| // SPDX-License-Identifier: GPL-2.0+ |
| /* |
| * Fast Ethernet Controller (FEC) driver for Motorola MPC8xx. |
| * Copyright (c) 1997 Dan Malek (dmalek@jlc.net) |
| * |
| * Right now, I am very wasteful with the buffers. I allocate memory |
| * pages and then divide them into 2K frame buffers. This way I know I |
| * have buffers large enough to hold one frame within one buffer descriptor. |
| * Once I get this working, I will use 64 or 128 byte CPM buffers, which |
| * will be much more memory efficient and will easily handle lots of |
| * small packets. |
| * |
| * Much better multiple PHY support by Magnus Damm. |
| * Copyright (c) 2000 Ericsson Radio Systems AB. |
| * |
| * Support for FEC controller of ColdFire processors. |
| * Copyright (c) 2001-2005 Greg Ungerer (gerg@snapgear.com) |
| * |
| * Bug fixes and cleanup by Philippe De Muyter (phdm@macqel.be) |
| * Copyright (c) 2004-2006 Macq Electronique SA. |
| * |
| * Copyright (C) 2010-2011 Freescale Semiconductor, Inc. |
| */ |
| |
| #include <linux/module.h> |
| #include <linux/kernel.h> |
| #include <linux/string.h> |
| #include <linux/pm_runtime.h> |
| #include <linux/ptrace.h> |
| #include <linux/errno.h> |
| #include <linux/ioport.h> |
| #include <linux/slab.h> |
| #include <linux/interrupt.h> |
| #include <linux/delay.h> |
| #include <linux/netdevice.h> |
| #include <linux/etherdevice.h> |
| #include <linux/skbuff.h> |
| #include <linux/in.h> |
| #include <linux/ip.h> |
| #include <net/ip.h> |
| #include <net/tso.h> |
| #include <linux/tcp.h> |
| #include <linux/udp.h> |
| #include <linux/icmp.h> |
| #include <linux/spinlock.h> |
| #include <linux/workqueue.h> |
| #include <linux/bitops.h> |
| #include <linux/io.h> |
| #include <linux/irq.h> |
| #include <linux/clk.h> |
| #include <linux/crc32.h> |
| #include <linux/platform_device.h> |
| #include <linux/mdio.h> |
| #include <linux/phy.h> |
| #include <linux/fec.h> |
| #include <linux/of.h> |
| #include <linux/of_device.h> |
| #include <linux/of_gpio.h> |
| #include <linux/of_mdio.h> |
| #include <linux/of_net.h> |
| #include <linux/regulator/consumer.h> |
| #include <linux/if_vlan.h> |
| #include <linux/pinctrl/consumer.h> |
| #include <linux/prefetch.h> |
| #include <linux/mfd/syscon.h> |
| #include <linux/regmap.h> |
| #include <soc/imx/cpuidle.h> |
| |
| #include <asm/cacheflush.h> |
| |
| #include "fec.h" |
| |
| static void set_multicast_list(struct net_device *ndev); |
| static void fec_enet_itr_coal_init(struct net_device *ndev); |
| |
| #define DRIVER_NAME "fec" |
| |
| #define FEC_ENET_GET_QUQUE(_x) ((_x == 0) ? 1 : ((_x == 1) ? 2 : 0)) |
| |
| /* Pause frame feild and FIFO threshold */ |
| #define FEC_ENET_FCE (1 << 5) |
| #define FEC_ENET_RSEM_V 0x84 |
| #define FEC_ENET_RSFL_V 16 |
| #define FEC_ENET_RAEM_V 0x8 |
| #define FEC_ENET_RAFL_V 0x8 |
| #define FEC_ENET_OPD_V 0xFFF0 |
| #define FEC_MDIO_PM_TIMEOUT 100 /* ms */ |
| |
| struct fec_devinfo { |
| u32 quirks; |
| u8 stop_gpr_reg; |
| u8 stop_gpr_bit; |
| }; |
| |
| static const struct fec_devinfo fec_imx25_info = { |
| .quirks = FEC_QUIRK_USE_GASKET | FEC_QUIRK_MIB_CLEAR | |
| FEC_QUIRK_HAS_FRREG, |
| }; |
| |
| static const struct fec_devinfo fec_imx27_info = { |
| .quirks = FEC_QUIRK_MIB_CLEAR | FEC_QUIRK_HAS_FRREG, |
| }; |
| |
| static const struct fec_devinfo fec_imx28_info = { |
| .quirks = FEC_QUIRK_ENET_MAC | FEC_QUIRK_SWAP_FRAME | |
| FEC_QUIRK_SINGLE_MDIO | FEC_QUIRK_HAS_RACC | |
| FEC_QUIRK_HAS_FRREG, |
| }; |
| |
| static const struct fec_devinfo fec_imx6q_info = { |
| .quirks = FEC_QUIRK_ENET_MAC | FEC_QUIRK_HAS_GBIT | |
| FEC_QUIRK_HAS_BUFDESC_EX | FEC_QUIRK_HAS_CSUM | |
| FEC_QUIRK_HAS_VLAN | FEC_QUIRK_ERR006358 | |
| FEC_QUIRK_HAS_RACC, |
| .stop_gpr_reg = 0x34, |
| .stop_gpr_bit = 27, |
| }; |
| |
| static const struct fec_devinfo fec_mvf600_info = { |
| .quirks = FEC_QUIRK_ENET_MAC | FEC_QUIRK_HAS_RACC, |
| }; |
| |
| static const struct fec_devinfo fec_imx6x_info = { |
| .quirks = FEC_QUIRK_ENET_MAC | FEC_QUIRK_HAS_GBIT | |
| FEC_QUIRK_HAS_BUFDESC_EX | FEC_QUIRK_HAS_CSUM | |
| FEC_QUIRK_HAS_VLAN | FEC_QUIRK_HAS_AVB | |
| FEC_QUIRK_ERR007885 | FEC_QUIRK_BUG_CAPTURE | |
| FEC_QUIRK_HAS_RACC | FEC_QUIRK_HAS_COALESCE, |
| }; |
| |
| static const struct fec_devinfo fec_imx6ul_info = { |
| .quirks = FEC_QUIRK_ENET_MAC | FEC_QUIRK_HAS_GBIT | |
| FEC_QUIRK_HAS_BUFDESC_EX | FEC_QUIRK_HAS_CSUM | |
| FEC_QUIRK_HAS_VLAN | FEC_QUIRK_ERR007885 | |
| FEC_QUIRK_BUG_CAPTURE | FEC_QUIRK_HAS_RACC | |
| FEC_QUIRK_HAS_COALESCE, |
| }; |
| |
| static struct platform_device_id fec_devtype[] = { |
| { |
| /* keep it for coldfire */ |
| .name = DRIVER_NAME, |
| .driver_data = 0, |
| }, { |
| .name = "imx25-fec", |
| .driver_data = (kernel_ulong_t)&fec_imx25_info, |
| }, { |
| .name = "imx27-fec", |
| .driver_data = (kernel_ulong_t)&fec_imx27_info, |
| }, { |
| .name = "imx28-fec", |
| .driver_data = (kernel_ulong_t)&fec_imx28_info, |
| }, { |
| .name = "imx6q-fec", |
| .driver_data = (kernel_ulong_t)&fec_imx6q_info, |
| }, { |
| .name = "mvf600-fec", |
| .driver_data = (kernel_ulong_t)&fec_mvf600_info, |
| }, { |
| .name = "imx6sx-fec", |
| .driver_data = (kernel_ulong_t)&fec_imx6x_info, |
| }, { |
| .name = "imx6ul-fec", |
| .driver_data = (kernel_ulong_t)&fec_imx6ul_info, |
| }, { |
| /* sentinel */ |
| } |
| }; |
| MODULE_DEVICE_TABLE(platform, fec_devtype); |
| |
| enum imx_fec_type { |
| IMX25_FEC = 1, /* runs on i.mx25/50/53 */ |
| IMX27_FEC, /* runs on i.mx27/35/51 */ |
| IMX28_FEC, |
| IMX6Q_FEC, |
| MVF600_FEC, |
| IMX6SX_FEC, |
| IMX6UL_FEC, |
| }; |
| |
| static const struct of_device_id fec_dt_ids[] = { |
| { .compatible = "fsl,imx25-fec", .data = &fec_devtype[IMX25_FEC], }, |
| { .compatible = "fsl,imx27-fec", .data = &fec_devtype[IMX27_FEC], }, |
| { .compatible = "fsl,imx28-fec", .data = &fec_devtype[IMX28_FEC], }, |
| { .compatible = "fsl,imx6q-fec", .data = &fec_devtype[IMX6Q_FEC], }, |
| { .compatible = "fsl,mvf600-fec", .data = &fec_devtype[MVF600_FEC], }, |
| { .compatible = "fsl,imx6sx-fec", .data = &fec_devtype[IMX6SX_FEC], }, |
| { .compatible = "fsl,imx6ul-fec", .data = &fec_devtype[IMX6UL_FEC], }, |
| { /* sentinel */ } |
| }; |
| MODULE_DEVICE_TABLE(of, fec_dt_ids); |
| |
| static unsigned char macaddr[ETH_ALEN]; |
| module_param_array(macaddr, byte, NULL, 0); |
| MODULE_PARM_DESC(macaddr, "FEC Ethernet MAC address"); |
| |
| #if defined(CONFIG_M5272) |
| /* |
| * Some hardware gets it MAC address out of local flash memory. |
| * if this is non-zero then assume it is the address to get MAC from. |
| */ |
| #if defined(CONFIG_NETtel) |
| #define FEC_FLASHMAC 0xf0006006 |
| #elif defined(CONFIG_GILBARCONAP) || defined(CONFIG_SCALES) |
| #define FEC_FLASHMAC 0xf0006000 |
| #elif defined(CONFIG_CANCam) |
| #define FEC_FLASHMAC 0xf0020000 |
| #elif defined (CONFIG_M5272C3) |
| #define FEC_FLASHMAC (0xffe04000 + 4) |
| #elif defined(CONFIG_MOD5272) |
| #define FEC_FLASHMAC 0xffc0406b |
| #else |
| #define FEC_FLASHMAC 0 |
| #endif |
| #endif /* CONFIG_M5272 */ |
| |
| /* The FEC stores dest/src/type/vlan, data, and checksum for receive packets. |
| * |
| * 2048 byte skbufs are allocated. However, alignment requirements |
| * varies between FEC variants. Worst case is 64, so round down by 64. |
| */ |
| #define PKT_MAXBUF_SIZE (round_down(2048 - 64, 64)) |
| #define PKT_MINBUF_SIZE 64 |
| |
| /* FEC receive acceleration */ |
| #define FEC_RACC_IPDIS (1 << 1) |
| #define FEC_RACC_PRODIS (1 << 2) |
| #define FEC_RACC_SHIFT16 BIT(7) |
| #define FEC_RACC_OPTIONS (FEC_RACC_IPDIS | FEC_RACC_PRODIS) |
| |
| /* MIB Control Register */ |
| #define FEC_MIB_CTRLSTAT_DISABLE BIT(31) |
| |
| /* |
| * The 5270/5271/5280/5282/532x RX control register also contains maximum frame |
| * size bits. Other FEC hardware does not, so we need to take that into |
| * account when setting it. |
| */ |
| #if defined(CONFIG_M523x) || defined(CONFIG_M527x) || defined(CONFIG_M528x) || \ |
| defined(CONFIG_M520x) || defined(CONFIG_M532x) || defined(CONFIG_ARM) || \ |
| defined(CONFIG_ARM64) |
| #define OPT_FRAME_SIZE (PKT_MAXBUF_SIZE << 16) |
| #else |
| #define OPT_FRAME_SIZE 0 |
| #endif |
| |
| /* FEC MII MMFR bits definition */ |
| #define FEC_MMFR_ST (1 << 30) |
| #define FEC_MMFR_ST_C45 (0) |
| #define FEC_MMFR_OP_READ (2 << 28) |
| #define FEC_MMFR_OP_READ_C45 (3 << 28) |
| #define FEC_MMFR_OP_WRITE (1 << 28) |
| #define FEC_MMFR_OP_ADDR_WRITE (0) |
| #define FEC_MMFR_PA(v) ((v & 0x1f) << 23) |
| #define FEC_MMFR_RA(v) ((v & 0x1f) << 18) |
| #define FEC_MMFR_TA (2 << 16) |
| #define FEC_MMFR_DATA(v) (v & 0xffff) |
| /* FEC ECR bits definition */ |
| #define FEC_ECR_MAGICEN (1 << 2) |
| #define FEC_ECR_SLEEP (1 << 3) |
| |
| #define FEC_MII_TIMEOUT 30000 /* us */ |
| |
| /* Transmitter timeout */ |
| #define TX_TIMEOUT (2 * HZ) |
| |
| #define FEC_PAUSE_FLAG_AUTONEG 0x1 |
| #define FEC_PAUSE_FLAG_ENABLE 0x2 |
| #define FEC_WOL_HAS_MAGIC_PACKET (0x1 << 0) |
| #define FEC_WOL_FLAG_ENABLE (0x1 << 1) |
| #define FEC_WOL_FLAG_SLEEP_ON (0x1 << 2) |
| |
| #define COPYBREAK_DEFAULT 256 |
| |
| /* Max number of allowed TCP segments for software TSO */ |
| #define FEC_MAX_TSO_SEGS 100 |
| #define FEC_MAX_SKB_DESCS (FEC_MAX_TSO_SEGS * 2 + MAX_SKB_FRAGS) |
| |
| #define IS_TSO_HEADER(txq, addr) \ |
| ((addr >= txq->tso_hdrs_dma) && \ |
| (addr < txq->tso_hdrs_dma + txq->bd.ring_size * TSO_HEADER_SIZE)) |
| |
| static int mii_cnt; |
| |
| static struct bufdesc *fec_enet_get_nextdesc(struct bufdesc *bdp, |
| struct bufdesc_prop *bd) |
| { |
| return (bdp >= bd->last) ? bd->base |
| : (struct bufdesc *)(((void *)bdp) + bd->dsize); |
| } |
| |
| static struct bufdesc *fec_enet_get_prevdesc(struct bufdesc *bdp, |
| struct bufdesc_prop *bd) |
| { |
| return (bdp <= bd->base) ? bd->last |
| : (struct bufdesc *)(((void *)bdp) - bd->dsize); |
| } |
| |
| static int fec_enet_get_bd_index(struct bufdesc *bdp, |
| struct bufdesc_prop *bd) |
| { |
| return ((const char *)bdp - (const char *)bd->base) >> bd->dsize_log2; |
| } |
| |
| static int fec_enet_get_free_txdesc_num(struct fec_enet_priv_tx_q *txq) |
| { |
| int entries; |
| |
| entries = (((const char *)txq->dirty_tx - |
| (const char *)txq->bd.cur) >> txq->bd.dsize_log2) - 1; |
| |
| return entries >= 0 ? entries : entries + txq->bd.ring_size; |
| } |
| |
| static void swap_buffer(void *bufaddr, int len) |
| { |
| int i; |
| unsigned int *buf = bufaddr; |
| |
| for (i = 0; i < len; i += 4, buf++) |
| swab32s(buf); |
| } |
| |
| static void swap_buffer2(void *dst_buf, void *src_buf, int len) |
| { |
| int i; |
| unsigned int *src = src_buf; |
| unsigned int *dst = dst_buf; |
| |
| for (i = 0; i < len; i += 4, src++, dst++) |
| *dst = swab32p(src); |
| } |
| |
| static void fec_dump(struct net_device *ndev) |
| { |
| struct fec_enet_private *fep = netdev_priv(ndev); |
| struct bufdesc *bdp; |
| struct fec_enet_priv_tx_q *txq; |
| int index = 0; |
| |
| netdev_info(ndev, "TX ring dump\n"); |
| pr_info("Nr SC addr len SKB\n"); |
| |
| txq = fep->tx_queue[0]; |
| bdp = txq->bd.base; |
| |
| do { |
| pr_info("%3u %c%c 0x%04x 0x%08x %4u %p\n", |
| index, |
| bdp == txq->bd.cur ? 'S' : ' ', |
| bdp == txq->dirty_tx ? 'H' : ' ', |
| fec16_to_cpu(bdp->cbd_sc), |
| fec32_to_cpu(bdp->cbd_bufaddr), |
| fec16_to_cpu(bdp->cbd_datlen), |
| txq->tx_skbuff[index]); |
| bdp = fec_enet_get_nextdesc(bdp, &txq->bd); |
| index++; |
| } while (bdp != txq->bd.base); |
| } |
| |
| static inline bool is_ipv4_pkt(struct sk_buff *skb) |
| { |
| return skb->protocol == htons(ETH_P_IP) && ip_hdr(skb)->version == 4; |
| } |
| |
| static int |
| fec_enet_clear_csum(struct sk_buff *skb, struct net_device *ndev) |
| { |
| /* Only run for packets requiring a checksum. */ |
| if (skb->ip_summed != CHECKSUM_PARTIAL) |
| return 0; |
| |
| if (unlikely(skb_cow_head(skb, 0))) |
| return -1; |
| |
| if (is_ipv4_pkt(skb)) |
| ip_hdr(skb)->check = 0; |
| *(__sum16 *)(skb->head + skb->csum_start + skb->csum_offset) = 0; |
| |
| return 0; |
| } |
| |
| static struct bufdesc * |
| fec_enet_txq_submit_frag_skb(struct fec_enet_priv_tx_q *txq, |
| struct sk_buff *skb, |
| struct net_device *ndev) |
| { |
| struct fec_enet_private *fep = netdev_priv(ndev); |
| struct bufdesc *bdp = txq->bd.cur; |
| struct bufdesc_ex *ebdp; |
| int nr_frags = skb_shinfo(skb)->nr_frags; |
| int frag, frag_len; |
| unsigned short status; |
| unsigned int estatus = 0; |
| skb_frag_t *this_frag; |
| unsigned int index; |
| void *bufaddr; |
| dma_addr_t addr; |
| int i; |
| |
| for (frag = 0; frag < nr_frags; frag++) { |
| this_frag = &skb_shinfo(skb)->frags[frag]; |
| bdp = fec_enet_get_nextdesc(bdp, &txq->bd); |
| ebdp = (struct bufdesc_ex *)bdp; |
| |
| status = fec16_to_cpu(bdp->cbd_sc); |
| status &= ~BD_ENET_TX_STATS; |
| status |= (BD_ENET_TX_TC | BD_ENET_TX_READY); |
| frag_len = skb_frag_size(&skb_shinfo(skb)->frags[frag]); |
| |
| /* Handle the last BD specially */ |
| if (frag == nr_frags - 1) { |
| status |= (BD_ENET_TX_INTR | BD_ENET_TX_LAST); |
| if (fep->bufdesc_ex) { |
| estatus |= BD_ENET_TX_INT; |
| if (unlikely(skb_shinfo(skb)->tx_flags & |
| SKBTX_HW_TSTAMP && fep->hwts_tx_en)) |
| estatus |= BD_ENET_TX_TS; |
| } |
| } |
| |
| if (fep->bufdesc_ex) { |
| if (fep->quirks & FEC_QUIRK_HAS_AVB) |
| estatus |= FEC_TX_BD_FTYPE(txq->bd.qid); |
| if (skb->ip_summed == CHECKSUM_PARTIAL) |
| estatus |= BD_ENET_TX_PINS | BD_ENET_TX_IINS; |
| ebdp->cbd_bdu = 0; |
| ebdp->cbd_esc = cpu_to_fec32(estatus); |
| } |
| |
| bufaddr = skb_frag_address(this_frag); |
| |
| index = fec_enet_get_bd_index(bdp, &txq->bd); |
| if (((unsigned long) bufaddr) & fep->tx_align || |
| fep->quirks & FEC_QUIRK_SWAP_FRAME) { |
| memcpy(txq->tx_bounce[index], bufaddr, frag_len); |
| bufaddr = txq->tx_bounce[index]; |
| |
| if (fep->quirks & FEC_QUIRK_SWAP_FRAME) |
| swap_buffer(bufaddr, frag_len); |
| } |
| |
| addr = dma_map_single(&fep->pdev->dev, bufaddr, frag_len, |
| DMA_TO_DEVICE); |
| if (dma_mapping_error(&fep->pdev->dev, addr)) { |
| if (net_ratelimit()) |
| netdev_err(ndev, "Tx DMA memory map failed\n"); |
| goto dma_mapping_error; |
| } |
| |
| bdp->cbd_bufaddr = cpu_to_fec32(addr); |
