| // SPDX-License-Identifier: GPL-2.0-only |
| /* |
| * Driver for I2C adapter in Rockchip RK3xxx SoC |
| * |
| * Max Schwarz <max.schwarz@online.de> |
| * based on the patches by Rockchip Inc. |
| */ |
| |
| #include <linux/kernel.h> |
| #include <linux/module.h> |
| #include <linux/i2c.h> |
| #include <linux/interrupt.h> |
| #include <linux/iopoll.h> |
| #include <linux/errno.h> |
| #include <linux/err.h> |
| #include <linux/platform_device.h> |
| #include <linux/io.h> |
| #include <linux/of_address.h> |
| #include <linux/of_irq.h> |
| #include <linux/spinlock.h> |
| #include <linux/clk.h> |
| #include <linux/wait.h> |
| #include <linux/mfd/syscon.h> |
| #include <linux/regmap.h> |
| #include <linux/math64.h> |
| |
| |
| /* Register Map */ |
| #define REG_CON 0x00 /* control register */ |
| #define REG_CLKDIV 0x04 /* clock divisor register */ |
| #define REG_MRXADDR 0x08 /* slave address for REGISTER_TX */ |
| #define REG_MRXRADDR 0x0c /* slave register address for REGISTER_TX */ |
| #define REG_MTXCNT 0x10 /* number of bytes to be transmitted */ |
| #define REG_MRXCNT 0x14 /* number of bytes to be received */ |
| #define REG_IEN 0x18 /* interrupt enable */ |
| #define REG_IPD 0x1c /* interrupt pending */ |
| #define REG_FCNT 0x20 /* finished count */ |
| |
| /* Data buffer offsets */ |
| #define TXBUFFER_BASE 0x100 |
| #define RXBUFFER_BASE 0x200 |
| |
| /* REG_CON bits */ |
| #define REG_CON_EN BIT(0) |
| enum { |
| REG_CON_MOD_TX = 0, /* transmit data */ |
| REG_CON_MOD_REGISTER_TX, /* select register and restart */ |
| REG_CON_MOD_RX, /* receive data */ |
| REG_CON_MOD_REGISTER_RX, /* broken: transmits read addr AND writes |
| * register addr */ |
| }; |
| #define REG_CON_MOD(mod) ((mod) << 1) |
| #define REG_CON_MOD_MASK (BIT(1) | BIT(2)) |
| #define REG_CON_START BIT(3) |
| #define REG_CON_STOP BIT(4) |
| #define REG_CON_LASTACK BIT(5) /* 1: send NACK after last received byte */ |
| #define REG_CON_ACTACK BIT(6) /* 1: stop if NACK is received */ |
| |
| #define REG_CON_TUNING_MASK GENMASK_ULL(15, 8) |
| |
| #define REG_CON_SDA_CFG(cfg) ((cfg) << 8) |
| #define REG_CON_STA_CFG(cfg) ((cfg) << 12) |
| #define REG_CON_STO_CFG(cfg) ((cfg) << 14) |
| |
| /* REG_MRXADDR bits */ |
| #define REG_MRXADDR_VALID(x) BIT(24 + (x)) /* [x*8+7:x*8] of MRX[R]ADDR valid */ |
| |
| /* REG_IEN/REG_IPD bits */ |
| #define REG_INT_BTF BIT(0) /* a byte was transmitted */ |
| #define REG_INT_BRF BIT(1) /* a byte was received */ |
| #define REG_INT_MBTF BIT(2) /* master data transmit finished */ |
| #define REG_INT_MBRF BIT(3) /* master data receive finished */ |
| #define REG_INT_START BIT(4) /* START condition generated */ |
| #define REG_INT_STOP BIT(5) /* STOP condition generated */ |
| #define REG_INT_NAKRCV BIT(6) /* NACK received */ |
| #define REG_INT_ALL 0x7f |
| |
| /* Constants */ |
| #define WAIT_TIMEOUT 1000 /* ms */ |
| #define DEFAULT_SCL_RATE (100 * 1000) /* Hz */ |
| |
| /** |
| * struct i2c_spec_values: |
| * @min_hold_start_ns: min hold time (repeated) START condition |
| * @min_low_ns: min LOW period of the SCL clock |
| * @min_high_ns: min HIGH period of the SCL cloc |
| * @min_setup_start_ns: min set-up time for a repeated START conditio |
| * @max_data_hold_ns: max data hold time |
| * @min_data_setup_ns: min data set-up time |
| * @min_setup_stop_ns: min set-up time for STOP condition |
| * @min_hold_buffer_ns: min bus free time between a STOP and |
| * START condition |
| */ |
| struct i2c_spec_values { |
| unsigned long min_hold_start_ns; |
| unsigned long min_low_ns; |
| unsigned long min_high_ns; |
| unsigned long min_setup_start_ns; |
| unsigned long max_data_hold_ns; |
| unsigned long min_data_setup_ns; |
| unsigned long min_setup_stop_ns; |
| unsigned long min_hold_buffer_ns; |
| }; |
| |
| static const struct i2c_spec_values standard_mode_spec = { |
| .min_hold_start_ns = 4000, |
| .min_low_ns = 4700, |
| .min_high_ns = 4000, |
| .min_setup_start_ns = 4700, |
| .max_data_hold_ns = 3450, |
| .min_data_setup_ns = 250, |
| .min_setup_stop_ns = 4000, |
| .min_hold_buffer_ns = 4700, |
| }; |
| |
| static const struct i2c_spec_values fast_mode_spec = { |
| .min_hold_start_ns = 600, |
| .min_low_ns = 1300, |
| .min_high_ns = 600, |
| .min_setup_start_ns = 600, |
| .max_data_hold_ns = 900, |
| .min_data_setup_ns = 100, |
| .min_setup_stop_ns = 600, |
| .min_hold_buffer_ns = 1300, |
| }; |
| |
| static const struct i2c_spec_values fast_mode_plus_spec = { |
| .min_hold_start_ns = 260, |
| .min_low_ns = 500, |
| .min_high_ns = 260, |
| .min_setup_start_ns = 260, |
| .max_data_hold_ns = 400, |
| .min_data_setup_ns = 50, |
| .min_setup_stop_ns = 260, |
| .min_hold_buffer_ns = 500, |
| }; |
| |
| /** |
| * struct rk3x_i2c_calced_timings: |
| * @div_low: Divider output for low |
| * @div_high: Divider output for high |
| * @tuning: Used to adjust setup/hold data time, |
| * setup/hold start time and setup stop time for |
| * v1's calc_timings, the tuning should all be 0 |
| * for old hardware anyone using v0's calc_timings. |
| */ |
