| // SPDX-License-Identifier: GPL-2.0-only |
| /* |
| * (C) 2005, 2006 Red Hat Inc. |
| * |
| * Author: David Woodhouse <dwmw2@infradead.org> |
| * Tom Sylla <tom.sylla@amd.com> |
| * |
| * Overview: |
| * This is a device driver for the NAND flash controller found on |
| * the AMD CS5535/CS5536 companion chipsets for the Geode processor. |
| * mtd-id for command line partitioning is cs553x_nand_cs[0-3] |
| * where 0-3 reflects the chip select for NAND. |
| */ |
| |
| #include <linux/kernel.h> |
| #include <linux/slab.h> |
| #include <linux/init.h> |
| #include <linux/module.h> |
| #include <linux/delay.h> |
| #include <linux/mtd/mtd.h> |
| #include <linux/mtd/rawnand.h> |
| #include <linux/mtd/nand_ecc.h> |
| #include <linux/mtd/partitions.h> |
| #include <linux/iopoll.h> |
| |
| #include <asm/msr.h> |
| |
| #define NR_CS553X_CONTROLLERS 4 |
| |
| #define MSR_DIVIL_GLD_CAP 0x51400000 /* DIVIL capabilitiies */ |
| #define CAP_CS5535 0x2df000ULL |
| #define CAP_CS5536 0x5df500ULL |
| |
| /* NAND Timing MSRs */ |
| #define MSR_NANDF_DATA 0x5140001b /* NAND Flash Data Timing MSR */ |
| #define MSR_NANDF_CTL 0x5140001c /* NAND Flash Control Timing */ |
| #define MSR_NANDF_RSVD 0x5140001d /* Reserved */ |
| |
| /* NAND BAR MSRs */ |
| #define MSR_DIVIL_LBAR_FLSH0 0x51400010 /* Flash Chip Select 0 */ |
| #define MSR_DIVIL_LBAR_FLSH1 0x51400011 /* Flash Chip Select 1 */ |
| #define MSR_DIVIL_LBAR_FLSH2 0x51400012 /* Flash Chip Select 2 */ |
| #define MSR_DIVIL_LBAR_FLSH3 0x51400013 /* Flash Chip Select 3 */ |
| /* Each made up of... */ |
| #define FLSH_LBAR_EN (1ULL<<32) |
| #define FLSH_NOR_NAND (1ULL<<33) /* 1 for NAND */ |
| #define FLSH_MEM_IO (1ULL<<34) /* 1 for MMIO */ |
| /* I/O BARs have BASE_ADDR in bits 15:4, IO_MASK in 47:36 */ |
| /* MMIO BARs have BASE_ADDR in bits 31:12, MEM_MASK in 63:44 */ |
| |
| /* Pin function selection MSR (IDE vs. flash on the IDE pins) */ |
| #define MSR_DIVIL_BALL_OPTS 0x51400015 |
| #define PIN_OPT_IDE (1<<0) /* 0 for flash, 1 for IDE */ |
| |
| /* Registers within the NAND flash controller BAR -- memory mapped */ |
| #define MM_NAND_DATA 0x00 /* 0 to 0x7ff, in fact */ |
| #define MM_NAND_CTL 0x800 /* Any even address 0x800-0x80e */ |
| #define MM_NAND_IO 0x801 /* Any odd address 0x801-0x80f */ |
| #define MM_NAND_STS 0x810 |
| #define MM_NAND_ECC_LSB 0x811 |
| #define MM_NAND_ECC_MSB 0x812 |
| #define MM_NAND_ECC_COL 0x813 |
| #define MM_NAND_LAC 0x814 |
| #define MM_NAND_ECC_CTL 0x815 |
| |
| /* Registers within the NAND flash controller BAR -- I/O mapped */ |
| #define IO_NAND_DATA 0x00 /* 0 to 3, in fact */ |
| #define IO_NAND_CTL 0x04 |
| #define IO_NAND_IO 0x05 |
| #define IO_NAND_STS 0x06 |
| #define IO_NAND_ECC_CTL 0x08 |
| #define IO_NAND_ECC_LSB 0x09 |
| #define IO_NAND_ECC_MSB 0x0a |
| #define IO_NAND_ECC_COL 0x0b |
| #define IO_NAND_LAC 0x0c |
| |
| #define CS_NAND_CTL_DIST_EN (1<<4) /* Enable NAND Distract interrupt */ |
| #define CS_NAND_CTL_RDY_INT_MASK (1<<3) /* Enable RDY/BUSY# interrupt */ |
| #define CS_NAND_CTL_ALE (1<<2) |