| bdp->cbd_datlen = cpu_to_fec16(frag_len); |
| /* Make sure the updates to rest of the descriptor are |
| * performed before transferring ownership. |
| */ |
| wmb(); |
| bdp->cbd_sc = cpu_to_fec16(status); |
| } |
| |
| return bdp; |
| dma_mapping_error: |
| bdp = txq->bd.cur; |
| for (i = 0; i < frag; i++) { |
| bdp = fec_enet_get_nextdesc(bdp, &txq->bd); |
| dma_unmap_single(&fep->pdev->dev, fec32_to_cpu(bdp->cbd_bufaddr), |
| fec16_to_cpu(bdp->cbd_datlen), DMA_TO_DEVICE); |
| } |
| return ERR_PTR(-ENOMEM); |
| } |
| |
| static int fec_enet_txq_submit_skb(struct fec_enet_priv_tx_q *txq, |
| struct sk_buff *skb, struct net_device *ndev) |
| { |
| struct fec_enet_private *fep = netdev_priv(ndev); |
| int nr_frags = skb_shinfo(skb)->nr_frags; |
| struct bufdesc *bdp, *last_bdp; |
| void *bufaddr; |
| dma_addr_t addr; |
| unsigned short status; |
| unsigned short buflen; |
| unsigned int estatus = 0; |
| unsigned int index; |
| int entries_free; |
| |
| entries_free = fec_enet_get_free_txdesc_num(txq); |
| if (entries_free < MAX_SKB_FRAGS + 1) { |
| dev_kfree_skb_any(skb); |
| if (net_ratelimit()) |
| netdev_err(ndev, "NOT enough BD for SG!\n"); |
| return NETDEV_TX_OK; |
| } |
| |
| /* Protocol checksum off-load for TCP and UDP. */ |
| if (fec_enet_clear_csum(skb, ndev)) { |
| dev_kfree_skb_any(skb); |
| return NETDEV_TX_OK; |
| } |
| |
| /* Fill in a Tx ring entry */ |
| bdp = txq->bd.cur; |
| last_bdp = bdp; |
| status = fec16_to_cpu(bdp->cbd_sc); |
| status &= ~BD_ENET_TX_STATS; |
| |
| /* Set buffer length and buffer pointer */ |
| bufaddr = skb->data; |
| buflen = skb_headlen(skb); |
| |
| index = fec_enet_get_bd_index(bdp, &txq->bd); |
| if (((unsigned long) bufaddr) & fep->tx_align || |
| fep->quirks & FEC_QUIRK_SWAP_FRAME) { |
| memcpy(txq->tx_bounce[index], skb->data, buflen); |
| bufaddr = txq->tx_bounce[index]; |
| |
| if (fep->quirks & FEC_QUIRK_SWAP_FRAME) |
| swap_buffer(bufaddr, buflen); |
| } |
| |
| /* Push the data cache so the CPM does not get stale memory data. */ |
| addr = dma_map_single(&fep->pdev->dev, bufaddr, buflen, DMA_TO_DEVICE); |
| if (dma_mapping_error(&fep->pdev->dev, addr)) { |
| dev_kfree_skb_any(skb); |
| if (net_ratelimit()) |
| netdev_err(ndev, "Tx DMA memory map failed\n"); |
| return NETDEV_TX_OK; |
| } |
| |
| if (nr_frags) { |
| last_bdp = fec_enet_txq_submit_frag_skb(txq, skb, ndev); |
| if (IS_ERR(last_bdp)) { |
| dma_unmap_single(&fep->pdev->dev, addr, |
| buflen, DMA_TO_DEVICE); |
| dev_kfree_skb_any(skb); |
| return NETDEV_TX_OK; |
| } |
| } else { |
| status |= (BD_ENET_TX_INTR | BD_ENET_TX_LAST); |
| if (fep->bufdesc_ex) { |
| estatus = BD_ENET_TX_INT; |
| if (unlikely(skb_shinfo(skb)->tx_flags & |
| SKBTX_HW_TSTAMP && fep->hwts_tx_en)) |
| estatus |= BD_ENET_TX_TS; |
| } |
| } |
| bdp->cbd_bufaddr = cpu_to_fec32(addr); |
| bdp->cbd_datlen = cpu_to_fec16(buflen); |
| |
| if (fep->bufdesc_ex) { |
| |
| struct bufdesc_ex *ebdp = (struct bufdesc_ex *)bdp; |
| |
| if (unlikely(skb_shinfo(skb)->tx_flags & SKBTX_HW_TSTAMP && |
| fep->hwts_tx_en)) |
| skb_shinfo(skb)->tx_flags |= SKBTX_IN_PROGRESS; |
| |
| if (fep->quirks & FEC_QUIRK_HAS_AVB) |
| estatus |= FEC_TX_BD_FTYPE(txq->bd.qid); |
| |
| if (skb->ip_summed == CHECKSUM_PARTIAL) |
| estatus |= BD_ENET_TX_PINS | BD_ENET_TX_IINS; |
| |
| ebdp->cbd_bdu = 0; |
| ebdp->cbd_esc = cpu_to_fec32(estatus); |
| } |
| |
| index = fec_enet_get_bd_index(last_bdp, &txq->bd); |
| /* Save skb pointer */ |
| txq->tx_skbuff[index] = skb; |
| |
| /* Make sure the updates to rest of the descriptor are performed before |
| * transferring ownership. |
| */ |
| wmb(); |
| |
| /* Send it on its way. Tell FEC it's ready, interrupt when done, |
| * it's the last BD of the frame, and to put the CRC on the end. |
| */ |
| status |= (BD_ENET_TX_READY | BD_ENET_TX_TC); |
| bdp->cbd_sc = cpu_to_fec16(status); |
| |
| /* If this was the last BD in the ring, start at the beginning again. */ |
| bdp = fec_enet_get_nextdesc(last_bdp, &txq->bd); |
| |
| skb_tx_timestamp(skb); |
| |
| /* Make sure the update to bdp and tx_skbuff are performed before |
| * txq->bd.cur. |
| */ |
| wmb(); |
| txq->bd.cur = bdp; |
| |
| /* Trigger transmission start */ |
| writel(0, txq->bd.reg_desc_active); |
| |
| return 0; |
| } |
| |
| static int |
| fec_enet_txq_put_data_tso(struct fec_enet_priv_tx_q *txq, struct sk_buff *skb, |
| struct net_device *ndev, |
| struct bufdesc *bdp, int index, char *data, |
| int size, bool last_tcp, bool is_last) |
| { |
| struct fec_enet_private *fep = netdev_priv(ndev); |
| struct bufdesc_ex *ebdp = container_of(bdp, struct bufdesc_ex, desc); |
| unsigned short status; |
| unsigned int estatus = 0; |
| dma_addr_t addr; |
| |
| status = fec16_to_cpu(bdp->cbd_sc); |
| status &= ~BD_ENET_TX_STATS; |
| |
| status |= (BD_ENET_TX_TC | BD_ENET_TX_READY); |
| |
| if (((unsigned long) data) & fep->tx_align || |
| fep->quirks & FEC_QUIRK_SWAP_FRAME) { |
| memcpy(txq->tx_bounce[index], data, size); |
| data = txq->tx_bounce[index]; |
| |
| if (fep->quirks & FEC_QUIRK_SWAP_FRAME) |
| swap_buffer(data, size); |
| } |
| |
| addr = dma_map_single(&fep->pdev->dev, data, size, DMA_TO_DEVICE); |
| if (dma_mapping_error(&fep->pdev->dev, addr)) { |
| dev_kfree_skb_any(skb); |
| if (net_ratelimit()) |
| netdev_err(ndev, "Tx DMA memory map failed\n"); |
| return NETDEV_TX_BUSY; |
| } |
| |
| bdp->cbd_datlen = cpu_to_fec16(size); |
| bdp->cbd_bufaddr = cpu_to_fec32(addr); |
| |
| if (fep->bufdesc_ex) { |
| if (fep->quirks & FEC_QUIRK_HAS_AVB) |
| estatus |= FEC_TX_BD_FTYPE(txq->bd.qid); |
| if (skb->ip_summed == CHECKSUM_PARTIAL) |
| estatus |= BD_ENET_TX_PINS | BD_ENET_TX_IINS; |
| ebdp->cbd_bdu = 0; |
| ebdp->cbd_esc = cpu_to_fec32(estatus); |
| } |
| |
| /* Handle the last BD specially */ |
| if (last_tcp) |
| status |= (BD_ENET_TX_LAST | BD_ENET_TX_TC); |
| if (is_last) { |
| status |= BD_ENET_TX_INTR; |
| if (fep->bufdesc_ex) |
| ebdp->cbd_esc |= cpu_to_fec32(BD_ENET_TX_INT); |
| } |
| |
| bdp->cbd_sc = cpu_to_fec16(status); |
| |
| return 0; |
| } |
| |
| static int |
| fec_enet_txq_put_hdr_tso(struct fec_enet_priv_tx_q *txq, |
| struct sk_buff *skb, struct net_device *ndev, |
| struct bufdesc *bdp, int index) |
| { |
| struct fec_enet_private *fep = netdev_priv(ndev); |
| int hdr_len = skb_transport_offset(skb) + tcp_hdrlen(skb); |
| struct bufdesc_ex *ebdp = container_of(bdp, struct bufdesc_ex, desc); |
| void *bufaddr; |
| unsigned long dmabuf; |
| unsigned short status; |
| unsigned int estatus = 0; |
| |
| status = fec16_to_cpu(bdp->cbd_sc); |
| status &= ~BD_ENET_TX_STATS; |
| status |= (BD_ENET_TX_TC | BD_ENET_TX_READY); |
| |
| bufaddr = txq->tso_hdrs + index * TSO_HEADER_SIZE; |
| dmabuf = txq->tso_hdrs_dma + index * TSO_HEADER_SIZE; |
| if (((unsigned long)bufaddr) & fep->tx_align || |
| fep->quirks & FEC_QUIRK_SWAP_FRAME) { |
| memcpy(txq->tx_bounce[index], skb->data, hdr_len); |
| bufaddr = txq->tx_bounce[index]; |
| |
| if (fep->quirks & FEC_QUIRK_SWAP_FRAME) |
| swap_buffer(bufaddr, hdr_len); |
| |
| dmabuf = dma_map_single(&fep->pdev->dev, bufaddr, |
| hdr_len, DMA_TO_DEVICE); |
| if (dma_mapping_error(&fep->pdev->dev, dmabuf)) { |
| dev_kfree_skb_any(skb); |
| if (net_ratelimit()) |
| netdev_err(ndev, "Tx DMA memory map failed\n"); |
| return NETDEV_TX_BUSY; |
| } |
| } |
| |
| bdp->cbd_bufaddr = cpu_to_fec32(dmabuf); |
| bdp->cbd_datlen = cpu_to_fec16(hdr_len); |
| |
| if (fep->bufdesc_ex) { |
| if (fep->quirks & FEC_QUIRK_HAS_AVB) |
| estatus |= FEC_TX_BD_FTYPE(txq->bd.qid); |
| if (skb->ip_summed == CHECKSUM_PARTIAL) |
| estatus |= BD_ENET_TX_PINS | BD_ENET_TX_IINS; |
| ebdp->cbd_bdu = 0; |
| ebdp->cbd_esc = cpu_to_fec32(estatus); |
| } |
| |
| bdp->cbd_sc = cpu_to_fec16(status); |
| |
| return 0; |
| } |
| |
| static int fec_enet_txq_submit_tso(struct fec_enet_priv_tx_q *txq, |
| struct sk_buff *skb, |
| struct net_device *ndev) |
| { |
| struct fec_enet_private *fep = netdev_priv(ndev); |
| int hdr_len = skb_transport_offset(skb) + tcp_hdrlen(skb); |
| int total_len, data_left; |
| struct bufdesc *bdp = txq->bd.cur; |
| struct tso_t tso; |
| unsigned int index = 0; |
| int ret; |
| |
| if (tso_count_descs(skb) >= fec_enet_get_free_txdesc_num(txq)) { |
| dev_kfree_skb_any(skb); |
| if (net_ratelimit()) |
| netdev_err(ndev, "NOT enough BD for TSO!\n"); |
| return NETDEV_TX_OK; |
| } |
| |
| /* Protocol checksum off-load for TCP and UDP. */ |
| if (fec_enet_clear_csum(skb, ndev)) { |
| dev_kfree_skb_any(skb); |
| return NETDEV_TX_OK; |
| } |
| |
| /* Initialize the TSO handler, and prepare the first payload */ |
| tso_start(skb, &tso); |
| |
| total_len = skb->len - hdr_len; |
| while (total_len > 0) { |
| char *hdr; |
| |
| index = fec_enet_get_bd_index(bdp, &txq->bd); |
| data_left = min_t(int, skb_shinfo(skb)->gso_size, total_len); |
| total_len -= data_left; |
| |
| /* prepare packet headers: MAC + IP + TCP */ |
| hdr = txq->tso_hdrs + index * TSO_HEADER_SIZE; |
| tso_build_hdr(skb, hdr, &tso, data_left, total_len == 0); |
| ret = fec_enet_txq_put_hdr_tso(txq, skb, ndev, bdp, index); |
| if (ret) |
| goto err_release; |
| |
| while (data_left > 0) { |
| int size; |
| |
| size = min_t(int, tso.size, data_left); |
| bdp = fec_enet_get_nextdesc(bdp, &txq->bd); |
| index = fec_enet_get_bd_index(bdp, &txq->bd); |
| ret = fec_enet_txq_put_data_tso(txq, skb, ndev, |
| bdp, index, |
| tso.data, size, |
| size == data_left, |
| total_len == 0); |
| if (ret) |
| goto err_release; |
| |
| data_left -= size; |
| tso_build_data(skb, &tso, size); |
| } |
| |
| bdp = fec_enet_get_nextdesc(bdp, &txq->bd); |
| } |
| |
| /* Save skb pointer */ |
| txq->tx_skbuff[index] = skb; |
| |
| skb_tx_timestamp(skb); |
| txq->bd.cur = bdp; |
| |
| /* Trigger transmission start */ |
| if (!(fep->quirks & FEC_QUIRK_ERR007885) || |
| !readl(txq->bd.reg_desc_active) || |
| !readl(txq->bd.reg_desc_active) || |
| !readl(txq->bd.reg_desc_active) || |
| !readl(txq->bd.reg_desc_active)) |
| writel(0, txq->bd.reg_desc_active); |
| |
| return 0; |
| |
| err_release: |
| /* TODO: Release all used data descriptors for TSO */ |
| return ret; |
| } |
| |
| static netdev_tx_t |
| fec_enet_start_xmit(struct sk_buff *skb, struct net_device *ndev) |
| { |
| struct fec_enet_private *fep = netdev_priv(ndev); |
| int entries_free; |
| unsigned short queue; |
| struct fec_enet_priv_tx_q *txq; |
| struct netdev_queue *nq; |
| int ret; |
| |
| queue = skb_get_queue_mapping(skb); |
| txq = fep->tx_queue[queue]; |
| nq = netdev_get_tx_queue(ndev, queue); |
| |
| if (skb_is_gso(skb)) |
| ret = fec_enet_txq_submit_tso(txq, skb, ndev); |
| else |
| ret = fec_enet_txq_submit_skb(txq, skb, ndev); |
| if (ret) |
| return ret; |
| |
| entries_free = fec_enet_get_free_txdesc_num(txq); |
| if (entries_free <= txq->tx_stop_threshold) |
| netif_tx_stop_queue(nq); |
| |
| return NETDEV_TX_OK; |
| } |
| |
| /* Init RX & TX buffer descriptors |
| */ |
| static void fec_enet_bd_init(struct net_device *dev) |
| { |
| struct fec_enet_private *fep = netdev_priv(dev); |
| struct fec_enet_priv_tx_q *txq; |
| struct fec_enet_priv_rx_q *rxq; |
| struct bufdesc *bdp; |
| unsigned int i; |
| unsigned int q; |
| |
| for (q = 0; q < fep->num_rx_queues; q++) { |
| /* Initialize the receive buffer descriptors. */ |
| rxq = fep->rx_queue[q]; |
| bdp = rxq->bd.base; |
| |
| for (i = 0; i < rxq->bd.ring_size; i++) { |
| |
| /* Initialize the BD for every fragment in the page. */ |
| if (bdp->cbd_bufaddr) |
| bdp->cbd_sc = cpu_to_fec16(BD_ENET_RX_EMPTY); |
| else |
| bdp->cbd_sc = cpu_to_fec16(0); |
| bdp = fec_enet_get_nextdesc(bdp, &rxq->bd); |
| } |
| |
| /* Set the last buffer to wrap */ |
| bdp = fec_enet_get_prevdesc(bdp, &rxq->bd); |
| bdp->cbd_sc |= cpu_to_fec16(BD_SC_WRAP); |
| |
| rxq->bd.cur = rxq->bd.base; |
| } |
| |
| for (q = 0; q < fep->num_tx_queues; q++) { |
| /* ...and the same for transmit */ |
| txq = fep->tx_queue[q]; |
| bdp = txq->bd.base; |
| txq->bd.cur = bdp; |
| |
| for (i = 0; i < txq->bd.ring_size; i++) { |
| /* Initialize the BD for every fragment in the page. */ |
| bdp->cbd_sc = cpu_to_fec16(0); |
| if (bdp->cbd_bufaddr && |
| !IS_TSO_HEADER(txq, fec32_to_cpu(bdp->cbd_bufaddr))) |
| dma_unmap_single(&fep->pdev->dev, |
| fec32_to_cpu(bdp->cbd_bufaddr), |
| fec16_to_cpu(bdp->cbd_datlen), |
| DMA_TO_DEVICE); |
| if (txq->tx_skbuff[i]) { |
| dev_kfree_skb_any(txq->tx_skbuff[i]); |
| txq->tx_skbuff[i] = NULL; |
| } |
| bdp->cbd_bufaddr = cpu_to_fec32(0); |
| bdp = fec_enet_get_nextdesc(bdp, &txq->bd); |
| } |
| |
| /* Set the last buffer to wrap */ |
| bdp = fec_enet_get_prevdesc(bdp, &txq->bd); |
| bdp->cbd_sc |= cpu_to_fec16(BD_SC_WRAP); |
| txq->dirty_tx = bdp; |
| } |
| } |
| |
| static void fec_enet_active_rxring(struct net_device *ndev) |
| { |
| struct fec_enet_private *fep = netdev_priv(ndev); |
| int i; |
| |
| for (i = 0; i < fep->num_rx_queues; i++) |
| writel(0, fep->rx_queue[i]->bd.reg_desc_active); |
| } |
| |
| static void fec_enet_enable_ring(struct net_device *ndev) |
| { |
| struct fec_enet_private *fep = netdev_priv(ndev); |
| struct fec_enet_priv_tx_q *txq; |
| struct fec_enet_priv_rx_q *rxq; |
| int i; |
| |
| for (i = 0; i < fep->num_rx_queues; i++) { |
| rxq = fep->rx_queue[i]; |
| writel(rxq->bd.dma, fep->hwp + FEC_R_DES_START(i)); |
| writel(PKT_MAXBUF_SIZE, fep->hwp + FEC_R_BUFF_SIZE(i)); |
| |
| /* enable DMA1/2 */ |
| if (i) |
| writel(RCMR_MATCHEN | RCMR_CMP(i), |
| fep->hwp + FEC_RCMR(i)); |
| } |
| |
| for (i = 0; i < fep->num_tx_queues; i++) { |
| txq = fep->tx_queue[i]; |
| writel(txq->bd.dma, fep->hwp + FEC_X_DES_START(i)); |
| |
| /* enable DMA1/2 */ |
| if (i) |
| writel(DMA_CLASS_EN | IDLE_SLOPE(i), |
| fep->hwp + FEC_DMA_CFG(i)); |
| } |
| } |
| |
| static void fec_enet_reset_skb(struct net_device *ndev) |
| { |
| struct fec_enet_private *fep = netdev_priv(ndev); |
| struct fec_enet_priv_tx_q *txq; |
| int i, j; |
| |
| for (i = 0; i < fep->num_tx_queues; i++) { |
| txq = fep->tx_queue[i]; |
| |
| for (j = 0; j < txq->bd.ring_size; j++) { |
| if (txq->tx_skbuff[j]) { |
| dev_kfree_skb_any(txq->tx_skbuff[j]); |
| txq->tx_skbuff[j] = NULL; |
| } |
| } |