| struct rk3x_i2c_calced_timings { |
| unsigned long div_low; |
| unsigned long div_high; |
| unsigned int tuning; |
| }; |
| |
| enum rk3x_i2c_state { |
| STATE_IDLE, |
| STATE_START, |
| STATE_READ, |
| STATE_WRITE, |
| STATE_STOP |
| }; |
| |
| /** |
| * struct rk3x_i2c_soc_data: |
| * @grf_offset: offset inside the grf regmap for setting the i2c type |
| * @calc_timings: Callback function for i2c timing information calculated |
| */ |
| struct rk3x_i2c_soc_data { |
| int grf_offset; |
| int (*calc_timings)(unsigned long, struct i2c_timings *, |
| struct rk3x_i2c_calced_timings *); |
| }; |
| |
| /** |
| * struct rk3x_i2c - private data of the controller |
| * @adap: corresponding I2C adapter |
| * @dev: device for this controller |
| * @soc_data: related soc data struct |
| * @regs: virtual memory area |
| * @clk: function clk for rk3399 or function & Bus clks for others |
| * @pclk: Bus clk for rk3399 |
| * @clk_rate_nb: i2c clk rate change notify |
| * @t: I2C known timing information |
| * @lock: spinlock for the i2c bus |
| * @wait: the waitqueue to wait for i2c transfer |
| * @busy: the condition for the event to wait for |
| * @msg: current i2c message |
| * @addr: addr of i2c slave device |
| * @mode: mode of i2c transfer |
| * @is_last_msg: flag determines whether it is the last msg in this transfer |
| * @state: state of i2c transfer |
| * @processed: byte length which has been send or received |
| * @error: error code for i2c transfer |
| */ |
| struct rk3x_i2c { |
| struct i2c_adapter adap; |
| struct device *dev; |
| const struct rk3x_i2c_soc_data *soc_data; |
| |
| /* Hardware resources */ |
| void __iomem *regs; |
| struct clk *clk; |
| struct clk *pclk; |
| struct notifier_block clk_rate_nb; |
| |
| /* Settings */ |
| struct i2c_timings t; |
| |
| /* Synchronization & notification */ |
| spinlock_t lock; |
| wait_queue_head_t wait; |
| bool busy; |
| |
| /* Current message */ |
| struct i2c_msg *msg; |
| u8 addr; |
| unsigned int mode; |
| bool is_last_msg; |
| |
| /* I2C state machine */ |
| enum rk3x_i2c_state state; |
| unsigned int processed; |
| int error; |
| }; |
| |
| static inline void i2c_writel(struct rk3x_i2c *i2c, u32 value, |
| unsigned int offset) |
| { |
| writel(value, i2c->regs + offset); |
| } |
| |
| static inline u32 i2c_readl(struct rk3x_i2c *i2c, unsigned int offset) |
| { |
| return readl(i2c->regs + offset); |
| } |
| |
| /* Reset all interrupt pending bits */ |
| static inline void rk3x_i2c_clean_ipd(struct rk3x_i2c *i2c) |
| { |
| i2c_writel(i2c, REG_INT_ALL, REG_IPD); |
| } |
| |
| /** |
| * Generate a START condition, which triggers a REG_INT_START interrupt. |
| */ |
| static void rk3x_i2c_start(struct rk3x_i2c *i2c) |
| { |
| u32 val = i2c_readl(i2c, REG_CON) & REG_CON_TUNING_MASK; |
| |
| i2c_writel(i2c, REG_INT_START, REG_IEN); |
| |
| /* enable adapter with correct mode, send START condition */ |
| val |= REG_CON_EN | REG_CON_MOD(i2c->mode) | REG_CON_START; |
| |
| /* if we want to react to NACK, set ACTACK bit */ |
| if (!(i2c->msg->flags & I2C_M_IGNORE_NAK)) |
| val |= REG_CON_ACTACK; |
| |
| i2c_writel(i2c, val, REG_CON); |
| } |
| |
| /** |
| * Generate a STOP condition, which triggers a REG_INT_STOP interrupt. |
| * |
| * @error: Error code to return in rk3x_i2c_xfer |
| */ |
| static void rk3x_i2c_stop(struct rk3x_i2c *i2c, int error) |
| { |
| unsigned int ctrl; |
| |
| i2c->processed = 0; |
| i2c->msg = NULL; |
| i2c->error = error; |
| |
| if (i2c->is_last_msg) { |
| /* Enable stop interrupt */ |
| i2c_writel(i2c, REG_INT_STOP, REG_IEN); |
| |
| i2c->state = STATE_STOP; |
| |
| ctrl = i2c_readl(i2c, REG_CON); |
| ctrl |= REG_CON_STOP; |
| i2c_writel(i2c, ctrl, REG_CON); |
| } else { |
| /* Signal rk3x_i2c_xfer to start the next message. */ |
| i2c->busy = false; |
| i2c->state = STATE_IDLE; |
| |
| /* |
| * The HW is actually not capable of REPEATED START. But we can |
| * get the intended effect by resetting its internal state |
| * and issuing an ordinary START. |
| */ |
| ctrl = i2c_readl(i2c, REG_CON) & REG_CON_TUNING_MASK; |
| i2c_writel(i2c, ctrl, REG_CON); |
| |
| /* signal that we are finished with the current msg */ |
| wake_up(&i2c->wait); |
| } |
| } |
| |
| /** |
| * Setup a read according to i2c->msg |
| */ |
| static void rk3x_i2c_prepare_read(struct rk3x_i2c *i2c) |
| { |
| unsigned int len = i2c->msg->len - i2c->processed; |
| u32 con; |
| |
| con = i2c_readl(i2c, REG_CON); |
| |
| /* |
| * The hw can read up to 32 bytes at a time. If we need more than one |
| * chunk, send an ACK after the last byte of the current chunk. |
| */ |
| if (len > 32) { |
| len = 32; |
| con &= ~REG_CON_LASTACK; |
| } else { |
| con |= REG_CON_LASTACK; |
| } |
| |
| /* make sure we are in plain RX mode if we read a second chunk */ |
| if (i2c->processed != 0) { |
| con &= ~REG_CON_MOD_MASK; |
| con |= REG_CON_MOD(REG_CON_MOD_RX); |
| } |
| |
| i2c_writel(i2c, con, REG_CON); |
| i2c_writel(i2c, len, REG_MRXCNT); |
| } |
| |
| /** |
| * Fill the transmit buffer with data from i2c->msg |