| #define CS_NAND_CTL_CLE (1<<1) |
| #define CS_NAND_CTL_CE (1<<0) /* Keep low; 1 to reset */ |
| |
| #define CS_NAND_STS_FLASH_RDY (1<<3) |
| #define CS_NAND_CTLR_BUSY (1<<2) |
| #define CS_NAND_CMD_COMP (1<<1) |
| #define CS_NAND_DIST_ST (1<<0) |
| |
| #define CS_NAND_ECC_PARITY (1<<2) |
| #define CS_NAND_ECC_CLRECC (1<<1) |
| #define CS_NAND_ECC_ENECC (1<<0) |
| |
| struct cs553x_nand_controller { |
| struct nand_controller base; |
| struct nand_chip chip; |
| void __iomem *mmio; |
| }; |
| |
| static struct cs553x_nand_controller * |
| to_cs553x(struct nand_controller *controller) |
| { |
| return container_of(controller, struct cs553x_nand_controller, base); |
| } |
| |
| static int cs553x_write_ctrl_byte(struct cs553x_nand_controller *cs553x, |
| u32 ctl, u8 data) |
| { |
| u8 status; |
| int ret; |
| |
| writeb(ctl, cs553x->mmio + MM_NAND_CTL); |
| writeb(data, cs553x->mmio + MM_NAND_IO); |
| ret = readb_poll_timeout_atomic(cs553x->mmio + MM_NAND_STS, status, |
| !(status & CS_NAND_CTLR_BUSY), 1, |
| 100000); |
| if (ret) |
| return ret; |
| |
| return 0; |
| } |
| |
| static void cs553x_data_in(struct cs553x_nand_controller *cs553x, void *buf, |
| unsigned int len) |
| { |
| writeb(0, cs553x->mmio + MM_NAND_CTL); |
| while (unlikely(len > 0x800)) { |
| memcpy_fromio(buf, cs553x->mmio, 0x800); |
| buf += 0x800; |
| len -= 0x800; |
| } |
| memcpy_fromio(buf, cs553x->mmio, len); |
| } |
| |
| static void cs553x_data_out(struct cs553x_nand_controller *cs553x, |
| const void *buf, unsigned int len) |
| { |
| writeb(0, cs553x->mmio + MM_NAND_CTL); |
| while (unlikely(len > 0x800)) { |
| memcpy_toio(cs553x->mmio, buf, 0x800); |
| buf += 0x800; |
| len -= 0x800; |
| } |
| memcpy_toio(cs553x->mmio, buf, len); |
| } |
| |
| static int cs553x_wait_ready(struct cs553x_nand_controller *cs553x, |
| unsigned int timeout_ms) |
| { |
| u8 mask = CS_NAND_CTLR_BUSY | CS_NAND_STS_FLASH_RDY; |
| u8 status; |
| |
| return readb_poll_timeout(cs553x->mmio + MM_NAND_STS, status, |
| (status & mask) == CS_NAND_STS_FLASH_RDY, 100, |
| timeout_ms * 1000); |
| } |
| |
| static int cs553x_exec_instr(struct cs553x_nand_controller *cs553x, |
| const struct nand_op_instr *instr) |
| { |
| unsigned int i; |
| int ret = 0; |
| |
| switch (instr->type) { |
| case NAND_OP_CMD_INSTR: |
| ret = cs553x_write_ctrl_byte(cs553x, CS_NAND_CTL_CLE, |
| instr->ctx.cmd.opcode); |
| break; |
| |
| case NAND_OP_ADDR_INSTR: |
| for (i = 0; i < instr->ctx.addr.naddrs; i++) { |
| ret = cs553x_write_ctrl_byte(cs553x, CS_NAND_CTL_ALE, |
| instr->ctx.addr.addrs[i]); |
| if (ret) |
| break; |
| } |
| break; |
| |
| case NAND_OP_DATA_IN_INSTR: |
| cs553x_data_in(cs553x, instr->ctx.data.buf.in, |
| instr->ctx.data.len); |
| break; |
| |
| case NAND_OP_DATA_OUT_INSTR: |
| cs553x_data_out(cs553x, instr->ctx.data.buf.out, |
| instr->ctx.data.len); |
| break; |
| |
| case NAND_OP_WAITRDY_INSTR: |
| ret = cs553x_wait_ready(cs553x, instr->ctx.waitrdy.timeout_ms); |
| break; |
| } |
| |
| if (instr->delay_ns) |