| } |
| } |
| |
| /* |
| * This function is called to start or restart the FEC during a link |
| * change, transmit timeout, or to reconfigure the FEC. The network |
| * packet processing for this device must be stopped before this call. |
| */ |
| static void |
| fec_restart(struct net_device *ndev) |
| { |
| struct fec_enet_private *fep = netdev_priv(ndev); |
| u32 val; |
| u32 temp_mac[2]; |
| u32 rcntl = OPT_FRAME_SIZE | 0x04; |
| u32 ecntl = 0x2; /* ETHEREN */ |
| |
| /* Whack a reset. We should wait for this. |
| * For i.MX6SX SOC, enet use AXI bus, we use disable MAC |
| * instead of reset MAC itself. |
| */ |
| if (fep->quirks & FEC_QUIRK_HAS_AVB) { |
| writel(0, fep->hwp + FEC_ECNTRL); |
| } else { |
| writel(1, fep->hwp + FEC_ECNTRL); |
| udelay(10); |
| } |
| |
| /* |
| * enet-mac reset will reset mac address registers too, |
| * so need to reconfigure it. |
| */ |
| memcpy(&temp_mac, ndev->dev_addr, ETH_ALEN); |
| writel((__force u32)cpu_to_be32(temp_mac[0]), |
| fep->hwp + FEC_ADDR_LOW); |
| writel((__force u32)cpu_to_be32(temp_mac[1]), |
| fep->hwp + FEC_ADDR_HIGH); |
| |
| /* Clear any outstanding interrupt. */ |
| writel(0xffffffff, fep->hwp + FEC_IEVENT); |
| |
| fec_enet_bd_init(ndev); |
| |
| fec_enet_enable_ring(ndev); |
| |
| /* Reset tx SKB buffers. */ |
| fec_enet_reset_skb(ndev); |
| |
| /* Enable MII mode */ |
| if (fep->full_duplex == DUPLEX_FULL) { |
| /* FD enable */ |
| writel(0x04, fep->hwp + FEC_X_CNTRL); |
| } else { |
| /* No Rcv on Xmit */ |
| rcntl |= 0x02; |
| writel(0x0, fep->hwp + FEC_X_CNTRL); |
| } |
| |
| /* Set MII speed */ |
| writel(fep->phy_speed, fep->hwp + FEC_MII_SPEED); |
| |
| #if !defined(CONFIG_M5272) |
| if (fep->quirks & FEC_QUIRK_HAS_RACC) { |
| val = readl(fep->hwp + FEC_RACC); |
| /* align IP header */ |
| val |= FEC_RACC_SHIFT16; |
| if (fep->csum_flags & FLAG_RX_CSUM_ENABLED) |
| /* set RX checksum */ |
| val |= FEC_RACC_OPTIONS; |
| else |
| val &= ~FEC_RACC_OPTIONS; |
| writel(val, fep->hwp + FEC_RACC); |
| writel(PKT_MAXBUF_SIZE, fep->hwp + FEC_FTRL); |
| } |
| #endif |
| |
| /* |
| * The phy interface and speed need to get configured |
| * differently on enet-mac. |
| */ |
| if (fep->quirks & FEC_QUIRK_ENET_MAC) { |
| /* Enable flow control and length check */ |
| rcntl |= 0x40000000 | 0x00000020; |
| |
| /* RGMII, RMII or MII */ |
| if (fep->phy_interface == PHY_INTERFACE_MODE_RGMII || |
| fep->phy_interface == PHY_INTERFACE_MODE_RGMII_ID || |
| fep->phy_interface == PHY_INTERFACE_MODE_RGMII_RXID || |
| fep->phy_interface == PHY_INTERFACE_MODE_RGMII_TXID) |
| rcntl |= (1 << 6); |
| else if (fep->phy_interface == PHY_INTERFACE_MODE_RMII) |
| rcntl |= (1 << 8); |
| else |
| rcntl &= ~(1 << 8); |
| |
| /* 1G, 100M or 10M */ |
| if (ndev->phydev) { |
| if (ndev->phydev->speed == SPEED_1000) |
| ecntl |= (1 << 5); |
| else if (ndev->phydev->speed == SPEED_100) |
| rcntl &= ~(1 << 9); |
| else |
| rcntl |= (1 << 9); |
| } |
| } else { |
| #ifdef FEC_MIIGSK_ENR |
| if (fep->quirks & FEC_QUIRK_USE_GASKET) { |
| u32 cfgr; |
| /* disable the gasket and wait */ |
| writel(0, fep->hwp + FEC_MIIGSK_ENR); |
| while (readl(fep->hwp + FEC_MIIGSK_ENR) & 4) |
| udelay(1); |
| |
| /* |
| * configure the gasket: |
| * RMII, 50 MHz, no loopback, no echo |
| * MII, 25 MHz, no loopback, no echo |
| */ |
| cfgr = (fep->phy_interface == PHY_INTERFACE_MODE_RMII) |
| ? BM_MIIGSK_CFGR_RMII : BM_MIIGSK_CFGR_MII; |
| if (ndev->phydev && ndev->phydev->speed == SPEED_10) |
| cfgr |= BM_MIIGSK_CFGR_FRCONT_10M; |
| writel(cfgr, fep->hwp + FEC_MIIGSK_CFGR); |
| |
| /* re-enable the gasket */ |
| writel(2, fep->hwp + FEC_MIIGSK_ENR); |
| } |
| #endif |
| } |
| |
| #if !defined(CONFIG_M5272) |
| /* enable pause frame*/ |
| if ((fep->pause_flag & FEC_PAUSE_FLAG_ENABLE) || |
| ((fep->pause_flag & FEC_PAUSE_FLAG_AUTONEG) && |
| ndev->phydev && ndev->phydev->pause)) { |
| rcntl |= FEC_ENET_FCE; |
| |
| /* set FIFO threshold parameter to reduce overrun */ |
| writel(FEC_ENET_RSEM_V, fep->hwp + FEC_R_FIFO_RSEM); |
| writel(FEC_ENET_RSFL_V, fep->hwp + FEC_R_FIFO_RSFL); |
| writel(FEC_ENET_RAEM_V, fep->hwp + FEC_R_FIFO_RAEM); |
| writel(FEC_ENET_RAFL_V, fep->hwp + FEC_R_FIFO_RAFL); |
| |
| /* OPD */ |
| writel(FEC_ENET_OPD_V, fep->hwp + FEC_OPD); |
| } else { |
| rcntl &= ~FEC_ENET_FCE; |
| } |
| #endif /* !defined(CONFIG_M5272) */ |
| |
| writel(rcntl, fep->hwp + FEC_R_CNTRL); |
| |
| /* Setup multicast filter. */ |
| set_multicast_list(ndev); |
| #ifndef CONFIG_M5272 |
| writel(0, fep->hwp + FEC_HASH_TABLE_HIGH); |
| writel(0, fep->hwp + FEC_HASH_TABLE_LOW); |
| #endif |
| |
| if (fep->quirks & FEC_QUIRK_ENET_MAC) { |
| /* enable ENET endian swap */ |
| ecntl |= (1 << 8); |
| /* enable ENET store and forward mode */ |
| writel(1 << 8, fep->hwp + FEC_X_WMRK); |
| } |
| |
| if (fep->bufdesc_ex) |
| ecntl |= (1 << 4); |
| |
| #ifndef CONFIG_M5272 |
| /* Enable the MIB statistic event counters */ |
| writel(0 << 31, fep->hwp + FEC_MIB_CTRLSTAT); |
| #endif |
| |
| /* And last, enable the transmit and receive processing */ |
| writel(ecntl, fep->hwp + FEC_ECNTRL); |
| fec_enet_active_rxring(ndev); |
| |
| if (fep->bufdesc_ex) |
| fec_ptp_start_cyclecounter(ndev); |
| |
| /* Enable interrupts we wish to service */ |
| if (fep->link) |
| writel(FEC_DEFAULT_IMASK, fep->hwp + FEC_IMASK); |
| else |
| writel(FEC_ENET_MII, fep->hwp + FEC_IMASK); |
| |
| /* Init the interrupt coalescing */ |
| fec_enet_itr_coal_init(ndev); |
| |
| } |
| |
| static void fec_enet_stop_mode(struct fec_enet_private *fep, bool enabled) |
| { |
| struct fec_platform_data *pdata = fep->pdev->dev.platform_data; |
| struct fec_stop_mode_gpr *stop_gpr = &fep->stop_gpr; |
| |
| if (stop_gpr->gpr) { |
| if (enabled) |
| regmap_update_bits(stop_gpr->gpr, stop_gpr->reg, |
| BIT(stop_gpr->bit), |
| BIT(stop_gpr->bit)); |
| else |
| regmap_update_bits(stop_gpr->gpr, stop_gpr->reg, |
| BIT(stop_gpr->bit), 0); |
| } else if (pdata && pdata->sleep_mode_enable) { |
| pdata->sleep_mode_enable(enabled); |
| } |
| } |
| |
| static void |
| fec_stop(struct net_device *ndev) |
| { |
| struct fec_enet_private *fep = netdev_priv(ndev); |
| u32 rmii_mode = readl(fep->hwp + FEC_R_CNTRL) & (1 << 8); |
| u32 val; |
| |
| /* We cannot expect a graceful transmit stop without link !!! */ |
| if (fep->link) { |
| writel(1, fep->hwp + FEC_X_CNTRL); /* Graceful transmit stop */ |
| udelay(10); |
| if (!(readl(fep->hwp + FEC_IEVENT) & FEC_ENET_GRA)) |
| netdev_err(ndev, "Graceful transmit stop did not complete!\n"); |
| } |
| |
| /* Whack a reset. We should wait for this. |
| * For i.MX6SX SOC, enet use AXI bus, we use disable MAC |
| * instead of reset MAC itself. |
| */ |
| if (!(fep->wol_flag & FEC_WOL_FLAG_SLEEP_ON)) { |
| if (fep->quirks & FEC_QUIRK_HAS_AVB) { |
| writel(0, fep->hwp + FEC_ECNTRL); |
| } else { |
| writel(1, fep->hwp + FEC_ECNTRL); |
| udelay(10); |
| } |
| writel(FEC_DEFAULT_IMASK, fep->hwp + FEC_IMASK); |
| } else { |
| writel(FEC_DEFAULT_IMASK | FEC_ENET_WAKEUP, fep->hwp + FEC_IMASK); |
| val = readl(fep->hwp + FEC_ECNTRL); |
| val |= (FEC_ECR_MAGICEN | FEC_ECR_SLEEP); |
| writel(val, fep->hwp + FEC_ECNTRL); |
| fec_enet_stop_mode(fep, true); |
| } |
| writel(fep->phy_speed, fep->hwp + FEC_MII_SPEED); |
| |
| /* We have to keep ENET enabled to have MII interrupt stay working */ |
| if (fep->quirks & FEC_QUIRK_ENET_MAC && |
| !(fep->wol_flag & FEC_WOL_FLAG_SLEEP_ON)) { |
| writel(2, fep->hwp + FEC_ECNTRL); |
| writel(rmii_mode, fep->hwp + FEC_R_CNTRL); |
| } |
| } |
| |
| |
| static void |
| fec_timeout(struct net_device *ndev, unsigned int txqueue) |
| { |
| struct fec_enet_private *fep = netdev_priv(ndev); |
| |
| fec_dump(ndev); |
| |
| ndev->stats.tx_errors++; |
| |
| schedule_work(&fep->tx_timeout_work); |
| } |
| |
| static void fec_enet_timeout_work(struct work_struct *work) |
| { |
| struct fec_enet_private *fep = |
| container_of(work, struct fec_enet_private, tx_timeout_work); |
| struct net_device *ndev = fep->netdev; |
| |
| rtnl_lock(); |
| if (netif_device_present(ndev) || netif_running(ndev)) { |
| napi_disable(&fep->napi); |
| netif_tx_lock_bh(ndev); |
| fec_restart(ndev); |
| netif_tx_wake_all_queues(ndev); |
| netif_tx_unlock_bh(ndev); |
| napi_enable(&fep->napi); |
| } |
| rtnl_unlock(); |
| } |
| |
| static void |
| fec_enet_hwtstamp(struct fec_enet_private *fep, unsigned ts, |
| struct skb_shared_hwtstamps *hwtstamps) |
| { |
| unsigned long flags; |
| u64 ns; |
| |
| spin_lock_irqsave(&fep->tmreg_lock, flags); |
| ns = timecounter_cyc2time(&fep->tc, ts); |
| spin_unlock_irqrestore(&fep->tmreg_lock, flags); |
| |
| memset(hwtstamps, 0, sizeof(*hwtstamps)); |
| hwtstamps->hwtstamp = ns_to_ktime(ns); |
| } |
| |
| static void |
| fec_enet_tx_queue(struct net_device *ndev, u16 queue_id) |
| { |
| struct fec_enet_private *fep; |
| struct bufdesc *bdp; |
| unsigned short status; |
| struct sk_buff *skb; |
| struct fec_enet_priv_tx_q *txq; |
| struct netdev_queue *nq; |
| int index = 0; |
| int entries_free; |
| |
| fep = netdev_priv(ndev); |
| |
| queue_id = FEC_ENET_GET_QUQUE(queue_id); |
| |
| txq = fep->tx_queue[queue_id]; |
| /* get next bdp of dirty_tx */ |
| nq = netdev_get_tx_queue(ndev, queue_id); |
| bdp = txq->dirty_tx; |
| |
| /* get next bdp of dirty_tx */ |
| bdp = fec_enet_get_nextdesc(bdp, &txq->bd); |
| |
| while (bdp != READ_ONCE(txq->bd.cur)) { |
| /* Order the load of bd.cur and cbd_sc */ |
| rmb(); |
| status = fec16_to_cpu(READ_ONCE(bdp->cbd_sc)); |
| if (status & BD_ENET_TX_READY) |
| break; |
| |
| index = fec_enet_get_bd_index(bdp, &txq->bd); |
| |
| skb = txq->tx_skbuff[index]; |
| txq->tx_skbuff[index] = NULL; |
| if (!IS_TSO_HEADER(txq, fec32_to_cpu(bdp->cbd_bufaddr))) |
| dma_unmap_single(&fep->pdev->dev, |
| fec32_to_cpu(bdp->cbd_bufaddr), |
| fec16_to_cpu(bdp->cbd_datlen), |
| DMA_TO_DEVICE); |
| bdp->cbd_bufaddr = cpu_to_fec32(0); |
| if (!skb) |
| goto skb_done; |
| |
| /* Check for errors. */ |
| if (status & (BD_ENET_TX_HB | BD_ENET_TX_LC | |
| BD_ENET_TX_RL | BD_ENET_TX_UN | |
| BD_ENET_TX_CSL)) { |
| ndev->stats.tx_errors++; |
| if (status & BD_ENET_TX_HB) /* No heartbeat */ |
| ndev->stats.tx_heartbeat_errors++; |
| if (status & BD_ENET_TX_LC) /* Late collision */ |
| ndev->stats.tx_window_errors++; |
| if (status & BD_ENET_TX_RL) /* Retrans limit */ |
| ndev->stats.tx_aborted_errors++; |
| if (status & BD_ENET_TX_UN) /* Underrun */ |
| ndev->stats.tx_fifo_errors++; |
| if (status & BD_ENET_TX_CSL) /* Carrier lost */ |
| ndev->stats.tx_carrier_errors++; |
| } else { |
| ndev->stats.tx_packets++; |
| ndev->stats.tx_bytes += skb->len; |
| } |
| |
| if (unlikely(skb_shinfo(skb)->tx_flags & SKBTX_IN_PROGRESS) && |
| fep->bufdesc_ex) { |
| struct skb_shared_hwtstamps shhwtstamps; |
| struct bufdesc_ex *ebdp = (struct bufdesc_ex *)bdp; |
| |
| fec_enet_hwtstamp(fep, fec32_to_cpu(ebdp->ts), &shhwtstamps); |
| skb_tstamp_tx(skb, &shhwtstamps); |
| } |
| |
| /* Deferred means some collisions occurred during transmit, |
| * but we eventually sent the packet OK. |
| */ |
| if (status & BD_ENET_TX_DEF) |
| ndev->stats.collisions++; |
| |
| /* Free the sk buffer associated with this last transmit */ |
| dev_kfree_skb_any(skb); |
| skb_done: |
| /* Make sure the update to bdp and tx_skbuff are performed |
| * before dirty_tx |
| */ |
| wmb(); |
| txq->dirty_tx = bdp; |
| |
| /* Update pointer to next buffer descriptor to be transmitted */ |
| bdp = fec_enet_get_nextdesc(bdp, &txq->bd); |
| |
| /* Since we have freed up a buffer, the ring is no longer full |
| */ |
| if (netif_tx_queue_stopped(nq)) { |
| entries_free = fec_enet_get_free_txdesc_num(txq); |
| if (entries_free >= txq->tx_wake_threshold) |
| netif_tx_wake_queue(nq); |
| } |
| } |
| |
| /* ERR006358: Keep the transmitter going */ |
| if (bdp != txq->bd.cur && |
| readl(txq->bd.reg_desc_active) == 0) |
| writel(0, txq->bd.reg_desc_active); |
| } |
| |
| static void |
| fec_enet_tx(struct net_device *ndev) |
| { |
| struct fec_enet_private *fep = netdev_priv(ndev); |
| u16 queue_id; |
| /* First process class A queue, then Class B and Best Effort queue */ |
| for_each_set_bit(queue_id, &fep->work_tx, FEC_ENET_MAX_TX_QS) { |
| clear_bit(queue_id, &fep->work_tx); |
| fec_enet_tx_queue(ndev, queue_id); |
| } |
| return; |
| } |
| |
| static int |
| fec_enet_new_rxbdp(struct net_device *ndev, struct bufdesc *bdp, struct sk_buff *skb) |
| { |
| struct fec_enet_private *fep = netdev_priv(ndev); |
| int off; |
| |
| off = ((unsigned long)skb->data) & fep->rx_align; |
| if (off) |
| skb_reserve(skb, fep->rx_align + 1 - off); |
| |
| bdp->cbd_bufaddr = cpu_to_fec32(dma_map_single(&fep->pdev->dev, skb->data, FEC_ENET_RX_FRSIZE - fep->rx_align, DMA_FROM_DEVICE)); |
| if (dma_mapping_error(&fep->pdev->dev, fec32_to_cpu(bdp->cbd_bufaddr))) { |
| if (net_ratelimit()) |
| netdev_err(ndev, "Rx DMA memory map failed\n"); |
| return -ENOMEM; |
| } |
| |
| return 0; |
| } |
| |
| static bool fec_enet_copybreak(struct net_device *ndev, struct sk_buff **skb, |
| struct bufdesc *bdp, u32 length, bool swap) |
| { |
| struct fec_enet_private *fep = netdev_priv(ndev); |
| struct sk_buff *new_skb; |
| |
| if (length > fep->rx_copybreak) |
| return false; |
| |
| new_skb = netdev_alloc_skb(ndev, length); |
| if (!new_skb) |
| return false; |
| |
| dma_sync_single_for_cpu(&fep->pdev->dev, |
| fec32_to_cpu(bdp->cbd_bufaddr), |
| FEC_ENET_RX_FRSIZE - fep->rx_align, |
| DMA_FROM_DEVICE); |
| if (!swap) |
| memcpy(new_skb->data, (*skb)->data, length); |
| else |
| swap_buffer2(new_skb->data, (*skb)->data, length); |
| *skb = new_skb; |
| |
| return true; |
| } |
| |
| /* During a receive, the bd_rx.cur points to the current incoming buffer. |
| * When we update through the ring, if the next incoming buffer has |
| * not been given to the system, we just set the empty indicator, |
| * effectively tossing the packet. |
| */ |
| static int |
| fec_enet_rx_queue(struct net_device *ndev, int budget, u16 queue_id) |
| { |
| struct fec_enet_private *fep = netdev_priv(ndev); |
| struct fec_enet_priv_rx_q *rxq; |
| struct bufdesc *bdp; |
| unsigned short status; |
