| // SPDX-License-Identifier: GPL-2.0-only |
| /* |
| * Intel Wireless WiMAX Connection 2400m |
| * Generic probe/disconnect, reset and message passing |
| * |
| * Copyright (C) 2007-2008 Intel Corporation <linux-wimax@intel.com> |
| * Inaky Perez-Gonzalez <inaky.perez-gonzalez@intel.com> |
| * |
| * See i2400m.h for driver documentation. This contains helpers for |
| * the driver model glue [_setup()/_release()], handling device resets |
| * [_dev_reset_handle()], and the backends for the WiMAX stack ops |
| * reset [_op_reset()] and message from user [_op_msg_from_user()]. |
| * |
| * ROADMAP: |
| * |
| * i2400m_op_msg_from_user() |
| * i2400m_msg_to_dev() |
| * wimax_msg_to_user_send() |
| * |
| * i2400m_op_reset() |
| * i240m->bus_reset() |
| * |
| * i2400m_dev_reset_handle() |
| * __i2400m_dev_reset_handle() |
| * __i2400m_dev_stop() |
| * __i2400m_dev_start() |
| * |
| * i2400m_setup() |
| * i2400m->bus_setup() |
| * i2400m_bootrom_init() |
| * register_netdev() |
| * wimax_dev_add() |
| * i2400m_dev_start() |
| * __i2400m_dev_start() |
| * i2400m_dev_bootstrap() |
| * i2400m_tx_setup() |
| * i2400m->bus_dev_start() |
| * i2400m_firmware_check() |
| * i2400m_check_mac_addr() |
| * |
| * i2400m_release() |
| * i2400m_dev_stop() |
| * __i2400m_dev_stop() |
| * i2400m_dev_shutdown() |
| * i2400m->bus_dev_stop() |
| * i2400m_tx_release() |
| * i2400m->bus_release() |
| * wimax_dev_rm() |
| * unregister_netdev() |
| */ |
| #include "i2400m.h" |
| #include <linux/etherdevice.h> |
| #include <linux/wimax/i2400m.h> |
| #include <linux/module.h> |
| #include <linux/moduleparam.h> |
| #include <linux/suspend.h> |
| #include <linux/slab.h> |
| |
| #define D_SUBMODULE driver |
| #include "debug-levels.h" |
| |
| |
| static char i2400m_debug_params[128]; |
| module_param_string(debug, i2400m_debug_params, sizeof(i2400m_debug_params), |
| 0644); |
| MODULE_PARM_DESC(debug, |
| "String of space-separated NAME:VALUE pairs, where NAMEs " |
| "are the different debug submodules and VALUE are the " |
| "initial debug value to set."); |
| |
| static char i2400m_barkers_params[128]; |
| module_param_string(barkers, i2400m_barkers_params, |
| sizeof(i2400m_barkers_params), 0644); |
| MODULE_PARM_DESC(barkers, |
| "String of comma-separated 32-bit values; each is " |
| "recognized as the value the device sends as a reboot " |
| "signal; values are appended to a list--setting one value " |
| "as zero cleans the existing list and starts a new one."); |
| |
| /* |
| * WiMAX stack operation: relay a message from user space |
| * |
| * @wimax_dev: device descriptor |
| * @pipe_name: named pipe the message is for |
| * @msg_buf: pointer to the message bytes |
| * @msg_len: length of the buffer |
| * @genl_info: passed by the generic netlink layer |
| * |
| * The WiMAX stack will call this function when a message was received |
| * from user space. |
| * |
| * For the i2400m, this is an L3L4 message, as specified in |
| * include/linux/wimax/i2400m.h, and thus prefixed with a 'struct |
| * i2400m_l3l4_hdr'. Driver (and device) expect the messages to be |
| * coded in Little Endian. |
| * |
| * This function just verifies that the header declaration and the |
| * payload are consistent and then deals with it, either forwarding it |
