| // SPDX-License-Identifier: GPL-2.0-only |
| /* |
| * Copyright (C) 2012 - Virtual Open Systems and Columbia University |
| * Author: Christoffer Dall <c.dall@virtualopensystems.com> |
| */ |
| |
| #include <linux/bug.h> |
| #include <linux/cpu_pm.h> |
| #include <linux/errno.h> |
| #include <linux/err.h> |
| #include <linux/kvm_host.h> |
| #include <linux/list.h> |
| #include <linux/module.h> |
| #include <linux/vmalloc.h> |
| #include <linux/fs.h> |
| #include <linux/mman.h> |
| #include <linux/sched.h> |
| #include <linux/kmemleak.h> |
| #include <linux/kvm.h> |
| #include <linux/kvm_irqfd.h> |
| #include <linux/irqbypass.h> |
| #include <linux/sched/stat.h> |
| #include <linux/psci.h> |
| #include <trace/events/kvm.h> |
| |
| #define CREATE_TRACE_POINTS |
| #include "trace_arm.h" |
| |
| #include <linux/uaccess.h> |
| #include <asm/ptrace.h> |
| #include <asm/mman.h> |
| #include <asm/tlbflush.h> |
| #include <asm/cacheflush.h> |
| #include <asm/cpufeature.h> |
| #include <asm/virt.h> |
| #include <asm/kvm_arm.h> |
| #include <asm/kvm_asm.h> |
| #include <asm/kvm_mmu.h> |
| #include <asm/kvm_emulate.h> |
| #include <asm/sections.h> |
| |
| #include <kvm/arm_hypercalls.h> |
| #include <kvm/arm_pmu.h> |
| #include <kvm/arm_psci.h> |
| |
| #ifdef REQUIRES_VIRT |
| __asm__(".arch_extension virt"); |
| #endif |
| |
| static enum kvm_mode kvm_mode = KVM_MODE_DEFAULT; |
| DEFINE_STATIC_KEY_FALSE(kvm_protected_mode_initialized); |
| |
| DECLARE_KVM_HYP_PER_CPU(unsigned long, kvm_hyp_vector); |
| |
| static DEFINE_PER_CPU(unsigned long, kvm_arm_hyp_stack_page); |
| unsigned long kvm_arm_hyp_percpu_base[NR_CPUS]; |
| DECLARE_KVM_NVHE_PER_CPU(struct kvm_nvhe_init_params, kvm_init_params); |
| |
| /* The VMID used in the VTTBR */ |
| static atomic64_t kvm_vmid_gen = ATOMIC64_INIT(1); |
| static u32 kvm_next_vmid; |
| static DEFINE_SPINLOCK(kvm_vmid_lock); |
| |
| static bool vgic_present; |
| |
| static DEFINE_PER_CPU(unsigned char, kvm_arm_hardware_enabled); |
| DEFINE_STATIC_KEY_FALSE(userspace_irqchip_in_use); |
| |
| int kvm_arch_vcpu_should_kick(struct kvm_vcpu *vcpu) |
| { |
| return kvm_vcpu_exiting_guest_mode(vcpu) == IN_GUEST_MODE; |
| } |
| |
| int kvm_arch_hardware_setup(void *opaque) |
| { |
| return 0; |
| } |
| |
| int kvm_arch_check_processor_compat(void *opaque) |
| { |
| return 0; |
| } |
| |
| int kvm_vm_ioctl_enable_cap(struct kvm *kvm, |
| struct kvm_enable_cap *cap) |
| { |
| int r; |
| |
| if (cap->flags) |
| return -EINVAL; |
| |
| switch (cap->cap) { |
| case KVM_CAP_ARM_NISV_TO_USER: |
| r = 0; |
| kvm->arch.return_nisv_io_abort_to_user = true; |
| break; |
| default: |
| r = -EINVAL; |
| break; |
| } |
| |
| return r; |
| } |
| |
| static int kvm_arm_default_max_vcpus(void) |
| { |
| return vgic_present ? kvm_vgic_get_max_vcpus() : KVM_MAX_VCPUS; |
| } |
| |
| static void set_default_spectre(struct kvm *kvm) |
| { |
| /* |
| * The default is to expose CSV2 == 1 if the HW isn't affected. |
| * Although this is a per-CPU feature, we make it global because |
| * asymmetric systems are just a nuisance. |
| * |
| * Userspace can override this as long as it doesn't promise |
| * the impossible. |
| */ |
| if (arm64_get_spectre_v2_state() == SPECTRE_UNAFFECTED) |
| kvm->arch.pfr0_csv2 = 1; |
| if (arm64_get_meltdown_state() == SPECTRE_UNAFFECTED) |
| kvm->arch.pfr0_csv3 = 1; |
| } |
| |
| /** |
| * kvm_arch_init_vm - initializes a VM data structure |
| * @kvm: pointer to the KVM struct |
| */ |
| int kvm_arch_init_vm(struct kvm *kvm, unsigned long type) |
| { |
| int ret; |
| |
| ret = kvm_arm_setup_stage2(kvm, type); |
| if (ret) |
| return ret; |
| |
| ret = kvm_init_stage2_mmu(kvm, &kvm->arch.mmu); |
| if (ret) |
| return ret; |
| |
| ret = create_hyp_mappings(kvm, kvm + 1, PAGE_HYP); |
| if (ret) |
| goto out_free_stage2_pgd; |
| |
| kvm_vgic_early_init(kvm); |
| |
| /* The maximum number of VCPUs is limited by the host's GIC model */ |
| kvm->arch.max_vcpus = kvm_arm_default_max_vcpus(); |
| |
| set_default_spectre(kvm); |
| |
| return ret; |
| out_free_stage2_pgd: |
| kvm_free_stage2_pgd(&kvm->arch.mmu); |
| return ret; |
| } |
| |
| vm_fault_t kvm_arch_vcpu_fault(struct kvm_vcpu *vcpu, struct vm_fault *vmf) |
| { |
| return VM_FAULT_SIGBUS; |
| } |
| |
| |
| /** |
| * kvm_arch_destroy_vm - destroy the VM data structure |
| * @kvm: pointer to the KVM struct |
| */ |
| void kvm_arch_destroy_vm(struct kvm *kvm) |
| { |
| int i; |
| |
| bitmap_free(kvm->arch.pmu_filter); |
| |
| kvm_vgic_destroy(kvm); |
| |
| for (i = 0; i < KVM_MAX_VCPUS; ++i) { |
| if (kvm->vcpus[i]) { |
| kvm_vcpu_destroy(kvm->vcpus[i]); |
| kvm->vcpus[i] = NULL; |
| } |
| } |
| atomic_set(&kvm->online_vcpus, 0); |
| } |
| |
| int kvm_vm_ioctl_check_extension(struct kvm *kvm, long ext) |
| { |
| int r; |
| switch (ext) { |
| case KVM_CAP_IRQCHIP: |
| r = vgic_present; |
| break; |
| case KVM_CAP_IOEVENTFD: |
| case KVM_CAP_DEVICE_CTRL: |
| case KVM_CAP_USER_MEMORY: |
| case KVM_CAP_SYNC_MMU: |
| case KVM_CAP_DESTROY_MEMORY_REGION_WORKS: |
| case KVM_CAP_ONE_REG: |
| case KVM_CAP_ARM_PSCI: |
| case KVM_CAP_ARM_PSCI_0_2: |
| case KVM_CAP_READONLY_MEM: |
| case KVM_CAP_MP_STATE: |
| case KVM_CAP_IMMEDIATE_EXIT: |
| case KVM_CAP_VCPU_EVENTS: |
| case KVM_CAP_ARM_IRQ_LINE_LAYOUT_2: |
| case KVM_CAP_ARM_NISV_TO_USER: |
| case KVM_CAP_ARM_INJECT_EXT_DABT: |
| case KVM_CAP_SET_GUEST_DEBUG: |
| case KVM_CAP_VCPU_ATTRIBUTES: |
| r = 1; |
| break; |
| case KVM_CAP_ARM_SET_DEVICE_ADDR: |
| r = 1; |
| break; |
| case KVM_CAP_NR_VCPUS: |
| r = num_online_cpus(); |
| break; |
| case KVM_CAP_MAX_VCPUS: |
| case KVM_CAP_MAX_VCPU_ID: |
| if (kvm) |
| r = kvm->arch.max_vcpus; |
| else |
| r = kvm_arm_default_max_vcpus(); |
| break; |
| case KVM_CAP_MSI_DEVID: |
| if (!kvm) |
| r = -EINVAL; |
| else |
| r = kvm->arch.vgic.msis_require_devid; |
| break; |
| case KVM_CAP_ARM_USER_IRQ: |
| /* |
| * 1: EL1_VTIMER, EL1_PTIMER, and PMU. |
| * (bump this number if adding more devices) |
| */ |
| r = 1; |
| break; |
| case KVM_CAP_STEAL_TIME: |
| r = kvm_arm_pvtime_supported(); |
| break; |
| case KVM_CAP_ARM_EL1_32BIT: |
| r = cpus_have_const_cap(ARM64_HAS_32BIT_EL1); |
| break; |
| case KVM_CAP_GUEST_DEBUG_HW_BPS: |
| r = get_num_brps(); |
| break; |
| case KVM_CAP_GUEST_DEBUG_HW_WPS: |
| r = get_num_wrps(); |
| break; |
| case KVM_CAP_ARM_PMU_V3: |
| r = kvm_arm_support_pmu_v3(); |
| break; |
| case KVM_CAP_ARM_INJECT_SERROR_ESR: |
| r = cpus_have_const_cap(ARM64_HAS_RAS_EXTN); |
| break; |
| case KVM_CAP_ARM_VM_IPA_SIZE: |
| r = get_kvm_ipa_limit(); |
| break; |
| case KVM_CAP_ARM_SVE: |
| r = system_supports_sve(); |
| break; |
| case KVM_CAP_ARM_PTRAUTH_ADDRESS: |
| case KVM_CAP_ARM_PTRAUTH_GENERIC: |
| r = system_has_full_ptr_auth(); |
| break; |
| default: |
| r = 0; |
| } |
| |
| return r; |
| } |
| |
| long kvm_arch_dev_ioctl(struct file *filp, |
| unsigned int ioctl, unsigned long arg) |
| { |
| return -EINVAL; |
| } |
| |
| struct kvm *kvm_arch_alloc_vm(void) |
| { |
| if (!has_vhe()) |
| return kzalloc(sizeof(struct kvm), GFP_KERNEL); |
| |