| */ |
| static void rk3x_i2c_fill_transmit_buf(struct rk3x_i2c *i2c) |
| { |
| unsigned int i, j; |
| u32 cnt = 0; |
| u32 val; |
| u8 byte; |
| |
| for (i = 0; i < 8; ++i) { |
| val = 0; |
| for (j = 0; j < 4; ++j) { |
| if ((i2c->processed == i2c->msg->len) && (cnt != 0)) |
| break; |
| |
| if (i2c->processed == 0 && cnt == 0) |
| byte = (i2c->addr & 0x7f) << 1; |
| else |
| byte = i2c->msg->buf[i2c->processed++]; |
| |
| val |= byte << (j * 8); |
| cnt++; |
| } |
| |
| i2c_writel(i2c, val, TXBUFFER_BASE + 4 * i); |
| |
| if (i2c->processed == i2c->msg->len) |
| break; |
| } |
| |
| i2c_writel(i2c, cnt, REG_MTXCNT); |
| } |
| |
| |
| /* IRQ handlers for individual states */ |
| |
| static void rk3x_i2c_handle_start(struct rk3x_i2c *i2c, unsigned int ipd) |
| { |
| if (!(ipd & REG_INT_START)) { |
| rk3x_i2c_stop(i2c, -EIO); |
| dev_warn(i2c->dev, "unexpected irq in START: 0x%x\n", ipd); |
| rk3x_i2c_clean_ipd(i2c); |
| return; |
| } |
| |
| /* ack interrupt */ |
| i2c_writel(i2c, REG_INT_START, REG_IPD); |
| |
| /* disable start bit */ |
| i2c_writel(i2c, i2c_readl(i2c, REG_CON) & ~REG_CON_START, REG_CON); |
| |
| /* enable appropriate interrupts and transition */ |
| if (i2c->mode == REG_CON_MOD_TX) { |
| i2c_writel(i2c, REG_INT_MBTF | REG_INT_NAKRCV, REG_IEN); |
| i2c->state = STATE_WRITE; |
| rk3x_i2c_fill_transmit_buf(i2c); |
| } else { |
| /* in any other case, we are going to be reading. */ |
| i2c_writel(i2c, REG_INT_MBRF | REG_INT_NAKRCV, REG_IEN); |
| i2c->state = STATE_READ; |
| rk3x_i2c_prepare_read(i2c); |
| } |
| } |
| |
| static void rk3x_i2c_handle_write(struct rk3x_i2c *i2c, unsigned int ipd) |
| { |
| if (!(ipd & REG_INT_MBTF)) { |
| rk3x_i2c_stop(i2c, -EIO); |
| dev_err(i2c->dev, "unexpected irq in WRITE: 0x%x\n", ipd); |
| rk3x_i2c_clean_ipd(i2c); |
| return; |
| } |
| |
| /* ack interrupt */ |
| i2c_writel(i2c, REG_INT_MBTF, REG_IPD); |
| |
| /* are we finished? */ |
| if (i2c->processed == i2c->msg->len) |
| rk3x_i2c_stop(i2c, i2c->error); |
| else |
| rk3x_i2c_fill_transmit_buf(i2c); |
| } |
| |
| static void rk3x_i2c_handle_read(struct rk3x_i2c *i2c, unsigned int ipd) |
| { |
| unsigned int i; |
| unsigned int len = i2c->msg->len - i2c->processed; |
| u32 uninitialized_var(val); |
| u8 byte; |
| |
| /* we only care for MBRF here. */ |
| if (!(ipd & REG_INT_MBRF)) |
| return; |
| |
| /* ack interrupt */ |
| i2c_writel(i2c, REG_INT_MBRF, REG_IPD); |
| |
| /* Can only handle a maximum of 32 bytes at a time */ |
| if (len > 32) |
| len = 32; |
| |
| /* read the data from receive buffer */ |
| for (i = 0; i < len; ++i) { |
| if (i % 4 == 0) |
| val = i2c_readl(i2c, RXBUFFER_BASE + (i / 4) * 4); |
| |
| byte = (val >> ((i % 4) * 8)) & 0xff; |
| i2c->msg->buf[i2c->processed++] = byte; |
| } |
| |
| /* are we finished? */ |
| if (i2c->processed == i2c->msg->len) |
| rk3x_i2c_stop(i2c, i2c->error); |
| else |
| rk3x_i2c_prepare_read(i2c); |
| } |
| |
| static void rk3x_i2c_handle_stop(struct rk3x_i2c *i2c, unsigned int ipd) |
| { |
| unsigned int con; |
| |
| if (!(ipd & REG_INT_STOP)) { |
| rk3x_i2c_stop(i2c, -EIO); |
| dev_err(i2c->dev, "unexpected irq in STOP: 0x%x\n", ipd); |
| rk3x_i2c_clean_ipd(i2c); |
| return; |
| } |
| |
| /* ack interrupt */ |
| i2c_writel(i2c, REG_INT_STOP, REG_IPD); |
| |
| /* disable STOP bit */ |
| con = i2c_readl(i2c, REG_CON); |
| con &= ~REG_CON_STOP; |
| i2c_writel(i2c, con, REG_CON); |
| |
| i2c->busy = false; |
| i2c->state = STATE_IDLE; |
| |
| /* signal rk3x_i2c_xfer that we are finished */ |
| wake_up(&i2c->wait); |
| } |
| |
| static irqreturn_t rk3x_i2c_irq(int irqno, void *dev_id) |
| { |
| struct rk3x_i2c *i2c = dev_id; |
| unsigned int ipd; |
| |
| spin_lock(&i2c->lock); |
| |
| ipd = i2c_readl(i2c, REG_IPD); |
| if (i2c->state == STATE_IDLE) { |
| dev_warn(i2c->dev, "irq in STATE_IDLE, ipd = 0x%x\n", ipd); |
| rk3x_i2c_clean_ipd(i2c); |
| goto out; |
| } |
| |
| dev_dbg(i2c->dev, "IRQ: state %d, ipd: %x\n", i2c->state, ipd); |
| |
| /* Clean interrupt bits we don't care about */ |
| ipd &= ~(REG_INT_BRF | REG_INT_BTF); |
| |
| if (ipd & REG_INT_NAKRCV) { |
| /* |
| * We got a NACK in the last operation. Depending on whether |
| * IGNORE_NAK is set, we have to stop the operation and report |
| * an error. |
| */ |
| i2c_writel(i2c, REG_INT_NAKRCV, REG_IPD); |
| |
| ipd &= ~REG_INT_NAKRCV; |
| |
| if (!(i2c->msg->flags & I2C_M_IGNORE_NAK)) |
| rk3x_i2c_stop(i2c, -ENXIO); |
| } |
| |
| /* is there anything left to handle? */ |
| if ((ipd & REG_INT_ALL) == 0) |
| goto out; |
| |
| switch (i2c->state) { |
| case STATE_START: |
| rk3x_i2c_handle_start(i2c, ipd); |
| break; |
| case STATE_WRITE: |
| rk3x_i2c_handle_write(i2c, ipd); |
| break; |
| case STATE_READ: |
| rk3x_i2c_handle_read(i2c, ipd); |
| break; |
| case STATE_STOP: |
| rk3x_i2c_handle_stop(i2c, ipd); |
| break; |
| case STATE_IDLE: |
| break; |
| } |
| |
| out: |
| spin_unlock(&i2c->lock); |
| return IRQ_HANDLED; |
| } |
| |
| /** |
| * Get timing values of I2C specification |
| * |
| * @speed: Desired SCL frequency |