| * to the device or procesing it locally. |
| * |
| * In the i2400m, messages are basically commands that will carry an |
| * ack, so we use i2400m_msg_to_dev() and then deliver the ack back to |
| * user space. The rx.c code might intercept the response and use it |
| * to update the driver's state, but then it will pass it on so it can |
| * be relayed back to user space. |
| * |
| * Note that asynchronous events from the device are processed and |
| * sent to user space in rx.c. |
| */ |
| static |
| int i2400m_op_msg_from_user(struct wimax_dev *wimax_dev, |
| const char *pipe_name, |
| const void *msg_buf, size_t msg_len, |
| const struct genl_info *genl_info) |
| { |
| int result; |
| struct i2400m *i2400m = wimax_dev_to_i2400m(wimax_dev); |
| struct device *dev = i2400m_dev(i2400m); |
| struct sk_buff *ack_skb; |
| |
| d_fnstart(4, dev, "(wimax_dev %p [i2400m %p] msg_buf %p " |
| "msg_len %zu genl_info %p)\n", wimax_dev, i2400m, |
| msg_buf, msg_len, genl_info); |
| ack_skb = i2400m_msg_to_dev(i2400m, msg_buf, msg_len); |
| result = PTR_ERR(ack_skb); |
| if (IS_ERR(ack_skb)) |
| goto error_msg_to_dev; |
| result = wimax_msg_send(&i2400m->wimax_dev, ack_skb); |
| error_msg_to_dev: |
| d_fnend(4, dev, "(wimax_dev %p [i2400m %p] msg_buf %p msg_len %zu " |
| "genl_info %p) = %d\n", wimax_dev, i2400m, msg_buf, msg_len, |
| genl_info, result); |
| return result; |
| } |
| |
| |
| /* |
| * Context to wait for a reset to finalize |
| */ |
| struct i2400m_reset_ctx { |
| struct completion completion; |
| int result; |
| }; |
| |
| |
| /* |
| * WiMAX stack operation: reset a device |
| * |
| * @wimax_dev: device descriptor |
| * |
| * See the documentation for wimax_reset() and wimax_dev->op_reset for |
| * the requirements of this function. The WiMAX stack guarantees |
| * serialization on calls to this function. |
| * |
| * Do a warm reset on the device; if it fails, resort to a cold reset |
| * and return -ENODEV. On successful warm reset, we need to block |
| * until it is complete. |
| * |
| * The bus-driver implementation of reset takes care of falling back |
| * to cold reset if warm fails. |
| */ |
| static |
| int i2400m_op_reset(struct wimax_dev *wimax_dev) |
| { |
| int result; |
| struct i2400m *i2400m = wimax_dev_to_i2400m(wimax_dev); |
| struct device *dev = i2400m_dev(i2400m); |
| struct i2400m_reset_ctx ctx = { |
| .completion = COMPLETION_INITIALIZER_ONSTACK(ctx.completion), |
| .result = 0, |
| }; |
| |
| d_fnstart(4, dev, "(wimax_dev %p)\n", wimax_dev); |
| mutex_lock(&i2400m->init_mutex); |
| i2400m->reset_ctx = &ctx; |
| mutex_unlock(&i2400m->init_mutex); |
| result = i2400m_reset(i2400m, I2400M_RT_WARM); |
| if (result < 0) |
| goto out; |
| result = wait_for_completion_timeout(&ctx.completion, 4*HZ); |
| if (result == 0) |
| result = -ETIMEDOUT; |
| else if (result > 0) |
| result = ctx.result; |
| /* if result < 0, pass it on */ |
| mutex_lock(&i2400m->init_mutex); |
| i2400m->reset_ctx = NULL; |
| mutex_unlock(&i2400m->init_mutex); |
| out: |
| d_fnend(4, dev, "(wimax_dev %p) = %d\n", wimax_dev, result); |
| return result; |
| } |
| |
| |
| /* |
| * Check the MAC address we got from boot mode is ok |
| * |
| * @i2400m: device descriptor |