| return vzalloc(sizeof(struct kvm)); |
| } |
| |
| void kvm_arch_free_vm(struct kvm *kvm) |
| { |
| if (!has_vhe()) |
| kfree(kvm); |
| else |
| vfree(kvm); |
| } |
| |
| int kvm_arch_vcpu_precreate(struct kvm *kvm, unsigned int id) |
| { |
| if (irqchip_in_kernel(kvm) && vgic_initialized(kvm)) |
| return -EBUSY; |
| |
| if (id >= kvm->arch.max_vcpus) |
| return -EINVAL; |
| |
| return 0; |
| } |
| |
| int kvm_arch_vcpu_create(struct kvm_vcpu *vcpu) |
| { |
| int err; |
| |
| /* Force users to call KVM_ARM_VCPU_INIT */ |
| vcpu->arch.target = -1; |
| bitmap_zero(vcpu->arch.features, KVM_VCPU_MAX_FEATURES); |
| |
| vcpu->arch.mmu_page_cache.gfp_zero = __GFP_ZERO; |
| |
| /* Set up the timer */ |
| kvm_timer_vcpu_init(vcpu); |
| |
| kvm_pmu_vcpu_init(vcpu); |
| |
| kvm_arm_reset_debug_ptr(vcpu); |
| |
| kvm_arm_pvtime_vcpu_init(&vcpu->arch); |
| |
| vcpu->arch.hw_mmu = &vcpu->kvm->arch.mmu; |
| |
| err = kvm_vgic_vcpu_init(vcpu); |
| if (err) |
| return err; |
| |
| return create_hyp_mappings(vcpu, vcpu + 1, PAGE_HYP); |
| } |
| |
| void kvm_arch_vcpu_postcreate(struct kvm_vcpu *vcpu) |
| { |
| } |
| |
| void kvm_arch_vcpu_destroy(struct kvm_vcpu *vcpu) |
| { |
| if (vcpu->arch.has_run_once && unlikely(!irqchip_in_kernel(vcpu->kvm))) |
| static_branch_dec(&userspace_irqchip_in_use); |
| |
| kvm_mmu_free_memory_cache(&vcpu->arch.mmu_page_cache); |
| kvm_timer_vcpu_terminate(vcpu); |
| kvm_pmu_vcpu_destroy(vcpu); |
| |
| kvm_arm_vcpu_destroy(vcpu); |
| } |
| |
| int kvm_cpu_has_pending_timer(struct kvm_vcpu *vcpu) |
| { |
| return kvm_timer_is_pending(vcpu); |
| } |
| |
| void kvm_arch_vcpu_blocking(struct kvm_vcpu *vcpu) |
| { |
| /* |
| * If we're about to block (most likely because we've just hit a |
| * WFI), we need to sync back the state of the GIC CPU interface |
| * so that we have the latest PMR and group enables. This ensures |
| * that kvm_arch_vcpu_runnable has up-to-date data to decide |
| * whether we have pending interrupts. |
| * |
| * For the same reason, we want to tell GICv4 that we need |
| * doorbells to be signalled, should an interrupt become pending. |
| */ |
| preempt_disable(); |
| kvm_vgic_vmcr_sync(vcpu); |
| vgic_v4_put(vcpu, true); |
| preempt_enable(); |
| } |
| |
| void kvm_arch_vcpu_unblocking(struct kvm_vcpu *vcpu) |
| { |
| preempt_disable(); |
| vgic_v4_load(vcpu); |
| preempt_enable(); |
| } |
| |
| void kvm_arch_vcpu_load(struct kvm_vcpu *vcpu, int cpu) |
| { |
| struct kvm_s2_mmu *mmu; |
| int *last_ran; |
| |
| mmu = vcpu->arch.hw_mmu; |
| last_ran = this_cpu_ptr(mmu->last_vcpu_ran); |
| |
| /* |
| * We guarantee that both TLBs and I-cache are private to each |
| * vcpu. If detecting that a vcpu from the same VM has |
| * previously run on the same physical CPU, call into the |
| * hypervisor code to nuke the relevant contexts. |
| * |
| * We might get preempted before the vCPU actually runs, but |
| * over-invalidation doesn't affect correctness. |
| */ |
| if (*last_ran != vcpu->vcpu_id) { |
| kvm_call_hyp(__kvm_flush_cpu_context, mmu); |
| *last_ran = vcpu->vcpu_id; |
| } |
| |
| vcpu->cpu = cpu; |
| |
| kvm_vgic_load(vcpu); |
| kvm_timer_vcpu_load(vcpu); |
| if (has_vhe()) |
| kvm_vcpu_load_sysregs_vhe(vcpu); |
| kvm_arch_vcpu_load_fp(vcpu); |
| kvm_vcpu_pmu_restore_guest(vcpu); |
| if (kvm_arm_is_pvtime_enabled(&vcpu->arch)) |
| kvm_make_request(KVM_REQ_RECORD_STEAL, vcpu); |
| |
| if (single_task_running()) |
| vcpu_clear_wfx_traps(vcpu); |
| else |
| vcpu_set_wfx_traps(vcpu); |
| |
| if (vcpu_has_ptrauth(vcpu)) |
| vcpu_ptrauth_disable(vcpu); |
| kvm_arch_vcpu_load_debug_state_flags(vcpu); |
| } |
| |
| void kvm_arch_vcpu_put(struct kvm_vcpu *vcpu) |
| { |
| kvm_arch_vcpu_put_debug_state_flags(vcpu); |
| kvm_arch_vcpu_put_fp(vcpu); |
| if (has_vhe()) |
| kvm_vcpu_put_sysregs_vhe(vcpu); |
| kvm_timer_vcpu_put(vcpu); |
| kvm_vgic_put(vcpu); |
| kvm_vcpu_pmu_restore_host(vcpu); |
| |
| vcpu->cpu = -1; |
| } |
| |
| static void vcpu_power_off(struct kvm_vcpu *vcpu) |
| { |
| vcpu->arch.power_off = true; |
| kvm_make_request(KVM_REQ_SLEEP, vcpu); |
| kvm_vcpu_kick(vcpu); |
| } |
| |
| int kvm_arch_vcpu_ioctl_get_mpstate(struct kvm_vcpu *vcpu, |
| struct kvm_mp_state *mp_state) |
| { |
| if (vcpu->arch.power_off) |
| mp_state->mp_state = KVM_MP_STATE_STOPPED; |
| else |
| mp_state->mp_state = KVM_MP_STATE_RUNNABLE; |
| |
| return 0; |
| } |
| |
| int kvm_arch_vcpu_ioctl_set_mpstate(struct kvm_vcpu *vcpu, |
| struct kvm_mp_state *mp_state) |
| { |
| int ret = 0; |
| |
| switch (mp_state->mp_state) { |
| case KVM_MP_STATE_RUNNABLE: |
| vcpu->arch.power_off = false; |
| break; |
| case KVM_MP_STATE_STOPPED: |
| vcpu_power_off(vcpu); |
| break; |
| default: |
| ret = -EINVAL; |
| } |
| |
| return ret; |
| } |
| |
| /** |
| * kvm_arch_vcpu_runnable - determine if the vcpu can be scheduled |
| * @v: The VCPU pointer |
| * |
| * If the guest CPU is not waiting for interrupts or an interrupt line is |
| * asserted, the CPU is by definition runnable. |
| */ |
| int kvm_arch_vcpu_runnable(struct kvm_vcpu *v) |
| { |
| bool irq_lines = *vcpu_hcr(v) & (HCR_VI | HCR_VF); |
| return ((irq_lines || kvm_vgic_vcpu_pending_irq(v)) |
| && !v->arch.power_off && !v->arch.pause); |
| } |
| |
| bool kvm_arch_vcpu_in_kernel(struct kvm_vcpu *vcpu) |
| { |
| return vcpu_mode_priv(vcpu); |
| } |
| |
| /* Just ensure a guest exit from a particular CPU */ |
| static void exit_vm_noop(void *info) |
| { |
| } |
| |
| void force_vm_exit(const cpumask_t *mask) |
| { |
| preempt_disable(); |
| smp_call_function_many(mask, exit_vm_noop, NULL, true); |
| preempt_enable(); |
| } |
| |
| /** |
| * need_new_vmid_gen - check that the VMID is still valid |
| * @vmid: The VMID to check |
| * |
| * return true if there is a new generation of VMIDs being used |
| * |
| * The hardware supports a limited set of values with the value zero reserved |
| * for the host, so we check if an assigned value belongs to a previous |
| * generation, which requires us to assign a new value. If we're the first to |
| * use a VMID for the new generation, we must flush necessary caches and TLBs |
| * on all CPUs. |
| */ |
| static bool need_new_vmid_gen(struct kvm_vmid *vmid) |
| { |
| u64 current_vmid_gen = atomic64_read(&kvm_vmid_gen); |
| smp_rmb(); /* Orders read of kvm_vmid_gen and kvm->arch.vmid */ |
| return unlikely(READ_ONCE(vmid->vmid_gen) != current_vmid_gen); |
| } |
| |
| /** |
| * update_vmid - Update the vmid with a valid VMID for the current generation |
| * @vmid: The stage-2 VMID information struct |
| */ |
| static void update_vmid(struct kvm_vmid *vmid) |
| { |
| if (!need_new_vmid_gen(vmid)) |
| return; |
| |
| spin_lock(&kvm_vmid_lock); |
| |
| /* |
| * We need to re-check the vmid_gen here to ensure that if another vcpu |
| * already allocated a valid vmid for this vm, then this vcpu should |
| * use the same vmid. |
| */ |
| if (!need_new_vmid_gen(vmid)) { |
| spin_unlock(&kvm_vmid_lock); |
| return; |
| } |
| |
| /* First user of a new VMID generation? */ |
| if (unlikely(kvm_next_vmid == 0)) { |
| atomic64_inc(&kvm_vmid_gen); |
