| // SPDX-License-Identifier: GPL-2.0-only |
| /* |
| * Copyright (C) 2017 ARM Ltd. |
| * Author: Marc Zyngier <marc.zyngier@arm.com> |
| */ |
| |
| #include <linux/kvm_host.h> |
| #include <linux/random.h> |
| #include <linux/memblock.h> |
| #include <asm/alternative.h> |
| #include <asm/debug-monitors.h> |
| #include <asm/insn.h> |
| #include <asm/kvm_mmu.h> |
| |
| /* |
| * The LSB of the random hyp VA tag or 0 if no randomization is used. |
| */ |
| static u8 tag_lsb; |
| /* |
| * The random hyp VA tag value with the region bit if hyp randomization is used |
| */ |
| static u64 tag_val; |
| static u64 va_mask; |
| |
| static void compute_layout(void) |
| { |
| phys_addr_t idmap_addr = __pa_symbol(__hyp_idmap_text_start); |
| u64 hyp_va_msb; |
| int kva_msb; |
| |
| /* Where is my RAM region? */ |
| hyp_va_msb = idmap_addr & BIT(VA_BITS - 1); |
| hyp_va_msb ^= BIT(VA_BITS - 1); |
| |
| kva_msb = fls64((u64)phys_to_virt(memblock_start_of_DRAM()) ^ |
| (u64)(high_memory - 1)); |
| |
| if (kva_msb == (VA_BITS - 1)) { |
| /* |
| * No space in the address, let's compute the mask so |
| * that it covers (VA_BITS - 1) bits, and the region |
| * bit. The tag stays set to zero. |
| */ |
| va_mask = BIT(VA_BITS - 1) - 1; |
| va_mask |= hyp_va_msb; |
| } else { |
| /* |
| * We do have some free bits to insert a random tag. |
| * Hyp VAs are now created from kernel linear map VAs |
| * using the following formula (with V == VA_BITS): |
| * |
| * 63 ... V | V-1 | V-2 .. tag_lsb | tag_lsb - 1 .. 0 |
| * --------------------------------------------------------- |
| * | 0000000 | hyp_va_msb | random tag | kern linear VA | |
| */ |
| tag_lsb = kva_msb; |
| va_mask = GENMASK_ULL(tag_lsb - 1, 0); |
| tag_val = get_random_long() & GENMASK_ULL(VA_BITS - 2, tag_lsb); |
| tag_val |= hyp_va_msb; |
| tag_val >>= tag_lsb; |
| } |
| } |
| |
| static u32 compute_instruction(int n, u32 rd, u32 rn) |
| { |
| u32 insn = AARCH64_BREAK_FAULT; |
| |
| switch (n) { |
| case 0: |
| insn = aarch64_insn_gen_logical_immediate(AARCH64_INSN_LOGIC_AND, |
| AARCH64_INSN_VARIANT_64BIT, |
| rn, rd, va_mask); |
| break; |
| |
| case 1: |
| /* ROR is a variant of EXTR with Rm = Rn */ |
| insn = aarch64_insn_gen_extr(AARCH64_INSN_VARIANT_64BIT, |
| rn, rn, rd, |
| tag_lsb); |
| break; |
| |
| case 2: |
| insn = aarch64_insn_gen_add_sub_imm(rd, rn, |
| tag_val & GENMASK(11, 0), |
| AARCH64_INSN_VARIANT_64BIT, |
| AARCH64_INSN_ADSB_ADD); |
| break; |
| |
| case 3: |
| insn = aarch64_insn_gen_add_sub_imm(rd, rn, |
| tag_val & GENMASK(23, 12), |
| AARCH64_INSN_VARIANT_64BIT, |
| AARCH64_INSN_ADSB_ADD); |
| break; |
| |
| case 4: |
| /* ROR is a variant of EXTR with Rm = Rn */ |
| insn = aarch64_insn_gen_extr(AARCH64_INSN_VARIANT_64BIT, |
| rn, rn, rd, 64 - tag_lsb); |
| break; |
| } |
| |
| return insn; |
| } |
| |
| void __init kvm_update_va_mask(struct alt_instr *alt, |
| __le32 *origptr, __le32 *updptr, int nr_inst) |
| { |