| * |
| * Returns: Matched i2c spec values. |
| */ |
| static const struct i2c_spec_values *rk3x_i2c_get_spec(unsigned int speed) |
| { |
| if (speed <= I2C_MAX_STANDARD_MODE_FREQ) |
| return &standard_mode_spec; |
| else if (speed <= I2C_MAX_FAST_MODE_FREQ) |
| return &fast_mode_spec; |
| else |
| return &fast_mode_plus_spec; |
| } |
| |
| /** |
| * Calculate divider values for desired SCL frequency |
| * |
| * @clk_rate: I2C input clock rate |
| * @t: Known I2C timing information |
| * @t_calc: Caculated rk3x private timings that would be written into regs |
| * |
| * Returns: 0 on success, -EINVAL if the goal SCL rate is too slow. In that case |
| * a best-effort divider value is returned in divs. If the target rate is |
| * too high, we silently use the highest possible rate. |
| */ |
| static int rk3x_i2c_v0_calc_timings(unsigned long clk_rate, |
| struct i2c_timings *t, |
| struct rk3x_i2c_calced_timings *t_calc) |
| { |
| unsigned long min_low_ns, min_high_ns; |
| unsigned long max_low_ns, min_total_ns; |
| |
| unsigned long clk_rate_khz, scl_rate_khz; |
| |
| unsigned long min_low_div, min_high_div; |
| unsigned long max_low_div; |
| |
| unsigned long min_div_for_hold, min_total_div; |
| unsigned long extra_div, extra_low_div, ideal_low_div; |
| |
| unsigned long data_hold_buffer_ns = 50; |
| const struct i2c_spec_values *spec; |
| int ret = 0; |
| |
| /* Only support standard-mode and fast-mode */ |
| if (WARN_ON(t->bus_freq_hz > I2C_MAX_FAST_MODE_FREQ)) |
| t->bus_freq_hz = I2C_MAX_FAST_MODE_FREQ; |
| |
| /* prevent scl_rate_khz from becoming 0 */ |
| if (WARN_ON(t->bus_freq_hz < 1000)) |
| t->bus_freq_hz = 1000; |
| |
| /* |
| * min_low_ns: The minimum number of ns we need to hold low to |
| * meet I2C specification, should include fall time. |
| * min_high_ns: The minimum number of ns we need to hold high to |
| * meet I2C specification, should include rise time. |
| * max_low_ns: The maximum number of ns we can hold low to meet |
| * I2C specification. |
| * |
| * Note: max_low_ns should be (maximum data hold time * 2 - buffer) |
| * This is because the i2c host on Rockchip holds the data line |
| * for half the low time. |
| */ |
| spec = rk3x_i2c_get_spec(t->bus_freq_hz); |
| min_high_ns = t->scl_rise_ns + spec->min_high_ns; |
| |
| /* |
| * Timings for repeated start: |
| * - controller appears to drop SDA at .875x (7/8) programmed clk high. |
| * - controller appears to keep SCL high for 2x programmed clk high. |
| * |
| * We need to account for those rules in picking our "high" time so |
| * we meet tSU;STA and tHD;STA times. |
| */ |
| min_high_ns = max(min_high_ns, DIV_ROUND_UP( |
| (t->scl_rise_ns + spec->min_setup_start_ns) * 1000, 875)); |
| min_high_ns = max(min_high_ns, DIV_ROUND_UP( |
| (t->scl_rise_ns + spec->min_setup_start_ns + t->sda_fall_ns + |
| spec->min_high_ns), 2)); |
| |
| min_low_ns = t->scl_fall_ns + spec->min_low_ns; |
| max_low_ns = spec->max_data_hold_ns * 2 - data_hold_buffer_ns; |
| min_total_ns = min_low_ns + min_high_ns; |
| |
| /* Adjust to avoid overflow */ |
| clk_rate_khz = DIV_ROUND_UP(clk_rate, 1000); |
| scl_rate_khz = t->bus_freq_hz / 1000; |
| |
| /* |
| * We need the total div to be >= this number |
| * so we don't clock too fast. |
| */ |
| min_total_div = DIV_ROUND_UP(clk_rate_khz, scl_rate_khz * 8); |
| |
| /* These are the min dividers needed for min hold times. */ |
| min_low_div = DIV_ROUND_UP(clk_rate_khz * min_low_ns, 8 * 1000000); |
| min_high_div = DIV_ROUND_UP(clk_rate_khz * min_high_ns, 8 * 1000000); |
| min_div_for_hold = (min_low_div + min_high_div); |
| |
| /* |
| * This is the maximum divider so we don't go over the maximum. |
| * We don't round up here (we round down) since this is a maximum. |
| */ |
| max_low_div = clk_rate_khz * max_low_ns / (8 * 1000000); |
| |
| if (min_low_div > max_low_div) { |
| WARN_ONCE(true, |
| "Conflicting, min_low_div %lu, max_low_div %lu\n", |
| min_low_div, max_low_div); |
| max_low_div = min_low_div; |
| } |
| |
| if (min_div_for_hold > min_total_div) { |
| /* |
| * Time needed to meet hold requirements is important. |
| * Just use that. |
| */ |
| t_calc->div_low = min_low_div; |
| t_calc->div_high = min_high_div; |
| } else { |
| /* |
| * We've got to distribute some time among the low and high |
| * so we don't run too fast. |
| */ |
| extra_div = min_total_div - min_div_for_hold; |
| |
| /* |
| * We'll try to split things up perfectly evenly, |
| * biasing slightly towards having a higher div |
| * for low (spend more time low). |
| */ |
| ideal_low_div = DIV_ROUND_UP(clk_rate_khz * min_low_ns, |
| scl_rate_khz * 8 * min_total_ns); |
| |
| /* Don't allow it to go over the maximum */ |
| if (ideal_low_div > max_low_div) |
| ideal_low_div = max_low_div; |
| |
| /* |
| * Handle when the ideal low div is going to take up |
| * more than we have. |
| */ |
| if (ideal_low_div > min_low_div + extra_div) |
| ideal_low_div = min_low_div + extra_div; |
| |
| /* Give low the "ideal" and give high whatever extra is left */ |