| kvm_next_vmid = 1; |
| |
| /* |
| * On SMP we know no other CPUs can use this CPU's or each |
| * other's VMID after force_vm_exit returns since the |
| * kvm_vmid_lock blocks them from reentry to the guest. |
| */ |
| force_vm_exit(cpu_all_mask); |
| /* |
| * Now broadcast TLB + ICACHE invalidation over the inner |
| * shareable domain to make sure all data structures are |
| * clean. |
| */ |
| kvm_call_hyp(__kvm_flush_vm_context); |
| } |
| |
| vmid->vmid = kvm_next_vmid; |
| kvm_next_vmid++; |
| kvm_next_vmid &= (1 << kvm_get_vmid_bits()) - 1; |
| |
| smp_wmb(); |
| WRITE_ONCE(vmid->vmid_gen, atomic64_read(&kvm_vmid_gen)); |
| |
| spin_unlock(&kvm_vmid_lock); |
| } |
| |
| static int kvm_vcpu_first_run_init(struct kvm_vcpu *vcpu) |
| { |
| struct kvm *kvm = vcpu->kvm; |
| int ret = 0; |
| |
| if (likely(vcpu->arch.has_run_once)) |
| return 0; |
| |
| if (!kvm_arm_vcpu_is_finalized(vcpu)) |
| return -EPERM; |
| |
| vcpu->arch.has_run_once = true; |
| |
| kvm_arm_vcpu_init_debug(vcpu); |
| |
| if (likely(irqchip_in_kernel(kvm))) { |
| /* |
| * Map the VGIC hardware resources before running a vcpu the |
| * first time on this VM. |
| */ |
| ret = kvm_vgic_map_resources(kvm); |
| if (ret) |
| return ret; |
| } else { |
| /* |
| * Tell the rest of the code that there are userspace irqchip |
| * VMs in the wild. |
| */ |
| static_branch_inc(&userspace_irqchip_in_use); |
| } |
| |
| ret = kvm_timer_enable(vcpu); |
| if (ret) |
| return ret; |
| |
| ret = kvm_arm_pmu_v3_enable(vcpu); |
| |
| return ret; |
| } |
| |
| bool kvm_arch_intc_initialized(struct kvm *kvm) |
| { |
| return vgic_initialized(kvm); |
| } |
| |
| void kvm_arm_halt_guest(struct kvm *kvm) |
| { |
| int i; |
| struct kvm_vcpu *vcpu; |
| |
| kvm_for_each_vcpu(i, vcpu, kvm) |
| vcpu->arch.pause = true; |
| kvm_make_all_cpus_request(kvm, KVM_REQ_SLEEP); |
| } |
| |
| void kvm_arm_resume_guest(struct kvm *kvm) |
| { |
| int i; |
| struct kvm_vcpu *vcpu; |
| |
| kvm_for_each_vcpu(i, vcpu, kvm) { |
| vcpu->arch.pause = false; |
| rcuwait_wake_up(kvm_arch_vcpu_get_wait(vcpu)); |
| } |
| } |
| |
| static void vcpu_req_sleep(struct kvm_vcpu *vcpu) |
| { |
| struct rcuwait *wait = kvm_arch_vcpu_get_wait(vcpu); |
| |
| rcuwait_wait_event(wait, |
| (!vcpu->arch.power_off) &&(!vcpu->arch.pause), |
| TASK_INTERRUPTIBLE); |
| |
| if (vcpu->arch.power_off || vcpu->arch.pause) { |
| /* Awaken to handle a signal, request we sleep again later. */ |
| kvm_make_request(KVM_REQ_SLEEP, vcpu); |
| } |
| |
| /* |
| * Make sure we will observe a potential reset request if we've |
| * observed a change to the power state. Pairs with the smp_wmb() in |
| * kvm_psci_vcpu_on(). |
| */ |
| smp_rmb(); |
| } |
| |
| static int kvm_vcpu_initialized(struct kvm_vcpu *vcpu) |
| { |
| return vcpu->arch.target >= 0; |
| } |
| |
| static void check_vcpu_requests(struct kvm_vcpu *vcpu) |
| { |
| if (kvm_request_pending(vcpu)) { |
| if (kvm_check_request(KVM_REQ_SLEEP, vcpu)) |
| vcpu_req_sleep(vcpu); |
| |
| if (kvm_check_request(KVM_REQ_VCPU_RESET, vcpu)) |
| kvm_reset_vcpu(vcpu); |
| |
| /* |
| * Clear IRQ_PENDING requests that were made to guarantee |
| * that a VCPU sees new virtual interrupts. |
| */ |
| kvm_check_request(KVM_REQ_IRQ_PENDING, vcpu); |
| |
| if (kvm_check_request(KVM_REQ_RECORD_STEAL, vcpu)) |
| kvm_update_stolen_time(vcpu); |
| |
| if (kvm_check_request(KVM_REQ_RELOAD_GICv4, vcpu)) { |
| /* The distributor enable bits were changed */ |
| preempt_disable(); |
| vgic_v4_put(vcpu, false); |
| vgic_v4_load(vcpu); |
| preempt_enable(); |
| } |
| } |
| } |
| |
| static bool vcpu_mode_is_bad_32bit(struct kvm_vcpu *vcpu) |
| { |
| if (likely(!vcpu_mode_is_32bit(vcpu))) |
| return false; |
| |
| return !system_supports_32bit_el0() || |
| static_branch_unlikely(&arm64_mismatched_32bit_el0); |
| } |
| |
| /** |
| * kvm_arch_vcpu_ioctl_run - the main VCPU run function to execute guest code |
| * @vcpu: The VCPU pointer |
| * |
| * This function is called through the VCPU_RUN ioctl called from user space. It |
| * will execute VM code in a loop until the time slice for the process is used |
| * or some emulation is needed from user space in which case the function will |
| * return with return value 0 and with the kvm_run structure filled in with the |
| * required data for the requested emulation. |
| */ |
| int kvm_arch_vcpu_ioctl_run(struct kvm_vcpu *vcpu) |
| { |
| struct kvm_run *run = vcpu->run; |
| int ret; |
| |
| if (unlikely(!kvm_vcpu_initialized(vcpu))) |
| return -ENOEXEC; |
| |
| ret = kvm_vcpu_first_run_init(vcpu); |
| if (ret) |
| return ret; |
| |
| if (run->exit_reason == KVM_EXIT_MMIO) { |
| ret = kvm_handle_mmio_return(vcpu); |
| if (ret) |
| return ret; |
| } |
| |
| if (run->immediate_exit) |
| return -EINTR; |
| |
| vcpu_load(vcpu); |
| |
| kvm_sigset_activate(vcpu); |
| |
| ret = 1; |
| run->exit_reason = KVM_EXIT_UNKNOWN; |
| while (ret > 0) { |
| /* |
| * Check conditions before entering the guest |
| */ |
| cond_resched(); |
| |
| update_vmid(&vcpu->arch.hw_mmu->vmid); |
| |
| check_vcpu_requests(vcpu); |
| |
| /* |
| * Preparing the interrupts to be injected also |
| * involves poking the GIC, which must be done in a |
| * non-preemptible context. |
| */ |
| preempt_disable(); |
| |
| kvm_pmu_flush_hwstate(vcpu); |
| |
| local_irq_disable(); |
| |
| kvm_vgic_flush_hwstate(vcpu); |
| |
| /* |
| * Exit if we have a signal pending so that we can deliver the |
| * signal to user space. |
| */ |
| if (signal_pending(current)) { |
| ret = -EINTR; |
| run->exit_reason = KVM_EXIT_INTR; |
| } |
| |
| /* |
| * If we're using a userspace irqchip, then check if we need |
| * to tell a userspace irqchip about timer or PMU level |
| * changes and if so, exit to userspace (the actual level |
| * state gets updated in kvm_timer_update_run and |
| * kvm_pmu_update_run below). |
| */ |
| if (static_branch_unlikely(&userspace_irqchip_in_use)) { |
| if (kvm_timer_should_notify_user(vcpu) || |
| kvm_pmu_should_notify_user(vcpu)) { |
| ret = -EINTR; |
| run->exit_reason = KVM_EXIT_INTR; |
| } |
| } |
| |
| /* |
| * Ensure we set mode to IN_GUEST_MODE after we disable |
| * interrupts and before the final VCPU requests check. |
| * See the comment in kvm_vcpu_exiting_guest_mode() and |
| * Documentation/virt/kvm/vcpu-requests.rst |
| */ |
| smp_store_mb(vcpu->mode, IN_GUEST_MODE); |
| |
| if (ret <= 0 || need_new_vmid_gen(&vcpu->arch.hw_mmu->vmid) || |
| kvm_request_pending(vcpu)) { |
| vcpu->mode = OUTSIDE_GUEST_MODE; |
| isb(); /* Ensure work in x_flush_hwstate is committed */ |
| kvm_pmu_sync_hwstate(vcpu); |
| if (static_branch_unlikely(&userspace_irqchip_in_use)) |
| kvm_timer_sync_user(vcpu); |
| kvm_vgic_sync_hwstate(vcpu); |
| local_irq_enable(); |
| preempt_enable(); |
| continue; |
| } |
| |
| kvm_arm_setup_debug(vcpu); |
| |
| /************************************************************** |
| * Enter the guest |
| */ |
| trace_kvm_entry(*vcpu_pc(vcpu)); |
| guest_enter_irqoff(); |
| |
| ret = kvm_call_hyp_ret(__kvm_vcpu_run, vcpu); |
| |
