| /* |
| * Copyright © 2008-2015 Intel Corporation |
| * |
| * Permission is hereby granted, free of charge, to any person obtaining a |
| * copy of this software and associated documentation files (the "Software"), |
| * to deal in the Software without restriction, including without limitation |
| * the rights to use, copy, modify, merge, publish, distribute, sublicense, |
| * and/or sell copies of the Software, and to permit persons to whom the |
| * Software is furnished to do so, subject to the following conditions: |
| * |
| * The above copyright notice and this permission notice (including the next |
| * paragraph) shall be included in all copies or substantial portions of the |
| * Software. |
| * |
| * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR |
| * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, |
| * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL |
| * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER |
| * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING |
| * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS |
| * IN THE SOFTWARE. |
| * |
| * Authors: |
| * Eric Anholt <eric@anholt.net> |
| * |
| */ |
| |
| #include <drm/drm_vma_manager.h> |
| #include <drm/i915_drm.h> |
| #include <linux/dma-fence-array.h> |
| #include <linux/kthread.h> |
| #include <linux/reservation.h> |
| #include <linux/shmem_fs.h> |
| #include <linux/slab.h> |
| #include <linux/stop_machine.h> |
| #include <linux/swap.h> |
| #include <linux/pci.h> |
| #include <linux/dma-buf.h> |
| #include <linux/mman.h> |
| |
| #include "gem/i915_gem_clflush.h" |
| #include "gem/i915_gem_context.h" |
| #include "gem/i915_gem_ioctls.h" |
| #include "gem/i915_gem_pm.h" |
| #include "gem/i915_gemfs.h" |
| #include "gt/intel_engine_pm.h" |
| #include "gt/intel_gt_pm.h" |
| #include "gt/intel_mocs.h" |
| #include "gt/intel_reset.h" |
| #include "gt/intel_workarounds.h" |
| |
| #include "i915_drv.h" |
| #include "i915_trace.h" |
| #include "i915_vgpu.h" |
| |
| #include "intel_display.h" |
| #include "intel_drv.h" |
| #include "intel_frontbuffer.h" |
| #include "intel_pm.h" |
| |
| static int |
| insert_mappable_node(struct i915_ggtt *ggtt, |
| struct drm_mm_node *node, u32 size) |
| { |
| memset(node, 0, sizeof(*node)); |
| return drm_mm_insert_node_in_range(&ggtt->vm.mm, node, |
| size, 0, I915_COLOR_UNEVICTABLE, |
| 0, ggtt->mappable_end, |
| DRM_MM_INSERT_LOW); |
| } |
| |
| static void |
| remove_mappable_node(struct drm_mm_node *node) |
| { |
| drm_mm_remove_node(node); |
| } |
| |
| int |
| i915_gem_get_aperture_ioctl(struct drm_device *dev, void *data, |
| struct drm_file *file) |
| { |
| struct i915_ggtt *ggtt = &to_i915(dev)->ggtt; |
| struct drm_i915_gem_get_aperture *args = data; |
| struct i915_vma *vma; |
| u64 pinned; |
| |
| mutex_lock(&ggtt->vm.mutex); |
| |
| pinned = ggtt->vm.reserved; |
| list_for_each_entry(vma, &ggtt->vm.bound_list, vm_link) |
| if (i915_vma_is_pinned(vma)) |
| pinned += vma->node.size; |
| |
| mutex_unlock(&ggtt->vm.mutex); |
| |
| args->aper_size = ggtt->vm.total; |
| args->aper_available_size = args->aper_size - pinned; |
| |
| return 0; |
| } |
| |
| int i915_gem_object_unbind(struct drm_i915_gem_object *obj) |
| { |
| struct i915_vma *vma; |
| LIST_HEAD(still_in_list); |
| int ret; |
| |
| lockdep_assert_held(&obj->base.dev->struct_mutex); |
| |
| /* Closed vma are removed from the obj->vma_list - but they may |
| * still have an active binding on the object. To remove those we |
| * must wait for all rendering to complete to the object (as unbinding |
| * must anyway), and retire the requests. |
| */ |
| ret = i915_gem_object_set_to_cpu_domain(obj, false); |
| if (ret) |
| return ret; |
| |
| spin_lock(&obj->vma.lock); |
| while (!ret && (vma = list_first_entry_or_null(&obj->vma.list, |
| struct i915_vma, |
| obj_link))) { |
| list_move_tail(&vma->obj_link, &still_in_list); |
| spin_unlock(&obj->vma.lock); |
| |
| ret = i915_vma_unbind(vma); |
| |
| spin_lock(&obj->vma.lock); |
| } |
| list_splice(&still_in_list, &obj->vma.list); |
| spin_unlock(&obj->vma.lock); |
| |
| return ret; |
| } |
| |
| static long |
| i915_gem_object_wait_fence(struct dma_fence *fence, |
| unsigned int flags, |
| long timeout) |
| { |
| struct i915_request *rq; |
| |
| BUILD_BUG_ON(I915_WAIT_INTERRUPTIBLE != 0x1); |
| |
| if (test_bit(DMA_FENCE_FLAG_SIGNALED_BIT, &fence->flags)) |
| return timeout; |
| |
| if (!dma_fence_is_i915(fence)) |
| return dma_fence_wait_timeout(fence, |
| flags & I915_WAIT_INTERRUPTIBLE, |
| timeout); |
| |
| rq = to_request(fence); |
| if (i915_request_completed(rq)) |
| goto out; |
| |
| timeout = i915_request_wait(rq, flags, timeout); |
| |
| out: |
| if (flags & I915_WAIT_LOCKED && i915_request_completed(rq)) |
| i915_request_retire_upto(rq); |
| |
| return timeout; |
| } |
| |
| static long |
| i915_gem_object_wait_reservation(struct reservation_object *resv, |
| unsigned int flags, |
| long timeout) |
| { |
| unsigned int seq = __read_seqcount_begin(&resv->seq); |
| struct dma_fence *excl; |
| bool prune_fences = false; |
| |
| if (flags & I915_WAIT_ALL) { |
| struct dma_fence **shared; |
| unsigned int count, i; |
| int ret; |
| |
| ret = reservation_object_get_fences_rcu(resv, |
| &excl, &count, &shared); |
| if (ret) |
| return ret; |
| |
| for (i = 0; i < count; i++) { |
| timeout = i915_gem_object_wait_fence(shared[i], |
| flags, timeout); |
| if (timeout < 0) |
| break; |
| |
| dma_fence_put(shared[i]); |
| } |
| |
| for (; i < count; i++) |
| dma_fence_put(shared[i]); |
| kfree(shared); |
| |
| /* |
| * If both shared fences and an exclusive fence exist, |
| * then by construction the shared fences must be later |
| * than the exclusive fence. If we successfully wait for |
| * all the shared fences, we know that the exclusive fence |
| * must all be signaled. If all the shared fences are |
| * signaled, we can prune the array and recover the |
| * floating references on the fences/requests. |
| */ |
| prune_fences = count && timeout >= 0; |
| } else { |
| excl = reservation_object_get_excl_rcu(resv); |
| } |
| |
| if (excl && timeout >= 0) |
| timeout = i915_gem_object_wait_fence(excl, flags, timeout); |
| |
| dma_fence_put(excl); |
| |
| /* |
| * Opportunistically prune the fences iff we know they have *all* been |
| * signaled and that the reservation object has not been changed (i.e. |
| * no new fences have been added). |
| */ |
| if (prune_fences && !__read_seqcount_retry(&resv->seq, seq)) { |
| if (reservation_object_trylock(resv)) { |
| if (!__read_seqcount_retry(&resv->seq, seq)) |
| reservation_object_add_excl_fence(resv, NULL); |
| reservation_object_unlock(resv); |
| } |
| } |
| |
| return timeout; |
| } |
| |
| static void __fence_set_priority(struct dma_fence *fence, |
| const struct i915_sched_attr *attr) |
| { |
| struct i915_request *rq; |
| struct intel_engine_cs *engine; |
| |
| if (dma_fence_is_signaled(fence) || !dma_fence_is_i915(fence)) |
| return; |
| |
| rq = to_request(fence); |
| engine = rq->engine; |
| |
| local_bh_disable(); |
| rcu_read_lock(); /* RCU serialisation for set-wedged protection */ |
| if (engine->schedule) |
| engine->schedule(rq, attr); |
| rcu_read_unlock(); |
| local_bh_enable(); /* kick the tasklets if queues were reprioritised */ |
| } |
| |
| static void fence_set_priority(struct dma_fence *fence, |
| const struct i915_sched_attr *attr) |
| { |
| /* Recurse once into a fence-array */ |
| if (dma_fence_is_array(fence)) { |
| struct dma_fence_array *array = to_dma_fence_array(fence); |
| int i; |
| |
| for (i = 0; i < array->num_fences; i++) |
| __fence_set_priority(array->fences[i], attr); |
| } else { |
| __fence_set_priority(fence, attr); |
| } |
| } |
| |
| int |
| i915_gem_object_wait_priority(struct drm_i915_gem_object *obj, |
| unsigned int flags, |
| const struct i915_sched_attr *attr) |
| { |
| struct dma_fence *excl; |
| |
| if (flags & I915_WAIT_ALL) { |
| struct dma_fence **shared; |
| unsigned int count, i; |
| int ret; |
| |
| ret = reservation_object_get_fences_rcu(obj->resv, |
| &excl, &count, &shared); |
| if (ret) |
| return ret; |
| |
| for (i = 0; i < count; i++) { |
| fence_set_priority(shared[i], attr); |
| dma_fence_put(shared[i]); |
| } |
| |
| kfree(shared); |
| } else { |
| excl = reservation_object_get_excl_rcu(obj->resv); |
| } |
| |
| if (excl) { |
| fence_set_priority(excl, attr); |
| dma_fence_put(excl); |
| } |
| return 0; |
| } |
| |
| /** |