| struct sk_buff *skb_new = NULL; |
| struct sk_buff *skb; |
| ushort pkt_len; |
| __u8 *data; |
| int pkt_received = 0; |
| struct bufdesc_ex *ebdp = NULL; |
| bool vlan_packet_rcvd = false; |
| u16 vlan_tag; |
| int index = 0; |
| bool is_copybreak; |
| bool need_swap = fep->quirks & FEC_QUIRK_SWAP_FRAME; |
| |
| #ifdef CONFIG_M532x |
| flush_cache_all(); |
| #endif |
| queue_id = FEC_ENET_GET_QUQUE(queue_id); |
| rxq = fep->rx_queue[queue_id]; |
| |
| /* First, grab all of the stats for the incoming packet. |
| * These get messed up if we get called due to a busy condition. |
| */ |
| bdp = rxq->bd.cur; |
| |
| while (!((status = fec16_to_cpu(bdp->cbd_sc)) & BD_ENET_RX_EMPTY)) { |
| |
| if (pkt_received >= budget) |
| break; |
| pkt_received++; |
| |
| writel(FEC_ENET_RXF, fep->hwp + FEC_IEVENT); |
| |
| /* Check for errors. */ |
| status ^= BD_ENET_RX_LAST; |
| if (status & (BD_ENET_RX_LG | BD_ENET_RX_SH | BD_ENET_RX_NO | |
| BD_ENET_RX_CR | BD_ENET_RX_OV | BD_ENET_RX_LAST | |
| BD_ENET_RX_CL)) { |
| ndev->stats.rx_errors++; |
| if (status & BD_ENET_RX_OV) { |
| /* FIFO overrun */ |
| ndev->stats.rx_fifo_errors++; |
| goto rx_processing_done; |
| } |
| if (status & (BD_ENET_RX_LG | BD_ENET_RX_SH |
| | BD_ENET_RX_LAST)) { |
| /* Frame too long or too short. */ |
| ndev->stats.rx_length_errors++; |
| if (status & BD_ENET_RX_LAST) |
| netdev_err(ndev, "rcv is not +last\n"); |
| } |
| if (status & BD_ENET_RX_CR) /* CRC Error */ |
| ndev->stats.rx_crc_errors++; |
| /* Report late collisions as a frame error. */ |
| if (status & (BD_ENET_RX_NO | BD_ENET_RX_CL)) |
| ndev->stats.rx_frame_errors++; |
| goto rx_processing_done; |
| } |
| |
| /* Process the incoming frame. */ |
| ndev->stats.rx_packets++; |
| pkt_len = fec16_to_cpu(bdp->cbd_datlen); |
| ndev->stats.rx_bytes += pkt_len; |
| |
| index = fec_enet_get_bd_index(bdp, &rxq->bd); |
| skb = rxq->rx_skbuff[index]; |
| |
| /* The packet length includes FCS, but we don't want to |
| * include that when passing upstream as it messes up |
| * bridging applications. |
| */ |
| is_copybreak = fec_enet_copybreak(ndev, &skb, bdp, pkt_len - 4, |
| need_swap); |
| if (!is_copybreak) { |
| skb_new = netdev_alloc_skb(ndev, FEC_ENET_RX_FRSIZE); |
| if (unlikely(!skb_new)) { |
| ndev->stats.rx_dropped++; |
| goto rx_processing_done; |
| } |
| dma_unmap_single(&fep->pdev->dev, |
| fec32_to_cpu(bdp->cbd_bufaddr), |
| FEC_ENET_RX_FRSIZE - fep->rx_align, |
| DMA_FROM_DEVICE); |
| } |
| |
| prefetch(skb->data - NET_IP_ALIGN); |
| skb_put(skb, pkt_len - 4); |
| data = skb->data; |
| |
| if (!is_copybreak && need_swap) |
| swap_buffer(data, pkt_len); |
| |
| #if !defined(CONFIG_M5272) |
| if (fep->quirks & FEC_QUIRK_HAS_RACC) |
| data = skb_pull_inline(skb, 2); |
| #endif |
| |
| /* Extract the enhanced buffer descriptor */ |
| ebdp = NULL; |
| if (fep->bufdesc_ex) |
| ebdp = (struct bufdesc_ex *)bdp; |
| |
| /* If this is a VLAN packet remove the VLAN Tag */ |
| vlan_packet_rcvd = false; |
| if ((ndev->features & NETIF_F_HW_VLAN_CTAG_RX) && |
| fep->bufdesc_ex && |
| (ebdp->cbd_esc & cpu_to_fec32(BD_ENET_RX_VLAN))) { |
| /* Push and remove the vlan tag */ |
| struct vlan_hdr *vlan_header = |
| (struct vlan_hdr *) (data + ETH_HLEN); |
| vlan_tag = ntohs(vlan_header->h_vlan_TCI); |
| |
| vlan_packet_rcvd = true; |
| |
| memmove(skb->data + VLAN_HLEN, data, ETH_ALEN * 2); |
| skb_pull(skb, VLAN_HLEN); |
| } |
| |
| skb->protocol = eth_type_trans(skb, ndev); |
| |
| /* Get receive timestamp from the skb */ |
| if (fep->hwts_rx_en && fep->bufdesc_ex) |
| fec_enet_hwtstamp(fep, fec32_to_cpu(ebdp->ts), |
| skb_hwtstamps(skb)); |
| |
| if (fep->bufdesc_ex && |
| (fep->csum_flags & FLAG_RX_CSUM_ENABLED)) { |
| if (!(ebdp->cbd_esc & cpu_to_fec32(FLAG_RX_CSUM_ERROR))) { |
| /* don't check it */ |
| skb->ip_summed = CHECKSUM_UNNECESSARY; |
| } else { |
| skb_checksum_none_assert(skb); |
| } |
| } |
| |
| /* Handle received VLAN packets */ |
| if (vlan_packet_rcvd) |
| __vlan_hwaccel_put_tag(skb, |
| htons(ETH_P_8021Q), |
| vlan_tag); |
| |
| napi_gro_receive(&fep->napi, skb); |
| |
| if (is_copybreak) { |
| dma_sync_single_for_device(&fep->pdev->dev, |
| fec32_to_cpu(bdp->cbd_bufaddr), |
| FEC_ENET_RX_FRSIZE - fep->rx_align, |
| DMA_FROM_DEVICE); |
| } else { |
| rxq->rx_skbuff[index] = skb_new; |
| fec_enet_new_rxbdp(ndev, bdp, skb_new); |
| } |
| |
| rx_processing_done: |
| /* Clear the status flags for this buffer */ |
| status &= ~BD_ENET_RX_STATS; |
| |
| /* Mark the buffer empty */ |
| status |= BD_ENET_RX_EMPTY; |
| |
| if (fep->bufdesc_ex) { |
| struct bufdesc_ex *ebdp = (struct bufdesc_ex *)bdp; |
| |
| ebdp->cbd_esc = cpu_to_fec32(BD_ENET_RX_INT); |
| ebdp->cbd_prot = 0; |
| ebdp->cbd_bdu = 0; |
| } |
| /* Make sure the updates to rest of the descriptor are |
| * performed before transferring ownership. |
| */ |
| wmb(); |
| bdp->cbd_sc = cpu_to_fec16(status); |
| |
| /* Update BD pointer to next entry */ |
| bdp = fec_enet_get_nextdesc(bdp, &rxq->bd); |
| |
| /* Doing this here will keep the FEC running while we process |
| * incoming frames. On a heavily loaded network, we should be |
| * able to keep up at the expense of system resources. |
| */ |
| writel(0, rxq->bd.reg_desc_active); |
| } |
| rxq->bd.cur = bdp; |
| return pkt_received; |
| } |
| |
| static int |
| fec_enet_rx(struct net_device *ndev, int budget) |
| { |
| int pkt_received = 0; |
| u16 queue_id; |
| struct fec_enet_private *fep = netdev_priv(ndev); |
| |
| for_each_set_bit(queue_id, &fep->work_rx, FEC_ENET_MAX_RX_QS) { |
| int ret; |
| |
| ret = fec_enet_rx_queue(ndev, |
| budget - pkt_received, queue_id); |
| |
| if (ret < budget - pkt_received) |
| clear_bit(queue_id, &fep->work_rx); |
| |
| pkt_received += ret; |
| } |
| return pkt_received; |
| } |
| |
| static bool |
| fec_enet_collect_events(struct fec_enet_private *fep, uint int_events) |
| { |
| if (int_events == 0) |
| return false; |
| |
| if (int_events & FEC_ENET_RXF_0) |
| fep->work_rx |= (1 << 2); |
| if (int_events & FEC_ENET_RXF_1) |
| fep->work_rx |= (1 << 0); |
| if (int_events & FEC_ENET_RXF_2) |
| fep->work_rx |= (1 << 1); |
| |
| if (int_events & FEC_ENET_TXF_0) |
| fep->work_tx |= (1 << 2); |
| if (int_events & FEC_ENET_TXF_1) |
| fep->work_tx |= (1 << 0); |
| if (int_events & FEC_ENET_TXF_2) |
| fep->work_tx |= (1 << 1); |
| |
| return true; |
| } |
| |
| static irqreturn_t |
| fec_enet_interrupt(int irq, void *dev_id) |
| { |
| struct net_device *ndev = dev_id; |
| struct fec_enet_private *fep = netdev_priv(ndev); |
| uint int_events; |
| irqreturn_t ret = IRQ_NONE; |
| |
| int_events = readl(fep->hwp + FEC_IEVENT); |
| writel(int_events, fep->hwp + FEC_IEVENT); |
| fec_enet_collect_events(fep, int_events); |
| |
| if ((fep->work_tx || fep->work_rx) && fep->link) { |
| ret = IRQ_HANDLED; |
| |
| if (napi_schedule_prep(&fep->napi)) { |
| /* Disable the NAPI interrupts */ |
| writel(FEC_NAPI_IMASK, fep->hwp + FEC_IMASK); |
| __napi_schedule(&fep->napi); |
| } |
| } |
| |
| if (int_events & FEC_ENET_MII) { |
| ret = IRQ_HANDLED; |
| complete(&fep->mdio_done); |
| } |
| return ret; |
| } |
| |
| static int fec_enet_rx_napi(struct napi_struct *napi, int budget) |
| { |
| struct net_device *ndev = napi->dev; |
| struct fec_enet_private *fep = netdev_priv(ndev); |
| int pkts; |
| |
| pkts = fec_enet_rx(ndev, budget); |
| |
| fec_enet_tx(ndev); |
| |
| if (pkts < budget) { |
| napi_complete_done(napi, pkts); |
| writel(FEC_DEFAULT_IMASK, fep->hwp + FEC_IMASK); |
| } |
| return pkts; |
| } |
| |
| /* ------------------------------------------------------------------------- */ |
| static void fec_get_mac(struct net_device *ndev) |
| { |
| struct fec_enet_private *fep = netdev_priv(ndev); |
| struct fec_platform_data *pdata = dev_get_platdata(&fep->pdev->dev); |
| unsigned char *iap, tmpaddr[ETH_ALEN]; |
| |
| /* |
| * try to get mac address in following order: |
| * |
| * 1) module parameter via kernel command line in form |
| * fec.macaddr=0x00,0x04,0x9f,0x01,0x30,0xe0 |
| */ |
| iap = macaddr; |
| |
| /* |
| * 2) from device tree data |
| */ |
| if (!is_valid_ether_addr(iap)) { |
| struct device_node *np = fep->pdev->dev.of_node; |
| if (np) { |
| const char *mac = of_get_mac_address(np); |
| if (!IS_ERR(mac)) |
| iap = (unsigned char *) mac; |
| } |
| } |
| |
| /* |
| * 3) from flash or fuse (via platform data) |
| */ |
| if (!is_valid_ether_addr(iap)) { |
| #ifdef CONFIG_M5272 |
| if (FEC_FLASHMAC) |
| iap = (unsigned char *)FEC_FLASHMAC; |
| #else |
| if (pdata) |
| iap = (unsigned char *)&pdata->mac; |
| #endif |
| } |
| |
| /* |
| * 4) FEC mac registers set by bootloader |
| */ |
| if (!is_valid_ether_addr(iap)) { |
| *((__be32 *) &tmpaddr[0]) = |
| cpu_to_be32(readl(fep->hwp + FEC_ADDR_LOW)); |
| *((__be16 *) &tmpaddr[4]) = |
| cpu_to_be16(readl(fep->hwp + FEC_ADDR_HIGH) >> 16); |
| iap = &tmpaddr[0]; |
| } |
| |
| /* |
| * 5) random mac address |
| */ |
| if (!is_valid_ether_addr(iap)) { |
| /* Report it and use a random ethernet address instead */ |
| dev_err(&fep->pdev->dev, "Invalid MAC address: %pM\n", iap); |
| eth_hw_addr_random(ndev); |
| dev_info(&fep->pdev->dev, "Using random MAC address: %pM\n", |
| ndev->dev_addr); |
| return; |
| } |
| |
| memcpy(ndev->dev_addr, iap, ETH_ALEN); |
| |
| /* Adjust MAC if using macaddr */ |
| if (iap == macaddr) |
| ndev->dev_addr[ETH_ALEN-1] = macaddr[ETH_ALEN-1] + fep->dev_id; |
| } |
| |
| /* ------------------------------------------------------------------------- */ |
| |
| /* |
| * Phy section |
| */ |
| static void fec_enet_adjust_link(struct net_device *ndev) |
| { |
| struct fec_enet_private *fep = netdev_priv(ndev); |
| struct phy_device *phy_dev = ndev->phydev; |
| int status_change = 0; |
| |
| /* |
| * If the netdev is down, or is going down, we're not interested |
| * in link state events, so just mark our idea of the link as down |
| * and ignore the event. |
| */ |
| if (!netif_running(ndev) || !netif_device_present(ndev)) { |
| fep->link = 0; |
| } else if (phy_dev->link) { |
| if (!fep->link) { |
| fep->link = phy_dev->link; |
| status_change = 1; |
| } |
| |
| if (fep->full_duplex != phy_dev->duplex) { |
| fep->full_duplex = phy_dev->duplex; |
| status_change = 1; |
| } |
| |
| if (phy_dev->speed != fep->speed) { |
| fep->speed = phy_dev->speed; |
| status_change = 1; |
| } |
| |
| /* if any of the above changed restart the FEC */ |
| if (status_change) { |
| napi_disable(&fep->napi); |
| netif_tx_lock_bh(ndev); |
| fec_restart(ndev); |
| netif_tx_wake_all_queues(ndev); |
| netif_tx_unlock_bh(ndev); |
| napi_enable(&fep->napi); |
| } |
| } else { |
| if (fep->link) { |
| napi_disable(&fep->napi); |
| netif_tx_lock_bh(ndev); |
| fec_stop(ndev); |
| netif_tx_unlock_bh(ndev); |
| napi_enable(&fep->napi); |
| fep->link = phy_dev->link; |
| status_change = 1; |
| } |
| } |
| |
| if (status_change) |
| phy_print_status(phy_dev); |
| } |
| |
| static int fec_enet_mdio_read(struct mii_bus *bus, int mii_id, int regnum) |
| { |
| struct fec_enet_private *fep = bus->priv; |
| struct device *dev = &fep->pdev->dev; |
| unsigned long time_left; |
| int ret = 0, frame_start, frame_addr, frame_op; |
| bool is_c45 = !!(regnum & MII_ADDR_C45); |
| |
| ret = pm_runtime_get_sync(dev); |
| if (ret < 0) |
| return ret; |
| |
| reinit_completion(&fep->mdio_done); |
| |
| if (is_c45) { |
| frame_start = FEC_MMFR_ST_C45; |
| |
| /* write address */ |
| frame_addr = (regnum >> 16); |
| writel(frame_start | FEC_MMFR_OP_ADDR_WRITE | |
| FEC_MMFR_PA(mii_id) | FEC_MMFR_RA(frame_addr) | |
| FEC_MMFR_TA | (regnum & 0xFFFF), |
| fep->hwp + FEC_MII_DATA); |
| |
| /* wait for end of transfer */ |
| time_left = wait_for_completion_timeout(&fep->mdio_done, |
| usecs_to_jiffies(FEC_MII_TIMEOUT)); |
| if (time_left == 0) { |
| netdev_err(fep->netdev, "MDIO address write timeout\n"); |
| ret = -ETIMEDOUT; |
| goto out; |
| } |
| |
| frame_op = FEC_MMFR_OP_READ_C45; |
| |
| } else { |
| /* C22 read */ |
| frame_op = FEC_MMFR_OP_READ; |
| frame_start = FEC_MMFR_ST; |
| frame_addr = regnum; |
| } |
| |
| /* start a read op */ |
| writel(frame_start | frame_op | |
| FEC_MMFR_PA(mii_id) | FEC_MMFR_RA(frame_addr) | |
| FEC_MMFR_TA, fep->hwp + FEC_MII_DATA); |
| |
| /* wait for end of transfer */ |
| time_left = wait_for_completion_timeout(&fep->mdio_done, |
| usecs_to_jiffies(FEC_MII_TIMEOUT)); |
| if (time_left == 0) { |
| netdev_err(fep->netdev, "MDIO read timeout\n"); |
| ret = -ETIMEDOUT; |
| goto out; |
| } |
| |
| ret = FEC_MMFR_DATA(readl(fep->hwp + FEC_MII_DATA)); |
| |
| out: |
| pm_runtime_mark_last_busy(dev); |
| pm_runtime_put_autosuspend(dev); |
| |
| return ret; |
| } |
| |
| static int fec_enet_mdio_write(struct mii_bus *bus, int mii_id, int regnum, |
| u16 value) |
| { |
| struct fec_enet_private *fep = bus->priv; |
| struct device *dev = &fep->pdev->dev; |
| unsigned long time_left; |
| int ret, frame_start, frame_addr; |
| bool is_c45 = !!(regnum & MII_ADDR_C45); |
| |
| ret = pm_runtime_get_sync(dev); |
| if (ret < 0) |
| return ret; |
| else |
| ret = 0; |
| |
| reinit_completion(&fep->mdio_done); |
| |
| if (is_c45) { |
| frame_start = FEC_MMFR_ST_C45; |
| |
| /* write address */ |
| frame_addr = (regnum >> 16); |
| writel(frame_start | FEC_MMFR_OP_ADDR_WRITE | |
| FEC_MMFR_PA(mii_id) | FEC_MMFR_RA(frame_addr) | |
| FEC_MMFR_TA | (regnum & 0xFFFF), |
| fep->hwp + FEC_MII_DATA); |
| |
| /* wait for end of transfer */ |
| time_left = wait_for_completion_timeout(&fep->mdio_done, |
| usecs_to_jiffies(FEC_MII_TIMEOUT)); |
| if (time_left == 0) { |
| netdev_err(fep->netdev, "MDIO address write timeout\n"); |
| ret = -ETIMEDOUT; |
| goto out; |
| } |
| } else { |
| /* C22 write */ |
| frame_start = FEC_MMFR_ST; |
| frame_addr = regnum; |
| } |
| |
| /* start a write op */ |
| writel(frame_start | FEC_MMFR_OP_WRITE | |
| FEC_MMFR_PA(mii_id) | FEC_MMFR_RA(frame_addr) | |
| FEC_MMFR_TA | FEC_MMFR_DATA(value), |
| fep->hwp + FEC_MII_DATA); |
| |
| /* wait for end of transfer */ |
| time_left = wait_for_completion_timeout(&fep->mdio_done, |
| usecs_to_jiffies(FEC_MII_TIMEOUT)); |
| if (time_left == 0) { |