| vcpu->mode = OUTSIDE_GUEST_MODE; |
| vcpu->stat.exits++; |
| /* |
| * Back from guest |
| *************************************************************/ |
| |
| kvm_arm_clear_debug(vcpu); |
| |
| /* |
| * We must sync the PMU state before the vgic state so |
| * that the vgic can properly sample the updated state of the |
| * interrupt line. |
| */ |
| kvm_pmu_sync_hwstate(vcpu); |
| |
| /* |
| * Sync the vgic state before syncing the timer state because |
| * the timer code needs to know if the virtual timer |
| * interrupts are active. |
| */ |
| kvm_vgic_sync_hwstate(vcpu); |
| |
| /* |
| * Sync the timer hardware state before enabling interrupts as |
| * we don't want vtimer interrupts to race with syncing the |
| * timer virtual interrupt state. |
| */ |
| if (static_branch_unlikely(&userspace_irqchip_in_use)) |
| kvm_timer_sync_user(vcpu); |
| |
| kvm_arch_vcpu_ctxsync_fp(vcpu); |
| |
| /* |
| * We may have taken a host interrupt in HYP mode (ie |
| * while executing the guest). This interrupt is still |
| * pending, as we haven't serviced it yet! |
| * |
| * We're now back in SVC mode, with interrupts |
| * disabled. Enabling the interrupts now will have |
| * the effect of taking the interrupt again, in SVC |
| * mode this time. |
| */ |
| local_irq_enable(); |
| |
| /* |
| * We do local_irq_enable() before calling guest_exit() so |
| * that if a timer interrupt hits while running the guest we |
| * account that tick as being spent in the guest. We enable |
| * preemption after calling guest_exit() so that if we get |
| * preempted we make sure ticks after that is not counted as |
| * guest time. |
| */ |
| guest_exit(); |
| trace_kvm_exit(ret, kvm_vcpu_trap_get_class(vcpu), *vcpu_pc(vcpu)); |
| |
| /* Exit types that need handling before we can be preempted */ |
| handle_exit_early(vcpu, ret); |
| |
| preempt_enable(); |
| |
| /* |
| * The ARMv8 architecture doesn't give the hypervisor |
| * a mechanism to prevent a guest from dropping to AArch32 EL0 |
| * if implemented by the CPU. If we spot the guest in such |
| * state and that we decided it wasn't supposed to do so (like |
| * with the asymmetric AArch32 case), return to userspace with |
| * a fatal error. |
| */ |
| if (vcpu_mode_is_bad_32bit(vcpu)) { |
| /* |
| * As we have caught the guest red-handed, decide that |
| * it isn't fit for purpose anymore by making the vcpu |
| * invalid. The VMM can try and fix it by issuing a |
| * KVM_ARM_VCPU_INIT if it really wants to. |
| */ |
| vcpu->arch.target = -1; |
| ret = ARM_EXCEPTION_IL; |
| } |
| |
| ret = handle_exit(vcpu, ret); |
| } |
| |
| /* Tell userspace about in-kernel device output levels */ |
| if (unlikely(!irqchip_in_kernel(vcpu->kvm))) { |
| kvm_timer_update_run(vcpu); |
| kvm_pmu_update_run(vcpu); |
| } |
| |
| kvm_sigset_deactivate(vcpu); |
| |
| vcpu_put(vcpu); |
| return ret; |
| } |
| |
| static int vcpu_interrupt_line(struct kvm_vcpu *vcpu, int number, bool level) |
| { |
| int bit_index; |
| bool set; |
| unsigned long *hcr; |
| |
| if (number == KVM_ARM_IRQ_CPU_IRQ) |
| bit_index = __ffs(HCR_VI); |
| else /* KVM_ARM_IRQ_CPU_FIQ */ |
| bit_index = __ffs(HCR_VF); |
| |
| hcr = vcpu_hcr(vcpu); |
| if (level) |
| set = test_and_set_bit(bit_index, hcr); |
| else |
| set = test_and_clear_bit(bit_index, hcr); |
| |
| /* |
| * If we didn't change anything, no need to wake up or kick other CPUs |
| */ |
| if (set == level) |
| return 0; |
| |
| /* |
| * The vcpu irq_lines field was updated, wake up sleeping VCPUs and |
| * trigger a world-switch round on the running physical CPU to set the |
| * virtual IRQ/FIQ fields in the HCR appropriately. |
| */ |
| kvm_make_request(KVM_REQ_IRQ_PENDING, vcpu); |
| kvm_vcpu_kick(vcpu); |
| |
| return 0; |
| } |
| |
| int kvm_vm_ioctl_irq_line(struct kvm *kvm, struct kvm_irq_level *irq_level, |
| bool line_status) |
| { |
| u32 irq = irq_level->irq; |
| unsigned int irq_type, vcpu_idx, irq_num; |
| int nrcpus = atomic_read(&kvm->online_vcpus); |
| struct kvm_vcpu *vcpu = NULL; |
| bool level = irq_level->level; |
| |
| irq_type = (irq >> KVM_ARM_IRQ_TYPE_SHIFT) & KVM_ARM_IRQ_TYPE_MASK; |
| vcpu_idx = (irq >> KVM_ARM_IRQ_VCPU_SHIFT) & KVM_ARM_IRQ_VCPU_MASK; |
| vcpu_idx += ((irq >> KVM_ARM_IRQ_VCPU2_SHIFT) & KVM_ARM_IRQ_VCPU2_MASK) * (KVM_ARM_IRQ_VCPU_MASK + 1); |
| irq_num = (irq >> KVM_ARM_IRQ_NUM_SHIFT) & KVM_ARM_IRQ_NUM_MASK; |
| |
| trace_kvm_irq_line(irq_type, vcpu_idx, irq_num, irq_level->level); |
| |
| switch (irq_type) { |
| case KVM_ARM_IRQ_TYPE_CPU: |
| if (irqchip_in_kernel(kvm)) |
| return -ENXIO; |
| |
| if (vcpu_idx >= nrcpus) |
| return -EINVAL; |
| |
| vcpu = kvm_get_vcpu(kvm, vcpu_idx); |
| if (!vcpu) |
| return -EINVAL; |
| |
| if (irq_num > KVM_ARM_IRQ_CPU_FIQ) |
| return -EINVAL; |
| |
| return vcpu_interrupt_line(vcpu, irq_num, level); |
| case KVM_ARM_IRQ_TYPE_PPI: |
| if (!irqchip_in_kernel(kvm)) |
| return -ENXIO; |
| |
| if (vcpu_idx >= nrcpus) |
| return -EINVAL; |
| |
| vcpu = kvm_get_vcpu(kvm, vcpu_idx); |
| if (!vcpu) |
| return -EINVAL; |
| |
| if (irq_num < VGIC_NR_SGIS || irq_num >= VGIC_NR_PRIVATE_IRQS) |
| return -EINVAL; |
| |
| return kvm_vgic_inject_irq(kvm, vcpu->vcpu_id, irq_num, level, NULL); |
| case KVM_ARM_IRQ_TYPE_SPI: |
| if (!irqchip_in_kernel(kvm)) |
| return -ENXIO; |
| |
| if (irq_num < VGIC_NR_PRIVATE_IRQS) |
| return -EINVAL; |
| |
| return kvm_vgic_inject_irq(kvm, 0, irq_num, level, NULL); |
| } |
| |
| return -EINVAL; |
| } |
| |
| static int kvm_vcpu_set_target(struct kvm_vcpu *vcpu, |
| const struct kvm_vcpu_init *init) |
| { |
| unsigned int i, ret; |
| int phys_target = kvm_target_cpu(); |
| |
| if (init->target != phys_target) |
| return -EINVAL; |
| |
| /* |
| * Secondary and subsequent calls to KVM_ARM_VCPU_INIT must |
| * use the same target. |
| */ |
| if (vcpu->arch.target != -1 && vcpu->arch.target != init->target) |
| return -EINVAL; |
| |
| /* -ENOENT for unknown features, -EINVAL for invalid combinations. */ |
| for (i = 0; i < sizeof(init->features) * 8; i++) { |
| bool set = (init->features[i / 32] & (1 << (i % 32))); |
| |
| if (set && i >= KVM_VCPU_MAX_FEATURES) |
| return -ENOENT; |
| |
| /* |
| * Secondary and subsequent calls to KVM_ARM_VCPU_INIT must |
| * use the same feature set. |
| */ |
| if (vcpu->arch.target != -1 && i < KVM_VCPU_MAX_FEATURES && |
| test_bit(i, vcpu->arch.features) != set) |
| return -EINVAL; |
| |
| if (set) |
| set_bit(i, vcpu->arch.features); |
| } |
| |
| vcpu->arch.target = phys_target; |
| |
| /* Now we know what it is, we can reset it. */ |
| ret = kvm_reset_vcpu(vcpu); |
| if (ret) { |
| vcpu->arch.target = -1; |
| bitmap_zero(vcpu->arch.features, KVM_VCPU_MAX_FEATURES); |
| } |
| |
| return ret; |
| } |
| |
| static int kvm_arch_vcpu_ioctl_vcpu_init(struct kvm_vcpu *vcpu, |
| struct kvm_vcpu_init *init) |
| { |
| int ret; |
| |
| ret = kvm_vcpu_set_target(vcpu, init); |
| if (ret) |
| return ret; |
| |
| /* |
| * Ensure a rebooted VM will fault in RAM pages and detect if the |
| * guest MMU is turned off and flush the caches as needed. |
| * |