| extra_low_div = ideal_low_div - min_low_div; |
| t_calc->div_low = ideal_low_div; |
| t_calc->div_high = min_high_div + (extra_div - extra_low_div); |
| } |
| |
| /* |
| * Adjust to the fact that the hardware has an implicit "+1". |
| * NOTE: Above calculations always produce div_low > 0 and div_high > 0. |
| */ |
| t_calc->div_low--; |
| t_calc->div_high--; |
| |
| /* Give the tuning value 0, that would not update con register */ |
| t_calc->tuning = 0; |
| /* Maximum divider supported by hw is 0xffff */ |
| if (t_calc->div_low > 0xffff) { |
| t_calc->div_low = 0xffff; |
| ret = -EINVAL; |
| } |
| |
| if (t_calc->div_high > 0xffff) { |
| t_calc->div_high = 0xffff; |
| ret = -EINVAL; |
| } |
| |
| return ret; |
| } |
| |
| /** |
| * Calculate timing values for desired SCL frequency |
| * |
| * @clk_rate: I2C input clock rate |
| * @t: Known I2C timing information |
| * @t_calc: Caculated rk3x private timings that would be written into regs |
| * |
| * Returns: 0 on success, -EINVAL if the goal SCL rate is too slow. In that case |
| * a best-effort divider value is returned in divs. If the target rate is |
| * too high, we silently use the highest possible rate. |
| * The following formulas are v1's method to calculate timings. |
| * |
| * l = divl + 1; |
| * h = divh + 1; |
| * s = sda_update_config + 1; |
| * u = start_setup_config + 1; |
| * p = stop_setup_config + 1; |
| * T = Tclk_i2c; |
| * |
| * tHigh = 8 * h * T; |
| * tLow = 8 * l * T; |
| * |
| * tHD;sda = (l * s + 1) * T; |
| * tSU;sda = [(8 - s) * l + 1] * T; |
| * tI2C = 8 * (l + h) * T; |
| * |
| * tSU;sta = (8h * u + 1) * T; |
| * tHD;sta = [8h * (u + 1) - 1] * T; |
| * tSU;sto = (8h * p + 1) * T; |
| */ |
| static int rk3x_i2c_v1_calc_timings(unsigned long clk_rate, |
| struct i2c_timings *t, |
| struct rk3x_i2c_calced_timings *t_calc) |
| { |
| unsigned long min_low_ns, min_high_ns; |
| unsigned long min_setup_start_ns, min_setup_data_ns; |
| unsigned long min_setup_stop_ns, max_hold_data_ns; |
| |
| unsigned long clk_rate_khz, scl_rate_khz; |
| |
| unsigned long min_low_div, min_high_div; |
| |
| unsigned long min_div_for_hold, min_total_div; |
| unsigned long extra_div, extra_low_div; |
| unsigned long sda_update_cfg, stp_sta_cfg, stp_sto_cfg; |
| |
| const struct i2c_spec_values *spec; |
| int ret = 0; |
| |
| /* Support standard-mode, fast-mode and fast-mode plus */ |
| if (WARN_ON(t->bus_freq_hz > I2C_MAX_FAST_MODE_PLUS_FREQ)) |
| t->bus_freq_hz = I2C_MAX_FAST_MODE_PLUS_FREQ; |
| |
| /* prevent scl_rate_khz from becoming 0 */ |
| if (WARN_ON(t->bus_freq_hz < 1000)) |
| t->bus_freq_hz = 1000; |
| |
| /* |
| * min_low_ns: The minimum number of ns we need to hold low to |
| * meet I2C specification, should include fall time. |
| * min_high_ns: The minimum number of ns we need to hold high to |
| * meet I2C specification, should include rise time. |
| */ |
| spec = rk3x_i2c_get_spec(t->bus_freq_hz); |
| |
| /* calculate min-divh and min-divl */ |
| clk_rate_khz = DIV_ROUND_UP(clk_rate, 1000); |
| scl_rate_khz = t->bus_freq_hz / 1000; |
| min_total_div = DIV_ROUND_UP(clk_rate_khz, scl_rate_khz * 8); |
| |
| min_high_ns = t->scl_rise_ns + spec->min_high_ns; |
| min_high_div = DIV_ROUND_UP(clk_rate_khz * min_high_ns, 8 * 1000000); |
| |
| min_low_ns = t->scl_fall_ns + spec->min_low_ns; |
| min_low_div = DIV_ROUND_UP(clk_rate_khz * min_low_ns, 8 * 1000000); |
| |
| /* |
| * Final divh and divl must be greater than 0, otherwise the |
| * hardware would not output the i2c clk. |
| */ |
| min_high_div = (min_high_div < 1) ? 2 : min_high_div; |
| min_low_div = (min_low_div < 1) ? 2 : min_low_div; |
| |
| /* These are the min dividers needed for min hold times. */ |
| min_div_for_hold = (min_low_div + min_high_div); |
| |
| /* |
| * This is the maximum divider so we don't go over the maximum. |
| * We don't round up here (we round down) since this is a maximum. |
| */ |
| if (min_div_for_hold >= min_total_div) { |
| /* |
| * Time needed to meet hold requirements is important. |
| * Just use that. |
| */ |
| t_calc->div_low = min_low_div; |
| t_calc->div_high = min_high_div; |
| } else { |
| /* |
| * We've got to distribute some time among the low and high |
| * so we don't run too fast. |
| * We'll try to split things up by the scale of min_low_div and |
| * min_high_div, biasing slightly towards having a higher div |
| * for low (spend more time low). |
| */ |
| extra_div = min_total_div - min_div_for_hold; |
| extra_low_div = DIV_ROUND_UP(min_low_div * extra_div, |
| min_div_for_hold); |
| |
| t_calc->div_low = min_low_div + extra_low_div; |
| t_calc->div_high = min_high_div + (extra_div - extra_low_div); |
| } |
| |
| /* |
| * calculate sda data hold count by the rules, data_upd_st:3 |
| * is a appropriate value to reduce calculated times. |
| */ |
| for (sda_update_cfg = 3; sda_update_cfg > 0; sda_update_cfg--) { |
| max_hold_data_ns = DIV_ROUND_UP((sda_update_cfg |
| * (t_calc->div_low) + 1) |
| * 1000000, clk_rate_khz); |
| min_setup_data_ns = DIV_ROUND_UP(((8 - sda_update_cfg) |
