| /* |
| drbd_req.h |
| |
| This file is part of DRBD by Philipp Reisner and Lars Ellenberg. |
| |
| Copyright (C) 2006-2008, LINBIT Information Technologies GmbH. |
| Copyright (C) 2006-2008, Lars Ellenberg <lars.ellenberg@linbit.com>. |
| Copyright (C) 2006-2008, Philipp Reisner <philipp.reisner@linbit.com>. |
| |
| DRBD is free software; you can redistribute it and/or modify |
| it under the terms of the GNU General Public License as published by |
| the Free Software Foundation; either version 2, or (at your option) |
| any later version. |
| |
| DRBD is distributed in the hope that it will be useful, |
| but WITHOUT ANY WARRANTY; without even the implied warranty of |
| MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the |
| GNU General Public License for more details. |
| |
| You should have received a copy of the GNU General Public License |
| along with drbd; see the file COPYING. If not, write to |
| the Free Software Foundation, 675 Mass Ave, Cambridge, MA 02139, USA. |
| */ |
| |
| #ifndef _DRBD_REQ_H |
| #define _DRBD_REQ_H |
| |
| #include <linux/module.h> |
| |
| #include <linux/slab.h> |
| #include <linux/drbd.h> |
| #include "drbd_int.h" |
| #include "drbd_wrappers.h" |
| |
| /* The request callbacks will be called in irq context by the IDE drivers, |
| and in Softirqs/Tasklets/BH context by the SCSI drivers, |
| and by the receiver and worker in kernel-thread context. |
| Try to get the locking right :) */ |
| |
| /* |
| * Objects of type struct drbd_request do only exist on a R_PRIMARY node, and are |
| * associated with IO requests originating from the block layer above us. |
| * |
| * There are quite a few things that may happen to a drbd request |
| * during its lifetime. |
| * |
| * It will be created. |
| * It will be marked with the intention to be |
| * submitted to local disk and/or |
| * send via the network. |
| * |
| * It has to be placed on the transfer log and other housekeeping lists, |
| * In case we have a network connection. |
| * |
| * It may be identified as a concurrent (write) request |
| * and be handled accordingly. |
| * |
| * It may me handed over to the local disk subsystem. |
| * It may be completed by the local disk subsystem, |
| * either successfully or with io-error. |
| * In case it is a READ request, and it failed locally, |
| * it may be retried remotely. |
| * |
| * It may be queued for sending. |
| * It may be handed over to the network stack, |
| * which may fail. |
| * It may be acknowledged by the "peer" according to the wire_protocol in use. |
| * this may be a negative ack. |
| * It may receive a faked ack when the network connection is lost and the |
| * transfer log is cleaned up. |
| * Sending may be canceled due to network connection loss. |
| * When it finally has outlived its time, |
| * corresponding dirty bits in the resync-bitmap may be cleared or set, |
| * it will be destroyed, |
| * and completion will be signalled to the originator, |
| * with or without "success". |
| */ |
| |
| enum drbd_req_event { |
| created, |
| to_be_send, |
| to_be_submitted, |
| |
| /* XXX yes, now I am inconsistent... |
| * these are not "events" but "actions" |
| * oh, well... */ |
| queue_for_net_write, |
| queue_for_net_read, |
| queue_for_send_oos, |
| |
| send_canceled, |
| send_failed, |
| handed_over_to_network, |
| oos_handed_to_network, |
| connection_lost_while_pending, |
| read_retry_remote_canceled, |
| recv_acked_by_peer, |
| write_acked_by_peer, |
| write_acked_by_peer_and_sis, /* and set_in_sync */ |
| conflict_discarded_by_peer, |
| neg_acked, |
| barrier_acked, /* in protocol A and B */ |
| data_received, /* (remote read) */ |
| |
| read_completed_with_error, |
| read_ahead_completed_with_error, |
| write_completed_with_error, |
| completed_ok, |
| resend, |
| fail_frozen_disk_io, |
| restart_frozen_disk_io, |
| nothing, /* for tracing only */ |
| }; |
| |
| /* encoding of request states for now. we don't actually need that many bits. |
| * we don't need to do atomic bit operations either, since most of the time we |
| * need to look at the connection state and/or manipulate some lists at the |