| * S2FWB enforces all memory accesses to RAM being cacheable, |
| * ensuring that the data side is always coherent. We still |
| * need to invalidate the I-cache though, as FWB does *not* |
| * imply CTR_EL0.DIC. |
| */ |
| if (vcpu->arch.has_run_once) { |
| if (!cpus_have_final_cap(ARM64_HAS_STAGE2_FWB)) |
| stage2_unmap_vm(vcpu->kvm); |
| else |
| __flush_icache_all(); |
| } |
| |
| vcpu_reset_hcr(vcpu); |
| |
| /* |
| * Handle the "start in power-off" case. |
| */ |
| if (test_bit(KVM_ARM_VCPU_POWER_OFF, vcpu->arch.features)) |
| vcpu_power_off(vcpu); |
| else |
| vcpu->arch.power_off = false; |
| |
| return 0; |
| } |
| |
| static int kvm_arm_vcpu_set_attr(struct kvm_vcpu *vcpu, |
| struct kvm_device_attr *attr) |
| { |
| int ret = -ENXIO; |
| |
| switch (attr->group) { |
| default: |
| ret = kvm_arm_vcpu_arch_set_attr(vcpu, attr); |
| break; |
| } |
| |
| return ret; |
| } |
| |
| static int kvm_arm_vcpu_get_attr(struct kvm_vcpu *vcpu, |
| struct kvm_device_attr *attr) |
| { |
| int ret = -ENXIO; |
| |
| switch (attr->group) { |
| default: |
| ret = kvm_arm_vcpu_arch_get_attr(vcpu, attr); |
| break; |
| } |
| |
| return ret; |
| } |
| |
| static int kvm_arm_vcpu_has_attr(struct kvm_vcpu *vcpu, |
| struct kvm_device_attr *attr) |
| { |
| int ret = -ENXIO; |
| |
| switch (attr->group) { |
| default: |
| ret = kvm_arm_vcpu_arch_has_attr(vcpu, attr); |
| break; |
| } |
| |
| return ret; |
| } |
| |
| static int kvm_arm_vcpu_get_events(struct kvm_vcpu *vcpu, |
| struct kvm_vcpu_events *events) |
| { |
| memset(events, 0, sizeof(*events)); |
| |
| return __kvm_arm_vcpu_get_events(vcpu, events); |
| } |
| |
| static int kvm_arm_vcpu_set_events(struct kvm_vcpu *vcpu, |
| struct kvm_vcpu_events *events) |
| { |
| int i; |
| |
| /* check whether the reserved field is zero */ |
| for (i = 0; i < ARRAY_SIZE(events->reserved); i++) |
| if (events->reserved[i]) |
| return -EINVAL; |
| |
| /* check whether the pad field is zero */ |
| for (i = 0; i < ARRAY_SIZE(events->exception.pad); i++) |
| if (events->exception.pad[i]) |
| return -EINVAL; |
| |
| return __kvm_arm_vcpu_set_events(vcpu, events); |
| } |
| |
| long kvm_arch_vcpu_ioctl(struct file *filp, |
| unsigned int ioctl, unsigned long arg) |
| { |
| struct kvm_vcpu *vcpu = filp->private_data; |
| void __user *argp = (void __user *)arg; |
| struct kvm_device_attr attr; |
| long r; |
| |
| switch (ioctl) { |
| case KVM_ARM_VCPU_INIT: { |
| struct kvm_vcpu_init init; |
| |
| r = -EFAULT; |
| if (copy_from_user(&init, argp, sizeof(init))) |
| break; |
| |
| r = kvm_arch_vcpu_ioctl_vcpu_init(vcpu, &init); |
| break; |
| } |
| case KVM_SET_ONE_REG: |
| case KVM_GET_ONE_REG: { |
| struct kvm_one_reg reg; |
| |
| r = -ENOEXEC; |
| if (unlikely(!kvm_vcpu_initialized(vcpu))) |
| break; |
| |
| r = -EFAULT; |
| if (copy_from_user(®, argp, sizeof(reg))) |
| break; |
| |
| /* |
| * We could owe a reset due to PSCI. Handle the pending reset |
| * here to ensure userspace register accesses are ordered after |
| * the reset. |
| */ |
| if (kvm_check_request(KVM_REQ_VCPU_RESET, vcpu)) |
| kvm_reset_vcpu(vcpu); |
| |
| if (ioctl == KVM_SET_ONE_REG) |
| r = kvm_arm_set_reg(vcpu, ®); |
| else |
| r = kvm_arm_get_reg(vcpu, ®); |
| break; |
| } |
| case KVM_GET_REG_LIST: { |
| struct kvm_reg_list __user *user_list = argp; |
| struct kvm_reg_list reg_list; |
| unsigned n; |
| |
| r = -ENOEXEC; |
| if (unlikely(!kvm_vcpu_initialized(vcpu))) |
| break; |
| |
| r = -EPERM; |
| if (!kvm_arm_vcpu_is_finalized(vcpu)) |
| break; |
| |
| r = -EFAULT; |
| if (copy_from_user(®_list, user_list, sizeof(reg_list))) |
| break; |
| n = reg_list.n; |
| reg_list.n = kvm_arm_num_regs(vcpu); |
| if (copy_to_user(user_list, ®_list, sizeof(reg_list))) |
| break; |
| r = -E2BIG; |
| if (n < reg_list.n) |
| break; |
| r = kvm_arm_copy_reg_indices(vcpu, user_list->reg); |
| break; |
| } |
| case KVM_SET_DEVICE_ATTR: { |
| r = -EFAULT; |
| if (copy_from_user(&attr, argp, sizeof(attr))) |
| break; |
| r = kvm_arm_vcpu_set_attr(vcpu, &attr); |
| break; |
| } |
| case KVM_GET_DEVICE_ATTR: { |
| r = -EFAULT; |
| if (copy_from_user(&attr, argp, sizeof(attr))) |
| break; |
| r = kvm_arm_vcpu_get_attr(vcpu, &attr); |
| break; |
| } |
| case KVM_HAS_DEVICE_ATTR: { |
| r = -EFAULT; |
| if (copy_from_user(&attr, argp, sizeof(attr))) |
| break; |
| r = kvm_arm_vcpu_has_attr(vcpu, &attr); |
| break; |
| } |
| case KVM_GET_VCPU_EVENTS: { |
| struct kvm_vcpu_events events; |
| |
| if (kvm_arm_vcpu_get_events(vcpu, &events)) |
| return -EINVAL; |
| |
| if (copy_to_user(argp, &events, sizeof(events))) |
| return -EFAULT; |
| |
| return 0; |
| } |
| case KVM_SET_VCPU_EVENTS: { |
| struct kvm_vcpu_events events; |
| |
| if (copy_from_user(&events, argp, sizeof(events))) |
| return -EFAULT; |
| |
| return kvm_arm_vcpu_set_events(vcpu, &events); |
| } |
| case KVM_ARM_VCPU_FINALIZE: { |
| int what; |
| |
| if (!kvm_vcpu_initialized(vcpu)) |
| return -ENOEXEC; |
| |
| if (get_user(what, (const int __user *)argp)) |
| return -EFAULT; |
| |
| return kvm_arm_vcpu_finalize(vcpu, what); |
| } |
| default: |
| r = -EINVAL; |
| } |
| |
| return r; |
| } |
| |
| void kvm_arch_sync_dirty_log(struct kvm *kvm, struct kvm_memory_slot *memslot) |
| { |
| |
| } |
| |
| void kvm_arch_flush_remote_tlbs_memslot(struct kvm *kvm, |
| struct kvm_memory_slot *memslot) |
| { |
| kvm_flush_remote_tlbs(kvm); |
| } |
| |
| static int kvm_vm_ioctl_set_device_addr(struct kvm *kvm, |
| struct kvm_arm_device_addr *dev_addr) |
| { |
| unsigned long dev_id, type; |
| |
| dev_id = (dev_addr->id & KVM_ARM_DEVICE_ID_MASK) >> |
| KVM_ARM_DEVICE_ID_SHIFT; |
| type = (dev_addr->id & KVM_ARM_DEVICE_TYPE_MASK) >> |
| KVM_ARM_DEVICE_TYPE_SHIFT; |
| |
| switch (dev_id) { |
| case KVM_ARM_DEVICE_VGIC_V2: |
| if (!vgic_present) |
| return -ENXIO; |
| return kvm_vgic_addr(kvm, type, &dev_addr->addr, true); |
| default: |
| return -ENODEV; |
| } |
| } |
| |
| long kvm_arch_vm_ioctl(struct file *filp, |
| unsigned int ioctl, unsigned long arg) |
| { |
| struct kvm *kvm = filp->private_data; |
| void __user *argp = (void __user *)arg; |
| |
| switch (ioctl) { |
| case KVM_CREATE_IRQCHIP: { |
| int ret; |
| if (!vgic_present) |
| return -ENXIO; |
| mutex_lock(&kvm->lock); |
| ret = kvm_vgic_create(kvm, KVM_DEV_TYPE_ARM_VGIC_V2); |
| mutex_unlock(&kvm->lock); |
| return ret; |
| } |
| case KVM_ARM_SET_DEVICE_ADDR: { |
| struct kvm_arm_device_addr dev_addr; |
| |
| if (copy_from_user(&dev_addr, argp, sizeof(dev_addr))) |
| return -EFAULT; |
| return kvm_vm_ioctl_set_device_addr(kvm, &dev_addr); |
| } |
| case KVM_ARM_PREFERRED_TARGET: { |
| int err; |
| struct kvm_vcpu_init init; |
| |
| err = kvm_vcpu_preferred_target(&init); |
| if (err) |
| return err; |
| |
| if (copy_to_user(argp, &init, sizeof(init))) |
| return -EFAULT; |
| |
| return 0; |
| } |
| default: |
| return -EINVAL; |
| } |
| } |
| |
| static unsigned long nvhe_percpu_size(void) |
| { |
| return (unsigned long)CHOOSE_NVHE_SYM(__per_cpu_end) - |
| (unsigned long)CHOOSE_NVHE_SYM(__per_cpu_start); |
| } |
| |