| netdev_err(fep->netdev, "MDIO write timeout\n"); |
| ret = -ETIMEDOUT; |
| } |
| |
| out: |
| pm_runtime_mark_last_busy(dev); |
| pm_runtime_put_autosuspend(dev); |
| |
| return ret; |
| } |
| |
| static int fec_enet_clk_enable(struct net_device *ndev, bool enable) |
| { |
| struct fec_enet_private *fep = netdev_priv(ndev); |
| int ret; |
| |
| if (enable) { |
| ret = clk_prepare_enable(fep->clk_enet_out); |
| if (ret) |
| return ret; |
| |
| if (fep->clk_ptp) { |
| mutex_lock(&fep->ptp_clk_mutex); |
| ret = clk_prepare_enable(fep->clk_ptp); |
| if (ret) { |
| mutex_unlock(&fep->ptp_clk_mutex); |
| goto failed_clk_ptp; |
| } else { |
| fep->ptp_clk_on = true; |
| } |
| mutex_unlock(&fep->ptp_clk_mutex); |
| } |
| |
| ret = clk_prepare_enable(fep->clk_ref); |
| if (ret) |
| goto failed_clk_ref; |
| |
| phy_reset_after_clk_enable(ndev->phydev); |
| } else { |
| clk_disable_unprepare(fep->clk_enet_out); |
| if (fep->clk_ptp) { |
| mutex_lock(&fep->ptp_clk_mutex); |
| clk_disable_unprepare(fep->clk_ptp); |
| fep->ptp_clk_on = false; |
| mutex_unlock(&fep->ptp_clk_mutex); |
| } |
| clk_disable_unprepare(fep->clk_ref); |
| } |
| |
| return 0; |
| |
| failed_clk_ref: |
| if (fep->clk_ref) |
| clk_disable_unprepare(fep->clk_ref); |
| failed_clk_ptp: |
| if (fep->clk_enet_out) |
| clk_disable_unprepare(fep->clk_enet_out); |
| |
| return ret; |
| } |
| |
| static int fec_enet_mii_probe(struct net_device *ndev) |
| { |
| struct fec_enet_private *fep = netdev_priv(ndev); |
| struct phy_device *phy_dev = NULL; |
| char mdio_bus_id[MII_BUS_ID_SIZE]; |
| char phy_name[MII_BUS_ID_SIZE + 3]; |
| int phy_id; |
| int dev_id = fep->dev_id; |
| |
| if (fep->phy_node) { |
| phy_dev = of_phy_connect(ndev, fep->phy_node, |
| &fec_enet_adjust_link, 0, |
| fep->phy_interface); |
| if (!phy_dev) { |
| netdev_err(ndev, "Unable to connect to phy\n"); |
| return -ENODEV; |
| } |
| } else { |
| /* check for attached phy */ |
| for (phy_id = 0; (phy_id < PHY_MAX_ADDR); phy_id++) { |
| if (!mdiobus_is_registered_device(fep->mii_bus, phy_id)) |
| continue; |
| if (dev_id--) |
| continue; |
| strlcpy(mdio_bus_id, fep->mii_bus->id, MII_BUS_ID_SIZE); |
| break; |
| } |
| |
| if (phy_id >= PHY_MAX_ADDR) { |
| netdev_info(ndev, "no PHY, assuming direct connection to switch\n"); |
| strlcpy(mdio_bus_id, "fixed-0", MII_BUS_ID_SIZE); |
| phy_id = 0; |
| } |
| |
| snprintf(phy_name, sizeof(phy_name), |
| PHY_ID_FMT, mdio_bus_id, phy_id); |
| phy_dev = phy_connect(ndev, phy_name, &fec_enet_adjust_link, |
| fep->phy_interface); |
| } |
| |
| if (IS_ERR(phy_dev)) { |
| netdev_err(ndev, "could not attach to PHY\n"); |
| return PTR_ERR(phy_dev); |
| } |
| |
| /* mask with MAC supported features */ |
| if (fep->quirks & FEC_QUIRK_HAS_GBIT) { |
| phy_set_max_speed(phy_dev, 1000); |
| phy_remove_link_mode(phy_dev, |
| ETHTOOL_LINK_MODE_1000baseT_Half_BIT); |
| #if !defined(CONFIG_M5272) |
| phy_support_sym_pause(phy_dev); |
| #endif |
| } |
| else |
| phy_set_max_speed(phy_dev, 100); |
| |
| fep->link = 0; |
| fep->full_duplex = 0; |
| |
| phy_attached_info(phy_dev); |
| |
| return 0; |
| } |
| |
| static int fec_enet_mii_init(struct platform_device *pdev) |
| { |
| static struct mii_bus *fec0_mii_bus; |
| struct net_device *ndev = platform_get_drvdata(pdev); |
| struct fec_enet_private *fep = netdev_priv(ndev); |
| bool suppress_preamble = false; |
| struct device_node *node; |
| int err = -ENXIO; |
| u32 mii_speed, holdtime; |
| u32 bus_freq; |
| |
| /* |
| * The i.MX28 dual fec interfaces are not equal. |
| * Here are the differences: |
| * |
| * - fec0 supports MII & RMII modes while fec1 only supports RMII |
| * - fec0 acts as the 1588 time master while fec1 is slave |
| * - external phys can only be configured by fec0 |
| * |
| * That is to say fec1 can not work independently. It only works |
| * when fec0 is working. The reason behind this design is that the |
| * second interface is added primarily for Switch mode. |
| * |
| * Because of the last point above, both phys are attached on fec0 |
| * mdio interface in board design, and need to be configured by |
| * fec0 mii_bus. |
| */ |
| if ((fep->quirks & FEC_QUIRK_SINGLE_MDIO) && fep->dev_id > 0) { |
| /* fec1 uses fec0 mii_bus */ |
| if (mii_cnt && fec0_mii_bus) { |
| fep->mii_bus = fec0_mii_bus; |
| mii_cnt++; |
| return 0; |
| } |
| return -ENOENT; |
| } |
| |
| bus_freq = 2500000; /* 2.5MHz by default */ |
| node = of_get_child_by_name(pdev->dev.of_node, "mdio"); |
| if (node) { |
| of_property_read_u32(node, "clock-frequency", &bus_freq); |
| suppress_preamble = of_property_read_bool(node, |
| "suppress-preamble"); |
| } |
| |
| /* |
| * Set MII speed (= clk_get_rate() / 2 * phy_speed) |
| * |
| * The formula for FEC MDC is 'ref_freq / (MII_SPEED x 2)' while |
| * for ENET-MAC is 'ref_freq / ((MII_SPEED + 1) x 2)'. The i.MX28 |
| * Reference Manual has an error on this, and gets fixed on i.MX6Q |
| * document. |
| */ |
| mii_speed = DIV_ROUND_UP(clk_get_rate(fep->clk_ipg), bus_freq * 2); |
| if (fep->quirks & FEC_QUIRK_ENET_MAC) |
| mii_speed--; |
| if (mii_speed > 63) { |
| dev_err(&pdev->dev, |
| "fec clock (%lu) too fast to get right mii speed\n", |
| clk_get_rate(fep->clk_ipg)); |
| err = -EINVAL; |
| goto err_out; |
| } |
| |
| /* |
| * The i.MX28 and i.MX6 types have another filed in the MSCR (aka |
| * MII_SPEED) register that defines the MDIO output hold time. Earlier |
| * versions are RAZ there, so just ignore the difference and write the |
| * register always. |
| * The minimal hold time according to IEE802.3 (clause 22) is 10 ns. |
| * HOLDTIME + 1 is the number of clk cycles the fec is holding the |
| * output. |
| * The HOLDTIME bitfield takes values between 0 and 7 (inclusive). |
| * Given that ceil(clkrate / 5000000) <= 64, the calculation for |
| * holdtime cannot result in a value greater than 3. |
| */ |
| holdtime = DIV_ROUND_UP(clk_get_rate(fep->clk_ipg), 100000000) - 1; |
| |
| fep->phy_speed = mii_speed << 1 | holdtime << 8; |
| |
| if (suppress_preamble) |
| fep->phy_speed |= BIT(7); |
| |
| writel(fep->phy_speed, fep->hwp + FEC_MII_SPEED); |
| |
| fep->mii_bus = mdiobus_alloc(); |
| if (fep->mii_bus == NULL) { |
| err = -ENOMEM; |
| goto err_out; |
| } |
| |
| fep->mii_bus->name = "fec_enet_mii_bus"; |
| fep->mii_bus->read = fec_enet_mdio_read; |
| fep->mii_bus->write = fec_enet_mdio_write; |
| snprintf(fep->mii_bus->id, MII_BUS_ID_SIZE, "%s-%x", |
| pdev->name, fep->dev_id + 1); |
| fep->mii_bus->priv = fep; |
| fep->mii_bus->parent = &pdev->dev; |
| |
| err = of_mdiobus_register(fep->mii_bus, node); |
| of_node_put(node); |
| if (err) |
| goto err_out_free_mdiobus; |
| |
| mii_cnt++; |
| |
| /* save fec0 mii_bus */ |
| if (fep->quirks & FEC_QUIRK_SINGLE_MDIO) |
| fec0_mii_bus = fep->mii_bus; |
| |
| return 0; |
| |
| err_out_free_mdiobus: |
| mdiobus_free(fep->mii_bus); |
| err_out: |
| return err; |
| } |
| |
| static void fec_enet_mii_remove(struct fec_enet_private *fep) |
| { |
| if (--mii_cnt == 0) { |
| mdiobus_unregister(fep->mii_bus); |
| mdiobus_free(fep->mii_bus); |
| } |
| } |
| |
| static void fec_enet_get_drvinfo(struct net_device *ndev, |
| struct ethtool_drvinfo *info) |
| { |
| struct fec_enet_private *fep = netdev_priv(ndev); |
| |
| strlcpy(info->driver, fep->pdev->dev.driver->name, |
| sizeof(info->driver)); |
| strlcpy(info->bus_info, dev_name(&ndev->dev), sizeof(info->bus_info)); |
| } |
| |
| static int fec_enet_get_regs_len(struct net_device *ndev) |
| { |
| struct fec_enet_private *fep = netdev_priv(ndev); |
| struct resource *r; |
| int s = 0; |
| |
| r = platform_get_resource(fep->pdev, IORESOURCE_MEM, 0); |
| if (r) |
| s = resource_size(r); |
| |
| return s; |
| } |
| |
| /* List of registers that can be safety be read to dump them with ethtool */ |
| #if defined(CONFIG_M523x) || defined(CONFIG_M527x) || defined(CONFIG_M528x) || \ |
| defined(CONFIG_M520x) || defined(CONFIG_M532x) || defined(CONFIG_ARM) || \ |
| defined(CONFIG_ARM64) || defined(CONFIG_COMPILE_TEST) |
| static __u32 fec_enet_register_version = 2; |
| static u32 fec_enet_register_offset[] = { |
| FEC_IEVENT, FEC_IMASK, FEC_R_DES_ACTIVE_0, FEC_X_DES_ACTIVE_0, |
| FEC_ECNTRL, FEC_MII_DATA, FEC_MII_SPEED, FEC_MIB_CTRLSTAT, FEC_R_CNTRL, |
| FEC_X_CNTRL, FEC_ADDR_LOW, FEC_ADDR_HIGH, FEC_OPD, FEC_TXIC0, FEC_TXIC1, |
| FEC_TXIC2, FEC_RXIC0, FEC_RXIC1, FEC_RXIC2, FEC_HASH_TABLE_HIGH, |
| FEC_HASH_TABLE_LOW, FEC_GRP_HASH_TABLE_HIGH, FEC_GRP_HASH_TABLE_LOW, |
| FEC_X_WMRK, FEC_R_BOUND, FEC_R_FSTART, FEC_R_DES_START_1, |
| FEC_X_DES_START_1, FEC_R_BUFF_SIZE_1, FEC_R_DES_START_2, |
| FEC_X_DES_START_2, FEC_R_BUFF_SIZE_2, FEC_R_DES_START_0, |
| FEC_X_DES_START_0, FEC_R_BUFF_SIZE_0, FEC_R_FIFO_RSFL, FEC_R_FIFO_RSEM, |
| FEC_R_FIFO_RAEM, FEC_R_FIFO_RAFL, FEC_RACC, FEC_RCMR_1, FEC_RCMR_2, |
| FEC_DMA_CFG_1, FEC_DMA_CFG_2, FEC_R_DES_ACTIVE_1, FEC_X_DES_ACTIVE_1, |
| FEC_R_DES_ACTIVE_2, FEC_X_DES_ACTIVE_2, FEC_QOS_SCHEME, |
| RMON_T_DROP, RMON_T_PACKETS, RMON_T_BC_PKT, RMON_T_MC_PKT, |
| RMON_T_CRC_ALIGN, RMON_T_UNDERSIZE, RMON_T_OVERSIZE, RMON_T_FRAG, |
| RMON_T_JAB, RMON_T_COL, RMON_T_P64, RMON_T_P65TO127, RMON_T_P128TO255, |
| RMON_T_P256TO511, RMON_T_P512TO1023, RMON_T_P1024TO2047, |
| RMON_T_P_GTE2048, RMON_T_OCTETS, |
| IEEE_T_DROP, IEEE_T_FRAME_OK, IEEE_T_1COL, IEEE_T_MCOL, IEEE_T_DEF, |
| IEEE_T_LCOL, IEEE_T_EXCOL, IEEE_T_MACERR, IEEE_T_CSERR, IEEE_T_SQE, |
| IEEE_T_FDXFC, IEEE_T_OCTETS_OK, |
| RMON_R_PACKETS, RMON_R_BC_PKT, RMON_R_MC_PKT, RMON_R_CRC_ALIGN, |
| RMON_R_UNDERSIZE, RMON_R_OVERSIZE, RMON_R_FRAG, RMON_R_JAB, |
| RMON_R_RESVD_O, RMON_R_P64, RMON_R_P65TO127, RMON_R_P128TO255, |
| RMON_R_P256TO511, RMON_R_P512TO1023, RMON_R_P1024TO2047, |
| RMON_R_P_GTE2048, RMON_R_OCTETS, |
| IEEE_R_DROP, IEEE_R_FRAME_OK, IEEE_R_CRC, IEEE_R_ALIGN, IEEE_R_MACERR, |
| IEEE_R_FDXFC, IEEE_R_OCTETS_OK |
| }; |
| #else |
| static __u32 fec_enet_register_version = 1; |
| static u32 fec_enet_register_offset[] = { |
| FEC_ECNTRL, FEC_IEVENT, FEC_IMASK, FEC_IVEC, FEC_R_DES_ACTIVE_0, |
| FEC_R_DES_ACTIVE_1, FEC_R_DES_ACTIVE_2, FEC_X_DES_ACTIVE_0, |
| FEC_X_DES_ACTIVE_1, FEC_X_DES_ACTIVE_2, FEC_MII_DATA, FEC_MII_SPEED, |
| FEC_R_BOUND, FEC_R_FSTART, FEC_X_WMRK, FEC_X_FSTART, FEC_R_CNTRL, |
| FEC_MAX_FRM_LEN, FEC_X_CNTRL, FEC_ADDR_LOW, FEC_ADDR_HIGH, |
| FEC_GRP_HASH_TABLE_HIGH, FEC_GRP_HASH_TABLE_LOW, FEC_R_DES_START_0, |
| FEC_R_DES_START_1, FEC_R_DES_START_2, FEC_X_DES_START_0, |
| FEC_X_DES_START_1, FEC_X_DES_START_2, FEC_R_BUFF_SIZE_0, |
| FEC_R_BUFF_SIZE_1, FEC_R_BUFF_SIZE_2 |
| }; |
| #endif |
| |
| static void fec_enet_get_regs(struct net_device *ndev, |
| struct ethtool_regs *regs, void *regbuf) |
| { |
| struct fec_enet_private *fep = netdev_priv(ndev); |
| u32 __iomem *theregs = (u32 __iomem *)fep->hwp; |
| struct device *dev = &fep->pdev->dev; |
| u32 *buf = (u32 *)regbuf; |
| u32 i, off; |
| int ret; |
| |
| ret = pm_runtime_get_sync(dev); |
| if (ret < 0) |
| return; |
| |
| regs->version = fec_enet_register_version; |
| |
| memset(buf, 0, regs->len); |
| |
| for (i = 0; i < ARRAY_SIZE(fec_enet_register_offset); i++) { |
| off = fec_enet_register_offset[i]; |
| |
| if ((off == FEC_R_BOUND || off == FEC_R_FSTART) && |
| !(fep->quirks & FEC_QUIRK_HAS_FRREG)) |
| continue; |
| |
| off >>= 2; |
| buf[off] = readl(&theregs[off]); |
| } |
| |
| pm_runtime_mark_last_busy(dev); |
| pm_runtime_put_autosuspend(dev); |
| } |
| |
| static int fec_enet_get_ts_info(struct net_device *ndev, |
| struct ethtool_ts_info *info) |
| { |
| struct fec_enet_private *fep = netdev_priv(ndev); |
| |
| if (fep->bufdesc_ex) { |
| |
| info->so_timestamping = SOF_TIMESTAMPING_TX_SOFTWARE | |
| SOF_TIMESTAMPING_RX_SOFTWARE | |
| SOF_TIMESTAMPING_SOFTWARE | |
| SOF_TIMESTAMPING_TX_HARDWARE | |
| SOF_TIMESTAMPING_RX_HARDWARE | |
| SOF_TIMESTAMPING_RAW_HARDWARE; |
| if (fep->ptp_clock) |
| info->phc_index = ptp_clock_index(fep->ptp_clock); |
| else |
| info->phc_index = -1; |
| |
| info->tx_types = (1 << HWTSTAMP_TX_OFF) | |
| (1 << HWTSTAMP_TX_ON); |
| |
| info->rx_filters = (1 << HWTSTAMP_FILTER_NONE) | |
| (1 << HWTSTAMP_FILTER_ALL); |
| return 0; |
| } else { |
| return ethtool_op_get_ts_info(ndev, info); |
| } |
| } |
| |
| #if !defined(CONFIG_M5272) |
| |
| static void fec_enet_get_pauseparam(struct net_device *ndev, |
| struct ethtool_pauseparam *pause) |
| { |
| struct fec_enet_private *fep = netdev_priv(ndev); |
| |
| pause->autoneg = (fep->pause_flag & FEC_PAUSE_FLAG_AUTONEG) != 0; |
| pause->tx_pause = (fep->pause_flag & FEC_PAUSE_FLAG_ENABLE) != 0; |
| pause->rx_pause = pause->tx_pause; |
| } |
| |
| static int fec_enet_set_pauseparam(struct net_device *ndev, |
| struct ethtool_pauseparam *pause) |
| { |
| struct fec_enet_private *fep = netdev_priv(ndev); |
| |
| if (!ndev->phydev) |
| return -ENODEV; |
| |
| if (pause->tx_pause != pause->rx_pause) { |
| netdev_info(ndev, |
| "hardware only support enable/disable both tx and rx"); |
| return -EINVAL; |
| } |
| |
| fep->pause_flag = 0; |
| |
| /* tx pause must be same as rx pause */ |
| fep->pause_flag |= pause->rx_pause ? FEC_PAUSE_FLAG_ENABLE : 0; |
| fep->pause_flag |= pause->autoneg ? FEC_PAUSE_FLAG_AUTONEG : 0; |
| |
| phy_set_sym_pause(ndev->phydev, pause->rx_pause, pause->tx_pause, |
| pause->autoneg); |
| |
| if (pause->autoneg) { |
| if (netif_running(ndev)) |
| fec_stop(ndev); |
| phy_start_aneg(ndev->phydev); |
| } |
| if (netif_running(ndev)) { |
| napi_disable(&fep->napi); |
| netif_tx_lock_bh(ndev); |
| fec_restart(ndev); |
| netif_tx_wake_all_queues(ndev); |
| netif_tx_unlock_bh(ndev); |
| napi_enable(&fep->napi); |
| } |
| |
| return 0; |
| } |
| |
| static const struct fec_stat { |
| char name[ETH_GSTRING_LEN]; |
| u16 offset; |
| } fec_stats[] = { |
| /* RMON TX */ |
| { "tx_dropped", RMON_T_DROP }, |
| { "tx_packets", RMON_T_PACKETS }, |
| { "tx_broadcast", RMON_T_BC_PKT }, |
| { "tx_multicast", RMON_T_MC_PKT }, |
| { "tx_crc_errors", RMON_T_CRC_ALIGN }, |
| { "tx_undersize", RMON_T_UNDERSIZE }, |
| { "tx_oversize", RMON_T_OVERSIZE }, |
| { "tx_fragment", RMON_T_FRAG }, |
| { "tx_jabber", RMON_T_JAB }, |
| { "tx_collision", RMON_T_COL }, |
| { "tx_64byte", RMON_T_P64 }, |