| * same time, so we should hold the request lock anyways. |
| */ |
| enum drbd_req_state_bits { |
| /* 210 |
| * 000: no local possible |
| * 001: to be submitted |
| * UNUSED, we could map: 011: submitted, completion still pending |
| * 110: completed ok |
| * 010: completed with error |
| */ |
| __RQ_LOCAL_PENDING, |
| __RQ_LOCAL_COMPLETED, |
| __RQ_LOCAL_OK, |
| |
| /* 76543 |
| * 00000: no network possible |
| * 00001: to be send |
| * 00011: to be send, on worker queue |
| * 00101: sent, expecting recv_ack (B) or write_ack (C) |
| * 11101: sent, |
| * recv_ack (B) or implicit "ack" (A), |
| * still waiting for the barrier ack. |
| * master_bio may already be completed and invalidated. |
| * 11100: write_acked (C), |
| * data_received (for remote read, any protocol) |
| * or finally the barrier ack has arrived (B,A)... |
| * request can be freed |
| * 01100: neg-acked (write, protocol C) |
| * or neg-d-acked (read, any protocol) |
| * or killed from the transfer log |
| * during cleanup after connection loss |
| * request can be freed |
| * 01000: canceled or send failed... |
| * request can be freed |
| */ |
| |
| /* if "SENT" is not set, yet, this can still fail or be canceled. |
| * if "SENT" is set already, we still wait for an Ack packet. |
| * when cleared, the master_bio may be completed. |
| * in (B,A) the request object may still linger on the transaction log |
| * until the corresponding barrier ack comes in */ |
| __RQ_NET_PENDING, |
| |
| /* If it is QUEUED, and it is a WRITE, it is also registered in the |
| * transfer log. Currently we need this flag to avoid conflicts between |
| * worker canceling the request and tl_clear_barrier killing it from |
| * transfer log. We should restructure the code so this conflict does |
| * no longer occur. */ |
| __RQ_NET_QUEUED, |
| |
| /* well, actually only "handed over to the network stack". |
| * |
| * TODO can potentially be dropped because of the similar meaning |
| * of RQ_NET_SENT and ~RQ_NET_QUEUED. |
| * however it is not exactly the same. before we drop it |
| * we must ensure that we can tell a request with network part |
| * from a request without, regardless of what happens to it. */ |
| __RQ_NET_SENT, |
| |
| /* when set, the request may be freed (if RQ_NET_QUEUED is clear). |
| * basically this means the corresponding P_BARRIER_ACK was received */ |
| __RQ_NET_DONE, |
| |
| /* whether or not we know (C) or pretend (B,A) that the write |
| * was successfully written on the peer. |
| */ |
| __RQ_NET_OK, |
| |
| /* peer called drbd_set_in_sync() for this write */ |
| __RQ_NET_SIS, |
| |
| /* keep this last, its for the RQ_NET_MASK */ |
| __RQ_NET_MAX, |
| |
| /* Set when this is a write, clear for a read */ |
| __RQ_WRITE, |
| |
| /* Should call drbd_al_complete_io() for this request... */ |
| __RQ_IN_ACT_LOG, |
| }; |
| |
| #define RQ_LOCAL_PENDING (1UL << __RQ_LOCAL_PENDING) |
| #define RQ_LOCAL_COMPLETED (1UL << __RQ_LOCAL_COMPLETED) |
| #define RQ_LOCAL_OK (1UL << __RQ_LOCAL_OK) |
| |
| #define RQ_LOCAL_MASK ((RQ_LOCAL_OK << 1)-1) /* 0x07 */ |
| |
| #define RQ_NET_PENDING (1UL << __RQ_NET_PENDING) |
| #define RQ_NET_QUEUED (1UL << __RQ_NET_QUEUED) |
| #define RQ_NET_SENT (1UL << __RQ_NET_SENT) |
| #define RQ_NET_DONE (1UL << __RQ_NET_DONE) |
| #define RQ_NET_OK (1UL << __RQ_NET_OK) |
| #define RQ_NET_SIS (1UL << __RQ_NET_SIS) |
| |
| /* 0x1f8 */ |
| #define RQ_NET_MASK (((1UL << __RQ_NET_MAX)-1) & ~RQ_LOCAL_MASK) |
| |
| #define RQ_WRITE (1UL << __RQ_WRITE) |
| #define RQ_IN_ACT_LOG (1UL << __RQ_IN_ACT_LOG) |
| |
| /* For waking up the frozen transfer log mod_req() has to return if the request |
| should be counted in the epoch object*/ |
| #define MR_WRITE_SHIFT 0 |
| #define MR_WRITE (1 << MR_WRITE_SHIFT) |
| #define MR_READ_SHIFT 1 |
| #define MR_READ (1 << MR_READ_SHIFT) |
| |
| /* epoch entries */ |
| static inline |
| struct hlist_head *ee_hash_slot(struct drbd_conf *mdev, sector_t sector) |
| { |
| BUG_ON(mdev->ee_hash_s == 0); |
| return mdev->ee_hash + |
| ((unsigned int)(sector>>HT_SHIFT) % mdev->ee_hash_s); |
| } |
| |
| /* transfer log (drbd_request objects) */ |