| * Waits for rendering to the object to be completed |
| * @obj: i915 gem object |
| * @flags: how to wait (under a lock, for all rendering or just for writes etc) |
| * @timeout: how long to wait |
| */ |
| int |
| i915_gem_object_wait(struct drm_i915_gem_object *obj, |
| unsigned int flags, |
| long timeout) |
| { |
| might_sleep(); |
| GEM_BUG_ON(timeout < 0); |
| |
| timeout = i915_gem_object_wait_reservation(obj->resv, flags, timeout); |
| return timeout < 0 ? timeout : 0; |
| } |
| |
| static int |
| i915_gem_phys_pwrite(struct drm_i915_gem_object *obj, |
| struct drm_i915_gem_pwrite *args, |
| struct drm_file *file) |
| { |
| void *vaddr = obj->phys_handle->vaddr + args->offset; |
| char __user *user_data = u64_to_user_ptr(args->data_ptr); |
| |
| /* We manually control the domain here and pretend that it |
| * remains coherent i.e. in the GTT domain, like shmem_pwrite. |
| */ |
| intel_fb_obj_invalidate(obj, ORIGIN_CPU); |
| if (copy_from_user(vaddr, user_data, args->size)) |
| return -EFAULT; |
| |
| drm_clflush_virt_range(vaddr, args->size); |
| i915_gem_chipset_flush(to_i915(obj->base.dev)); |
| |
| intel_fb_obj_flush(obj, ORIGIN_CPU); |
| return 0; |
| } |
| |
| static int |
| i915_gem_create(struct drm_file *file, |
| struct drm_i915_private *dev_priv, |
| u64 *size_p, |
| u32 *handle_p) |
| { |
| struct drm_i915_gem_object *obj; |
| u32 handle; |
| u64 size; |
| int ret; |
| |
| size = round_up(*size_p, PAGE_SIZE); |
| if (size == 0) |
| return -EINVAL; |
| |
| /* Allocate the new object */ |
| obj = i915_gem_object_create_shmem(dev_priv, size); |
| if (IS_ERR(obj)) |
| return PTR_ERR(obj); |
| |
| ret = drm_gem_handle_create(file, &obj->base, &handle); |
| /* drop reference from allocate - handle holds it now */ |
| i915_gem_object_put(obj); |
| if (ret) |
| return ret; |
| |
| *handle_p = handle; |
| *size_p = size; |
| return 0; |
| } |
| |
| int |
| i915_gem_dumb_create(struct drm_file *file, |
| struct drm_device *dev, |
| struct drm_mode_create_dumb *args) |
| { |
| int cpp = DIV_ROUND_UP(args->bpp, 8); |
| u32 format; |
| |
| switch (cpp) { |
| case 1: |
| format = DRM_FORMAT_C8; |
| break; |
| case 2: |
| format = DRM_FORMAT_RGB565; |
| break; |
| case 4: |
| format = DRM_FORMAT_XRGB8888; |
| break; |
| default: |
| return -EINVAL; |
| } |
| |
| /* have to work out size/pitch and return them */ |
| args->pitch = ALIGN(args->width * cpp, 64); |
| |
| /* align stride to page size so that we can remap */ |
| if (args->pitch > intel_plane_fb_max_stride(to_i915(dev), format, |
| DRM_FORMAT_MOD_LINEAR)) |
| args->pitch = ALIGN(args->pitch, 4096); |
| |
| args->size = args->pitch * args->height; |
| return i915_gem_create(file, to_i915(dev), |
| &args->size, &args->handle); |
| } |
| |
| /** |
| * Creates a new mm object and returns a handle to it. |
| * @dev: drm device pointer |
| * @data: ioctl data blob |
| * @file: drm file pointer |
| */ |
| int |
| i915_gem_create_ioctl(struct drm_device *dev, void *data, |
| struct drm_file *file) |
| { |
| struct drm_i915_private *dev_priv = to_i915(dev); |
| struct drm_i915_gem_create *args = data; |
| |
| i915_gem_flush_free_objects(dev_priv); |
| |
| return i915_gem_create(file, dev_priv, |
| &args->size, &args->handle); |
| } |
| |
| void i915_gem_flush_ggtt_writes(struct drm_i915_private *dev_priv) |
| { |
| intel_wakeref_t wakeref; |
| |
| /* |
| * No actual flushing is required for the GTT write domain for reads |
| * from the GTT domain. Writes to it "immediately" go to main memory |
| * as far as we know, so there's no chipset flush. It also doesn't |
| * land in the GPU render cache. |
| * |
| * However, we do have to enforce the order so that all writes through |
| * the GTT land before any writes to the device, such as updates to |
| * the GATT itself. |
| * |
| * We also have to wait a bit for the writes to land from the GTT. |
| * An uncached read (i.e. mmio) seems to be ideal for the round-trip |
| * timing. This issue has only been observed when switching quickly |
| * between GTT writes and CPU reads from inside the kernel on recent hw, |
| * and it appears to only affect discrete GTT blocks (i.e. on LLC |
| * system agents we cannot reproduce this behaviour, until Cannonlake |
| * that was!). |
| */ |
| |
| wmb(); |
| |
| if (INTEL_INFO(dev_priv)->has_coherent_ggtt) |
| return; |
| |
| i915_gem_chipset_flush(dev_priv); |
| |
| with_intel_runtime_pm(dev_priv, wakeref) { |
| spin_lock_irq(&dev_priv->uncore.lock); |
| |
| POSTING_READ_FW(RING_HEAD(RENDER_RING_BASE)); |
| |
| spin_unlock_irq(&dev_priv->uncore.lock); |
| } |
| } |
| |
| static int |
| shmem_pread(struct page *page, int offset, int len, char __user *user_data, |
| bool needs_clflush) |
| { |
| char *vaddr; |
| int ret; |
| |
| vaddr = kmap(page); |
| |
| if (needs_clflush) |
| drm_clflush_virt_range(vaddr + offset, len); |
| |
| ret = __copy_to_user(user_data, vaddr + offset, len); |
| |
| kunmap(page); |
| |
| return ret ? -EFAULT : 0; |
| } |
| |
| static int |
| i915_gem_shmem_pread(struct drm_i915_gem_object *obj, |
| struct drm_i915_gem_pread *args) |
| { |
| char __user *user_data; |
| u64 remain; |
| unsigned int needs_clflush; |
| unsigned int idx, offset; |
| int ret; |
| |
| ret = mutex_lock_interruptible(&obj->base.dev->struct_mutex); |
| if (ret) |
| return ret; |
| |
| ret = i915_gem_object_prepare_read(obj, &needs_clflush); |
| mutex_unlock(&obj->base.dev->struct_mutex); |
| if (ret) |
| return ret; |
| |
| remain = args->size; |
| user_data = u64_to_user_ptr(args->data_ptr); |
| offset = offset_in_page(args->offset); |
| for (idx = args->offset >> PAGE_SHIFT; remain; idx++) { |
| struct page *page = i915_gem_object_get_page(obj, idx); |
| unsigned int length = min_t(u64, remain, PAGE_SIZE - offset); |
| |
| ret = shmem_pread(page, offset, length, user_data, |
| needs_clflush); |
| if (ret) |
| break; |
| |
| remain -= length; |
| user_data += length; |
| offset = 0; |
| } |
| |
| i915_gem_object_finish_access(obj); |
| return ret; |
| } |
| |
| static inline bool |
| gtt_user_read(struct io_mapping *mapping, |
| loff_t base, int offset, |
| char __user *user_data, int length) |
| { |
| void __iomem *vaddr; |
| unsigned long unwritten; |
| |
| /* We can use the cpu mem copy function because this is X86. */ |
| vaddr = io_mapping_map_atomic_wc(mapping, base); |
| unwritten = __copy_to_user_inatomic(user_data, |
| (void __force *)vaddr + offset, |
| length); |
| io_mapping_unmap_atomic(vaddr); |
| if (unwritten) { |
| vaddr = io_mapping_map_wc(mapping, base, PAGE_SIZE); |
| unwritten = copy_to_user(user_data, |
| (void __force *)vaddr + offset, |
| length); |
| io_mapping_unmap(vaddr); |
| } |
| return unwritten; |
| } |
| |
| static int |
| i915_gem_gtt_pread(struct drm_i915_gem_object *obj, |
| const struct drm_i915_gem_pread *args) |
| { |
| struct drm_i915_private *i915 = to_i915(obj->base.dev); |
| struct i915_ggtt *ggtt = &i915->ggtt; |
| intel_wakeref_t wakeref; |
| struct drm_mm_node node; |
| struct i915_vma *vma; |
| void __user *user_data; |
| u64 remain, offset; |
| int ret; |
| |
| ret = mutex_lock_interruptible(&i915->drm.struct_mutex); |
| if (ret) |
| return ret; |
| |
| wakeref = intel_runtime_pm_get(i915); |
| vma = i915_gem_object_ggtt_pin(obj, NULL, 0, 0, |
| PIN_MAPPABLE | |
| PIN_NONFAULT | |
| PIN_NONBLOCK); |
| if (!IS_ERR(vma)) { |
| node.start = i915_ggtt_offset(vma); |
| node.allocated = false; |
| ret = i915_vma_put_fence(vma); |
| if (ret) { |
| i915_vma_unpin(vma); |
| vma = ERR_PTR(ret); |
| } |
| } |
| if (IS_ERR(vma)) { |
| ret = insert_mappable_node(ggtt, &node, PAGE_SIZE); |
| if (ret) |
| goto out_unlock; |
| GEM_BUG_ON(!node.allocated); |
| } |
| |
| ret = i915_gem_object_set_to_gtt_domain(obj, false); |
| if (ret) |
| goto out_unpin; |
| |
| mutex_unlock(&i915->drm.struct_mutex); |
| |
| user_data = u64_to_user_ptr(args->data_ptr); |
| remain = args->size; |
| offset = args->offset; |
| |
| while (remain > 0) { |
| /* Operation in this page |
| * |
| * page_base = page offset within aperture |
| * page_offset = offset within page |
| * page_length = bytes to copy for this page |
| */ |
| u32 page_base = node.start; |
| unsigned page_offset = offset_in_page(offset); |
| unsigned page_length = PAGE_SIZE - page_offset; |
| page_length = remain < page_length ? remain : page_length; |
| if (node.allocated) { |
| wmb(); |
| ggtt->vm.insert_page(&ggtt->vm, |
| i915_gem_object_get_dma_address(obj, offset >> PAGE_SHIFT), |
| node.start, I915_CACHE_NONE, 0); |