| static unsigned long nvhe_percpu_order(void) |
| { |
| unsigned long size = nvhe_percpu_size(); |
| |
| return size ? get_order(size) : 0; |
| } |
| |
| /* A lookup table holding the hypervisor VA for each vector slot */ |
| static void *hyp_spectre_vector_selector[BP_HARDEN_EL2_SLOTS]; |
| |
| static void kvm_init_vector_slot(void *base, enum arm64_hyp_spectre_vector slot) |
| { |
| hyp_spectre_vector_selector[slot] = __kvm_vector_slot2addr(base, slot); |
| } |
| |
| static int kvm_init_vector_slots(void) |
| { |
| int err; |
| void *base; |
| |
| base = kern_hyp_va(kvm_ksym_ref(__kvm_hyp_vector)); |
| kvm_init_vector_slot(base, HYP_VECTOR_DIRECT); |
| |
| base = kern_hyp_va(kvm_ksym_ref(__bp_harden_hyp_vecs)); |
| kvm_init_vector_slot(base, HYP_VECTOR_SPECTRE_DIRECT); |
| |
| if (!cpus_have_const_cap(ARM64_SPECTRE_V3A)) |
| return 0; |
| |
| if (!has_vhe()) { |
| err = create_hyp_exec_mappings(__pa_symbol(__bp_harden_hyp_vecs), |
| __BP_HARDEN_HYP_VECS_SZ, &base); |
| if (err) |
| return err; |
| } |
| |
| kvm_init_vector_slot(base, HYP_VECTOR_INDIRECT); |
| kvm_init_vector_slot(base, HYP_VECTOR_SPECTRE_INDIRECT); |
| return 0; |
| } |
| |
| static void cpu_prepare_hyp_mode(int cpu) |
| { |
| struct kvm_nvhe_init_params *params = per_cpu_ptr_nvhe_sym(kvm_init_params, cpu); |
| unsigned long tcr; |
| |
| /* |
| * Calculate the raw per-cpu offset without a translation from the |
| * kernel's mapping to the linear mapping, and store it in tpidr_el2 |
| * so that we can use adr_l to access per-cpu variables in EL2. |
| * Also drop the KASAN tag which gets in the way... |
| */ |
| params->tpidr_el2 = (unsigned long)kasan_reset_tag(per_cpu_ptr_nvhe_sym(__per_cpu_start, cpu)) - |
| (unsigned long)kvm_ksym_ref(CHOOSE_NVHE_SYM(__per_cpu_start)); |
| |
| params->mair_el2 = read_sysreg(mair_el1); |
| |
| /* |
| * The ID map may be configured to use an extended virtual address |
| * range. This is only the case if system RAM is out of range for the |
| * currently configured page size and VA_BITS, in which case we will |
| * also need the extended virtual range for the HYP ID map, or we won't |
| * be able to enable the EL2 MMU. |
| * |
| * However, at EL2, there is only one TTBR register, and we can't switch |
| * between translation tables *and* update TCR_EL2.T0SZ at the same |
| * time. Bottom line: we need to use the extended range with *both* our |
| * translation tables. |
| * |
| * So use the same T0SZ value we use for the ID map. |
| */ |
| tcr = (read_sysreg(tcr_el1) & TCR_EL2_MASK) | TCR_EL2_RES1; |
| tcr &= ~TCR_T0SZ_MASK; |
| tcr |= (idmap_t0sz & GENMASK(TCR_TxSZ_WIDTH - 1, 0)) << TCR_T0SZ_OFFSET; |
| params->tcr_el2 = tcr; |
| |
| params->stack_hyp_va = kern_hyp_va(per_cpu(kvm_arm_hyp_stack_page, cpu) + PAGE_SIZE); |
| params->pgd_pa = kvm_mmu_get_httbr(); |
| if (is_protected_kvm_enabled()) |
| params->hcr_el2 = HCR_HOST_NVHE_PROTECTED_FLAGS; |
| else |
| params->hcr_el2 = HCR_HOST_NVHE_FLAGS; |
| params->vttbr = params->vtcr = 0; |
| |
| /* |
| * Flush the init params from the data cache because the struct will |
| * be read while the MMU is off. |
| */ |
| kvm_flush_dcache_to_poc(params, sizeof(*params)); |
| } |
| |
| static void hyp_install_host_vector(void) |
| { |
| struct kvm_nvhe_init_params *params; |
| struct arm_smccc_res res; |
| |
| /* Switch from the HYP stub to our own HYP init vector */ |
| __hyp_set_vectors(kvm_get_idmap_vector()); |
| |
| /* |
| * Call initialization code, and switch to the full blown HYP code. |
| * If the cpucaps haven't been finalized yet, something has gone very |
| * wrong, and hyp will crash and burn when it uses any |
| * cpus_have_const_cap() wrapper. |
| */ |
| BUG_ON(!system_capabilities_finalized()); |
| params = this_cpu_ptr_nvhe_sym(kvm_init_params); |
| arm_smccc_1_1_hvc(KVM_HOST_SMCCC_FUNC(__kvm_hyp_init), virt_to_phys(params), &res); |
| WARN_ON(res.a0 != SMCCC_RET_SUCCESS); |
| } |
| |
| static void cpu_init_hyp_mode(void) |
| { |
| hyp_install_host_vector(); |
| |
| /* |
| * Disabling SSBD on a non-VHE system requires us to enable SSBS |
| * at EL2. |
| */ |
| if (this_cpu_has_cap(ARM64_SSBS) && |
| arm64_get_spectre_v4_state() == SPECTRE_VULNERABLE) { |
| kvm_call_hyp_nvhe(__kvm_enable_ssbs); |
| } |
| } |
| |
| static void cpu_hyp_reset(void) |
| { |
| if (!is_kernel_in_hyp_mode()) |
| __hyp_reset_vectors(); |
| } |
| |
| /* |
| * EL2 vectors can be mapped and rerouted in a number of ways, |
| * depending on the kernel configuration and CPU present: |
| * |
| * - If the CPU is affected by Spectre-v2, the hardening sequence is |
| * placed in one of the vector slots, which is executed before jumping |
| * to the real vectors. |
| * |
| * - If the CPU also has the ARM64_SPECTRE_V3A cap, the slot |
| * containing the hardening sequence is mapped next to the idmap page, |
| * and executed before jumping to the real vectors. |
| * |
| * - If the CPU only has the ARM64_SPECTRE_V3A cap, then an |
| * empty slot is selected, mapped next to the idmap page, and |
| * executed before jumping to the real vectors. |
| * |
| * Note that ARM64_SPECTRE_V3A is somewhat incompatible with |
| * VHE, as we don't have hypervisor-specific mappings. If the system |
| * is VHE and yet selects this capability, it will be ignored. |
| */ |
| static void cpu_set_hyp_vector(void) |
| { |
| struct bp_hardening_data *data = this_cpu_ptr(&bp_hardening_data); |
| void *vector = hyp_spectre_vector_selector[data->slot]; |
| |
| if (!is_protected_kvm_enabled()) |
| *this_cpu_ptr_hyp_sym(kvm_hyp_vector) = (unsigned long)vector; |
| else |
| kvm_call_hyp_nvhe(__pkvm_cpu_set_vector, data->slot); |
| } |
| |
| static void cpu_hyp_reinit(void) |
| { |
| kvm_init_host_cpu_context(&this_cpu_ptr_hyp_sym(kvm_host_data)->host_ctxt); |
| |
| cpu_hyp_reset(); |
| |
| if (is_kernel_in_hyp_mode()) |
| kvm_timer_init_vhe(); |
| else |
| cpu_init_hyp_mode(); |
| |
| cpu_set_hyp_vector(); |
| |
| kvm_arm_init_debug(); |
| |
| if (vgic_present) |
| kvm_vgic_init_cpu_hardware(); |
| } |
| |
| static void _kvm_arch_hardware_enable(void *discard) |
| { |
| if (!__this_cpu_read(kvm_arm_hardware_enabled)) { |
| cpu_hyp_reinit(); |
| __this_cpu_write(kvm_arm_hardware_enabled, 1); |
| } |
| } |
| |
| int kvm_arch_hardware_enable(void) |
| { |
| _kvm_arch_hardware_enable(NULL); |
| return 0; |
| } |
| |
| static void _kvm_arch_hardware_disable(void *discard) |
| { |
| if (__this_cpu_read(kvm_arm_hardware_enabled)) { |
| cpu_hyp_reset(); |
| __this_cpu_write(kvm_arm_hardware_enabled, 0); |
| } |
| } |
| |
| void kvm_arch_hardware_disable(void) |
| { |
| if (!is_protected_kvm_enabled()) |
| _kvm_arch_hardware_disable(NULL); |
| } |
| |
| #ifdef CONFIG_CPU_PM |
| static int hyp_init_cpu_pm_notifier(struct notifier_block *self, |
| unsigned long cmd, |
| void *v) |
| { |
| /* |
| * kvm_arm_hardware_enabled is left with its old value over |
| * PM_ENTER->PM_EXIT. It is used to indicate PM_EXIT should |
| * re-enable hyp. |
| */ |
| switch (cmd) { |
| case CPU_PM_ENTER: |
| if (__this_cpu_read(kvm_arm_hardware_enabled)) |
| /* |