| int i; |
| |
| BUG_ON(nr_inst != 5); |
| |
| if (!has_vhe() && !va_mask) |
| compute_layout(); |
| |
| for (i = 0; i < nr_inst; i++) { |
| u32 rd, rn, insn, oinsn; |
| |
| /* |
| * VHE doesn't need any address translation, let's NOP |
| * everything. |
| * |
| * Alternatively, if we don't have any spare bits in |
| * the address, NOP everything after masking that |
| * kernel VA. |
| */ |
| if (has_vhe() || (!tag_lsb && i > 0)) { |
| updptr[i] = cpu_to_le32(aarch64_insn_gen_nop()); |
| continue; |
| } |
| |
| oinsn = le32_to_cpu(origptr[i]); |
| rd = aarch64_insn_decode_register(AARCH64_INSN_REGTYPE_RD, oinsn); |
| rn = aarch64_insn_decode_register(AARCH64_INSN_REGTYPE_RN, oinsn); |
| |
| insn = compute_instruction(i, rd, rn); |
| BUG_ON(insn == AARCH64_BREAK_FAULT); |
| |
| updptr[i] = cpu_to_le32(insn); |
| } |
| } |
| |
| void *__kvm_bp_vect_base; |
| int __kvm_harden_el2_vector_slot; |
| |
| void kvm_patch_vector_branch(struct alt_instr *alt, |
| __le32 *origptr, __le32 *updptr, int nr_inst) |
| { |
| u64 addr; |
| u32 insn; |
| |
| BUG_ON(nr_inst != 5); |
| |
| if (has_vhe() || !cpus_have_const_cap(ARM64_HARDEN_EL2_VECTORS)) { |
| WARN_ON_ONCE(cpus_have_const_cap(ARM64_HARDEN_EL2_VECTORS)); |
| return; |
| } |
| |
| if (!va_mask) |
| compute_layout(); |
| |
| /* |
| * Compute HYP VA by using the same computation as kern_hyp_va() |
| */ |
| addr = (uintptr_t)kvm_ksym_ref(__kvm_hyp_vector); |
| addr &= va_mask; |
| addr |= tag_val << tag_lsb; |
| |
| /* Use PC[10:7] to branch to the same vector in KVM */ |
| addr |= ((u64)origptr & GENMASK_ULL(10, 7)); |
| |
| /* |
| * Branch to the second instruction in the vectors in order to |
| * avoid the initial store on the stack (which we already |
| * perform in the hardening vectors). |
| */ |
| addr += AARCH64_INSN_SIZE; |
| |
| /* stp x0, x1, [sp, #-16]! */ |
| insn = aarch64_insn_gen_load_store_pair(AARCH64_INSN_REG_0, |
| AARCH64_INSN_REG_1, |
| AARCH64_INSN_REG_SP, |
| -16, |
| AARCH64_INSN_VARIANT_64BIT, |
| AARCH64_INSN_LDST_STORE_PAIR_PRE_INDEX); |
| *updptr++ = cpu_to_le32(insn); |
| |
| /* movz x0, #(addr & 0xffff) */ |
| insn = aarch64_insn_gen_movewide(AARCH64_INSN_REG_0, |
| (u16)addr, |
| 0, |
| AARCH64_INSN_VARIANT_64BIT, |
| AARCH64_INSN_MOVEWIDE_ZERO); |
| *updptr++ = cpu_to_le32(insn); |
| |
| /* movk x0, #((addr >> 16) & 0xffff), lsl #16 */ |
| insn = aarch64_insn_gen_movewide(AARCH64_INSN_REG_0, |
| (u16)(addr >> 16), |
| 16, |
| AARCH64_INSN_VARIANT_64BIT, |
| AARCH64_INSN_MOVEWIDE_KEEP); |
| *updptr++ = cpu_to_le32(insn); |
| |
| /* movk x0, #((addr >> 32) & 0xffff), lsl #32 */ |
| insn = aarch64_insn_gen_movewide(AARCH64_INSN_REG_0, |
| (u16)(addr >> 32), |
| 32, |
| AARCH64_INSN_VARIANT_64BIT, |
| AARCH64_INSN_MOVEWIDE_KEEP); |
| *updptr++ = cpu_to_le32(insn); |
| |
| /* br x0 */ |
| insn = aarch64_insn_gen_branch_reg(AARCH64_INSN_REG_0, |
| AARCH64_INSN_BRANCH_NOLINK); |
| *updptr++ = cpu_to_le32(insn); |
| } |