| wmb(); |
| } else { |
| page_base += offset & PAGE_MASK; |
| } |
| |
| if (gtt_user_read(&ggtt->iomap, page_base, page_offset, |
| user_data, page_length)) { |
| ret = -EFAULT; |
| break; |
| } |
| |
| remain -= page_length; |
| user_data += page_length; |
| offset += page_length; |
| } |
| |
| mutex_lock(&i915->drm.struct_mutex); |
| out_unpin: |
| if (node.allocated) { |
| wmb(); |
| ggtt->vm.clear_range(&ggtt->vm, node.start, node.size); |
| remove_mappable_node(&node); |
| } else { |
| i915_vma_unpin(vma); |
| } |
| out_unlock: |
| intel_runtime_pm_put(i915, wakeref); |
| mutex_unlock(&i915->drm.struct_mutex); |
| |
| return ret; |
| } |
| |
| /** |
| * Reads data from the object referenced by handle. |
| * @dev: drm device pointer |
| * @data: ioctl data blob |
| * @file: drm file pointer |
| * |
| * On error, the contents of *data are undefined. |
| */ |
| int |
| i915_gem_pread_ioctl(struct drm_device *dev, void *data, |
| struct drm_file *file) |
| { |
| struct drm_i915_gem_pread *args = data; |
| struct drm_i915_gem_object *obj; |
| int ret; |
| |
| if (args->size == 0) |
| return 0; |
| |
| if (!access_ok(u64_to_user_ptr(args->data_ptr), |
| args->size)) |
| return -EFAULT; |
| |
| obj = i915_gem_object_lookup(file, args->handle); |
| if (!obj) |
| return -ENOENT; |
| |
| /* Bounds check source. */ |
| if (range_overflows_t(u64, args->offset, args->size, obj->base.size)) { |
| ret = -EINVAL; |
| goto out; |
| } |
| |
| trace_i915_gem_object_pread(obj, args->offset, args->size); |
| |
| ret = i915_gem_object_wait(obj, |
| I915_WAIT_INTERRUPTIBLE, |
| MAX_SCHEDULE_TIMEOUT); |
| if (ret) |
| goto out; |
| |
| ret = i915_gem_object_pin_pages(obj); |
| if (ret) |
| goto out; |
| |
| ret = i915_gem_shmem_pread(obj, args); |
| if (ret == -EFAULT || ret == -ENODEV) |
| ret = i915_gem_gtt_pread(obj, args); |
| |
| i915_gem_object_unpin_pages(obj); |
| out: |
| i915_gem_object_put(obj); |
| return ret; |
| } |
| |
| /* This is the fast write path which cannot handle |
| * page faults in the source data |
| */ |
| |
| static inline bool |
| ggtt_write(struct io_mapping *mapping, |
| loff_t base, int offset, |
| char __user *user_data, int length) |
| { |
| void __iomem *vaddr; |
| unsigned long unwritten; |
| |
| /* We can use the cpu mem copy function because this is X86. */ |
| vaddr = io_mapping_map_atomic_wc(mapping, base); |
| unwritten = __copy_from_user_inatomic_nocache((void __force *)vaddr + offset, |
| user_data, length); |
| io_mapping_unmap_atomic(vaddr); |
| if (unwritten) { |
| vaddr = io_mapping_map_wc(mapping, base, PAGE_SIZE); |
| unwritten = copy_from_user((void __force *)vaddr + offset, |
| user_data, length); |
| io_mapping_unmap(vaddr); |
| } |
| |
| return unwritten; |
| } |
| |
| /** |
| * This is the fast pwrite path, where we copy the data directly from the |
| * user into the GTT, uncached. |
| * @obj: i915 GEM object |
| * @args: pwrite arguments structure |
| */ |
| static int |
| i915_gem_gtt_pwrite_fast(struct drm_i915_gem_object *obj, |
| const struct drm_i915_gem_pwrite *args) |
| { |
| struct drm_i915_private *i915 = to_i915(obj->base.dev); |
| struct i915_ggtt *ggtt = &i915->ggtt; |
| intel_wakeref_t wakeref; |
| struct drm_mm_node node; |
| struct i915_vma *vma; |
| u64 remain, offset; |
| void __user *user_data; |
| int ret; |
| |
| ret = mutex_lock_interruptible(&i915->drm.struct_mutex); |
| if (ret) |
| return ret; |
| |
| if (i915_gem_object_has_struct_page(obj)) { |
| /* |
| * Avoid waking the device up if we can fallback, as |
| * waking/resuming is very slow (worst-case 10-100 ms |
| * depending on PCI sleeps and our own resume time). |
| * This easily dwarfs any performance advantage from |
| * using the cache bypass of indirect GGTT access. |
| */ |
| wakeref = intel_runtime_pm_get_if_in_use(i915); |
| if (!wakeref) { |
| ret = -EFAULT; |
| goto out_unlock; |
| } |
| } else { |
| /* No backing pages, no fallback, we must force GGTT access */ |
| wakeref = intel_runtime_pm_get(i915); |
| } |
| |
| vma = i915_gem_object_ggtt_pin(obj, NULL, 0, 0, |
| PIN_MAPPABLE | |
| PIN_NONFAULT | |
| PIN_NONBLOCK); |
| if (!IS_ERR(vma)) { |
| node.start = i915_ggtt_offset(vma); |
| node.allocated = false; |
| ret = i915_vma_put_fence(vma); |
| if (ret) { |
| i915_vma_unpin(vma); |
| vma = ERR_PTR(ret); |
| } |
| } |
| if (IS_ERR(vma)) { |
| ret = insert_mappable_node(ggtt, &node, PAGE_SIZE); |
| if (ret) |
| goto out_rpm; |
| GEM_BUG_ON(!node.allocated); |
| } |
| |
| ret = i915_gem_object_set_to_gtt_domain(obj, true); |
| if (ret) |
| goto out_unpin; |
| |
| mutex_unlock(&i915->drm.struct_mutex); |
| |
| intel_fb_obj_invalidate(obj, ORIGIN_CPU); |
| |
| user_data = u64_to_user_ptr(args->data_ptr); |
| offset = args->offset; |
| remain = args->size; |
| while (remain) { |
| /* Operation in this page |
| * |
| * page_base = page offset within aperture |
| * page_offset = offset within page |
| * page_length = bytes to copy for this page |
| */ |
| u32 page_base = node.start; |
| unsigned int page_offset = offset_in_page(offset); |
| unsigned int page_length = PAGE_SIZE - page_offset; |
| page_length = remain < page_length ? remain : page_length; |
| if (node.allocated) { |
| wmb(); /* flush the write before we modify the GGTT */ |
| ggtt->vm.insert_page(&ggtt->vm, |
| i915_gem_object_get_dma_address(obj, offset >> PAGE_SHIFT), |
| node.start, I915_CACHE_NONE, 0); |
| wmb(); /* flush modifications to the GGTT (insert_page) */ |
| } else { |
| page_base += offset & PAGE_MASK; |
| } |
| /* If we get a fault while copying data, then (presumably) our |
| * source page isn't available. Return the error and we'll |
| * retry in the slow path. |
| * If the object is non-shmem backed, we retry again with the |
| * path that handles page fault. |
| */ |
| if (ggtt_write(&ggtt->iomap, page_base, page_offset, |
| user_data, page_length)) { |
| ret = -EFAULT; |
| break; |
| } |
| |
| remain -= page_length; |
| user_data += page_length; |
| offset += page_length; |
| } |
| intel_fb_obj_flush(obj, ORIGIN_CPU); |
| |
| mutex_lock(&i915->drm.struct_mutex); |
| out_unpin: |
| if (node.allocated) { |
| wmb(); |
| ggtt->vm.clear_range(&ggtt->vm, node.start, node.size); |
| remove_mappable_node(&node); |
| } else { |
| i915_vma_unpin(vma); |
| } |
| out_rpm: |
| intel_runtime_pm_put(i915, wakeref); |
| out_unlock: |
| mutex_unlock(&i915->drm.struct_mutex); |
| return ret; |
| } |
| |
| /* Per-page copy function for the shmem pwrite fastpath. |
| * Flushes invalid cachelines before writing to the target if |
| * needs_clflush_before is set and flushes out any written cachelines after |
| * writing if needs_clflush is set. |
| */ |
| static int |
| shmem_pwrite(struct page *page, int offset, int len, char __user *user_data, |
| bool needs_clflush_before, |
| bool needs_clflush_after) |
| { |
| char *vaddr; |
| int ret; |
| |
| vaddr = kmap(page); |
| |
| if (needs_clflush_before) |
| drm_clflush_virt_range(vaddr + offset, len); |
| |
| ret = __copy_from_user(vaddr + offset, user_data, len); |
| if (!ret && needs_clflush_after) |
| drm_clflush_virt_range(vaddr + offset, len); |
| |
| kunmap(page); |
| |
| return ret ? -EFAULT : 0; |
| } |
| |
| static int |
| i915_gem_shmem_pwrite(struct drm_i915_gem_object *obj, |
| const struct drm_i915_gem_pwrite *args) |
| { |
| struct drm_i915_private *i915 = to_i915(obj->base.dev); |
| void __user *user_data; |
| u64 remain; |
| unsigned int partial_cacheline_write; |
| unsigned int needs_clflush; |
| unsigned int offset, idx; |
| int ret; |
| |
| ret = mutex_lock_interruptible(&i915->drm.struct_mutex); |
| if (ret) |
| return ret; |
| |
| ret = i915_gem_object_prepare_write(obj, &needs_clflush); |
| mutex_unlock(&i915->drm.struct_mutex); |
| if (ret) |
| return ret; |
| |
| /* If we don't overwrite a cacheline completely we need to be |
| * careful to have up-to-date data by first clflushing. Don't |
| * overcomplicate things and flush the entire patch. |
| */ |
| partial_cacheline_write = 0; |
| if (needs_clflush & CLFLUSH_BEFORE) |
| partial_cacheline_write = boot_cpu_data.x86_clflush_size - 1; |
| |
| user_data = u64_to_user_ptr(args->data_ptr); |
| remain = args->size; |
| offset = offset_in_page(args->offset); |
| for (idx = args->offset >> PAGE_SHIFT; remain; idx++) { |
| struct page *page = i915_gem_object_get_page(obj, idx); |
| unsigned int length = min_t(u64, remain, PAGE_SIZE - offset); |
| |
| ret = shmem_pwrite(page, offset, length, user_data, |