| * (t_calc->div_low) + 1) |
| * 1000000, clk_rate_khz); |
| if ((max_hold_data_ns < spec->max_data_hold_ns) && |
| (min_setup_data_ns > spec->min_data_setup_ns)) |
| break; |
| } |
| |
| /* calculate setup start config */ |
| min_setup_start_ns = t->scl_rise_ns + spec->min_setup_start_ns; |
| stp_sta_cfg = DIV_ROUND_UP(clk_rate_khz * min_setup_start_ns |
| - 1000000, 8 * 1000000 * (t_calc->div_high)); |
| |
| /* calculate setup stop config */ |
| min_setup_stop_ns = t->scl_rise_ns + spec->min_setup_stop_ns; |
| stp_sto_cfg = DIV_ROUND_UP(clk_rate_khz * min_setup_stop_ns |
| - 1000000, 8 * 1000000 * (t_calc->div_high)); |
| |
| t_calc->tuning = REG_CON_SDA_CFG(--sda_update_cfg) | |
| REG_CON_STA_CFG(--stp_sta_cfg) | |
| REG_CON_STO_CFG(--stp_sto_cfg); |
| |
| t_calc->div_low--; |
| t_calc->div_high--; |
| |
| /* Maximum divider supported by hw is 0xffff */ |
| if (t_calc->div_low > 0xffff) { |
| t_calc->div_low = 0xffff; |
| ret = -EINVAL; |
| } |
| |
| if (t_calc->div_high > 0xffff) { |
| t_calc->div_high = 0xffff; |
| ret = -EINVAL; |
| } |
| |
| return ret; |
| } |
| |
| static void rk3x_i2c_adapt_div(struct rk3x_i2c *i2c, unsigned long clk_rate) |
| { |
| struct i2c_timings *t = &i2c->t; |
| struct rk3x_i2c_calced_timings calc; |
| u64 t_low_ns, t_high_ns; |
| unsigned long flags; |
| u32 val; |
| int ret; |
| |
| ret = i2c->soc_data->calc_timings(clk_rate, t, &calc); |
| WARN_ONCE(ret != 0, "Could not reach SCL freq %u", t->bus_freq_hz); |
| |
| clk_enable(i2c->pclk); |
| |
| spin_lock_irqsave(&i2c->lock, flags); |
| val = i2c_readl(i2c, REG_CON); |
| val &= ~REG_CON_TUNING_MASK; |
| val |= calc.tuning; |
| i2c_writel(i2c, val, REG_CON); |
| i2c_writel(i2c, (calc.div_high << 16) | (calc.div_low & 0xffff), |
| REG_CLKDIV); |
| spin_unlock_irqrestore(&i2c->lock, flags); |
| |
| clk_disable(i2c->pclk); |
| |
| t_low_ns = div_u64(((u64)calc.div_low + 1) * 8 * 1000000000, clk_rate); |
| t_high_ns = div_u64(((u64)calc.div_high + 1) * 8 * 1000000000, |
| clk_rate); |
| dev_dbg(i2c->dev, |
| "CLK %lukhz, Req %uns, Act low %lluns high %lluns\n", |
| clk_rate / 1000, |
| 1000000000 / t->bus_freq_hz, |
| t_low_ns, t_high_ns); |
| } |
| |
| /** |
| * rk3x_i2c_clk_notifier_cb - Clock rate change callback |
| * @nb: Pointer to notifier block |
| * @event: Notification reason |
| * @data: Pointer to notification data object |
| * |
| * The callback checks whether a valid bus frequency can be generated after the |
| * change. If so, the change is acknowledged, otherwise the change is aborted. |
| * New dividers are written to the HW in the pre- or post change notification |
| * depending on the scaling direction. |
| * |
| * Code adapted from i2c-cadence.c. |
| * |
| * Return: NOTIFY_STOP if the rate change should be aborted, NOTIFY_OK |
| * to acknowledge the change, NOTIFY_DONE if the notification is |
| * considered irrelevant. |
| */ |
| static int rk3x_i2c_clk_notifier_cb(struct notifier_block *nb, unsigned long |
| event, void *data) |
| { |
| struct clk_notifier_data *ndata = data; |
| struct rk3x_i2c *i2c = container_of(nb, struct rk3x_i2c, clk_rate_nb); |
| struct rk3x_i2c_calced_timings calc; |
| |
| switch (event) { |
| case PRE_RATE_CHANGE: |
| /* |
| * Try the calculation (but don't store the result) ahead of |
| * time to see if we need to block the clock change. Timings |
| * shouldn't actually take effect until rk3x_i2c_adapt_div(). |
| */ |
| if (i2c->soc_data->calc_timings(ndata->new_rate, &i2c->t, |
| &calc) != 0) |
| return NOTIFY_STOP; |
| |
| /* scale up */ |
| if (ndata->new_rate > ndata->old_rate) |
| rk3x_i2c_adapt_div(i2c, ndata->new_rate); |
| |
| return NOTIFY_OK; |
| case POST_RATE_CHANGE: |
| /* scale down */ |
| if (ndata->new_rate < ndata->old_rate) |
| rk3x_i2c_adapt_div(i2c, ndata->new_rate); |
| return NOTIFY_OK; |
| case ABORT_RATE_CHANGE: |
| /* scale up */ |
| if (ndata->new_rate > ndata->old_rate) |
| rk3x_i2c_adapt_div(i2c, ndata->old_rate); |
| return NOTIFY_OK; |
| default: |
| return NOTIFY_DONE; |
| } |
| } |
| |
| /** |
| * Setup I2C registers for an I2C operation specified by msgs, num. |
| * |
| * Must be called with i2c->lock held. |
| * |
| * @msgs: I2C msgs to process |
| * @num: Number of msgs |
| * |
| * returns: Number of I2C msgs processed or negative in case of error |
| */ |
| static int rk3x_i2c_setup(struct rk3x_i2c *i2c, struct i2c_msg *msgs, int num) |
| { |
| u32 addr = (msgs[0].addr & 0x7f) << 1; |
| int ret = 0; |
| |
| /* |
| * The I2C adapter can issue a small (len < 4) write packet before |
| * reading. This speeds up SMBus-style register reads. |
| * The MRXADDR/MRXRADDR hold the slave address and the slave register |
| * address in this case. |
| */ |
| |
| if (num >= 2 && msgs[0].len < 4 && |
| !(msgs[0].flags & I2C_M_RD) && (msgs[1].flags & I2C_M_RD)) { |
| u32 reg_addr = 0; |
| int i; |
| |
| dev_dbg(i2c->dev, "Combined write/read from addr 0x%x\n", |
| addr >> 1); |
| |
| /* Fill MRXRADDR with the register address(es) */ |
| for (i = 0; i < msgs[0].len; ++i) { |