| { "tx_65to127byte", RMON_T_P65TO127 }, |
| { "tx_128to255byte", RMON_T_P128TO255 }, |
| { "tx_256to511byte", RMON_T_P256TO511 }, |
| { "tx_512to1023byte", RMON_T_P512TO1023 }, |
| { "tx_1024to2047byte", RMON_T_P1024TO2047 }, |
| { "tx_GTE2048byte", RMON_T_P_GTE2048 }, |
| { "tx_octets", RMON_T_OCTETS }, |
| |
| /* IEEE TX */ |
| { "IEEE_tx_drop", IEEE_T_DROP }, |
| { "IEEE_tx_frame_ok", IEEE_T_FRAME_OK }, |
| { "IEEE_tx_1col", IEEE_T_1COL }, |
| { "IEEE_tx_mcol", IEEE_T_MCOL }, |
| { "IEEE_tx_def", IEEE_T_DEF }, |
| { "IEEE_tx_lcol", IEEE_T_LCOL }, |
| { "IEEE_tx_excol", IEEE_T_EXCOL }, |
| { "IEEE_tx_macerr", IEEE_T_MACERR }, |
| { "IEEE_tx_cserr", IEEE_T_CSERR }, |
| { "IEEE_tx_sqe", IEEE_T_SQE }, |
| { "IEEE_tx_fdxfc", IEEE_T_FDXFC }, |
| { "IEEE_tx_octets_ok", IEEE_T_OCTETS_OK }, |
| |
| /* RMON RX */ |
| { "rx_packets", RMON_R_PACKETS }, |
| { "rx_broadcast", RMON_R_BC_PKT }, |
| { "rx_multicast", RMON_R_MC_PKT }, |
| { "rx_crc_errors", RMON_R_CRC_ALIGN }, |
| { "rx_undersize", RMON_R_UNDERSIZE }, |
| { "rx_oversize", RMON_R_OVERSIZE }, |
| { "rx_fragment", RMON_R_FRAG }, |
| { "rx_jabber", RMON_R_JAB }, |
| { "rx_64byte", RMON_R_P64 }, |
| { "rx_65to127byte", RMON_R_P65TO127 }, |
| { "rx_128to255byte", RMON_R_P128TO255 }, |
| { "rx_256to511byte", RMON_R_P256TO511 }, |
| { "rx_512to1023byte", RMON_R_P512TO1023 }, |
| { "rx_1024to2047byte", RMON_R_P1024TO2047 }, |
| { "rx_GTE2048byte", RMON_R_P_GTE2048 }, |
| { "rx_octets", RMON_R_OCTETS }, |
| |
| /* IEEE RX */ |
| { "IEEE_rx_drop", IEEE_R_DROP }, |
| { "IEEE_rx_frame_ok", IEEE_R_FRAME_OK }, |
| { "IEEE_rx_crc", IEEE_R_CRC }, |
| { "IEEE_rx_align", IEEE_R_ALIGN }, |
| { "IEEE_rx_macerr", IEEE_R_MACERR }, |
| { "IEEE_rx_fdxfc", IEEE_R_FDXFC }, |
| { "IEEE_rx_octets_ok", IEEE_R_OCTETS_OK }, |
| }; |
| |
| #define FEC_STATS_SIZE (ARRAY_SIZE(fec_stats) * sizeof(u64)) |
| |
| static void fec_enet_update_ethtool_stats(struct net_device *dev) |
| { |
| struct fec_enet_private *fep = netdev_priv(dev); |
| int i; |
| |
| for (i = 0; i < ARRAY_SIZE(fec_stats); i++) |
| fep->ethtool_stats[i] = readl(fep->hwp + fec_stats[i].offset); |
| } |
| |
| static void fec_enet_get_ethtool_stats(struct net_device *dev, |
| struct ethtool_stats *stats, u64 *data) |
| { |
| struct fec_enet_private *fep = netdev_priv(dev); |
| |
| if (netif_running(dev)) |
| fec_enet_update_ethtool_stats(dev); |
| |
| memcpy(data, fep->ethtool_stats, FEC_STATS_SIZE); |
| } |
| |
| static void fec_enet_get_strings(struct net_device *netdev, |
| u32 stringset, u8 *data) |
| { |
| int i; |
| switch (stringset) { |
| case ETH_SS_STATS: |
| for (i = 0; i < ARRAY_SIZE(fec_stats); i++) |
| memcpy(data + i * ETH_GSTRING_LEN, |
| fec_stats[i].name, ETH_GSTRING_LEN); |
| break; |
| } |
| } |
| |
| static int fec_enet_get_sset_count(struct net_device *dev, int sset) |
| { |
| switch (sset) { |
| case ETH_SS_STATS: |
| return ARRAY_SIZE(fec_stats); |
| default: |
| return -EOPNOTSUPP; |
| } |
| } |
| |
| static void fec_enet_clear_ethtool_stats(struct net_device *dev) |
| { |
| struct fec_enet_private *fep = netdev_priv(dev); |
| int i; |
| |
| /* Disable MIB statistics counters */ |
| writel(FEC_MIB_CTRLSTAT_DISABLE, fep->hwp + FEC_MIB_CTRLSTAT); |
| |
| for (i = 0; i < ARRAY_SIZE(fec_stats); i++) |
| writel(0, fep->hwp + fec_stats[i].offset); |
| |
| /* Don't disable MIB statistics counters */ |
| writel(0, fep->hwp + FEC_MIB_CTRLSTAT); |
| } |
| |
| #else /* !defined(CONFIG_M5272) */ |
| #define FEC_STATS_SIZE 0 |
| static inline void fec_enet_update_ethtool_stats(struct net_device *dev) |
| { |
| } |
| |
| static inline void fec_enet_clear_ethtool_stats(struct net_device *dev) |
| { |
| } |
| #endif /* !defined(CONFIG_M5272) */ |
| |
| /* ITR clock source is enet system clock (clk_ahb). |
| * TCTT unit is cycle_ns * 64 cycle |
| * So, the ICTT value = X us / (cycle_ns * 64) |
| */ |
| static int fec_enet_us_to_itr_clock(struct net_device *ndev, int us) |
| { |
| struct fec_enet_private *fep = netdev_priv(ndev); |
| |
| return us * (fep->itr_clk_rate / 64000) / 1000; |
| } |
| |
| /* Set threshold for interrupt coalescing */ |
| static void fec_enet_itr_coal_set(struct net_device *ndev) |
| { |
| struct fec_enet_private *fep = netdev_priv(ndev); |
| int rx_itr, tx_itr; |
| |
| /* Must be greater than zero to avoid unpredictable behavior */ |
| if (!fep->rx_time_itr || !fep->rx_pkts_itr || |
| !fep->tx_time_itr || !fep->tx_pkts_itr) |
| return; |
| |
| /* Select enet system clock as Interrupt Coalescing |
| * timer Clock Source |
| */ |
| rx_itr = FEC_ITR_CLK_SEL; |
| tx_itr = FEC_ITR_CLK_SEL; |
| |
| /* set ICFT and ICTT */ |
| rx_itr |= FEC_ITR_ICFT(fep->rx_pkts_itr); |
| rx_itr |= FEC_ITR_ICTT(fec_enet_us_to_itr_clock(ndev, fep->rx_time_itr)); |
| tx_itr |= FEC_ITR_ICFT(fep->tx_pkts_itr); |
| tx_itr |= FEC_ITR_ICTT(fec_enet_us_to_itr_clock(ndev, fep->tx_time_itr)); |
| |
| rx_itr |= FEC_ITR_EN; |
| tx_itr |= FEC_ITR_EN; |
| |
| writel(tx_itr, fep->hwp + FEC_TXIC0); |
| writel(rx_itr, fep->hwp + FEC_RXIC0); |
| if (fep->quirks & FEC_QUIRK_HAS_AVB) { |
| writel(tx_itr, fep->hwp + FEC_TXIC1); |
| writel(rx_itr, fep->hwp + FEC_RXIC1); |
| writel(tx_itr, fep->hwp + FEC_TXIC2); |
| writel(rx_itr, fep->hwp + FEC_RXIC2); |
| } |
| } |
| |
| static int |
| fec_enet_get_coalesce(struct net_device *ndev, struct ethtool_coalesce *ec) |
| { |
| struct fec_enet_private *fep = netdev_priv(ndev); |
| |
| if (!(fep->quirks & FEC_QUIRK_HAS_COALESCE)) |
| return -EOPNOTSUPP; |
| |
| ec->rx_coalesce_usecs = fep->rx_time_itr; |
| ec->rx_max_coalesced_frames = fep->rx_pkts_itr; |
| |
| ec->tx_coalesce_usecs = fep->tx_time_itr; |
| ec->tx_max_coalesced_frames = fep->tx_pkts_itr; |
| |
| return 0; |
| } |
| |
| static int |
| fec_enet_set_coalesce(struct net_device *ndev, struct ethtool_coalesce *ec) |
| { |
| struct fec_enet_private *fep = netdev_priv(ndev); |
| struct device *dev = &fep->pdev->dev; |
| unsigned int cycle; |
| |
| if (!(fep->quirks & FEC_QUIRK_HAS_COALESCE)) |
| return -EOPNOTSUPP; |
| |
| if (ec->rx_max_coalesced_frames > 255) { |
| dev_err(dev, "Rx coalesced frames exceed hardware limitation\n"); |
| return -EINVAL; |
| } |
| |
| if (ec->tx_max_coalesced_frames > 255) { |
| dev_err(dev, "Tx coalesced frame exceed hardware limitation\n"); |
| return -EINVAL; |
| } |
| |
| cycle = fec_enet_us_to_itr_clock(ndev, ec->rx_coalesce_usecs); |
| if (cycle > 0xFFFF) { |
| dev_err(dev, "Rx coalesced usec exceed hardware limitation\n"); |
| return -EINVAL; |
| } |
| |
| cycle = fec_enet_us_to_itr_clock(ndev, ec->tx_coalesce_usecs); |
| if (cycle > 0xFFFF) { |
| dev_err(dev, "Tx coalesced usec exceed hardware limitation\n"); |
| return -EINVAL; |
| } |
| |
| fep->rx_time_itr = ec->rx_coalesce_usecs; |
| fep->rx_pkts_itr = ec->rx_max_coalesced_frames; |
| |
| fep->tx_time_itr = ec->tx_coalesce_usecs; |
| fep->tx_pkts_itr = ec->tx_max_coalesced_frames; |
| |
| fec_enet_itr_coal_set(ndev); |
| |
| return 0; |
| } |
| |
| static void fec_enet_itr_coal_init(struct net_device *ndev) |
| { |
| struct ethtool_coalesce ec; |
| |
| ec.rx_coalesce_usecs = FEC_ITR_ICTT_DEFAULT; |
| ec.rx_max_coalesced_frames = FEC_ITR_ICFT_DEFAULT; |
| |
| ec.tx_coalesce_usecs = FEC_ITR_ICTT_DEFAULT; |
| ec.tx_max_coalesced_frames = FEC_ITR_ICFT_DEFAULT; |
| |
| fec_enet_set_coalesce(ndev, &ec); |
| } |
| |
| static int fec_enet_get_tunable(struct net_device *netdev, |
| const struct ethtool_tunable *tuna, |
| void *data) |
| { |
| struct fec_enet_private *fep = netdev_priv(netdev); |
| int ret = 0; |
| |
| switch (tuna->id) { |
| case ETHTOOL_RX_COPYBREAK: |
| *(u32 *)data = fep->rx_copybreak; |
| break; |
| default: |
| ret = -EINVAL; |
| break; |
| } |
| |
| return ret; |
| } |
| |
| static int fec_enet_set_tunable(struct net_device *netdev, |
| const struct ethtool_tunable *tuna, |
| const void *data) |
| { |
| struct fec_enet_private *fep = netdev_priv(netdev); |
| int ret = 0; |
| |
| switch (tuna->id) { |
| case ETHTOOL_RX_COPYBREAK: |
| fep->rx_copybreak = *(u32 *)data; |
| break; |
| default: |
| ret = -EINVAL; |
| break; |
| } |
| |
| return ret; |
| } |
| |
| static void |
| fec_enet_get_wol(struct net_device *ndev, struct ethtool_wolinfo *wol) |
| { |
| struct fec_enet_private *fep = netdev_priv(ndev); |
| |
| if (fep->wol_flag & FEC_WOL_HAS_MAGIC_PACKET) { |
| wol->supported = WAKE_MAGIC; |
| wol->wolopts = fep->wol_flag & FEC_WOL_FLAG_ENABLE ? WAKE_MAGIC : 0; |
| } else { |
| wol->supported = wol->wolopts = 0; |
| } |
| } |
| |
| static int |
| fec_enet_set_wol(struct net_device *ndev, struct ethtool_wolinfo *wol) |
| { |
| struct fec_enet_private *fep = netdev_priv(ndev); |
| |
| if (!(fep->wol_flag & FEC_WOL_HAS_MAGIC_PACKET)) |
| return -EINVAL; |
| |
| if (wol->wolopts & ~WAKE_MAGIC) |
| return -EINVAL; |
| |
| device_set_wakeup_enable(&ndev->dev, wol->wolopts & WAKE_MAGIC); |
| if (device_may_wakeup(&ndev->dev)) { |
| fep->wol_flag |= FEC_WOL_FLAG_ENABLE; |
| if (fep->irq[0] > 0) |
| enable_irq_wake(fep->irq[0]); |
| } else { |
| fep->wol_flag &= (~FEC_WOL_FLAG_ENABLE); |
| if (fep->irq[0] > 0) |
| disable_irq_wake(fep->irq[0]); |
| } |
| |
| return 0; |
| } |
| |
| static const struct ethtool_ops fec_enet_ethtool_ops = { |
| .supported_coalesce_params = ETHTOOL_COALESCE_USECS | |
| ETHTOOL_COALESCE_MAX_FRAMES, |
| .get_drvinfo = fec_enet_get_drvinfo, |
| .get_regs_len = fec_enet_get_regs_len, |
| .get_regs = fec_enet_get_regs, |
| .nway_reset = phy_ethtool_nway_reset, |
| .get_link = ethtool_op_get_link, |
| .get_coalesce = fec_enet_get_coalesce, |
| .set_coalesce = fec_enet_set_coalesce, |
| #ifndef CONFIG_M5272 |
| .get_pauseparam = fec_enet_get_pauseparam, |
| .set_pauseparam = fec_enet_set_pauseparam, |
| .get_strings = fec_enet_get_strings, |
| .get_ethtool_stats = fec_enet_get_ethtool_stats, |
| .get_sset_count = fec_enet_get_sset_count, |
| #endif |
| .get_ts_info = fec_enet_get_ts_info, |
| .get_tunable = fec_enet_get_tunable, |
| .set_tunable = fec_enet_set_tunable, |
| .get_wol = fec_enet_get_wol, |
| .set_wol = fec_enet_set_wol, |
| .get_link_ksettings = phy_ethtool_get_link_ksettings, |
| .set_link_ksettings = phy_ethtool_set_link_ksettings, |
| }; |
| |
| static int fec_enet_ioctl(struct net_device *ndev, struct ifreq *rq, int cmd) |
| { |
| struct fec_enet_private *fep = netdev_priv(ndev); |
| struct phy_device *phydev = ndev->phydev; |
| |
| if (!netif_running(ndev)) |
| return -EINVAL; |
| |
| if (!phydev) |
| return -ENODEV; |
| |
| if (fep->bufdesc_ex) { |
| if (cmd == SIOCSHWTSTAMP) |
| return fec_ptp_set(ndev, rq); |
| if (cmd == SIOCGHWTSTAMP) |
| return fec_ptp_get(ndev, rq); |
| } |
| |
| return phy_mii_ioctl(phydev, rq, cmd); |
| } |
| |
| static void fec_enet_free_buffers(struct net_device *ndev) |
| { |
| struct fec_enet_private *fep = netdev_priv(ndev); |
| unsigned int i; |
| struct sk_buff *skb; |
| struct bufdesc *bdp; |
| struct fec_enet_priv_tx_q *txq; |
| struct fec_enet_priv_rx_q *rxq; |
| unsigned int q; |
| |
| for (q = 0; q < fep->num_rx_queues; q++) { |
| rxq = fep->rx_queue[q]; |
| bdp = rxq->bd.base; |
| for (i = 0; i < rxq->bd.ring_size; i++) { |
| skb = rxq->rx_skbuff[i]; |
| rxq->rx_skbuff[i] = NULL; |
| if (skb) { |
| dma_unmap_single(&fep->pdev->dev, |
| fec32_to_cpu(bdp->cbd_bufaddr), |
| FEC_ENET_RX_FRSIZE - fep->rx_align, |
| DMA_FROM_DEVICE); |
| dev_kfree_skb(skb); |
| } |
| bdp = fec_enet_get_nextdesc(bdp, &rxq->bd); |
| } |
| } |
| |
| for (q = 0; q < fep->num_tx_queues; q++) { |
| txq = fep->tx_queue[q]; |
| for (i = 0; i < txq->bd.ring_size; i++) { |
| kfree(txq->tx_bounce[i]); |
| txq->tx_bounce[i] = NULL; |
| skb = txq->tx_skbuff[i]; |
| txq->tx_skbuff[i] = NULL; |
| dev_kfree_skb(skb); |
| } |
| } |
| } |
| |
| static void fec_enet_free_queue(struct net_device *ndev) |
| { |
| struct fec_enet_private *fep = netdev_priv(ndev); |
| int i; |
| struct fec_enet_priv_tx_q *txq; |
| |
| for (i = 0; i < fep->num_tx_queues; i++) |
| if (fep->tx_queue[i] && fep->tx_queue[i]->tso_hdrs) { |
| txq = fep->tx_queue[i]; |
| dma_free_coherent(&fep->pdev->dev, |
| txq->bd.ring_size * TSO_HEADER_SIZE, |
| txq->tso_hdrs, |
| txq->tso_hdrs_dma); |
| } |
| |
| for (i = 0; i < fep->num_rx_queues; i++) |
| kfree(fep->rx_queue[i]); |
| for (i = 0; i < fep->num_tx_queues; i++) |
| kfree(fep->tx_queue[i]); |
| } |
| |
| static int fec_enet_alloc_queue(struct net_device *ndev) |
| { |
| struct fec_enet_private *fep = netdev_priv(ndev); |
| int i; |
| int ret = 0; |
| struct fec_enet_priv_tx_q *txq; |
| |
| for (i = 0; i < fep->num_tx_queues; i++) { |
| txq = kzalloc(sizeof(*txq), GFP_KERNEL); |
| if (!txq) { |
| ret = -ENOMEM; |
| goto alloc_failed; |
| } |
| |
| fep->tx_queue[i] = txq; |
| txq->bd.ring_size = TX_RING_SIZE; |
| fep->total_tx_ring_size += fep->tx_queue[i]->bd.ring_size; |
| |
| txq->tx_stop_threshold = FEC_MAX_SKB_DESCS; |
| txq->tx_wake_threshold = |
| (txq->bd.ring_size - txq->tx_stop_threshold) / 2; |
| |
| txq->tso_hdrs = dma_alloc_coherent(&fep->pdev->dev, |
| txq->bd.ring_size * TSO_HEADER_SIZE, |
| &txq->tso_hdrs_dma, |
| GFP_KERNEL); |
| if (!txq->tso_hdrs) { |
| ret = -ENOMEM; |
| goto alloc_failed; |
| } |
| } |
| |
| for (i = 0; i < fep->num_rx_queues; i++) { |
| fep->rx_queue[i] = kzalloc(sizeof(*fep->rx_queue[i]), |
| GFP_KERNEL); |
| if (!fep->rx_queue[i]) { |
| ret = -ENOMEM; |
| goto alloc_failed; |
| } |
| |
| fep->rx_queue[i]->bd.ring_size = RX_RING_SIZE; |
| fep->total_rx_ring_size += fep->rx_queue[i]->bd.ring_size; |
| } |
| return ret; |
| |
| alloc_failed: |
| fec_enet_free_queue(ndev); |
| return ret; |
| } |
| |
| static int |
| fec_enet_alloc_rxq_buffers(struct net_device *ndev, unsigned int queue) |
| { |
| struct fec_enet_private *fep = netdev_priv(ndev); |
| unsigned int i; |
| struct sk_buff *skb; |
| struct bufdesc *bdp; |
| struct fec_enet_priv_rx_q *rxq; |
| |
| rxq = fep->rx_queue[queue]; |
| bdp = rxq->bd.base; |
| for (i = 0; i < rxq->bd.ring_size; i++) { |
| skb = netdev_alloc_skb(ndev, FEC_ENET_RX_FRSIZE); |
| if (!skb) |
| goto err_alloc; |
| |
| if (fec_enet_new_rxbdp(ndev, bdp, skb)) { |
| dev_kfree_skb(skb); |
| goto err_alloc; |
| } |
| |