| * don't update kvm_arm_hardware_enabled here |
| * so that the hardware will be re-enabled |
| * when we resume. See below. |
| */ |
| cpu_hyp_reset(); |
| |
| return NOTIFY_OK; |
| case CPU_PM_ENTER_FAILED: |
| case CPU_PM_EXIT: |
| if (__this_cpu_read(kvm_arm_hardware_enabled)) |
| /* The hardware was enabled before suspend. */ |
| cpu_hyp_reinit(); |
| |
| return NOTIFY_OK; |
| |
| default: |
| return NOTIFY_DONE; |
| } |
| } |
| |
| static struct notifier_block hyp_init_cpu_pm_nb = { |
| .notifier_call = hyp_init_cpu_pm_notifier, |
| }; |
| |
| static void hyp_cpu_pm_init(void) |
| { |
| if (!is_protected_kvm_enabled()) |
| cpu_pm_register_notifier(&hyp_init_cpu_pm_nb); |
| } |
| static void hyp_cpu_pm_exit(void) |
| { |
| if (!is_protected_kvm_enabled()) |
| cpu_pm_unregister_notifier(&hyp_init_cpu_pm_nb); |
| } |
| #else |
| static inline void hyp_cpu_pm_init(void) |
| { |
| } |
| static inline void hyp_cpu_pm_exit(void) |
| { |
| } |
| #endif |
| |
| static void init_cpu_logical_map(void) |
| { |
| unsigned int cpu; |
| |
| /* |
| * Copy the MPIDR <-> logical CPU ID mapping to hyp. |
| * Only copy the set of online CPUs whose features have been chacked |
| * against the finalized system capabilities. The hypervisor will not |
| * allow any other CPUs from the `possible` set to boot. |
| */ |
| for_each_online_cpu(cpu) |
| hyp_cpu_logical_map[cpu] = cpu_logical_map(cpu); |
| } |
| |
| #define init_psci_0_1_impl_state(config, what) \ |
| config.psci_0_1_ ## what ## _implemented = psci_ops.what |
| |
| static bool init_psci_relay(void) |
| { |
| /* |
| * If PSCI has not been initialized, protected KVM cannot install |
| * itself on newly booted CPUs. |
| */ |
| if (!psci_ops.get_version) { |
| kvm_err("Cannot initialize protected mode without PSCI\n"); |
| return false; |
| } |
| |
| kvm_host_psci_config.version = psci_ops.get_version(); |
| |
| if (kvm_host_psci_config.version == PSCI_VERSION(0, 1)) { |
| kvm_host_psci_config.function_ids_0_1 = get_psci_0_1_function_ids(); |
| init_psci_0_1_impl_state(kvm_host_psci_config, cpu_suspend); |
| init_psci_0_1_impl_state(kvm_host_psci_config, cpu_on); |
| init_psci_0_1_impl_state(kvm_host_psci_config, cpu_off); |
| init_psci_0_1_impl_state(kvm_host_psci_config, migrate); |
| } |
| return true; |
| } |
| |
| static int init_common_resources(void) |
| { |
| return kvm_set_ipa_limit(); |
| } |
| |
| static int init_subsystems(void) |
| { |
| int err = 0; |
| |
| /* |
| * Enable hardware so that subsystem initialisation can access EL2. |
| */ |
| on_each_cpu(_kvm_arch_hardware_enable, NULL, 1); |
| |
| /* |
| * Register CPU lower-power notifier |
| */ |
| hyp_cpu_pm_init(); |
| |
| /* |
| * Init HYP view of VGIC |
| */ |
| err = kvm_vgic_hyp_init(); |
| switch (err) { |
| case 0: |
| vgic_present = true; |
| break; |
| case -ENODEV: |
| case -ENXIO: |
| vgic_present = false; |
| err = 0; |
| break; |
| default: |
| goto out; |
| } |
| |
| /* |
| * Init HYP architected timer support |
| */ |
| err = kvm_timer_hyp_init(vgic_present); |
| if (err) |
| goto out; |
| |
| kvm_perf_init(); |
| kvm_sys_reg_table_init(); |
| |
| out: |
| if (err || !is_protected_kvm_enabled()) |
| on_each_cpu(_kvm_arch_hardware_disable, NULL, 1); |
| |
| return err; |
| } |
| |
| static void teardown_hyp_mode(void) |
| { |
| int cpu; |
| |
| free_hyp_pgds(); |
| for_each_possible_cpu(cpu) { |
| free_page(per_cpu(kvm_arm_hyp_stack_page, cpu)); |
| free_pages(kvm_arm_hyp_percpu_base[cpu], nvhe_percpu_order()); |
| } |
| } |
| |
| static int do_pkvm_init(u32 hyp_va_bits) |
| { |
| void *per_cpu_base = kvm_ksym_ref(kvm_arm_hyp_percpu_base); |
| int ret; |
| |
| preempt_disable(); |
| hyp_install_host_vector(); |
| ret = kvm_call_hyp_nvhe(__pkvm_init, hyp_mem_base, hyp_mem_size, |
| num_possible_cpus(), kern_hyp_va(per_cpu_base), |
| hyp_va_bits); |
| preempt_enable(); |
| |
| return ret; |
| } |
| |
| static int kvm_hyp_init_protection(u32 hyp_va_bits) |
| { |
| void *addr = phys_to_virt(hyp_mem_base); |
| int ret; |
| |
| kvm_nvhe_sym(id_aa64mmfr0_el1_sys_val) = read_sanitised_ftr_reg(SYS_ID_AA64MMFR0_EL1); |
| kvm_nvhe_sym(id_aa64mmfr1_el1_sys_val) = read_sanitised_ftr_reg(SYS_ID_AA64MMFR1_EL1); |
| |
| ret = create_hyp_mappings(addr, addr + hyp_mem_size, PAGE_HYP); |
| if (ret) |
| return ret; |
| |
| ret = do_pkvm_init(hyp_va_bits); |
| if (ret) |
| return ret; |
| |
| free_hyp_pgds(); |
| |
| return 0; |
| } |
| |
| /** |
| * Inits Hyp-mode on all online CPUs |
| */ |
| static int init_hyp_mode(void) |
| { |
| u32 hyp_va_bits; |
| int cpu; |
| int err = -ENOMEM; |
| |
| /* |
| * The protected Hyp-mode cannot be initialized if the memory pool |
| * allocation has failed. |
| */ |
| if (is_protected_kvm_enabled() && !hyp_mem_base) |
| goto out_err; |
| |
| /* |
| * Allocate Hyp PGD and setup Hyp identity mapping |
| */ |
| err = kvm_mmu_init(&hyp_va_bits); |
| if (err) |
| goto out_err; |
| |
| /* |
| * Allocate stack pages for Hypervisor-mode |
| */ |
| for_each_possible_cpu(cpu) { |
| unsigned long stack_page; |
| |
| stack_page = __get_free_page(GFP_KERNEL); |
| if (!stack_page) { |
| err = -ENOMEM; |
| goto out_err; |
| } |
| |
| per_cpu(kvm_arm_hyp_stack_page, cpu) = stack_page; |
| } |
| |
| /* |
| * Allocate and initialize pages for Hypervisor-mode percpu regions. |
| */ |
| for_each_possible_cpu(cpu) { |
| struct page *page; |
| void *page_addr; |
| |
| page = alloc_pages(GFP_KERNEL, nvhe_percpu_order()); |
| if (!page) { |
| err = -ENOMEM; |
| goto out_err; |
| } |
| |
| page_addr = page_address(page); |
| memcpy(page_addr, CHOOSE_NVHE_SYM(__per_cpu_start), nvhe_percpu_size()); |
| kvm_arm_hyp_percpu_base[cpu] = (unsigned long)page_addr; |
| } |
| |
| /* |
| * Map the Hyp-code called directly from the host |
| */ |
| err = create_hyp_mappings(kvm_ksym_ref(__hyp_text_start), |
| kvm_ksym_ref(__hyp_text_end), PAGE_HYP_EXEC); |
| if (err) { |
| kvm_err("Cannot map world-switch code\n"); |
| goto out_err; |
| } |
| |
| err = create_hyp_mappings(kvm_ksym_ref(__hyp_rodata_start), |
| kvm_ksym_ref(__hyp_rodata_end), PAGE_HYP_RO); |
| if (err) { |
| kvm_err("Cannot map .hyp.rodata section\n"); |
| goto out_err; |
| } |
| |
| err = create_hyp_mappings(kvm_ksym_ref(__start_rodata), |
| kvm_ksym_ref(__end_rodata), PAGE_HYP_RO); |
| if (err) { |
| kvm_err("Cannot map rodata section\n"); |
| goto out_err; |
| } |
| |
| /* |
| * .hyp.bss is guaranteed to be placed at the beginning of the .bss |
| * section thanks to an assertion in the linker script. Map it RW and |
| * the rest of .bss RO. |
| */ |
| err = create_hyp_mappings(kvm_ksym_ref(__hyp_bss_start), |
| kvm_ksym_ref(__hyp_bss_end), PAGE_HYP); |
| if (err) { |
| kvm_err("Cannot map hyp bss section: %d\n", err); |
| goto out_err; |
| } |
| |
| err = create_hyp_mappings(kvm_ksym_ref(__hyp_bss_end), |
| kvm_ksym_ref(__bss_stop), PAGE_HYP_RO); |
| if (err) { |
| kvm_err("Cannot map bss section\n"); |
| goto out_err; |
| } |
| |
| /* |
| * Map the Hyp stack pages |
| */ |
| for_each_possible_cpu(cpu) { |
| char *stack_page = (char *)per_cpu(kvm_arm_hyp_stack_page, cpu); |
