK) != 0x2) |
| return MICRON_ON_DIE_UNSUPPORTED; |
| |
| /* |
| * It seems that there are devices which do not support ECC officially. |
| * At least the MT29F2G08ABAGA / MT29F2G08ABBGA devices supports |
| * enabling the ECC feature but don't reflect that to the READ_ID table. |
| * So we have to guarantee that we disable the ECC feature directly |
| * after we did the READ_ID table command. Later we can evaluate the |
| * ECC_ENABLE support. |
| */ |
| ret = micron_nand_on_die_ecc_setup(chip, true); |
| if (ret) |
| return MICRON_ON_DIE_UNSUPPORTED; |
| |
| ret = nand_readid_op(chip, 0, id, sizeof(id)); |
| if (ret) |
| return MICRON_ON_DIE_UNSUPPORTED; |
| |
| ret = micron_nand_on_die_ecc_setup(chip, false); |
| if (ret) |
| return MICRON_ON_DIE_UNSUPPORTED; |
| |
| if (!(id[4] & MICRON_ID_ECC_ENABLED)) |
| return MICRON_ON_DIE_UNSUPPORTED; |
| |
| ret = nand_readid_op(chip, 0, id, sizeof(id)); |
| if (ret) |
| return MICRON_ON_DIE_UNSUPPORTED; |
| |
| if (id[4] & MICRON_ID_ECC_ENABLED) |
| return MICRON_ON_DIE_MANDATORY; |
| |
| /* |
| * We only support on-die ECC of 4/512 or 8/512 |
| */ |
| if (chip->base.eccreq.strength != 4 && chip->base.eccreq.strength != 8) |
| return MICRON_ON_DIE_UNSUPPORTED; |
| |
| return MICRON_ON_DIE_SUPPORTED; |
| } |
| |
| static int micron_nand_init(struct nand_chip *chip) |
| { |
| struct mtd_info *mtd = nand_to_mtd(chip); |
| struct micron_nand *micron; |
| int ondie; |
| int ret; |
| |
| micron = kzalloc(sizeof(*micron), GFP_KERNEL); |
| if (!micron) |
| return -ENOMEM; |
| |
| nand_set_manufacturer_data(chip, micron); |
| |
| ret = micron_nand_onfi_init(chip); |
| if (ret) |
| goto err_free_manuf_data; |
| |
| chip->options |= NAND_BBM_FIRSTPAGE; |
| |
| if (mtd->writesize == 2048) |
| chip->options |= NAND_BBM_SECONDPAGE; |
| |
| ondie = micron_supports_on_die_ecc(chip); |
| |
| if (ondie == MICRON_ON_DIE_MANDATORY && |
| chip->ecc.mode != NAND_ECC_ON_DIE) { |
| pr_err("On-die ECC forcefully enabled, not supported\n"); |
| ret = -EINVAL; |
| goto err_free_manuf_data; |
| } |
| |
| if (chip->ecc.mode == NAND_ECC_ON_DIE) { |
| if (ondie == MICRON_ON_DIE_UNSUPPORTED) { |
| pr_err("On-die ECC selected but not supported\n"); |
| ret = -EINVAL; |
| goto err_free_manuf_data; |
| } |
| |
| if (ondie == MICRON_ON_DIE_MANDATORY) { |
| micron->ecc.forced = true; |
| micron->ecc.enabled = true; |
| } |
| |
| /* |
| * In case of 4bit on-die ECC, we need a buffer to store a |
| * page dumped in raw mode so that we can compare its content |
| * to the same page after ECC correction happened and extract |
| * the real number of bitflips from this comparison. |
| * That's not needed for 8-bit ECC, because the status expose |
| * a better approximation of the number of bitflips in a page. |
| */ |
| if (chip->base.eccreq.strength == 4) { |
| micron->ecc.rawbuf = kmalloc(mtd->writesize + |
| mtd->oobsize, |
| GFP_KERNEL); |
| if (!micron->ecc.rawbuf) { |
| ret = -ENOMEM; |
| goto err_free_manuf_data; |
| } |
| } |
| |
| if (chip->base.eccreq.strength == 4) |
| mtd_set_ooblayout(mtd, |
| µn_nand_on_die_4_ooblayout_ops); |
| else |
| mtd_set_ooblayout(mtd, |
| µn_nand_on_die_8_ooblayout_ops); |
| |
| chip->ecc.bytes = chip->base.eccreq.strength * 2; |
| chip->ecc.size = 512; |
| chip->ecc.strength = chip->base.eccreq.strength; |
| chip->ecc.algo = NAND_ECC_BCH; |
| chip->ecc.read_page = micron_nand_read_page_on_die_ecc; |
| chip->ecc.write_page = micron_nand_write_page_on_die_ecc; |
| |
| if (ondie == MICRON_ON_DIE_MANDATORY) { |
| chip->ecc.read_page_raw = nand_read_page_raw_notsupp; |
| chip->ecc.write_page_raw = nand_write_page_raw_notsupp; |
| } else { |
| chip->ecc.read_page_raw = nand_read_page_raw; |
| chip->ecc.write_page_raw = nand_write_page_raw; |
| } |
| } |
| |
| return 0; |
| |
| err_free_manuf_data: |
| kfree(micron->ecc.rawbuf); |
| kfree(micron); |
| |
| return ret; |
| } |
| |
| static void micron_nand_cleanup(struct nand_chip *chip) |
| { |
| struct micron_nand *micron = nand_get_manufacturer_data(chip); |
| |
| kfree(micron->ecc.rawbuf); |
| kfree(micron); |
| } |
| |
| static void micron_fixup_onfi_param_page(struct nand_chip *chip, |
| struct nand_onfi_params *p) |
| { |
| /* |
| * MT29F1G08ABAFAWP-ITE:F and possibly others report 00 00 for the |
| * revision number field of the ONFI parameter page. Assume ONFI |
| * version 1.0 if the revision number is 00 00. |
| */ |
| if (le16_to_cpu(p->revision) == 0) |
| p->revision = cpu_to_le16(ONFI_VERSION_1_0); |
| } |
| |
| const struct nand_manufacturer_ops micron_nand_manuf_ops = { |
| .init = micron_nand_init, |
| .cleanup = micron_nand_cleanup, |
| .fixup_onfi_param_page = micron_fixup_onfi_param_page, |
| }; |