| reg_addr |= msgs[0].buf[i] << (i * 8); |
| reg_addr |= REG_MRXADDR_VALID(i); |
| } |
| |
| /* msgs[0] is handled by hw. */ |
| i2c->msg = &msgs[1]; |
| |
| i2c->mode = REG_CON_MOD_REGISTER_TX; |
| |
| i2c_writel(i2c, addr | REG_MRXADDR_VALID(0), REG_MRXADDR); |
| i2c_writel(i2c, reg_addr, REG_MRXRADDR); |
| |
| ret = 2; |
| } else { |
| /* |
| * We'll have to do it the boring way and process the msgs |
| * one-by-one. |
| */ |
| |
| if (msgs[0].flags & I2C_M_RD) { |
| addr |= 1; /* set read bit */ |
| |
| /* |
| * We have to transmit the slave addr first. Use |
| * MOD_REGISTER_TX for that purpose. |
| */ |
| i2c->mode = REG_CON_MOD_REGISTER_TX; |
| i2c_writel(i2c, addr | REG_MRXADDR_VALID(0), |
| REG_MRXADDR); |
| i2c_writel(i2c, 0, REG_MRXRADDR); |
| } else { |
| i2c->mode = REG_CON_MOD_TX; |
| } |
| |
| i2c->msg = &msgs[0]; |
| |
| ret = 1; |
| } |
| |
| i2c->addr = msgs[0].addr; |
| i2c->busy = true; |
| i2c->state = STATE_START; |
| i2c->processed = 0; |
| i2c->error = 0; |
| |
| rk3x_i2c_clean_ipd(i2c); |
| |
| return ret; |
| } |
| |
| static int rk3x_i2c_wait_xfer_poll(struct rk3x_i2c *i2c) |
| { |
| ktime_t timeout = ktime_add_ms(ktime_get(), WAIT_TIMEOUT); |
| |
| while (READ_ONCE(i2c->busy) && |
| ktime_compare(ktime_get(), timeout) < 0) { |
| udelay(5); |
| rk3x_i2c_irq(0, i2c); |
| } |
| |
| return !i2c->busy; |
| } |
| |
| static int rk3x_i2c_xfer_common(struct i2c_adapter *adap, |
| struct i2c_msg *msgs, int num, bool polling) |
| { |
| struct rk3x_i2c *i2c = (struct rk3x_i2c *)adap->algo_data; |
| unsigned long timeout, flags; |
| u32 val; |
| int ret = 0; |
| int i; |
| |
| spin_lock_irqsave(&i2c->lock, flags); |
| |
| clk_enable(i2c->clk); |
| clk_enable(i2c->pclk); |
| |
| i2c->is_last_msg = false; |
| |
| /* |
| * Process msgs. We can handle more than one message at once (see |
| * rk3x_i2c_setup()). |
| */ |
| for (i = 0; i < num; i += ret) { |
| ret = rk3x_i2c_setup(i2c, msgs + i, num - i); |
| |
| if (ret < 0) { |
| dev_err(i2c->dev, "rk3x_i2c_setup() failed\n"); |
| break; |
| } |
| |
| if (i + ret >= num) |
| i2c->is_last_msg = true; |
| |
| spin_unlock_irqrestore(&i2c->lock, flags); |
| |
| rk3x_i2c_start(i2c); |
| |
| if (!polling) { |
| timeout = wait_event_timeout(i2c->wait, !i2c->busy, |
| msecs_to_jiffies(WAIT_TIMEOUT)); |
| } else { |
| timeout = rk3x_i2c_wait_xfer_poll(i2c); |
| } |
| |
| spin_lock_irqsave(&i2c->lock, flags); |
| |
| if (timeout == 0) { |
| dev_err(i2c->dev, "timeout, ipd: 0x%02x, state: %d\n", |
| i2c_readl(i2c, REG_IPD), i2c->state); |
| |
| /* Force a STOP condition without interrupt */ |
| i2c_writel(i2c, 0, REG_IEN); |
| val = i2c_readl(i2c, REG_CON) & REG_CON_TUNING_MASK; |
| val |= REG_CON_EN | REG_CON_STOP; |
| i2c_writel(i2c, val, REG_CON); |
| |
| i2c->state = STATE_IDLE; |
| |
| ret = -ETIMEDOUT; |
| break; |
| } |
| |
| if (i2c->error) { |
| ret = i2c->error; |
| break; |
| } |
| } |
| |
| clk_disable(i2c->pclk); |
| clk_disable(i2c->clk); |
| |
| spin_unlock_irqrestore(&i2c->lock, flags); |
| |
| return ret < 0 ? ret : num; |
| } |
| |
| static int rk3x_i2c_xfer(struct i2c_adapter *adap, |
| struct i2c_msg *msgs, int num) |
| { |
| return rk3x_i2c_xfer_common(adap, msgs, num, false); |
| } |
| |
| static int rk3x_i2c_xfer_polling(struct i2c_adapter *adap, |
| struct i2c_msg *msgs, int num) |
| { |
| return rk3x_i2c_xfer_common(adap, msgs, num, true); |
| } |
| |
| static __maybe_unused int rk3x_i2c_resume(struct device *dev) |
| { |
| struct rk3x_i2c *i2c = dev_get_drvdata(dev); |
| |
| rk3x_i2c_adapt_div(i2c, clk_get_rate(i2c->clk)); |
| |
| return 0; |
| } |
| |
| static u32 rk3x_i2c_func(struct i2c_adapter *adap) |
| { |
| return I2C_FUNC_I2C | I2C_FUNC_SMBUS_EMUL | I2C_FUNC_PROTOCOL_MANGLING; |
| } |
| |
| static const struct i2c_algorithm rk3x_i2c_algorithm = { |
| .master_xfer = rk3x_i2c_xfer, |
| .master_xfer_atomic = rk3x_i2c_xfer_polling, |
| .functionality = rk3x_i2c_func, |
| }; |
| |
| static const struct rk3x_i2c_soc_data rv1108_soc_data = { |
| .grf_offset = -1, |
| .calc_timings = rk3x_i2c_v1_calc_timings, |
| }; |
| |
| static const struct rk3x_i2c_soc_data rk3066_soc_data = { |
| .grf_offset = 0x154, |
| .calc_timings = rk3x_i2c_v0_calc_timings, |
| }; |
| |
| static const struct rk3x_i2c_soc_data rk3188_soc_data = { |
| .grf_offset = 0x0a4, |
| .calc_timings = rk3x_i2c_v0_calc_timings, |
| }; |
| |
| static const struct rk3x_i2c_soc_data rk3228_soc_data = { |
| .grf_offset = -1, |
| .calc_timings = rk3x_i2c_v0_calc_timings, |
| }; |
| |
| static const struct rk3x_i2c_soc_data rk3288_soc_data = { |
| .grf_offset = -1, |
| .calc_timings = rk3x_i2c_v0_calc_timings, |
| }; |
| |
| static const struct rk3x_i2c_soc_data rk3399_soc_data = { |
| .grf_offset = -1, |
| .calc_timings = rk3x_i2c_v1_calc_timings, |
| }; |
| |
| static const struct of_device_id rk3x_i2c_match[] = { |
| { |
| .compatible = "rockchip,rv1108-i2c", |
| .data = &rv1108_soc_data |
| }, |
| { |
| .compatible = "rockchip,rk3066-i2c", |
| .data = &rk3066_soc_data |
| }, |
| { |
| .compatible = "rockchip,rk3188-i2c", |