| err = create_hyp_mappings(stack_page, stack_page + PAGE_SIZE, |
| PAGE_HYP); |
| |
| if (err) { |
| kvm_err("Cannot map hyp stack\n"); |
| goto out_err; |
| } |
| } |
| |
| for_each_possible_cpu(cpu) { |
| char *percpu_begin = (char *)kvm_arm_hyp_percpu_base[cpu]; |
| char *percpu_end = percpu_begin + nvhe_percpu_size(); |
| |
| /* Map Hyp percpu pages */ |
| err = create_hyp_mappings(percpu_begin, percpu_end, PAGE_HYP); |
| if (err) { |
| kvm_err("Cannot map hyp percpu region\n"); |
| goto out_err; |
| } |
| |
| /* Prepare the CPU initialization parameters */ |
| cpu_prepare_hyp_mode(cpu); |
| } |
| |
| if (is_protected_kvm_enabled()) { |
| init_cpu_logical_map(); |
| |
| if (!init_psci_relay()) { |
| err = -ENODEV; |
| goto out_err; |
| } |
| } |
| |
| if (is_protected_kvm_enabled()) { |
| err = kvm_hyp_init_protection(hyp_va_bits); |
| if (err) { |
| kvm_err("Failed to init hyp memory protection\n"); |
| goto out_err; |
| } |
| } |
| |
| return 0; |
| |
| out_err: |
| teardown_hyp_mode(); |
| kvm_err("error initializing Hyp mode: %d\n", err); |
| return err; |
| } |
| |
| void _kvm_host_prot_finalize(void *discard) |
| { |
| WARN_ON(kvm_call_hyp_nvhe(__pkvm_prot_finalize)); |
| } |
| |
| static inline int pkvm_mark_hyp(phys_addr_t start, phys_addr_t end) |
| { |
| return kvm_call_hyp_nvhe(__pkvm_mark_hyp, start, end); |
| } |
| |
| #define pkvm_mark_hyp_section(__section) \ |
| pkvm_mark_hyp(__pa_symbol(__section##_start), \ |
| __pa_symbol(__section##_end)) |
| |
| static int finalize_hyp_mode(void) |
| { |
| int cpu, ret; |
| |
| if (!is_protected_kvm_enabled()) |
| return 0; |
| |
| ret = pkvm_mark_hyp_section(__hyp_idmap_text); |
| if (ret) |
| return ret; |
| |
| ret = pkvm_mark_hyp_section(__hyp_text); |
| if (ret) |
| return ret; |
| |
| ret = pkvm_mark_hyp_section(__hyp_rodata); |
| if (ret) |
| return ret; |
| |
| /* |
| * Exclude HYP BSS from kmemleak so that it doesn't get peeked |
| * at, which would end badly once the section is inaccessible. |
| * None of other sections should ever be introspected. |
| */ |
| kmemleak_free_part(__hyp_bss_start, __hyp_bss_end - __hyp_bss_start); |
| ret = pkvm_mark_hyp_section(__hyp_bss); |
| if (ret) |
| return ret; |
| |
| ret = pkvm_mark_hyp(hyp_mem_base, hyp_mem_base + hyp_mem_size); |
| if (ret) |
| return ret; |
| |
| for_each_possible_cpu(cpu) { |
| phys_addr_t start = virt_to_phys((void *)kvm_arm_hyp_percpu_base[cpu]); |
| phys_addr_t end = start + (PAGE_SIZE << nvhe_percpu_order()); |
| |
| ret = pkvm_mark_hyp(start, end); |
| if (ret) |
| return ret; |
| |
| start = virt_to_phys((void *)per_cpu(kvm_arm_hyp_stack_page, cpu)); |
| end = start + PAGE_SIZE; |
| ret = pkvm_mark_hyp(start, end); |
| if (ret) |
| return ret; |
| } |
| |
| /* |
| * Flip the static key upfront as that may no longer be possible |
| * once the host stage 2 is installed. |
| */ |
| static_branch_enable(&kvm_protected_mode_initialized); |
| on_each_cpu(_kvm_host_prot_finalize, NULL, 1); |
| |
| return 0; |
| } |
| |
| static void check_kvm_target_cpu(void *ret) |
| { |
| *(int *)ret = kvm_target_cpu(); |
| } |
| |
| struct kvm_vcpu *kvm_mpidr_to_vcpu(struct kvm *kvm, unsigned long mpidr) |
| { |
| struct kvm_vcpu *vcpu; |
| int i; |
| |
| mpidr &= MPIDR_HWID_BITMASK; |
| kvm_for_each_vcpu(i, vcpu, kvm) { |
| if (mpidr == kvm_vcpu_get_mpidr_aff(vcpu)) |
| return vcpu; |
| } |
| return NULL; |
| } |
| |
| bool kvm_arch_has_irq_bypass(void) |
| { |
| return true; |
| } |
| |
| int kvm_arch_irq_bypass_add_producer(struct irq_bypass_consumer *cons, |
| struct irq_bypass_producer *prod) |
| { |
| struct kvm_kernel_irqfd *irqfd = |
| container_of(cons, struct kvm_kernel_irqfd, consumer); |
| |
| return kvm_vgic_v4_set_forwarding(irqfd->kvm, prod->irq, |
| &irqfd->irq_entry); |
| } |
| void kvm_arch_irq_bypass_del_producer(struct irq_bypass_consumer *cons, |
| struct irq_bypass_producer *prod) |
| { |
| struct kvm_kernel_irqfd *irqfd = |
| container_of(cons, struct kvm_kernel_irqfd, consumer); |
| |
| kvm_vgic_v4_unset_forwarding(irqfd->kvm, prod->irq, |
| &irqfd->irq_entry); |
| } |
| |
| void kvm_arch_irq_bypass_stop(struct irq_bypass_consumer *cons) |
| { |
| struct kvm_kernel_irqfd *irqfd = |
| container_of(cons, struct kvm_kernel_irqfd, consumer); |
| |
| kvm_arm_halt_guest(irqfd->kvm); |
| } |
| |
| void kvm_arch_irq_bypass_start(struct irq_bypass_consumer *cons) |
| { |
| struct kvm_kernel_irqfd *irqfd = |
| container_of(cons, struct kvm_kernel_irqfd, consumer); |
| |
| kvm_arm_resume_guest(irqfd->kvm); |
| } |
| |
| /** |
| * Initialize Hyp-mode and memory mappings on all CPUs. |
| */ |
| int kvm_arch_init(void *opaque) |
| { |
| int err; |
| int ret, cpu; |
| bool in_hyp_mode; |
| |
| if (!is_hyp_mode_available()) { |
| kvm_info("HYP mode not available\n"); |
| return -ENODEV; |
| } |
| |
| in_hyp_mode = is_kernel_in_hyp_mode(); |
| |
| if (cpus_have_final_cap(ARM64_WORKAROUND_DEVICE_LOAD_ACQUIRE) || |
| cpus_have_final_cap(ARM64_WORKAROUND_1508412)) |
| kvm_info("Guests without required CPU erratum workarounds can deadlock system!\n" \ |
| "Only trusted guests should be used on this system.\n"); |
| |
| for_each_online_cpu(cpu) { |
| smp_call_function_single(cpu, check_kvm_target_cpu, &ret, 1); |
| if (ret < 0) { |
| kvm_err("Error, CPU %d not supported!\n", cpu); |
| return -ENODEV; |
| } |
| } |
| |
| err = init_common_resources(); |
| if (err) |
| return err; |
| |
| err = kvm_arm_init_sve(); |
| if (err) |
| return err; |
| |
| if (!in_hyp_mode) { |
| err = init_hyp_mode(); |
| if (err) |
| goto out_err; |
| } |
| |
| err = kvm_init_vector_slots(); |
| if (err) { |
| kvm_err("Cannot initialise vector slots\n"); |
| goto out_err; |
| } |
| |
| err = init_subsystems(); |
| if (err) |
| goto out_hyp; |
| |
| if (!in_hyp_mode) { |
| err = finalize_hyp_mode(); |
| if (err) { |
| kvm_err("Failed to finalize Hyp protection\n"); |
| goto out_hyp; |
| } |
| } |
| |
| if (is_protected_kvm_enabled()) { |
| kvm_info("Protected nVHE mode initialized successfully\n"); |
| } else if (in_hyp_mode) { |
| kvm_info("VHE mode initialized successfully\n"); |
| } else { |
| kvm_info("Hyp mode initialized successfully\n"); |
| } |
| |
| return 0; |
| |
| out_hyp: |
| hyp_cpu_pm_exit(); |
| if (!in_hyp_mode) |
| teardown_hyp_mode(); |
| out_err: |
| return err; |
| } |
| |
| /* NOP: Compiling as a module not supported */ |
| void kvm_arch_exit(void) |
| { |
| kvm_perf_teardown(); |
| } |
| |
| static int __init early_kvm_mode_cfg(char *arg) |
| { |
| if (!arg) |
| return -EINVAL; |
| |
| if (strcmp(arg, "protected") == 0) { |
| kvm_mode = KVM_MODE_PROTECTED; |
| return 0; |
| } |
| |
| if (strcmp(arg, "nvhe") == 0 && !WARN_ON(is_kernel_in_hyp_mode())) |
| return 0; |
| |
| return -EINVAL; |
| } |
| early_param("kvm-arm.mode", early_kvm_mode_cfg); |
| |
| enum kvm_mode kvm_get_mode(void) |
| { |
| return kvm_mode; |
| } |
| |
| static int arm_init(void) |
| { |
| int rc = kvm_init(NULL, sizeof(struct kvm_vcpu), 0, THIS_MODULE); |
| return rc; |
| } |
| |
| module_init(arm_init); |