| (offset | length) & partial_cacheline_write, |
| needs_clflush & CLFLUSH_AFTER); |
| if (ret) |
| break; |
| |
| remain -= length; |
| user_data += length; |
| offset = 0; |
| } |
| |
| intel_fb_obj_flush(obj, ORIGIN_CPU); |
| i915_gem_object_finish_access(obj); |
| return ret; |
| } |
| |
| /** |
| * Writes data to the object referenced by handle. |
| * @dev: drm device |
| * @data: ioctl data blob |
| * @file: drm file |
| * |
| * On error, the contents of the buffer that were to be modified are undefined. |
| */ |
| int |
| i915_gem_pwrite_ioctl(struct drm_device *dev, void *data, |
| struct drm_file *file) |
| { |
| struct drm_i915_gem_pwrite *args = data; |
| struct drm_i915_gem_object *obj; |
| int ret; |
| |
| if (args->size == 0) |
| return 0; |
| |
| if (!access_ok(u64_to_user_ptr(args->data_ptr), args->size)) |
| return -EFAULT; |
| |
| obj = i915_gem_object_lookup(file, args->handle); |
| if (!obj) |
| return -ENOENT; |
| |
| /* Bounds check destination. */ |
| if (range_overflows_t(u64, args->offset, args->size, obj->base.size)) { |
| ret = -EINVAL; |
| goto err; |
| } |
| |
| /* Writes not allowed into this read-only object */ |
| if (i915_gem_object_is_readonly(obj)) { |
| ret = -EINVAL; |
| goto err; |
| } |
| |
| trace_i915_gem_object_pwrite(obj, args->offset, args->size); |
| |
| ret = -ENODEV; |
| if (obj->ops->pwrite) |
| ret = obj->ops->pwrite(obj, args); |
| if (ret != -ENODEV) |
| goto err; |
| |
| ret = i915_gem_object_wait(obj, |
| I915_WAIT_INTERRUPTIBLE | |
| I915_WAIT_ALL, |
| MAX_SCHEDULE_TIMEOUT); |
| if (ret) |
| goto err; |
| |
| ret = i915_gem_object_pin_pages(obj); |
| if (ret) |
| goto err; |
| |
| ret = -EFAULT; |
| /* We can only do the GTT pwrite on untiled buffers, as otherwise |
| * it would end up going through the fenced access, and we'll get |
| * different detiling behavior between reading and writing. |
| * pread/pwrite currently are reading and writing from the CPU |
| * perspective, requiring manual detiling by the client. |
| */ |
| if (!i915_gem_object_has_struct_page(obj) || |
| cpu_write_needs_clflush(obj)) |
| /* Note that the gtt paths might fail with non-page-backed user |
| * pointers (e.g. gtt mappings when moving data between |
| * textures). Fallback to the shmem path in that case. |
| */ |
| ret = i915_gem_gtt_pwrite_fast(obj, args); |
| |
| if (ret == -EFAULT || ret == -ENOSPC) { |
| if (obj->phys_handle) |
| ret = i915_gem_phys_pwrite(obj, args, file); |
| else |
| ret = i915_gem_shmem_pwrite(obj, args); |
| } |
| |
| i915_gem_object_unpin_pages(obj); |
| err: |
| i915_gem_object_put(obj); |
| return ret; |
| } |
| |
| /** |
| * Called when user space has done writes to this buffer |
| * @dev: drm device |
| * @data: ioctl data blob |
| * @file: drm file |
| */ |
| int |
| i915_gem_sw_finish_ioctl(struct drm_device *dev, void *data, |
| struct drm_file *file) |
| { |
| struct drm_i915_gem_sw_finish *args = data; |
| struct drm_i915_gem_object *obj; |
| |
| obj = i915_gem_object_lookup(file, args->handle); |
| if (!obj) |
| return -ENOENT; |
| |
| /* |
| * Proxy objects are barred from CPU access, so there is no |
| * need to ban sw_finish as it is a nop. |
| */ |
| |
| /* Pinned buffers may be scanout, so flush the cache */ |
| i915_gem_object_flush_if_display(obj); |
| i915_gem_object_put(obj); |
| |
| return 0; |
| } |
| |
| void i915_gem_runtime_suspend(struct drm_i915_private *dev_priv) |
| { |
| struct drm_i915_gem_object *obj, *on; |
| int i; |
| |
| /* |
| * Only called during RPM suspend. All users of the userfault_list |
| * must be holding an RPM wakeref to ensure that this can not |
| * run concurrently with themselves (and use the struct_mutex for |
| * protection between themselves). |
| */ |
| |
| list_for_each_entry_safe(obj, on, |
| &dev_priv->mm.userfault_list, userfault_link) |
| __i915_gem_object_release_mmap(obj); |
| |
| /* The fence will be lost when the device powers down. If any were |
| * in use by hardware (i.e. they are pinned), we should not be powering |
| * down! All other fences will be reacquired by the user upon waking. |
| */ |
| for (i = 0; i < dev_priv->num_fence_regs; i++) { |
| struct drm_i915_fence_reg *reg = &dev_priv->fence_regs[i]; |
| |
| /* Ideally we want to assert that the fence register is not |
| * live at this point (i.e. that no piece of code will be |
| * trying to write through fence + GTT, as that both violates |
| * our tracking of activity and associated locking/barriers, |
| * but also is illegal given that the hw is powered down). |
| * |
| * Previously we used reg->pin_count as a "liveness" indicator. |
| * That is not sufficient, and we need a more fine-grained |
| * tool if we want to have a sanity check here. |
| */ |
| |
| if (!reg->vma) |
| continue; |
| |
| GEM_BUG_ON(i915_vma_has_userfault(reg->vma)); |
| reg->dirty = true; |
| } |
| } |
| |
| bool i915_sg_trim(struct sg_table *orig_st) |
| { |
| struct sg_table new_st; |
| struct scatterlist *sg, *new_sg; |
| unsigned int i; |
| |
| if (orig_st->nents == orig_st->orig_nents) |
| return false; |
| |
| if (sg_alloc_table(&new_st, orig_st->nents, GFP_KERNEL | __GFP_NOWARN)) |
| return false; |
| |
| new_sg = new_st.sgl; |
| for_each_sg(orig_st->sgl, sg, orig_st->nents, i) { |
| sg_set_page(new_sg, sg_page(sg), sg->length, 0); |
| sg_dma_address(new_sg) = sg_dma_address(sg); |
| sg_dma_len(new_sg) = sg_dma_len(sg); |
| |
| new_sg = sg_next(new_sg); |
| } |
| GEM_BUG_ON(new_sg); /* Should walk exactly nents and hit the end */ |
| |
| sg_free_table(orig_st); |
| |
| *orig_st = new_st; |
| return true; |
| } |
| |
| static unsigned long to_wait_timeout(s64 timeout_ns) |
| { |
| if (timeout_ns < 0) |
| return MAX_SCHEDULE_TIMEOUT; |
| |
| if (timeout_ns == 0) |
| return 0; |
| |
| return nsecs_to_jiffies_timeout(timeout_ns); |
| } |
| |
| /** |
| * i915_gem_wait_ioctl - implements DRM_IOCTL_I915_GEM_WAIT |
| * @dev: drm device pointer |
| * @data: ioctl data blob |
| * @file: drm file pointer |
| * |
| * Returns 0 if successful, else an error is returned with the remaining time in |
| * the timeout parameter. |
| * -ETIME: object is still busy after timeout |
| * -ERESTARTSYS: signal interrupted the wait |
| * -ENONENT: object doesn't exist |
| * Also possible, but rare: |
| * -EAGAIN: incomplete, restart syscall |
| * -ENOMEM: damn |
| * -ENODEV: Internal IRQ fail |
| * -E?: The add request failed |
| * |
| * The wait ioctl with a timeout of 0 reimplements the busy ioctl. With any |
| * non-zero timeout parameter the wait ioctl will wait for the given number of |
| * nanoseconds on an object becoming unbusy. Since the wait itself does so |
| * without holding struct_mutex the object may become re-busied before this |
| * function completes. A similar but shorter * race condition exists in the busy |
| * ioctl |
| */ |
| int |
| i915_gem_wait_ioctl(struct drm_device *dev, void *data, struct drm_file *file) |
| { |
| struct drm_i915_gem_wait *args = data; |
| struct drm_i915_gem_object *obj; |
| ktime_t start; |
| long ret; |
| |
| if (args->flags != 0) |
| return -EINVAL; |
| |
| obj = i915_gem_object_lookup(file, args->bo_handle); |
| if (!obj) |
| return -ENOENT; |
| |
| start = ktime_get(); |
| |
| ret = i915_gem_object_wait(obj, |
| I915_WAIT_INTERRUPTIBLE | |
| I915_WAIT_PRIORITY | |
| I915_WAIT_ALL, |
| to_wait_timeout(args->timeout_ns)); |
| |
| if (args->timeout_ns > 0) { |
| args->timeout_ns -= ktime_to_ns(ktime_sub(ktime_get(), start)); |
| if (args->timeout_ns < 0) |
| args->timeout_ns = 0; |
| |
| /* |
| * Apparently ktime isn't accurate enough and occasionally has a |
| * bit of mismatch in the jiffies<->nsecs<->ktime loop. So patch |
| * things up to make the test happy. We allow up to 1 jiffy. |
| * |
| * This is a regression from the timespec->ktime conversion. |
| */ |
| if (ret == -ETIME && !nsecs_to_jiffies(args->timeout_ns)) |
| args->timeout_ns = 0; |
| |
| /* Asked to wait beyond the jiffie/scheduler precision? */ |
| if (ret == -ETIME && args->timeout_ns) |
| ret = -EAGAIN; |
| } |
| |
| i915_gem_object_put(obj); |
| return ret; |
| } |
| |
| static int wait_for_engines(struct drm_i915_private *i915) |
| { |
| if (wait_for(intel_engines_are_idle(i915), I915_IDLE_ENGINES_TIMEOUT)) { |
| dev_err(i915->drm.dev, |
| "Failed to idle engines, declaring wedged!\n"); |
| GEM_TRACE_DUMP(); |
| i915_gem_set_wedged(i915); |
| return -EIO; |
| } |
| |
| return 0; |
| } |
| |
| static long |
| wait_for_timelines(struct drm_i915_private *i915, |