| .data = &rk3188_soc_data |
| }, |
| { |
| .compatible = "rockchip,rk3228-i2c", |
| .data = &rk3228_soc_data |
| }, |
| { |
| .compatible = "rockchip,rk3288-i2c", |
| .data = &rk3288_soc_data |
| }, |
| { |
| .compatible = "rockchip,rk3399-i2c", |
| .data = &rk3399_soc_data |
| }, |
| {}, |
| }; |
| MODULE_DEVICE_TABLE(of, rk3x_i2c_match); |
| |
| static int rk3x_i2c_probe(struct platform_device *pdev) |
| { |
| struct device_node *np = pdev->dev.of_node; |
| const struct of_device_id *match; |
| struct rk3x_i2c *i2c; |
| int ret = 0; |
| int bus_nr; |
| u32 value; |
| int irq; |
| unsigned long clk_rate; |
| |
| i2c = devm_kzalloc(&pdev->dev, sizeof(struct rk3x_i2c), GFP_KERNEL); |
| if (!i2c) |
| return -ENOMEM; |
| |
| match = of_match_node(rk3x_i2c_match, np); |
| i2c->soc_data = match->data; |
| |
| /* use common interface to get I2C timing properties */ |
| i2c_parse_fw_timings(&pdev->dev, &i2c->t, true); |
| |
| strlcpy(i2c->adap.name, "rk3x-i2c", sizeof(i2c->adap.name)); |
| i2c->adap.owner = THIS_MODULE; |
| i2c->adap.algo = &rk3x_i2c_algorithm; |
| i2c->adap.retries = 3; |
| i2c->adap.dev.of_node = np; |
| i2c->adap.algo_data = i2c; |
| i2c->adap.dev.parent = &pdev->dev; |
| |
| i2c->dev = &pdev->dev; |
| |
| spin_lock_init(&i2c->lock); |
| init_waitqueue_head(&i2c->wait); |
| |
| i2c->regs = devm_platform_ioremap_resource(pdev, 0); |
| if (IS_ERR(i2c->regs)) |
| return PTR_ERR(i2c->regs); |
| |
| /* Try to set the I2C adapter number from dt */ |
| bus_nr = of_alias_get_id(np, "i2c"); |
| |
| /* |
| * Switch to new interface if the SoC also offers the old one. |
| * The control bit is located in the GRF register space. |
| */ |
| if (i2c->soc_data->grf_offset >= 0) { |
| struct regmap *grf; |
| |
| grf = syscon_regmap_lookup_by_phandle(np, "rockchip,grf"); |
| if (IS_ERR(grf)) { |
| dev_err(&pdev->dev, |
| "rk3x-i2c needs 'rockchip,grf' property\n"); |
| return PTR_ERR(grf); |
| } |
| |
| if (bus_nr < 0) { |
| dev_err(&pdev->dev, "rk3x-i2c needs i2cX alias"); |
| return -EINVAL; |
| } |
| |
| /* 27+i: write mask, 11+i: value */ |
| value = BIT(27 + bus_nr) | BIT(11 + bus_nr); |
| |
| ret = regmap_write(grf, i2c->soc_data->grf_offset, value); |
| if (ret != 0) { |
| dev_err(i2c->dev, "Could not write to GRF: %d\n", ret); |
| return ret; |
| } |
| } |
| |
| /* IRQ setup */ |
| irq = platform_get_irq(pdev, 0); |
| if (irq < 0) |
| return irq; |
| |
| ret = devm_request_irq(&pdev->dev, irq, rk3x_i2c_irq, |
| 0, dev_name(&pdev->dev), i2c); |
| if (ret < 0) { |
| dev_err(&pdev->dev, "cannot request IRQ\n"); |
| return ret; |
| } |
| |
| platform_set_drvdata(pdev, i2c); |
| |
| if (i2c->soc_data->calc_timings == rk3x_i2c_v0_calc_timings) { |
| /* Only one clock to use for bus clock and peripheral clock */ |
| i2c->clk = devm_clk_get(&pdev->dev, NULL); |
| i2c->pclk = i2c->clk; |
| } else { |
| i2c->clk = devm_clk_get(&pdev->dev, "i2c"); |
| i2c->pclk = devm_clk_get(&pdev->dev, "pclk"); |
| } |
| |
| if (IS_ERR(i2c->clk)) { |
| ret = PTR_ERR(i2c->clk); |
| if (ret != -EPROBE_DEFER) |
| dev_err(&pdev->dev, "Can't get bus clk: %d\n", ret); |
| return ret; |
| } |
| if (IS_ERR(i2c->pclk)) { |
| ret = PTR_ERR(i2c->pclk); |
| if (ret != -EPROBE_DEFER) |
| dev_err(&pdev->dev, "Can't get periph clk: %d\n", ret); |
| return ret; |
| } |
| |
| ret = clk_prepare(i2c->clk); |
| if (ret < 0) { |
| dev_err(&pdev->dev, "Can't prepare bus clk: %d\n", ret); |
| return ret; |
| } |
| ret = clk_prepare(i2c->pclk); |
| if (ret < 0) { |
| dev_err(&pdev->dev, "Can't prepare periph clock: %d\n", ret); |
| goto err_clk; |
| } |
| |
| i2c->clk_rate_nb.notifier_call = rk3x_i2c_clk_notifier_cb; |
| ret = clk_notifier_register(i2c->clk, &i2c->clk_rate_nb); |
| if (ret != 0) { |
| dev_err(&pdev->dev, "Unable to register clock notifier\n"); |
| goto err_pclk; |
| } |
| |
| clk_rate = clk_get_rate(i2c->clk); |
| rk3x_i2c_adapt_div(i2c, clk_rate); |
| |
| ret = i2c_add_adapter(&i2c->adap); |
| if (ret < 0) |
| goto err_clk_notifier; |
| |
| return 0; |
| |
| err_clk_notifier: |
| clk_notifier_unregister(i2c->clk, &i2c->clk_rate_nb); |
| err_pclk: |
| clk_unprepare(i2c->pclk); |
| err_clk: |
| clk_unprepare(i2c->clk); |
| return ret; |
| } |
| |
| static int rk3x_i2c_remove(struct platform_device *pdev) |
| { |
| struct rk3x_i2c *i2c = platform_get_drvdata(pdev); |
| |
| i2c_del_adapter(&i2c->adap); |
| |
| clk_notifier_unregister(i2c->clk, &i2c->clk_rate_nb); |
| clk_unprepare(i2c->pclk); |
| clk_unprepare(i2c->clk); |
| |
| return 0; |
| } |
| |
| static SIMPLE_DEV_PM_OPS(rk3x_i2c_pm_ops, NULL, rk3x_i2c_resume); |
| |
| static struct platform_driver rk3x_i2c_driver = { |
| .probe = rk3x_i2c_probe, |
| .remove = rk3x_i2c_remove, |
| .driver = { |
| .name = "rk3x-i2c", |
| .of_match_table = rk3x_i2c_match, |
| .pm = &rk3x_i2c_pm_ops, |
| }, |
| }; |
| |
| module_platform_driver(rk3x_i2c_driver); |
| |
| MODULE_DESCRIPTION("Rockchip RK3xxx I2C Bus driver"); |
| MODULE_AUTHOR("Max Schwarz <max.schwarz@online.de>"); |
| MODULE_LICENSE("GPL v2"); |