| ndelay(instr->delay_ns); |
| |
| return ret; |
| } |
| |
| static int cs553x_exec_op(struct nand_chip *this, |
| const struct nand_operation *op, |
| bool check_only) |
| { |
| struct cs553x_nand_controller *cs553x = to_cs553x(this->controller); |
| unsigned int i; |
| int ret; |
| |
| if (check_only) |
| return true; |
| |
| /* De-assert the CE pin */ |
| writeb(0, cs553x->mmio + MM_NAND_CTL); |
| for (i = 0; i < op->ninstrs; i++) { |
| ret = cs553x_exec_instr(cs553x, &op->instrs[i]); |
| if (ret) |
| break; |
| } |
| |
| /* Re-assert the CE pin. */ |
| writeb(CS_NAND_CTL_CE, cs553x->mmio + MM_NAND_CTL); |
| |
| return ret; |
| } |
| |
| static void cs_enable_hwecc(struct nand_chip *this, int mode) |
| { |
| struct cs553x_nand_controller *cs553x = to_cs553x(this->controller); |
| |
| writeb(0x07, cs553x->mmio + MM_NAND_ECC_CTL); |
| } |
| |
| static int cs_calculate_ecc(struct nand_chip *this, const u_char *dat, |
| u_char *ecc_code) |
| { |
| struct cs553x_nand_controller *cs553x = to_cs553x(this->controller); |
| uint32_t ecc; |
| |
| ecc = readl(cs553x->mmio + MM_NAND_STS); |
| |
| ecc_code[1] = ecc >> 8; |
| ecc_code[0] = ecc >> 16; |
| ecc_code[2] = ecc >> 24; |
| return 0; |
| } |
| |
| static struct cs553x_nand_controller *controllers[4]; |
| |
| static const struct nand_controller_ops cs553x_nand_controller_ops = { |
| .exec_op = cs553x_exec_op, |
| }; |
| |
| static int __init cs553x_init_one(int cs, int mmio, unsigned long adr) |
| { |
| struct cs553x_nand_controller *controller; |
| int err = 0; |
| struct nand_chip *this; |
| struct mtd_info *new_mtd; |
| |
| pr_notice("Probing CS553x NAND controller CS#%d at %sIO 0x%08lx\n", |
| cs, mmio ? "MM" : "P", adr); |
| |
| if (!mmio) { |
| pr_notice("PIO mode not yet implemented for CS553X NAND controller\n"); |
| return -ENXIO; |
| } |
| |
| /* Allocate memory for MTD device structure and private data */ |
| controller = kzalloc(sizeof(*controller), GFP_KERNEL); |
| if (!controller) { |
| err = -ENOMEM; |
| goto out; |
| } |
| |
| this = &controller->chip; |
| nand_controller_init(&controller->base); |
| controller->base.ops = &cs553x_nand_controller_ops; |
| this->controller = &controller->base; |
| new_mtd = nand_to_mtd(this); |
| |
| /* Link the private data with the MTD structure */ |
| new_mtd->owner = THIS_MODULE; |
| |
| /* map physical address */ |
| controller->mmio = ioremap(adr, 4096); |
| if (!controller->mmio) { |
| pr_warn("ioremap cs553x NAND @0x%08lx failed\n", adr); |
| err = -EIO; |
| goto out_mtd; |
| } |
| |
| this->ecc.engine_type = NAND_ECC_ENGINE_TYPE_ON_HOST; |
| this->ecc.size = 256; |
| this->ecc.bytes = 3; |
| this->ecc.hwctl = cs_enable_hwecc; |
| this->ecc.calculate = cs_calculate_ecc; |
| this->ecc.correct = nand_correct_data; |
| this->ecc.strength = 1; |
| |
| /* Enable the following for a flash based bad block table */ |
| this->bbt_options = NAND_BBT_USE_FLASH; |
| |
| new_mtd->name = kasprintf(GFP_KERNEL, "cs553x_nand_cs%d", cs); |
| if (!new_mtd->name) { |
| err = -ENOMEM; |