| unsigned int flags, long timeout) |
| { |
| struct i915_gt_timelines *gt = &i915->gt.timelines; |
| struct i915_timeline *tl; |
| |
| mutex_lock(>->mutex); |
| list_for_each_entry(tl, >->active_list, link) { |
| struct i915_request *rq; |
| |
| rq = i915_active_request_get_unlocked(&tl->last_request); |
| if (!rq) |
| continue; |
| |
| mutex_unlock(>->mutex); |
| |
| /* |
| * "Race-to-idle". |
| * |
| * Switching to the kernel context is often used a synchronous |
| * step prior to idling, e.g. in suspend for flushing all |
| * current operations to memory before sleeping. These we |
| * want to complete as quickly as possible to avoid prolonged |
| * stalls, so allow the gpu to boost to maximum clocks. |
| */ |
| if (flags & I915_WAIT_FOR_IDLE_BOOST) |
| gen6_rps_boost(rq); |
| |
| timeout = i915_request_wait(rq, flags, timeout); |
| i915_request_put(rq); |
| if (timeout < 0) |
| return timeout; |
| |
| /* restart after reacquiring the lock */ |
| mutex_lock(>->mutex); |
| tl = list_entry(>->active_list, typeof(*tl), link); |
| } |
| mutex_unlock(>->mutex); |
| |
| return timeout; |
| } |
| |
| int i915_gem_wait_for_idle(struct drm_i915_private *i915, |
| unsigned int flags, long timeout) |
| { |
| GEM_TRACE("flags=%x (%s), timeout=%ld%s, awake?=%s\n", |
| flags, flags & I915_WAIT_LOCKED ? "locked" : "unlocked", |
| timeout, timeout == MAX_SCHEDULE_TIMEOUT ? " (forever)" : "", |
| yesno(i915->gt.awake)); |
| |
| /* If the device is asleep, we have no requests outstanding */ |
| if (!READ_ONCE(i915->gt.awake)) |
| return 0; |
| |
| timeout = wait_for_timelines(i915, flags, timeout); |
| if (timeout < 0) |
| return timeout; |
| |
| if (flags & I915_WAIT_LOCKED) { |
| int err; |
| |
| lockdep_assert_held(&i915->drm.struct_mutex); |
| |
| err = wait_for_engines(i915); |
| if (err) |
| return err; |
| |
| i915_retire_requests(i915); |
| } |
| |
| return 0; |
| } |
| |
| /* Throttle our rendering by waiting until the ring has completed our requests |
| * emitted over 20 msec ago. |
| * |
| * Note that if we were to use the current jiffies each time around the loop, |
| * we wouldn't escape the function with any frames outstanding if the time to |
| * render a frame was over 20ms. |
| * |
| * This should get us reasonable parallelism between CPU and GPU but also |
| * relatively low latency when blocking on a particular request to finish. |
| */ |
| static int |
| i915_gem_ring_throttle(struct drm_device *dev, struct drm_file *file) |
| { |
| struct drm_i915_private *dev_priv = to_i915(dev); |
| struct drm_i915_file_private *file_priv = file->driver_priv; |
| unsigned long recent_enough = jiffies - DRM_I915_THROTTLE_JIFFIES; |
| struct i915_request *request, *target = NULL; |
| long ret; |
| |
| /* ABI: return -EIO if already wedged */ |
| ret = i915_terminally_wedged(dev_priv); |
| if (ret) |
| return ret; |
| |
| spin_lock(&file_priv->mm.lock); |
| list_for_each_entry(request, &file_priv->mm.request_list, client_link) { |
| if (time_after_eq(request->emitted_jiffies, recent_enough)) |
| break; |
| |
| if (target) { |
| list_del(&target->client_link); |
| target->file_priv = NULL; |
| } |
| |
| target = request; |
| } |
| if (target) |
| i915_request_get(target); |
| spin_unlock(&file_priv->mm.lock); |
| |
| if (target == NULL) |
| return 0; |
| |
| ret = i915_request_wait(target, |
| I915_WAIT_INTERRUPTIBLE, |
| MAX_SCHEDULE_TIMEOUT); |
| i915_request_put(target); |
| |
| return ret < 0 ? ret : 0; |
| } |
| |
| struct i915_vma * |
| i915_gem_object_ggtt_pin(struct drm_i915_gem_object *obj, |
| const struct i915_ggtt_view *view, |
| u64 size, |
| u64 alignment, |
| u64 flags) |
| { |
| struct drm_i915_private *dev_priv = to_i915(obj->base.dev); |
| struct i915_address_space *vm = &dev_priv->ggtt.vm; |
| struct i915_vma *vma; |
| int ret; |
| |
| lockdep_assert_held(&obj->base.dev->struct_mutex); |
| |
| if (flags & PIN_MAPPABLE && |
| (!view || view->type == I915_GGTT_VIEW_NORMAL)) { |
| /* If the required space is larger than the available |
| * aperture, we will not able to find a slot for the |
| * object and unbinding the object now will be in |
| * vain. Worse, doing so may cause us to ping-pong |
| * the object in and out of the Global GTT and |
| * waste a lot of cycles under the mutex. |
| */ |
| if (obj->base.size > dev_priv->ggtt.mappable_end) |
| return ERR_PTR(-E2BIG); |
| |
| /* If NONBLOCK is set the caller is optimistically |
| * trying to cache the full object within the mappable |
| * aperture, and *must* have a fallback in place for |
| * situations where we cannot bind the object. We |
| * can be a little more lax here and use the fallback |
| * more often to avoid costly migrations of ourselves |
| * and other objects within the aperture. |
| * |
| * Half-the-aperture is used as a simple heuristic. |
| * More interesting would to do search for a free |
| * block prior to making the commitment to unbind. |
| * That caters for the self-harm case, and with a |
| * little more heuristics (e.g. NOFAULT, NOEVICT) |
| * we could try to minimise harm to others. |
| */ |
| if (flags & PIN_NONBLOCK && |
| obj->base.size > dev_priv->ggtt.mappable_end / 2) |
| return ERR_PTR(-ENOSPC); |
| } |
| |
| vma = i915_vma_instance(obj, vm, view); |
| if (IS_ERR(vma)) |
| return vma; |
| |
| if (i915_vma_misplaced(vma, size, alignment, flags)) { |
| if (flags & PIN_NONBLOCK) { |
| if (i915_vma_is_pinned(vma) || i915_vma_is_active(vma)) |
| return ERR_PTR(-ENOSPC); |
| |
| if (flags & PIN_MAPPABLE && |
| vma->fence_size > dev_priv->ggtt.mappable_end / 2) |
| return ERR_PTR(-ENOSPC); |
| } |
| |
| WARN(i915_vma_is_pinned(vma), |
| "bo is already pinned in ggtt with incorrect alignment:" |
| " offset=%08x, req.alignment=%llx," |
| " req.map_and_fenceable=%d, vma->map_and_fenceable=%d\n", |
| i915_ggtt_offset(vma), alignment, |
| !!(flags & PIN_MAPPABLE), |
| i915_vma_is_map_and_fenceable(vma)); |
| ret = i915_vma_unbind(vma); |
| if (ret) |
| return ERR_PTR(ret); |
| } |
| |
| ret = i915_vma_pin(vma, size, alignment, flags | PIN_GLOBAL); |
| if (ret) |
| return ERR_PTR(ret); |
| |
| return vma; |
| } |
| |
| static __always_inline u32 __busy_read_flag(u8 id) |
| { |
| if (id == (u8)I915_ENGINE_CLASS_INVALID) |
| return 0xffff0000u; |
| |
| GEM_BUG_ON(id >= 16); |
| return 0x10000u << id; |
| } |
| |
| static __always_inline u32 __busy_write_id(u8 id) |
| { |
| /* |
| * The uABI guarantees an active writer is also amongst the read |
| * engines. This would be true if we accessed the activity tracking |
| * under the lock, but as we perform the lookup of the object and |
| * its activity locklessly we can not guarantee that the last_write |
| * being active implies that we have set the same engine flag from |
| * last_read - hence we always set both read and write busy for |
| * last_write. |
| */ |
| if (id == (u8)I915_ENGINE_CLASS_INVALID) |
| return 0xffffffffu; |
| |
| return (id + 1) | __busy_read_flag(id); |
| } |
| |
| static __always_inline unsigned int |
| __busy_set_if_active(const struct dma_fence *fence, u32 (*flag)(u8 id)) |
| { |
| const struct i915_request *rq; |
| |
| /* |
| * We have to check the current hw status of the fence as the uABI |
| * guarantees forward progress. We could rely on the idle worker |
| * to eventually flush us, but to minimise latency just ask the |
| * hardware. |
| * |
| * Note we only report on the status of native fences. |
| */ |
| if (!dma_fence_is_i915(fence)) |
| return 0; |
| |
| /* opencode to_request() in order to avoid const warnings */ |
| rq = container_of(fence, const struct i915_request, fence); |
| if (i915_request_completed(rq)) |
| return 0; |
| |
| /* Beware type-expansion follies! */ |
| BUILD_BUG_ON(!typecheck(u8, rq->engine->uabi_class)); |
| return flag(rq->engine->uabi_class); |
| } |
| |
| static __always_inline unsigned int |
| busy_check_reader(const struct dma_fence *fence) |
| { |
| return __busy_set_if_active(fence, __busy_read_flag); |
| } |
| |
| static __always_inline unsigned int |
| busy_check_writer(const struct dma_fence *fence) |
| { |
| if (!fence) |
| return 0; |
| |
| return __busy_set_if_active(fence, __busy_write_id); |
| } |
| |
| int |
| i915_gem_busy_ioctl(struct drm_device *dev, void *data, |
| struct drm_file *file) |
| { |
| struct drm_i915_gem_busy *args = data; |
| struct drm_i915_gem_object *obj; |
| struct reservation_object_list *list; |
| unsigned int seq; |
| int err; |
| |
| err = -ENOENT; |