| rxq->rx_skbuff[i] = skb; |
| bdp->cbd_sc = cpu_to_fec16(BD_ENET_RX_EMPTY); |
| |
| if (fep->bufdesc_ex) { |
| struct bufdesc_ex *ebdp = (struct bufdesc_ex *)bdp; |
| ebdp->cbd_esc = cpu_to_fec32(BD_ENET_RX_INT); |
| } |
| |
| bdp = fec_enet_get_nextdesc(bdp, &rxq->bd); |
| } |
| |
| /* Set the last buffer to wrap. */ |
| bdp = fec_enet_get_prevdesc(bdp, &rxq->bd); |
| bdp->cbd_sc |= cpu_to_fec16(BD_SC_WRAP); |
| return 0; |
| |
| err_alloc: |
| fec_enet_free_buffers(ndev); |
| return -ENOMEM; |
| } |
| |
| static int |
| fec_enet_alloc_txq_buffers(struct net_device *ndev, unsigned int queue) |
| { |
| struct fec_enet_private *fep = netdev_priv(ndev); |
| unsigned int i; |
| struct bufdesc *bdp; |
| struct fec_enet_priv_tx_q *txq; |
| |
| txq = fep->tx_queue[queue]; |
| bdp = txq->bd.base; |
| for (i = 0; i < txq->bd.ring_size; i++) { |
| txq->tx_bounce[i] = kmalloc(FEC_ENET_TX_FRSIZE, GFP_KERNEL); |
| if (!txq->tx_bounce[i]) |
| goto err_alloc; |
| |
| bdp->cbd_sc = cpu_to_fec16(0); |
| bdp->cbd_bufaddr = cpu_to_fec32(0); |
| |
| if (fep->bufdesc_ex) { |
| struct bufdesc_ex *ebdp = (struct bufdesc_ex *)bdp; |
| ebdp->cbd_esc = cpu_to_fec32(BD_ENET_TX_INT); |
| } |
| |
| bdp = fec_enet_get_nextdesc(bdp, &txq->bd); |
| } |
| |
| /* Set the last buffer to wrap. */ |
| bdp = fec_enet_get_prevdesc(bdp, &txq->bd); |
| bdp->cbd_sc |= cpu_to_fec16(BD_SC_WRAP); |
| |
| return 0; |
| |
| err_alloc: |
| fec_enet_free_buffers(ndev); |
| return -ENOMEM; |
| } |
| |
| static int fec_enet_alloc_buffers(struct net_device *ndev) |
| { |
| struct fec_enet_private *fep = netdev_priv(ndev); |
| unsigned int i; |
| |
| for (i = 0; i < fep->num_rx_queues; i++) |
| if (fec_enet_alloc_rxq_buffers(ndev, i)) |
| return -ENOMEM; |
| |
| for (i = 0; i < fep->num_tx_queues; i++) |
| if (fec_enet_alloc_txq_buffers(ndev, i)) |
| return -ENOMEM; |
| return 0; |
| } |
| |
| static int |
| fec_enet_open(struct net_device *ndev) |
| { |
| struct fec_enet_private *fep = netdev_priv(ndev); |
| int ret; |
| bool reset_again; |
| |
| ret = pm_runtime_get_sync(&fep->pdev->dev); |
| if (ret < 0) |
| return ret; |
| |
| pinctrl_pm_select_default_state(&fep->pdev->dev); |
| ret = fec_enet_clk_enable(ndev, true); |
| if (ret) |
| goto clk_enable; |
| |
| /* During the first fec_enet_open call the PHY isn't probed at this |
| * point. Therefore the phy_reset_after_clk_enable() call within |
| * fec_enet_clk_enable() fails. As we need this reset in order to be |
| * sure the PHY is working correctly we check if we need to reset again |
| * later when the PHY is probed |
| */ |
| if (ndev->phydev && ndev->phydev->drv) |
| reset_again = false; |
| else |
| reset_again = true; |
| |
| /* I should reset the ring buffers here, but I don't yet know |
| * a simple way to do that. |
| */ |
| |
| ret = fec_enet_alloc_buffers(ndev); |
| if (ret) |
| goto err_enet_alloc; |
| |
| /* Init MAC prior to mii bus probe */ |
| fec_restart(ndev); |
| |
| /* Probe and connect to PHY when open the interface */ |
| ret = fec_enet_mii_probe(ndev); |
| if (ret) |
| goto err_enet_mii_probe; |
| |
| /* Call phy_reset_after_clk_enable() again if it failed during |
| * phy_reset_after_clk_enable() before because the PHY wasn't probed. |
| */ |
| if (reset_again) |
| phy_reset_after_clk_enable(ndev->phydev); |
| |
| if (fep->quirks & FEC_QUIRK_ERR006687) |
| imx6q_cpuidle_fec_irqs_used(); |
| |
| napi_enable(&fep->napi); |
| phy_start(ndev->phydev); |
| netif_tx_start_all_queues(ndev); |
| |
| device_set_wakeup_enable(&ndev->dev, fep->wol_flag & |
| FEC_WOL_FLAG_ENABLE); |
| |
| return 0; |
| |
| err_enet_mii_probe: |
| fec_enet_free_buffers(ndev); |
| err_enet_alloc: |
| fec_enet_clk_enable(ndev, false); |
| clk_enable: |
| pm_runtime_mark_last_busy(&fep->pdev->dev); |
| pm_runtime_put_autosuspend(&fep->pdev->dev); |
| pinctrl_pm_select_sleep_state(&fep->pdev->dev); |
| return ret; |
| } |
| |
| static int |
| fec_enet_close(struct net_device *ndev) |
| { |
| struct fec_enet_private *fep = netdev_priv(ndev); |
| |
| phy_stop(ndev->phydev); |
| |
| if (netif_device_present(ndev)) { |
| napi_disable(&fep->napi); |
| netif_tx_disable(ndev); |
| fec_stop(ndev); |
| } |
| |
| phy_disconnect(ndev->phydev); |
| |
| if (fep->quirks & FEC_QUIRK_ERR006687) |
| imx6q_cpuidle_fec_irqs_unused(); |
| |
| fec_enet_update_ethtool_stats(ndev); |
| |
| fec_enet_clk_enable(ndev, false); |
| pinctrl_pm_select_sleep_state(&fep->pdev->dev); |
| pm_runtime_mark_last_busy(&fep->pdev->dev); |
| pm_runtime_put_autosuspend(&fep->pdev->dev); |
| |
| fec_enet_free_buffers(ndev); |
| |
| return 0; |
| } |
| |
| /* Set or clear the multicast filter for this adaptor. |
| * Skeleton taken from sunlance driver. |
| * The CPM Ethernet implementation allows Multicast as well as individual |
| * MAC address filtering. Some of the drivers check to make sure it is |
| * a group multicast address, and discard those that are not. I guess I |
| * will do the same for now, but just remove the test if you want |
| * individual filtering as well (do the upper net layers want or support |
| * this kind of feature?). |
| */ |
| |
| #define FEC_HASH_BITS 6 /* #bits in hash */ |
| |
| static void set_multicast_list(struct net_device *ndev) |
| { |
| struct fec_enet_private *fep = netdev_priv(ndev); |
| struct netdev_hw_addr *ha; |
| unsigned int crc, tmp; |
| unsigned char hash; |
| unsigned int hash_high = 0, hash_low = 0; |
| |
| if (ndev->flags & IFF_PROMISC) { |
| tmp = readl(fep->hwp + FEC_R_CNTRL); |
| tmp |= 0x8; |
| writel(tmp, fep->hwp + FEC_R_CNTRL); |
| return; |
| } |
| |
| tmp = readl(fep->hwp + FEC_R_CNTRL); |
| tmp &= ~0x8; |
| writel(tmp, fep->hwp + FEC_R_CNTRL); |
| |
| if (ndev->flags & IFF_ALLMULTI) { |
| /* Catch all multicast addresses, so set the |
| * filter to all 1's |
| */ |
| writel(0xffffffff, fep->hwp + FEC_GRP_HASH_TABLE_HIGH); |
| writel(0xffffffff, fep->hwp + FEC_GRP_HASH_TABLE_LOW); |
| |
| return; |
| } |
| |
| /* Add the addresses in hash register */ |
| netdev_for_each_mc_addr(ha, ndev) { |
| /* calculate crc32 value of mac address */ |
| crc = ether_crc_le(ndev->addr_len, ha->addr); |
| |
| /* only upper 6 bits (FEC_HASH_BITS) are used |
| * which point to specific bit in the hash registers |
| */ |
| hash = (crc >> (32 - FEC_HASH_BITS)) & 0x3f; |
| |
| if (hash > 31) |
| hash_high |= 1 << (hash - 32); |
| else |
| hash_low |= 1 << hash; |
| } |
| |
| writel(hash_high, fep->hwp + FEC_GRP_HASH_TABLE_HIGH); |
| writel(hash_low, fep->hwp + FEC_GRP_HASH_TABLE_LOW); |
| } |
| |
| /* Set a MAC change in hardware. */ |
| static int |
| fec_set_mac_address(struct net_device *ndev, void *p) |
| { |
| struct fec_enet_private *fep = netdev_priv(ndev); |
| struct sockaddr *addr = p; |
| |
| if (addr) { |
| if (!is_valid_ether_addr(addr->sa_data)) |
| return -EADDRNOTAVAIL; |
| memcpy(ndev->dev_addr, addr->sa_data, ndev->addr_len); |
| } |
| |
| /* Add netif status check here to avoid system hang in below case: |
| * ifconfig ethx down; ifconfig ethx hw ether xx:xx:xx:xx:xx:xx; |
| * After ethx down, fec all clocks are gated off and then register |
| * access causes system hang. |
| */ |
| if (!netif_running(ndev)) |
| return 0; |
| |
| writel(ndev->dev_addr[3] | (ndev->dev_addr[2] << 8) | |
| (ndev->dev_addr[1] << 16) | (ndev->dev_addr[0] << 24), |
| fep->hwp + FEC_ADDR_LOW); |
| writel((ndev->dev_addr[5] << 16) | (ndev->dev_addr[4] << 24), |
| fep->hwp + FEC_ADDR_HIGH); |
| return 0; |
| } |
| |
| #ifdef CONFIG_NET_POLL_CONTROLLER |
| /** |
| * fec_poll_controller - FEC Poll controller function |
| * @dev: The FEC network adapter |
| * |
| * Polled functionality used by netconsole and others in non interrupt mode |
| * |
| */ |
| static void fec_poll_controller(struct net_device *dev) |
| { |
| int i; |
| struct fec_enet_private *fep = netdev_priv(dev); |
| |
| for (i = 0; i < FEC_IRQ_NUM; i++) { |
| if (fep->irq[i] > 0) { |
| disable_irq(fep->irq[i]); |
| fec_enet_interrupt(fep->irq[i], dev); |
| enable_irq(fep->irq[i]); |
| } |
| } |
| } |
| #endif |
| |
| static inline void fec_enet_set_netdev_features(struct net_device *netdev, |
| netdev_features_t features) |
| { |
| struct fec_enet_private *fep = netdev_priv(netdev); |
| netdev_features_t changed = features ^ netdev->features; |
| |
| netdev->features = features; |
| |
| /* Receive checksum has been changed */ |
| if (changed & NETIF_F_RXCSUM) { |
| if (features & NETIF_F_RXCSUM) |
| fep->csum_flags |= FLAG_RX_CSUM_ENABLED; |
| else |
| fep->csum_flags &= ~FLAG_RX_CSUM_ENABLED; |
| } |
| } |
| |
| static int fec_set_features(struct net_device *netdev, |
| netdev_features_t features) |
| { |
| struct fec_enet_private *fep = netdev_priv(netdev); |
| netdev_features_t changed = features ^ netdev->features; |
| |
| if (netif_running(netdev) && changed & NETIF_F_RXCSUM) { |
| napi_disable(&fep->napi); |
| netif_tx_lock_bh(netdev); |
| fec_stop(netdev); |
| fec_enet_set_netdev_features(netdev, features); |
| fec_restart(netdev); |
| netif_tx_wake_all_queues(netdev); |
| netif_tx_unlock_bh(netdev); |
| napi_enable(&fep->napi); |
| } else { |
| fec_enet_set_netdev_features(netdev, features); |
| } |
| |
| return 0; |
| } |
| |
| static const struct net_device_ops fec_netdev_ops = { |
| .ndo_open = fec_enet_open, |
| .ndo_stop = fec_enet_close, |
| .ndo_start_xmit = fec_enet_start_xmit, |
| .ndo_set_rx_mode = set_multicast_list, |
| .ndo_validate_addr = eth_validate_addr, |
| .ndo_tx_timeout = fec_timeout, |
| .ndo_set_mac_address = fec_set_mac_address, |
| .ndo_do_ioctl = fec_enet_ioctl, |
| #ifdef CONFIG_NET_POLL_CONTROLLER |
| .ndo_poll_controller = fec_poll_controller, |
| #endif |
| .ndo_set_features = fec_set_features, |
| }; |
| |
| static const unsigned short offset_des_active_rxq[] = { |
| FEC_R_DES_ACTIVE_0, FEC_R_DES_ACTIVE_1, FEC_R_DES_ACTIVE_2 |
| }; |
| |
| static const unsigned short offset_des_active_txq[] = { |
| FEC_X_DES_ACTIVE_0, FEC_X_DES_ACTIVE_1, FEC_X_DES_ACTIVE_2 |
| }; |
| |
| /* |
| * XXX: We need to clean up on failure exits here. |
| * |
| */ |
| static int fec_enet_init(struct net_device *ndev) |
| { |
| struct fec_enet_private *fep = netdev_priv(ndev); |
| struct bufdesc *cbd_base; |
| dma_addr_t bd_dma; |
| int bd_size; |
| unsigned int i; |
| unsigned dsize = fep->bufdesc_ex ? sizeof(struct bufdesc_ex) : |
| sizeof(struct bufdesc); |
| unsigned dsize_log2 = __fls(dsize); |
| int ret; |
| |
| WARN_ON(dsize != (1 << dsize_log2)); |
| #if defined(CONFIG_ARM) || defined(CONFIG_ARM64) |
| fep->rx_align = 0xf; |
| fep->tx_align = 0xf; |
| #else |
| fep->rx_align = 0x3; |
| fep->tx_align = 0x3; |
| #endif |
| |
| /* Check mask of the streaming and coherent API */ |
| ret = dma_set_mask_and_coherent(&fep->pdev->dev, DMA_BIT_MASK(32)); |
| if (ret < 0) { |
| dev_warn(&fep->pdev->dev, "No suitable DMA available\n"); |
| return ret; |
| } |
| |
| fec_enet_alloc_queue(ndev); |
| |
| bd_size = (fep->total_tx_ring_size + fep->total_rx_ring_size) * dsize; |
| |
| /* Allocate memory for buffer descriptors. */ |
| cbd_base = dmam_alloc_coherent(&fep->pdev->dev, bd_size, &bd_dma, |
| GFP_KERNEL); |
| if (!cbd_base) { |
| return -ENOMEM; |
| } |
| |
| /* Get the Ethernet address */ |
| fec_get_mac(ndev); |
| /* make sure MAC we just acquired is programmed into the hw */ |
| fec_set_mac_address(ndev, NULL); |
| |
| /* Set receive and transmit descriptor base. */ |
| for (i = 0; i < fep->num_rx_queues; i++) { |
| struct fec_enet_priv_rx_q *rxq = fep->rx_queue[i]; |
| unsigned size = dsize * rxq->bd.ring_size; |
| |
| rxq->bd.qid = i; |
| rxq->bd.base = cbd_base; |
| rxq->bd.cur = cbd_base; |
| rxq->bd.dma = bd_dma; |
| rxq->bd.dsize = dsize; |
| rxq->bd.dsize_log2 = dsize_log2; |
| rxq->bd.reg_desc_active = fep->hwp + offset_des_active_rxq[i]; |
| bd_dma += size; |
| cbd_base = (struct bufdesc *)(((void *)cbd_base) + size); |
| rxq->bd.last = (struct bufdesc *)(((void *)cbd_base) - dsize); |
| } |
| |
| for (i = 0; i < fep->num_tx_queues; i++) { |
| struct fec_enet_priv_tx_q *txq = fep->tx_queue[i]; |
| unsigned size = dsize * txq->bd.ring_size; |
| |
| txq->bd.qid = i; |
| txq->bd.base = cbd_base; |
| txq->bd.cur = cbd_base; |
| txq->bd.dma = bd_dma; |
| txq->bd.dsize = dsize; |
| txq->bd.dsize_log2 = dsize_log2; |
| txq->bd.reg_desc_active = fep->hwp + offset_des_active_txq[i]; |
| bd_dma += size; |
| cbd_base = (struct bufdesc *)(((void *)cbd_base) + size); |
| txq->bd.last = (struct bufdesc *)(((void *)cbd_base) - dsize); |
| } |
| |
| |
| /* The FEC Ethernet specific entries in the device structure */ |
| ndev->watchdog_timeo = TX_TIMEOUT; |
| ndev->netdev_ops = &fec_netdev_ops; |
| ndev->ethtool_ops = &fec_enet_ethtool_ops; |
| |
| writel(FEC_RX_DISABLED_IMASK, fep->hwp + FEC_IMASK); |
| netif_napi_add(ndev, &fep->napi, fec_enet_rx_napi, NAPI_POLL_WEIGHT); |
| |
| if (fep->quirks & FEC_QUIRK_HAS_VLAN) |
| /* enable hw VLAN support */ |
| ndev->features |= NETIF_F_HW_VLAN_CTAG_RX; |
| |
| if (fep->quirks & FEC_QUIRK_HAS_CSUM) { |
| ndev->gso_max_segs = FEC_MAX_TSO_SEGS; |
| |
| /* enable hw accelerator */ |
| ndev->features |= (NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM |
| | NETIF_F_RXCSUM | NETIF_F_SG | NETIF_F_TSO); |
| fep->csum_flags |= FLAG_RX_CSUM_ENABLED; |
| } |
| |
| if (fep->quirks & FEC_QUIRK_HAS_AVB) { |
| fep->tx_align = 0; |
| fep->rx_align = 0x3f; |
| } |
| |
| ndev->hw_features = ndev->features; |
| |
| fec_restart(ndev); |
| |
| if (fep->quirks & FEC_QUIRK_MIB_CLEAR) |
| fec_enet_clear_ethtool_stats(ndev); |
| else |
| fec_enet_update_ethtool_stats(ndev); |
| |
| return 0; |
| } |
| |
| #ifdef CONFIG_OF |
| static int fec_reset_phy(struct platform_device *pdev) |
| { |
| int err, phy_reset; |
| bool active_high = false; |
| int msec = 1, phy_post_delay = 0; |
| struct device_node *np = pdev->dev.of_node; |
| |
| if (!np) |
| return 0; |
| |
| err = of_property_read_u32(np, "phy-reset-duration", &msec); |
| /* A sane reset duration should not be longer than 1s */ |
| if (!err && msec > 1000) |
| msec = 1; |
| |
| phy_reset = of_get_named_gpio(np, "phy-reset-gpios", 0); |
| if (phy_reset == -EPROBE_DEFER) |