| static inline |
| struct hlist_head *tl_hash_slot(struct drbd_conf *mdev, sector_t sector) |
| { |
| BUG_ON(mdev->tl_hash_s == 0); |
| return mdev->tl_hash + |
| ((unsigned int)(sector>>HT_SHIFT) % mdev->tl_hash_s); |
| } |
| |
| /* application reads (drbd_request objects) */ |
| static inline |
| struct hlist_head *ar_hash_slot(struct drbd_conf *mdev, sector_t sector) |
| { |
| return mdev->app_reads_hash |
| + ((unsigned int)(sector) % APP_R_HSIZE); |
| } |
| |
| static inline void drbd_req_make_private_bio(struct drbd_request *req, struct bio *bio_src) |
| { |
| struct bio *bio; |
| bio = bio_clone(bio_src, GFP_NOIO); /* XXX cannot fail?? */ |
| |
| req->private_bio = bio; |
| |
| bio->bi_private = req; |
| bio->bi_end_io = drbd_endio_pri; |
| bio->bi_next = NULL; |
| } |
| |
| static inline struct drbd_request *drbd_req_new(struct drbd_conf *mdev, |
| struct bio *bio_src) |
| { |
| struct drbd_request *req = |
| mempool_alloc(drbd_request_mempool, GFP_NOIO); |
| if (likely(req)) { |
| drbd_req_make_private_bio(req, bio_src); |
| |
| req->rq_state = bio_data_dir(bio_src) == WRITE ? RQ_WRITE : 0; |
| req->mdev = mdev; |
| req->master_bio = bio_src; |
| req->epoch = 0; |
| req->sector = bio_src->bi_sector; |
| req->size = bio_src->bi_size; |
| INIT_HLIST_NODE(&req->collision); |
| INIT_LIST_HEAD(&req->tl_requests); |
| INIT_LIST_HEAD(&req->w.list); |
| } |
| return req; |
| } |
| |
| static inline void drbd_req_free(struct drbd_request *req) |
| { |
| mempool_free(req, drbd_request_mempool); |
| } |
| |
| static inline int overlaps(sector_t s1, int l1, sector_t s2, int l2) |
| { |
| return !((s1 + (l1>>9) <= s2) || (s1 >= s2 + (l2>>9))); |
| } |
| |
| /* Short lived temporary struct on the stack. |
| * We could squirrel the error to be returned into |
| * bio->bi_size, or similar. But that would be too ugly. */ |
| struct bio_and_error { |
| struct bio *bio; |
| int error; |
| }; |
| |
| extern void _req_may_be_done(struct drbd_request *req, |
| struct bio_and_error *m); |
| extern int __req_mod(struct drbd_request *req, enum drbd_req_event what, |
| struct bio_and_error *m); |
| extern void complete_master_bio(struct drbd_conf *mdev, |
| struct bio_and_error *m); |
| extern void request_timer_fn(unsigned long data); |
| extern void tl_restart(struct drbd_conf *mdev, enum drbd_req_event what); |
| |
| /* use this if you don't want to deal with calling complete_master_bio() |
| * outside the spinlock, e.g. when walking some list on cleanup. */ |
| static inline int _req_mod(struct drbd_request *req, enum drbd_req_event what) |
| { |
| struct drbd_conf *mdev = req->mdev; |
| struct bio_and_error m; |
| int rv; |
| |
| /* __req_mod possibly frees req, do not touch req after that! */ |
| rv = __req_mod(req, what, &m); |
| if (m.bio) |
| complete_master_bio(mdev, &m); |
| |
| return rv; |
| } |
| |
| /* completion of master bio is outside of our spinlock. |
| * We still may or may not be inside some irqs disabled section |
| * of the lower level driver completion callback, so we need to |
| * spin_lock_irqsave here. */ |
| static inline int req_mod(struct drbd_request *req, |
| enum drbd_req_event what) |
| { |
| unsigned long flags; |
| struct drbd_conf *mdev = req->mdev; |
| struct bio_and_error m; |
| int rv; |
| |
| spin_lock_irqsave(&mdev->req_lock, flags); |
| rv = __req_mod(req, what, &m); |
| spin_unlock_irqrestore(&mdev->req_lock, flags); |
| |
| if (m.bio) |
| complete_master_bio(mdev, &m); |
| |
| return rv; |
| } |
| |
| static inline bool drbd_should_do_remote(union drbd_state s) |
| { |
| return s.pdsk == D_UP_TO_DATE || |
| (s.pdsk >= D_INCONSISTENT && |
| s.conn >= C_WF_BITMAP_T && |
| s.conn < C_AHEAD); |
| /* Before proto 96 that was >= CONNECTED instead of >= C_WF_BITMAP_T. |
| That is equivalent since before 96 IO was frozen in the C_WF_BITMAP* |
| states. */ |
| } |
| static inline bool drbd_should_send_oos(union drbd_state s) |
| { |
| return s.conn == C_AHEAD || s.conn == C_WF_BITMAP_S; |
| /* pdsk = D_INCONSISTENT as a consequence. Protocol 96 check not necessary |
| since we enter state C_AHEAD only if proto >= 96 */ |
| } |
| |
| #endif |