| rcu_read_lock(); |
| obj = i915_gem_object_lookup_rcu(file, args->handle); |
| if (!obj) |
| goto out; |
| |
| /* |
| * A discrepancy here is that we do not report the status of |
| * non-i915 fences, i.e. even though we may report the object as idle, |
| * a call to set-domain may still stall waiting for foreign rendering. |
| * This also means that wait-ioctl may report an object as busy, |
| * where busy-ioctl considers it idle. |
| * |
| * We trade the ability to warn of foreign fences to report on which |
| * i915 engines are active for the object. |
| * |
| * Alternatively, we can trade that extra information on read/write |
| * activity with |
| * args->busy = |
| * !reservation_object_test_signaled_rcu(obj->resv, true); |
| * to report the overall busyness. This is what the wait-ioctl does. |
| * |
| */ |
| retry: |
| seq = raw_read_seqcount(&obj->resv->seq); |
| |
| /* Translate the exclusive fence to the READ *and* WRITE engine */ |
| args->busy = busy_check_writer(rcu_dereference(obj->resv->fence_excl)); |
| |
| /* Translate shared fences to READ set of engines */ |
| list = rcu_dereference(obj->resv->fence); |
| if (list) { |
| unsigned int shared_count = list->shared_count, i; |
| |
| for (i = 0; i < shared_count; ++i) { |
| struct dma_fence *fence = |
| rcu_dereference(list->shared[i]); |
| |
| args->busy |= busy_check_reader(fence); |
| } |
| } |
| |
| if (args->busy && read_seqcount_retry(&obj->resv->seq, seq)) |
| goto retry; |
| |
| err = 0; |
| out: |
| rcu_read_unlock(); |
| return err; |
| } |
| |
| int |
| i915_gem_throttle_ioctl(struct drm_device *dev, void *data, |
| struct drm_file *file_priv) |
| { |
| return i915_gem_ring_throttle(dev, file_priv); |
| } |
| |
| int |
| i915_gem_madvise_ioctl(struct drm_device *dev, void *data, |
| struct drm_file *file_priv) |
| { |
| struct drm_i915_private *dev_priv = to_i915(dev); |
| struct drm_i915_gem_madvise *args = data; |
| struct drm_i915_gem_object *obj; |
| int err; |
| |
| switch (args->madv) { |
| case I915_MADV_DONTNEED: |
| case I915_MADV_WILLNEED: |
| break; |
| default: |
| return -EINVAL; |
| } |
| |
| obj = i915_gem_object_lookup(file_priv, args->handle); |
| if (!obj) |
| return -ENOENT; |
| |
| err = mutex_lock_interruptible(&obj->mm.lock); |
| if (err) |
| goto out; |
| |
| if (i915_gem_object_has_pages(obj) && |
| i915_gem_object_is_tiled(obj) && |
| dev_priv->quirks & QUIRK_PIN_SWIZZLED_PAGES) { |
| if (obj->mm.madv == I915_MADV_WILLNEED) { |
| GEM_BUG_ON(!obj->mm.quirked); |
| __i915_gem_object_unpin_pages(obj); |
| obj->mm.quirked = false; |
| } |
| if (args->madv == I915_MADV_WILLNEED) { |
| GEM_BUG_ON(obj->mm.quirked); |
| __i915_gem_object_pin_pages(obj); |
| obj->mm.quirked = true; |
| } |
| } |
| |
| if (obj->mm.madv != __I915_MADV_PURGED) |
| obj->mm.madv = args->madv; |
| |
| /* if the object is no longer attached, discard its backing storage */ |
| if (obj->mm.madv == I915_MADV_DONTNEED && |
| !i915_gem_object_has_pages(obj)) |
| i915_gem_object_truncate(obj); |
| |
| args->retained = obj->mm.madv != __I915_MADV_PURGED; |
| mutex_unlock(&obj->mm.lock); |
| |
| out: |
| i915_gem_object_put(obj); |
| return err; |
| } |
| |
| void i915_gem_sanitize(struct drm_i915_private *i915) |
| { |
| intel_wakeref_t wakeref; |
| |
| GEM_TRACE("\n"); |
| |
| wakeref = intel_runtime_pm_get(i915); |
| intel_uncore_forcewake_get(&i915->uncore, FORCEWAKE_ALL); |
| |
| /* |
| * As we have just resumed the machine and woken the device up from |
| * deep PCI sleep (presumably D3_cold), assume the HW has been reset |
| * back to defaults, recovering from whatever wedged state we left it |
| * in and so worth trying to use the device once more. |
| */ |
| if (i915_terminally_wedged(i915)) |
| i915_gem_unset_wedged(i915); |
| |
| /* |
| * If we inherit context state from the BIOS or earlier occupants |
| * of the GPU, the GPU may be in an inconsistent state when we |
| * try to take over. The only way to remove the earlier state |
| * is by resetting. However, resetting on earlier gen is tricky as |
| * it may impact the display and we are uncertain about the stability |
| * of the reset, so this could be applied to even earlier gen. |
| */ |
| intel_gt_sanitize(i915, false); |
| |
| intel_uncore_forcewake_put(&i915->uncore, FORCEWAKE_ALL); |
| intel_runtime_pm_put(i915, wakeref); |
| |
| mutex_lock(&i915->drm.struct_mutex); |
| i915_gem_contexts_lost(i915); |
| mutex_unlock(&i915->drm.struct_mutex); |
| } |
| |
| void i915_gem_init_swizzling(struct drm_i915_private *dev_priv) |
| { |
| if (INTEL_GEN(dev_priv) < 5 || |
| dev_priv->mm.bit_6_swizzle_x == I915_BIT_6_SWIZZLE_NONE) |
| return; |
| |
| I915_WRITE(DISP_ARB_CTL, I915_READ(DISP_ARB_CTL) | |
| DISP_TILE_SURFACE_SWIZZLING); |
| |
| if (IS_GEN(dev_priv, 5)) |
| return; |
| |
| I915_WRITE(TILECTL, I915_READ(TILECTL) | TILECTL_SWZCTL); |
| if (IS_GEN(dev_priv, 6)) |
| I915_WRITE(ARB_MODE, _MASKED_BIT_ENABLE(ARB_MODE_SWIZZLE_SNB)); |
| else if (IS_GEN(dev_priv, 7)) |
| I915_WRITE(ARB_MODE, _MASKED_BIT_ENABLE(ARB_MODE_SWIZZLE_IVB)); |
| else if (IS_GEN(dev_priv, 8)) |
| I915_WRITE(GAMTARBMODE, _MASKED_BIT_ENABLE(ARB_MODE_SWIZZLE_BDW)); |
| else |
| BUG(); |
| } |
| |
| static void init_unused_ring(struct drm_i915_private *dev_priv, u32 base) |
| { |
| I915_WRITE(RING_CTL(base), 0); |
| I915_WRITE(RING_HEAD(base), 0); |
| I915_WRITE(RING_TAIL(base), 0); |
| I915_WRITE(RING_START(base), 0); |
| } |
| |
| static void init_unused_rings(struct drm_i915_private *dev_priv) |
| { |
| if (IS_I830(dev_priv)) { |
| init_unused_ring(dev_priv, PRB1_BASE); |
| init_unused_ring(dev_priv, SRB0_BASE); |
| init_unused_ring(dev_priv, SRB1_BASE); |
| init_unused_ring(dev_priv, SRB2_BASE); |
| init_unused_ring(dev_priv, SRB3_BASE); |
| } else if (IS_GEN(dev_priv, 2)) { |
| init_unused_ring(dev_priv, SRB0_BASE); |
| init_unused_ring(dev_priv, SRB1_BASE); |
| } else if (IS_GEN(dev_priv, 3)) { |
| init_unused_ring(dev_priv, PRB1_BASE); |
| init_unused_ring(dev_priv, PRB2_BASE); |
| } |
| } |
| |
| int i915_gem_init_hw(struct drm_i915_private *dev_priv) |
| { |
| int ret; |
| |
| dev_priv->gt.last_init_time = ktime_get(); |
| |
| /* Double layer security blanket, see i915_gem_init() */ |
| intel_uncore_forcewake_get(&dev_priv->uncore, FORCEWAKE_ALL); |
| |
| if (HAS_EDRAM(dev_priv) && INTEL_GEN(dev_priv) < 9) |
| I915_WRITE(HSW_IDICR, I915_READ(HSW_IDICR) | IDIHASHMSK(0xf)); |
| |
| if (IS_HASWELL(dev_priv)) |
| I915_WRITE(MI_PREDICATE_RESULT_2, IS_HSW_GT3(dev_priv) ? |
| LOWER_SLICE_ENABLED : LOWER_SLICE_DISABLED); |
| |
| /* Apply the GT workarounds... */ |
| intel_gt_apply_workarounds(dev_priv); |
| /* ...and determine whether they are sticking. */ |
| intel_gt_verify_workarounds(dev_priv, "init"); |
| |
| i915_gem_init_swizzling(dev_priv); |
| |
| /* |
| * At least 830 can leave some of the unused rings |
| * "active" (ie. head != tail) after resume which |
| * will prevent c3 entry. Makes sure all unused rings |
| * are totally idle. |
| */ |
| init_unused_rings(dev_priv); |
| |
| BUG_ON(!dev_priv->kernel_context); |
| ret = i915_terminally_wedged(dev_priv); |
| if (ret) |
| goto out; |
| |
| ret = i915_ppgtt_init_hw(dev_priv); |
| if (ret) { |
| DRM_ERROR("Enabling PPGTT failed (%d)\n", ret); |
| goto out; |
| } |
| |
| ret = intel_wopcm_init_hw(&dev_priv->wopcm); |
| if (ret) { |
| DRM_ERROR("Enabling WOPCM failed (%d)\n", ret); |
| goto out; |
| } |
| |
| /* We can't enable contexts until all firmware is loaded */ |
| ret = intel_uc_init_hw(dev_priv); |
| if (ret) { |
| DRM_ERROR("Enabling uc failed (%d)\n", ret); |
| goto out; |
| } |
| |
| intel_mocs_init_l3cc_table(dev_priv); |
| |
| /* Only when the HW is re-initialised, can we replay the requests */ |
| ret = intel_engines_resume(dev_priv); |
| if (ret) |
| goto cleanup_uc; |
| |
| intel_uncore_forcewake_put(&dev_priv->uncore, FORCEWAKE_ALL); |
| |
| intel_engines_set_scheduler_caps(dev_priv); |
| return 0; |
| |
| cleanup_uc: |
| intel_uc_fini_hw(dev_priv); |
| out: |
| intel_uncore_forcewake_put(&dev_priv->uncore, FORCEWAKE_ALL); |
| |
| return ret; |
| } |
| |
| static int __intel_engines_record_defaults(struct drm_i915_private *i915) |
| { |
| struct intel_engine_cs *engine; |
| struct i915_gem_context *ctx; |
| struct i915_gem_engines *e; |
| enum intel_engine_id id; |
| int err = 0; |
| |
| /* |
| * As we reset the gpu during very early sanitisation, the current |
| * register state on the GPU should reflect its defaults values. |