| return phy_reset; |
| else if (!gpio_is_valid(phy_reset)) |
| return 0; |
| |
| err = of_property_read_u32(np, "phy-reset-post-delay", &phy_post_delay); |
| /* valid reset duration should be less than 1s */ |
| if (!err && phy_post_delay > 1000) |
| return -EINVAL; |
| |
| active_high = of_property_read_bool(np, "phy-reset-active-high"); |
| |
| err = devm_gpio_request_one(&pdev->dev, phy_reset, |
| active_high ? GPIOF_OUT_INIT_HIGH : GPIOF_OUT_INIT_LOW, |
| "phy-reset"); |
| if (err) { |
| dev_err(&pdev->dev, "failed to get phy-reset-gpios: %d\n", err); |
| return err; |
| } |
| |
| if (msec > 20) |
| msleep(msec); |
| else |
| usleep_range(msec * 1000, msec * 1000 + 1000); |
| |
| gpio_set_value_cansleep(phy_reset, !active_high); |
| |
| if (!phy_post_delay) |
| return 0; |
| |
| if (phy_post_delay > 20) |
| msleep(phy_post_delay); |
| else |
| usleep_range(phy_post_delay * 1000, |
| phy_post_delay * 1000 + 1000); |
| |
| return 0; |
| } |
| #else /* CONFIG_OF */ |
| static int fec_reset_phy(struct platform_device *pdev) |
| { |
| /* |
| * In case of platform probe, the reset has been done |
| * by machine code. |
| */ |
| return 0; |
| } |
| #endif /* CONFIG_OF */ |
| |
| static void |
| fec_enet_get_queue_num(struct platform_device *pdev, int *num_tx, int *num_rx) |
| { |
| struct device_node *np = pdev->dev.of_node; |
| |
| *num_tx = *num_rx = 1; |
| |
| if (!np || !of_device_is_available(np)) |
| return; |
| |
| /* parse the num of tx and rx queues */ |
| of_property_read_u32(np, "fsl,num-tx-queues", num_tx); |
| |
| of_property_read_u32(np, "fsl,num-rx-queues", num_rx); |
| |
| if (*num_tx < 1 || *num_tx > FEC_ENET_MAX_TX_QS) { |
| dev_warn(&pdev->dev, "Invalid num_tx(=%d), fall back to 1\n", |
| *num_tx); |
| *num_tx = 1; |
| return; |
| } |
| |
| if (*num_rx < 1 || *num_rx > FEC_ENET_MAX_RX_QS) { |
| dev_warn(&pdev->dev, "Invalid num_rx(=%d), fall back to 1\n", |
| *num_rx); |
| *num_rx = 1; |
| return; |
| } |
| |
| } |
| |
| static int fec_enet_get_irq_cnt(struct platform_device *pdev) |
| { |
| int irq_cnt = platform_irq_count(pdev); |
| |
| if (irq_cnt > FEC_IRQ_NUM) |
| irq_cnt = FEC_IRQ_NUM; /* last for pps */ |
| else if (irq_cnt == 2) |
| irq_cnt = 1; /* last for pps */ |
| else if (irq_cnt <= 0) |
| irq_cnt = 1; /* At least 1 irq is needed */ |
| return irq_cnt; |
| } |
| |
| static int fec_enet_init_stop_mode(struct fec_enet_private *fep, |
| struct fec_devinfo *dev_info, |
| struct device_node *np) |
| { |
| struct device_node *gpr_np; |
| int ret = 0; |
| |
| if (!dev_info) |
| return 0; |
| |
| gpr_np = of_parse_phandle(np, "gpr", 0); |
| if (!gpr_np) |
| return 0; |
| |
| fep->stop_gpr.gpr = syscon_node_to_regmap(gpr_np); |
| if (IS_ERR(fep->stop_gpr.gpr)) { |
| dev_err(&fep->pdev->dev, "could not find gpr regmap\n"); |
| ret = PTR_ERR(fep->stop_gpr.gpr); |
| fep->stop_gpr.gpr = NULL; |
| goto out; |
| } |
| |
| fep->stop_gpr.reg = dev_info->stop_gpr_reg; |
| fep->stop_gpr.bit = dev_info->stop_gpr_bit; |
| |
| out: |
| of_node_put(gpr_np); |
| |
| return ret; |
| } |
| |
| static int |
| fec_probe(struct platform_device *pdev) |
| { |
| struct fec_enet_private *fep; |
| struct fec_platform_data *pdata; |
| phy_interface_t interface; |
| struct net_device *ndev; |
| int i, irq, ret = 0; |
| const struct of_device_id *of_id; |
| static int dev_id; |
| struct device_node *np = pdev->dev.of_node, *phy_node; |
| int num_tx_qs; |
| int num_rx_qs; |
| char irq_name[8]; |
| int irq_cnt; |
| struct fec_devinfo *dev_info; |
| |
| fec_enet_get_queue_num(pdev, &num_tx_qs, &num_rx_qs); |
| |
| /* Init network device */ |
| ndev = alloc_etherdev_mqs(sizeof(struct fec_enet_private) + |
| FEC_STATS_SIZE, num_tx_qs, num_rx_qs); |
| if (!ndev) |
| return -ENOMEM; |
| |
| SET_NETDEV_DEV(ndev, &pdev->dev); |
| |
| /* setup board info structure */ |
| fep = netdev_priv(ndev); |
| |
| of_id = of_match_device(fec_dt_ids, &pdev->dev); |
| if (of_id) |
| pdev->id_entry = of_id->data; |
| dev_info = (struct fec_devinfo *)pdev->id_entry->driver_data; |
| if (dev_info) |
| fep->quirks = dev_info->quirks; |
| |
| fep->netdev = ndev; |
| fep->num_rx_queues = num_rx_qs; |
| fep->num_tx_queues = num_tx_qs; |
| |
| #if !defined(CONFIG_M5272) |
| /* default enable pause frame auto negotiation */ |
| if (fep->quirks & FEC_QUIRK_HAS_GBIT) |
| fep->pause_flag |= FEC_PAUSE_FLAG_AUTONEG; |
| #endif |
| |
| /* Select default pin state */ |
| pinctrl_pm_select_default_state(&pdev->dev); |
| |
| fep->hwp = devm_platform_ioremap_resource(pdev, 0); |
| if (IS_ERR(fep->hwp)) { |
| ret = PTR_ERR(fep->hwp); |
| goto failed_ioremap; |
| } |
| |
| fep->pdev = pdev; |
| fep->dev_id = dev_id++; |
| |
| platform_set_drvdata(pdev, ndev); |
| |
| if ((of_machine_is_compatible("fsl,imx6q") || |
| of_machine_is_compatible("fsl,imx6dl")) && |
| !of_property_read_bool(np, "fsl,err006687-workaround-present")) |
| fep->quirks |= FEC_QUIRK_ERR006687; |
| |
| if (of_get_property(np, "fsl,magic-packet", NULL)) |
| fep->wol_flag |= FEC_WOL_HAS_MAGIC_PACKET; |
| |
| ret = fec_enet_init_stop_mode(fep, dev_info, np); |
| if (ret) |
| goto failed_stop_mode; |
| |
| phy_node = of_parse_phandle(np, "phy-handle", 0); |
| if (!phy_node && of_phy_is_fixed_link(np)) { |
| ret = of_phy_register_fixed_link(np); |
| if (ret < 0) { |
| dev_err(&pdev->dev, |
| "broken fixed-link specification\n"); |
| goto failed_phy; |
| } |
| phy_node = of_node_get(np); |
| } |
| fep->phy_node = phy_node; |
| |
| ret = of_get_phy_mode(pdev->dev.of_node, &interface); |
| if (ret) { |
| pdata = dev_get_platdata(&pdev->dev); |
| if (pdata) |
| fep->phy_interface = pdata->phy; |
| else |
| fep->phy_interface = PHY_INTERFACE_MODE_MII; |
| } else { |
| fep->phy_interface = interface; |
| } |
| |
| fep->clk_ipg = devm_clk_get(&pdev->dev, "ipg"); |
| if (IS_ERR(fep->clk_ipg)) { |
| ret = PTR_ERR(fep->clk_ipg); |
| goto failed_clk; |
| } |
| |
| fep->clk_ahb = devm_clk_get(&pdev->dev, "ahb"); |
| if (IS_ERR(fep->clk_ahb)) { |
| ret = PTR_ERR(fep->clk_ahb); |
| goto failed_clk; |
| } |
| |
| fep->itr_clk_rate = clk_get_rate(fep->clk_ahb); |
| |
| /* enet_out is optional, depends on board */ |
| fep->clk_enet_out = devm_clk_get(&pdev->dev, "enet_out"); |
| if (IS_ERR(fep->clk_enet_out)) |
| fep->clk_enet_out = NULL; |
| |
| fep->ptp_clk_on = false; |
| mutex_init(&fep->ptp_clk_mutex); |
| |
| /* clk_ref is optional, depends on board */ |
| fep->clk_ref = devm_clk_get(&pdev->dev, "enet_clk_ref"); |
| if (IS_ERR(fep->clk_ref)) |
| fep->clk_ref = NULL; |
| |
| fep->bufdesc_ex = fep->quirks & FEC_QUIRK_HAS_BUFDESC_EX; |
| fep->clk_ptp = devm_clk_get(&pdev->dev, "ptp"); |
| if (IS_ERR(fep->clk_ptp)) { |
| fep->clk_ptp = NULL; |
| fep->bufdesc_ex = false; |
| } |
| |
| ret = fec_enet_clk_enable(ndev, true); |
| if (ret) |
| goto failed_clk; |
| |
| ret = clk_prepare_enable(fep->clk_ipg); |
| if (ret) |
| goto failed_clk_ipg; |
| ret = clk_prepare_enable(fep->clk_ahb); |
| if (ret) |
| goto failed_clk_ahb; |
| |
| fep->reg_phy = devm_regulator_get_optional(&pdev->dev, "phy"); |
| if (!IS_ERR(fep->reg_phy)) { |
| ret = regulator_enable(fep->reg_phy); |
| if (ret) { |
| dev_err(&pdev->dev, |
| "Failed to enable phy regulator: %d\n", ret); |
| goto failed_regulator; |
| } |
| } else { |
| if (PTR_ERR(fep->reg_phy) == -EPROBE_DEFER) { |
| ret = -EPROBE_DEFER; |
| goto failed_regulator; |
| } |
| fep->reg_phy = NULL; |
| } |
| |
| pm_runtime_set_autosuspend_delay(&pdev->dev, FEC_MDIO_PM_TIMEOUT); |
| pm_runtime_use_autosuspend(&pdev->dev); |
| pm_runtime_get_noresume(&pdev->dev); |
| pm_runtime_set_active(&pdev->dev); |
| pm_runtime_enable(&pdev->dev); |
| |
| ret = fec_reset_phy(pdev); |
| if (ret) |
| goto failed_reset; |
| |
| irq_cnt = fec_enet_get_irq_cnt(pdev); |
| if (fep->bufdesc_ex) |
| fec_ptp_init(pdev, irq_cnt); |
| |
| ret = fec_enet_init(ndev); |
| if (ret) |
| goto failed_init; |
| |
| for (i = 0; i < irq_cnt; i++) { |
| snprintf(irq_name, sizeof(irq_name), "int%d", i); |
| irq = platform_get_irq_byname_optional(pdev, irq_name); |
| if (irq < 0) |
| irq = platform_get_irq(pdev, i); |
| if (irq < 0) { |
| ret = irq; |
| goto failed_irq; |
| } |
| ret = devm_request_irq(&pdev->dev, irq, fec_enet_interrupt, |
| 0, pdev->name, ndev); |
| if (ret) |
| goto failed_irq; |
| |
| fep->irq[i] = irq; |
| } |
| |
| init_completion(&fep->mdio_done); |
| ret = fec_enet_mii_init(pdev); |
| if (ret) |
| goto failed_mii_init; |
| |
| /* Carrier starts down, phylib will bring it up */ |
| netif_carrier_off(ndev); |
| fec_enet_clk_enable(ndev, false); |
| pinctrl_pm_select_sleep_state(&pdev->dev); |
| |
| ret = register_netdev(ndev); |
| if (ret) |
| goto failed_register; |
| |
| device_init_wakeup(&ndev->dev, fep->wol_flag & |
| FEC_WOL_HAS_MAGIC_PACKET); |
| |
| if (fep->bufdesc_ex && fep->ptp_clock) |
| netdev_info(ndev, "registered PHC device %d\n", fep->dev_id); |
| |
| fep->rx_copybreak = COPYBREAK_DEFAULT; |
| INIT_WORK(&fep->tx_timeout_work, fec_enet_timeout_work); |
| |
| pm_runtime_mark_last_busy(&pdev->dev); |
| pm_runtime_put_autosuspend(&pdev->dev); |
| |
| return 0; |
| |
| failed_register: |
| fec_enet_mii_remove(fep); |
| failed_mii_init: |
| failed_irq: |
| failed_init: |
| fec_ptp_stop(pdev); |
| if (fep->reg_phy) |
| regulator_disable(fep->reg_phy); |
| failed_reset: |
| pm_runtime_put_noidle(&pdev->dev); |
| pm_runtime_disable(&pdev->dev); |
| failed_regulator: |
| clk_disable_unprepare(fep->clk_ahb); |
| failed_clk_ahb: |
| clk_disable_unprepare(fep->clk_ipg); |
| failed_clk_ipg: |
| fec_enet_clk_enable(ndev, false); |
| failed_clk: |
| if (of_phy_is_fixed_link(np)) |
| of_phy_deregister_fixed_link(np); |
| of_node_put(phy_node); |
| failed_stop_mode: |
| failed_phy: |
| dev_id--; |
| failed_ioremap: |
| free_netdev(ndev); |
| |
| return ret; |
| } |
| |
| static int |
| fec_drv_remove(struct platform_device *pdev) |
| { |
| struct net_device *ndev = platform_get_drvdata(pdev); |
| struct fec_enet_private *fep = netdev_priv(ndev); |
| struct device_node *np = pdev->dev.of_node; |
| int ret; |
| |
| ret = pm_runtime_get_sync(&pdev->dev); |
| if (ret < 0) |
| return ret; |
| |
| cancel_work_sync(&fep->tx_timeout_work); |
| fec_ptp_stop(pdev); |
| unregister_netdev(ndev); |
| fec_enet_mii_remove(fep); |
| if (fep->reg_phy) |
| regulator_disable(fep->reg_phy); |
| |
| if (of_phy_is_fixed_link(np)) |
| of_phy_deregister_fixed_link(np); |
| of_node_put(fep->phy_node); |
| free_netdev(ndev); |
| |
| clk_disable_unprepare(fep->clk_ahb); |
| clk_disable_unprepare(fep->clk_ipg); |
| pm_runtime_put_noidle(&pdev->dev); |
| pm_runtime_disable(&pdev->dev); |
| |
| return 0; |
| } |
| |
| static int __maybe_unused fec_suspend(struct device *dev) |
| { |
| struct net_device *ndev = dev_get_drvdata(dev); |
| struct fec_enet_private *fep = netdev_priv(ndev); |
| |
| rtnl_lock(); |
| if (netif_running(ndev)) { |
| if (fep->wol_flag & FEC_WOL_FLAG_ENABLE) |
| fep->wol_flag |= FEC_WOL_FLAG_SLEEP_ON; |
| phy_stop(ndev->phydev); |
| napi_disable(&fep->napi); |
| netif_tx_lock_bh(ndev); |
| netif_device_detach(ndev); |
| netif_tx_unlock_bh(ndev); |
| fec_stop(ndev); |
| fec_enet_clk_enable(ndev, false); |
| if (!(fep->wol_flag & FEC_WOL_FLAG_ENABLE)) |
| pinctrl_pm_select_sleep_state(&fep->pdev->dev); |
| } |
| rtnl_unlock(); |
| |
| if (fep->reg_phy && !(fep->wol_flag & FEC_WOL_FLAG_ENABLE)) |
| regulator_disable(fep->reg_phy); |
| |
| /* SOC supply clock to phy, when clock is disabled, phy link down |
| * SOC control phy regulator, when regulator is disabled, phy link down |
| */ |
| if (fep->clk_enet_out || fep->reg_phy) |
| fep->link = 0; |
| |
| return 0; |
| } |
| |
| static int __maybe_unused fec_resume(struct device *dev) |
| { |
| struct net_device *ndev = dev_get_drvdata(dev); |
| struct fec_enet_private *fep = netdev_priv(ndev); |
| int ret; |
| int val; |
| |
| if (fep->reg_phy && !(fep->wol_flag & FEC_WOL_FLAG_ENABLE)) { |
| ret = regulator_enable(fep->reg_phy); |
| if (ret) |
| return ret; |
| } |
| |
| rtnl_lock(); |
| if (netif_running(ndev)) { |
| ret = fec_enet_clk_enable(ndev, true); |
| if (ret) { |
| rtnl_unlock(); |
| goto failed_clk; |
| } |
| if (fep->wol_flag & FEC_WOL_FLAG_ENABLE) { |
| fec_enet_stop_mode(fep, false); |
| |
| val = readl(fep->hwp + FEC_ECNTRL); |
| val &= ~(FEC_ECR_MAGICEN | FEC_ECR_SLEEP); |
| writel(val, fep->hwp + FEC_ECNTRL); |
| fep->wol_flag &= ~FEC_WOL_FLAG_SLEEP_ON; |
| } else { |
| pinctrl_pm_select_default_state(&fep->pdev->dev); |
| } |
| fec_restart(ndev); |
| netif_tx_lock_bh(ndev); |
| netif_device_attach(ndev); |
| netif_tx_unlock_bh(ndev); |
| napi_enable(&fep->napi); |
| phy_start(ndev->phydev); |
| } |
| rtnl_unlock(); |
| |
| return 0; |
| |
| failed_clk: |
| if (fep->reg_phy) |
| regulator_disable(fep->reg_phy); |
| return ret; |
| } |
| |
| static int __maybe_unused fec_runtime_suspend(struct device *dev) |
| { |
| struct net_device *ndev = dev_get_drvdata(dev); |
| struct fec_enet_private *fep = netdev_priv(ndev); |
| |
| clk_disable_unprepare(fep->clk_ahb); |
| clk_disable_unprepare(fep->clk_ipg); |
| |
| return 0; |
| } |
| |
| static int __maybe_unused fec_runtime_resume(struct device *dev) |
| { |
| struct net_device *ndev = dev_get_drvdata(dev); |
| struct fec_enet_private *fep = netdev_priv(ndev); |
| int ret; |
| |
| ret = clk_prepare_enable(fep->clk_ahb); |
| if (ret) |
| return ret; |
| ret = clk_prepare_enable(fep->clk_ipg); |
| if (ret) |
| goto failed_clk_ipg; |
| |
| return 0; |
| |
| failed_clk_ipg: |
| clk_disable_unprepare(fep->clk_ahb); |
| return ret; |
| } |
| |
| static const struct dev_pm_ops fec_pm_ops = { |
| SET_SYSTEM_SLEEP_PM_OPS(fec_suspend, fec_resume) |
| SET_RUNTIME_PM_OPS(fec_runtime_suspend, fec_runtime_resume, NULL) |
| }; |
| |
| static struct platform_driver fec_driver = { |
| .driver = { |
| .name = DRIVER_NAME, |
| .pm = &fec_pm_ops, |
| .of_match_table = fec_dt_ids, |
| .suppress_bind_attrs = true, |
| }, |
| .id_table = fec_devtype, |
| .probe = fec_probe, |
| .remove = fec_drv_remove, |
| }; |
| |
| module_platform_driver(fec_driver); |
| |
| MODULE_ALIAS("platform:"DRIVER_NAME); |
| MODULE_LICENSE("GPL"); |