| goto out_ior; |
| } |
| |
| /* Scan to find existence of the device */ |
| err = nand_scan(this, 1); |
| if (err) |
| goto out_free; |
| |
| controllers[cs] = controller; |
| goto out; |
| |
| out_free: |
| kfree(new_mtd->name); |
| out_ior: |
| iounmap(controller->mmio); |
| out_mtd: |
| kfree(controller); |
| out: |
| return err; |
| } |
| |
| static int is_geode(void) |
| { |
| /* These are the CPUs which will have a CS553[56] companion chip */ |
| if (boot_cpu_data.x86_vendor == X86_VENDOR_AMD && |
| boot_cpu_data.x86 == 5 && |
| boot_cpu_data.x86_model == 10) |
| return 1; /* Geode LX */ |
| |
| if ((boot_cpu_data.x86_vendor == X86_VENDOR_NSC || |
| boot_cpu_data.x86_vendor == X86_VENDOR_CYRIX) && |
| boot_cpu_data.x86 == 5 && |
| boot_cpu_data.x86_model == 5) |
| return 1; /* Geode GX (née GX2) */ |
| |
| return 0; |
| } |
| |
| static int __init cs553x_init(void) |
| { |
| int err = -ENXIO; |
| int i; |
| uint64_t val; |
| |
| /* If the CPU isn't a Geode GX or LX, abort */ |
| if (!is_geode()) |
| return -ENXIO; |
| |
| /* If it doesn't have the CS553[56], abort */ |
| rdmsrl(MSR_DIVIL_GLD_CAP, val); |
| val &= ~0xFFULL; |
| if (val != CAP_CS5535 && val != CAP_CS5536) |
| return -ENXIO; |
| |
| /* If it doesn't have the NAND controller enabled, abort */ |
| rdmsrl(MSR_DIVIL_BALL_OPTS, val); |
| if (val & PIN_OPT_IDE) { |
| pr_info("CS553x NAND controller: Flash I/O not enabled in MSR_DIVIL_BALL_OPTS.\n"); |
| return -ENXIO; |
| } |
| |
| for (i = 0; i < NR_CS553X_CONTROLLERS; i++) { |
| rdmsrl(MSR_DIVIL_LBAR_FLSH0 + i, val); |
| |
| if ((val & (FLSH_LBAR_EN|FLSH_NOR_NAND)) == (FLSH_LBAR_EN|FLSH_NOR_NAND)) |
| err = cs553x_init_one(i, !!(val & FLSH_MEM_IO), val & 0xFFFFFFFF); |
| } |
| |
| /* Register all devices together here. This means we can easily hack it to |
| do mtdconcat etc. if we want to. */ |
| for (i = 0; i < NR_CS553X_CONTROLLERS; i++) { |
| if (controllers[i]) { |
| /* If any devices registered, return success. Else the last error. */ |
| mtd_device_register(nand_to_mtd(&controllers[i]->chip), |
| NULL, 0); |
| err = 0; |
| } |
| } |
| |
| return err; |
| } |
| |
| module_init(cs553x_init); |
| |
| static void __exit cs553x_cleanup(void) |
| { |
| int i; |
| |
| for (i = 0; i < NR_CS553X_CONTROLLERS; i++) { |
| struct cs553x_nand_controller *controller = controllers[i]; |
| struct nand_chip *this = &controller->chip; |
| struct mtd_info *mtd = nand_to_mtd(this); |
| int ret; |
| |
| if (!mtd) |
| continue; |
| |
| /* Release resources, unregister device */ |
| ret = mtd_device_unregister(mtd); |
| WARN_ON(ret); |
| nand_cleanup(this); |
| kfree(mtd->name); |
| controllers[i] = NULL; |
| |
| /* unmap physical address */ |
| iounmap(controller->mmio); |
| |
| /* Free the MTD device structure */ |
| kfree(controller); |
| } |
| } |
| |
| module_exit(cs553x_cleanup); |
| |
| MODULE_LICENSE("GPL"); |
| MODULE_AUTHOR("David Woodhouse <dwmw2@infradead.org>"); |
| MODULE_DESCRIPTION("NAND controller driver for AMD CS5535/CS5536 companion chip"); |