| * We load a context onto the hw (with restore-inhibit), then switch |
| * over to a second context to save that default register state. We |
| * can then prime every new context with that state so they all start |
| * from the same default HW values. |
| */ |
| |
| ctx = i915_gem_context_create_kernel(i915, 0); |
| if (IS_ERR(ctx)) |
| return PTR_ERR(ctx); |
| |
| e = i915_gem_context_lock_engines(ctx); |
| |
| for_each_engine(engine, i915, id) { |
| struct intel_context *ce = e->engines[id]; |
| struct i915_request *rq; |
| |
| rq = intel_context_create_request(ce); |
| if (IS_ERR(rq)) { |
| err = PTR_ERR(rq); |
| goto err_active; |
| } |
| |
| err = 0; |
| if (rq->engine->init_context) |
| err = rq->engine->init_context(rq); |
| |
| i915_request_add(rq); |
| if (err) |
| goto err_active; |
| } |
| |
| /* Flush the default context image to memory, and enable powersaving. */ |
| if (!i915_gem_load_power_context(i915)) { |
| err = -EIO; |
| goto err_active; |
| } |
| |
| for_each_engine(engine, i915, id) { |
| struct intel_context *ce = e->engines[id]; |
| struct i915_vma *state = ce->state; |
| void *vaddr; |
| |
| if (!state) |
| continue; |
| |
| GEM_BUG_ON(intel_context_is_pinned(ce)); |
| |
| /* |
| * As we will hold a reference to the logical state, it will |
| * not be torn down with the context, and importantly the |
| * object will hold onto its vma (making it possible for a |
| * stray GTT write to corrupt our defaults). Unmap the vma |
| * from the GTT to prevent such accidents and reclaim the |
| * space. |
| */ |
| err = i915_vma_unbind(state); |
| if (err) |
| goto err_active; |
| |
| err = i915_gem_object_set_to_cpu_domain(state->obj, false); |
| if (err) |
| goto err_active; |
| |
| engine->default_state = i915_gem_object_get(state->obj); |
| i915_gem_object_set_cache_coherency(engine->default_state, |
| I915_CACHE_LLC); |
| |
| /* Check we can acquire the image of the context state */ |
| vaddr = i915_gem_object_pin_map(engine->default_state, |
| I915_MAP_FORCE_WB); |
| if (IS_ERR(vaddr)) { |
| err = PTR_ERR(vaddr); |
| goto err_active; |
| } |
| |
| i915_gem_object_unpin_map(engine->default_state); |
| } |
| |
| if (IS_ENABLED(CONFIG_DRM_I915_DEBUG_GEM)) { |
| unsigned int found = intel_engines_has_context_isolation(i915); |
| |
| /* |
| * Make sure that classes with multiple engine instances all |
| * share the same basic configuration. |
| */ |
| for_each_engine(engine, i915, id) { |
| unsigned int bit = BIT(engine->uabi_class); |
| unsigned int expected = engine->default_state ? bit : 0; |
| |
| if ((found & bit) != expected) { |
| DRM_ERROR("mismatching default context state for class %d on engine %s\n", |
| engine->uabi_class, engine->name); |
| } |
| } |
| } |
| |
| out_ctx: |
| i915_gem_context_unlock_engines(ctx); |
| i915_gem_context_set_closed(ctx); |
| i915_gem_context_put(ctx); |
| return err; |
| |
| err_active: |
| /* |
| * If we have to abandon now, we expect the engines to be idle |
| * and ready to be torn-down. The quickest way we can accomplish |
| * this is by declaring ourselves wedged. |
| */ |
| i915_gem_set_wedged(i915); |
| goto out_ctx; |
| } |
| |
| static int |
| i915_gem_init_scratch(struct drm_i915_private *i915, unsigned int size) |
| { |
| struct drm_i915_gem_object *obj; |
| struct i915_vma *vma; |
| int ret; |
| |
| obj = i915_gem_object_create_stolen(i915, size); |
| if (!obj) |
| obj = i915_gem_object_create_internal(i915, size); |
| if (IS_ERR(obj)) { |
| DRM_ERROR("Failed to allocate scratch page\n"); |
| return PTR_ERR(obj); |
| } |
| |
| vma = i915_vma_instance(obj, &i915->ggtt.vm, NULL); |
| if (IS_ERR(vma)) { |
| ret = PTR_ERR(vma); |
| goto err_unref; |
| } |
| |
| ret = i915_vma_pin(vma, 0, 0, PIN_GLOBAL | PIN_HIGH); |
| if (ret) |
| goto err_unref; |
| |
| i915->gt.scratch = vma; |
| return 0; |
| |
| err_unref: |
| i915_gem_object_put(obj); |
| return ret; |
| } |
| |
| static void i915_gem_fini_scratch(struct drm_i915_private *i915) |
| { |
| i915_vma_unpin_and_release(&i915->gt.scratch, 0); |
| } |
| |
| static int intel_engines_verify_workarounds(struct drm_i915_private *i915) |
| { |
| struct intel_engine_cs *engine; |
| enum intel_engine_id id; |
| int err = 0; |
| |
| if (!IS_ENABLED(CONFIG_DRM_I915_DEBUG_GEM)) |
| return 0; |
| |
| for_each_engine(engine, i915, id) { |
| if (intel_engine_verify_workarounds(engine, "load")) |
| err = -EIO; |
| } |
| |
| return err; |
| } |
| |
| int i915_gem_init(struct drm_i915_private *dev_priv) |
| { |
| int ret; |
| |
| /* We need to fallback to 4K pages if host doesn't support huge gtt. */ |
| if (intel_vgpu_active(dev_priv) && !intel_vgpu_has_huge_gtt(dev_priv)) |
| mkwrite_device_info(dev_priv)->page_sizes = |
| I915_GTT_PAGE_SIZE_4K; |
| |
| dev_priv->mm.unordered_timeline = dma_fence_context_alloc(1); |
| |
| i915_timelines_init(dev_priv); |
| |
| ret = i915_gem_init_userptr(dev_priv); |
| if (ret) |
| return ret; |
| |
| ret = intel_uc_init_misc(dev_priv); |
| if (ret) |
| return ret; |
| |
| ret = intel_wopcm_init(&dev_priv->wopcm); |
| if (ret) |
| goto err_uc_misc; |
| |
| /* This is just a security blanket to placate dragons. |
| * On some systems, we very sporadically observe that the first TLBs |
| * used by the CS may be stale, despite us poking the TLB reset. If |
| * we hold the forcewake during initialisation these problems |
| * just magically go away. |
| */ |
| mutex_lock(&dev_priv->drm.struct_mutex); |
| intel_uncore_forcewake_get(&dev_priv->uncore, FORCEWAKE_ALL); |
| |
| ret = i915_gem_init_ggtt(dev_priv); |
| if (ret) { |
| GEM_BUG_ON(ret == -EIO); |
| goto err_unlock; |
| } |
| |
| ret = i915_gem_init_scratch(dev_priv, |
| IS_GEN(dev_priv, 2) ? SZ_256K : PAGE_SIZE); |
| if (ret) { |
| GEM_BUG_ON(ret == -EIO); |
| goto err_ggtt; |
| } |
| |
| ret = intel_engines_setup(dev_priv); |
| if (ret) { |
| GEM_BUG_ON(ret == -EIO); |
| goto err_unlock; |
| } |
| |
| ret = i915_gem_contexts_init(dev_priv); |
| if (ret) { |
| GEM_BUG_ON(ret == -EIO); |
| goto err_scratch; |
| } |
| |
| ret = intel_engines_init(dev_priv); |
| if (ret) { |
| GEM_BUG_ON(ret == -EIO); |
| goto err_context; |
| } |
| |
| intel_init_gt_powersave(dev_priv); |
| |
| ret = intel_uc_init(dev_priv); |
| if (ret) |
| goto err_pm; |
| |
| ret = i915_gem_init_hw(dev_priv); |
| if (ret) |
| goto err_uc_init; |
| |
| /* |
| * Despite its name intel_init_clock_gating applies both display |
| * clock gating workarounds; GT mmio workarounds and the occasional |
| * GT power context workaround. Worse, sometimes it includes a context |
| * register workaround which we need to apply before we record the |
| * default HW state for all contexts. |
| * |
| * FIXME: break up the workarounds and apply them at the right time! |
| */ |
| intel_init_clock_gating(dev_priv); |
| |
| ret = intel_engines_verify_workarounds(dev_priv); |
| if (ret) |
| goto err_init_hw; |
| |
| ret = __intel_engines_record_defaults(dev_priv); |
| if (ret) |
| goto err_init_hw; |
| |
| if (i915_inject_load_failure()) { |
| ret = -ENODEV; |
| goto err_init_hw; |
| } |
| |
| if (i915_inject_load_failure()) { |
| ret = -EIO; |
| goto err_init_hw; |
| } |
| |
| intel_uncore_forcewake_put(&dev_priv->uncore, FORCEWAKE_ALL); |
| mutex_unlock(&dev_priv->drm.struct_mutex); |
| |
| return 0; |
| |
| /* |
| * Unwinding is complicated by that we want to handle -EIO to mean |
| * disable GPU submission but keep KMS alive. We want to mark the |
| * HW as irrevisibly wedged, but keep enough state around that the |
| * driver doesn't explode during runtime. |
| */ |
| err_init_hw: |
| mutex_unlock(&dev_priv->drm.struct_mutex); |
| |
| i915_gem_set_wedged(dev_priv); |
| i915_gem_suspend(dev_priv); |
| i915_gem_suspend_late(dev_priv); |
| |
| i915_gem_drain_workqueue(dev_priv); |
| |
| mutex_lock(&dev_priv->drm.struct_mutex); |
| intel_uc_fini_hw(dev_priv); |
| err_uc_init: |
| intel_uc_fini(dev_priv); |
| err_pm: |
| if (ret != -EIO) { |
| intel_cleanup_gt_powersave(dev_priv); |
| intel_engines_cleanup(dev_priv); |
| } |
| err_context: |
| if (ret != -EIO) |
| i915_gem_contexts_fini(dev_priv); |
| err_scratch: |
| i915_gem_fini_scratch(dev_priv); |
| err_ggtt: |
| err_unlock: |
| intel_uncore_forcewake_put(&dev_priv->uncore, FORCEWAKE_ALL); |
| mutex_unlock(&dev_priv->drm.struct_mutex); |
| |
| err_uc_misc: |
| intel_uc_fini_misc(dev_priv); |
| |
| if (ret != -EIO) { |
| i915_gem_cleanup_userptr(dev_priv); |
| i915_timelines_fini(dev_priv); |
| } |
| |
| if (ret == -EIO) { |
| mutex_lock(&dev_priv->drm.struct_mutex); |
| |
| /* |
| * Allow engine initialisation to fail by marking the GPU as |
| * wedged. But we only want to do this where the GPU is angry, |
| * for all other failure, such as an allocation failure, bail. |
| */ |
| if (!i915_reset_failed(dev_priv)) { |
| i915_load_error(dev_priv, |
| "Failed to initialize GPU, declaring it wedged!\n"); |
| i915_gem_set_wedged(dev_priv); |
| } |
| |
| /* Minimal basic recovery for KMS */ |
| ret = i915_ggtt_enable_hw(dev_priv); |
| i915_gem_restore_gtt_mappings(dev_priv); |
| i915_gem_restore_fences(dev_priv); |
| intel_init_clock_gating(dev_priv); |
| |
| mutex_unlock(&dev_priv->drm.struct_mutex); |
| } |
| |
| i915_gem_drain_freed_objects(dev_priv); |
| return ret; |
| } |
| |
| void i915_gem_fini(struct drm_i915_private *dev_priv) |
| { |
| GEM_BUG_ON(dev_priv->gt.awake); |
| |
| intel_wakeref_auto_fini(&dev_priv->mm.userfault_wakeref); |
| |
| i915_gem_suspend_late(dev_priv); |
| intel_disable_gt_powersave(dev_priv); |
| |
| /* Flush any outstanding unpin_work. */ |
| i915_gem_drain_workqueue(dev_priv); |
| |
| mutex_lock(&dev_priv->drm.struct_mutex); |
| intel_uc_fini_hw(dev_priv); |
| intel_uc_fini(dev_priv); |
| intel_engines_cleanup(dev_priv); |
| i915_gem_contexts_fini(dev_priv); |
| i915_gem_fini_scratch(dev_priv); |
| mutex_unlock(&dev_priv->drm.struct_mutex); |
| |
| intel_wa_list_free(&dev_priv->gt_wa_list); |
| |
| intel_cleanup_gt_powersave(dev_priv); |
| |
| intel_uc_fini_misc(dev_priv); |
| i915_gem_cleanup_userptr(dev_priv); |
| i915_timelines_fini(dev_priv); |
| |
| i915_gem_drain_freed_objects(dev_priv); |
| |
| WARN_ON(!list_empty(&dev_priv->contexts.list)); |
| } |
| |
| void i915_gem_init_mmio(struct drm_i915_private *i915) |
| { |
| i915_gem_sanitize(i915); |
| } |
| |
| void |
| i915_gem_load_init_fences(struct drm_i915_private *dev_priv) |
| { |
| int i; |
| |
| if (INTEL_GEN(dev_priv) >= 7 && !IS_VALLEYVIEW(dev_priv) && |
| !IS_CHERRYVIEW(dev_priv)) |
| dev_priv->num_fence_regs = 32; |
| else if (INTEL_GEN(dev_priv) >= 4 || |
| IS_I945G(dev_priv) || IS_I945GM(dev_priv) || |
| IS_G33(dev_priv) || IS_PINEVIEW(dev_priv)) |
| dev_priv->num_fence_regs = 16; |
| else |
| dev_priv->num_fence_regs = 8; |
| |
| if (intel_vgpu_active(dev_priv)) |
| dev_priv->num_fence_regs = |
| I915_READ(vgtif_reg(avail_rs.fence_num)); |
| |
| /* Initialize fence registers to zero */ |
| for (i = 0; i < dev_priv->num_fence_regs; i++) { |
| struct drm_i915_fence_reg *fence = &dev_priv->fence_regs[i]; |
| |
| fence->i915 = dev_priv; |
| fence->id = i; |
| list_add_tail(&fence->link, &dev_priv->mm.fence_list); |
| } |
| i915_gem_restore_fences(dev_priv); |
| |
| i915_gem_detect_bit_6_swizzle(dev_priv); |
| } |
| |
| static void i915_gem_init__mm(struct drm_i915_private *i915) |
| { |
| spin_lock_init(&i915->mm.object_stat_lock); |
| spin_lock_init(&i915->mm.obj_lock); |
| spin_lock_init(&i915->mm.free_lock); |
| |
| init_llist_head(&i915->mm.free_list); |
| |
| INIT_LIST_HEAD(&i915->mm.unbound_list); |
| INIT_LIST_HEAD(&i915->mm.bound_list); |
| INIT_LIST_HEAD(&i915->mm.fence_list); |
| |
| INIT_LIST_HEAD(&i915->mm.userfault_list); |
| intel_wakeref_auto_init(&i915->mm.userfault_wakeref, i915); |
| |
| i915_gem_init__objects(i915); |
| } |
| |
| int i915_gem_init_early(struct drm_i915_private *dev_priv) |
| { |
| int err; |
| |
| intel_gt_pm_init(dev_priv); |
| |
| INIT_LIST_HEAD(&dev_priv->gt.active_rings); |
| INIT_LIST_HEAD(&dev_priv->gt.closed_vma); |
| |
| i915_gem_init__mm(dev_priv); |
| i915_gem_init__pm(dev_priv); |
| |
| init_waitqueue_head(&dev_priv->gpu_error.wait_queue); |
| init_waitqueue_head(&dev_priv->gpu_error.reset_queue); |
| mutex_init(&dev_priv->gpu_error.wedge_mutex); |
| init_srcu_struct(&dev_priv->gpu_error.reset_backoff_srcu); |
| |
| atomic_set(&dev_priv->mm.bsd_engine_dispatch_index, 0); |
| |
| spin_lock_init(&dev_priv->fb_tracking.lock); |
| |
| err = i915_gemfs_init(dev_priv); |
| if (err) |
| DRM_NOTE("Unable to create a private tmpfs mount, hugepage support will be disabled(%d).\n", err); |
| |
| return 0; |
| } |
| |
| void i915_gem_cleanup_early(struct drm_i915_private *dev_priv) |
| { |
| i915_gem_drain_freed_objects(dev_priv); |
| GEM_BUG_ON(!llist_empty(&dev_priv->mm.free_list)); |
| GEM_BUG_ON(atomic_read(&dev_priv->mm.free_count)); |
| WARN_ON(dev_priv->mm.object_count); |
| |
| cleanup_srcu_struct(&dev_priv->gpu_error.reset_backoff_srcu); |
| |
| i915_gemfs_fini(dev_priv); |
| } |
| |
| int i915_gem_freeze(struct drm_i915_private *dev_priv) |
| { |
| /* Discard all purgeable objects, let userspace recover those as |
| * required after resuming. |
| */ |
| i915_gem_shrink_all(dev_priv); |
| |
| return 0; |
| } |
| |
| int i915_gem_freeze_late(struct drm_i915_private *i915) |
| { |
| struct drm_i915_gem_object *obj; |
| struct list_head *phases[] = { |
| &i915->mm.unbound_list, |
| &i915->mm.bound_list, |
| NULL |
| }, **phase; |
| |
| /* |
| * Called just before we write the hibernation image. |
| * |
| * We need to update the domain tracking to reflect that the CPU |
| * will be accessing all the pages to create and restore from the |
| * hibernation, and so upon restoration those pages will be in the |
| * CPU domain. |
| * |
| * To make sure the hibernation image contains the latest state, |
| * we update that state just before writing out the image. |
| * |
| * To try and reduce the hibernation image, we manually shrink |
| * the objects as well, see i915_gem_freeze() |
| */ |
| |
| i915_gem_shrink(i915, -1UL, NULL, I915_SHRINK_UNBOUND); |
| i915_gem_drain_freed_objects(i915); |
| |
| mutex_lock(&i915->drm.struct_mutex); |
| for (phase = phases; *phase; phase++) { |
| list_for_each_entry(obj, *phase, mm.link) |
| WARN_ON(i915_gem_object_set_to_cpu_domain(obj, true)); |
| } |
| mutex_unlock(&i915->drm.struct_mutex); |
| |
| return 0; |
| } |
| |
| void i915_gem_release(struct drm_device *dev, struct drm_file *file) |
| { |
| struct drm_i915_file_private *file_priv = file->driver_priv; |
| struct i915_request *request; |
| |
| /* Clean up our request list when the client is going away, so that |
| * later retire_requests won't dereference our soon-to-be-gone |
| * file_priv. |
| */ |
| spin_lock(&file_priv->mm.lock); |
| list_for_each_entry(request, &file_priv->mm.request_list, client_link) |
| request->file_priv = NULL; |
| spin_unlock(&file_priv->mm.lock); |
| } |
| |
| int i915_gem_open(struct drm_i915_private *i915, struct drm_file *file) |
| { |
| struct drm_i915_file_private *file_priv; |
| int ret; |
| |
| DRM_DEBUG("\n"); |
| |
| file_priv = kzalloc(sizeof(*file_priv), GFP_KERNEL); |
| if (!file_priv) |
| return -ENOMEM; |
| |
| file->driver_priv = file_priv; |
| file_priv->dev_priv = i915; |
| file_priv->file = file; |
| |
| spin_lock_init(&file_priv->mm.lock); |
| INIT_LIST_HEAD(&file_priv->mm.request_list); |
| |
| file_priv->bsd_engine = -1; |
| file_priv->hang_timestamp = jiffies; |
| |
| ret = i915_gem_context_open(i915, file); |
| if (ret) |
| kfree(file_priv); |
| |
| return ret; |
| } |
| |
| /** |
| * i915_gem_track_fb - update frontbuffer tracking |
| * @old: current GEM buffer for the frontbuffer slots |
| * @new: new GEM buffer for the frontbuffer slots |
| * @frontbuffer_bits: bitmask of frontbuffer slots |
| * |
| * This updates the frontbuffer tracking bits @frontbuffer_bits by clearing them |
| * from @old and setting them in @new. Both @old and @new can be NULL. |
| */ |
| void i915_gem_track_fb(struct drm_i915_gem_object *old, |
| struct drm_i915_gem_object *new, |
| unsigned frontbuffer_bits) |
| { |
| /* Control of individual bits within the mask are guarded by |
| * the owning plane->mutex, i.e. we can never see concurrent |
| * manipulation of individual bits. But since the bitfield as a whole |
| * is updated using RMW, we need to use atomics in order to update |
| * the bits. |
| */ |
| BUILD_BUG_ON(INTEL_FRONTBUFFER_BITS_PER_PIPE * I915_MAX_PIPES > |
| BITS_PER_TYPE(atomic_t)); |
| |
| if (old) { |
| WARN_ON(!(atomic_read(&old->frontbuffer_bits) & frontbuffer_bits)); |
| atomic_andnot(frontbuffer_bits, &old->frontbuffer_bits); |
| } |
| |
| if (new) { |
| WARN_ON(atomic_read(&new->frontbuffer_bits) & frontbuffer_bits); |
| atomic_or(frontbuffer_bits, &new->frontbuffer_bits); |
| } |
| } |
| |
| #if IS_ENABLED(CONFIG_DRM_I915_SELFTEST) |
| #include "selftests/scatterlist.c" |
| #include "selftests/mock_gem_device.c" |
| #include "selftests/i915_gem.c" |
| #endif |