| * |
| * Returns: 0 if ok, < 0 errno code on error. |
| */ |
| static |
| int i2400m_check_mac_addr(struct i2400m *i2400m) |
| { |
| int result; |
| struct device *dev = i2400m_dev(i2400m); |
| struct sk_buff *skb; |
| const struct i2400m_tlv_detailed_device_info *ddi; |
| struct net_device *net_dev = i2400m->wimax_dev.net_dev; |
| |
| d_fnstart(3, dev, "(i2400m %p)\n", i2400m); |
| skb = i2400m_get_device_info(i2400m); |
| if (IS_ERR(skb)) { |
| result = PTR_ERR(skb); |
| dev_err(dev, "Cannot verify MAC address, error reading: %d\n", |
| result); |
| goto error; |
| } |
| /* Extract MAC address */ |
| ddi = (void *) skb->data; |
| BUILD_BUG_ON(ETH_ALEN != sizeof(ddi->mac_address)); |
| d_printf(2, dev, "GET DEVICE INFO: mac addr %pM\n", |
| ddi->mac_address); |
| if (!memcmp(net_dev->perm_addr, ddi->mac_address, |
| sizeof(ddi->mac_address))) |
| goto ok; |
| dev_warn(dev, "warning: device reports a different MAC address " |
| "to that of boot mode's\n"); |
| dev_warn(dev, "device reports %pM\n", ddi->mac_address); |
| dev_warn(dev, "boot mode reported %pM\n", net_dev->perm_addr); |
| if (is_zero_ether_addr(ddi->mac_address)) |
| dev_err(dev, "device reports an invalid MAC address, " |
| "not updating\n"); |
| else { |
| dev_warn(dev, "updating MAC address\n"); |
| net_dev->addr_len = ETH_ALEN; |
| memcpy(net_dev->perm_addr, ddi->mac_address, ETH_ALEN); |
| memcpy(net_dev->dev_addr, ddi->mac_address, ETH_ALEN); |
| } |
| ok: |
| result = 0; |
| kfree_skb(skb); |
| error: |
| d_fnend(3, dev, "(i2400m %p) = %d\n", i2400m, result); |
| return result; |
| } |
| |
| |
| /** |
| * __i2400m_dev_start - Bring up driver communication with the device |
| * |
| * @i2400m: device descriptor |
| * @flags: boot mode flags |
| * |
| * Returns: 0 if ok, < 0 errno code on error. |
| * |
| * Uploads firmware and brings up all the resources needed to be able |
| * to communicate with the device. |
| * |
| * The workqueue has to be setup early, at least before RX handling |
| * (it's only real user for now) so it can process reports as they |
| * arrive. We also want to destroy it if we retry, to make sure it is |
| * flushed...easier like this. |
| * |
| * TX needs to be setup before the bus-specific code (otherwise on |
| * shutdown, the bus-tx code could try to access it). |
| */ |
| static |
| int __i2400m_dev_start(struct i2400m *i2400m, enum i2400m_bri flags) |
| { |
| int result; |
| struct wimax_dev *wimax_dev = &i2400m->wimax_dev; |
| struct net_device *net_dev = wimax_dev->net_dev; |
| struct device *dev = i2400m_dev(i2400m); |
| int times = i2400m->bus_bm_retries; |
| |
| d_fnstart(3, dev, "(i2400m %p)\n", i2400m); |
| retry: |
| result = i2400m_dev_bootstrap(i2400m, flags); |
| if (result < 0) { |
| dev_err(dev, "cannot bootstrap device: %d\n", result); |
| goto error_bootstrap; |
| } |
| result = i2400m_tx_setup(i2400m); |
| if (result < 0) |
| goto error_tx_setup; |
| result = i2400m_rx_setup(i2400m); |
| if (result < 0) |
| goto error_rx_setup; |
| i2400m->work_queue = create_singlethread_workqueue(wimax_dev->name); |
| if (i2400m->work_queue == NULL) { |
| result = -ENOMEM; |
| dev_err(dev, "cannot create workqueue\n"); |
| goto error_create_workqueue; |
| } |
| if (i2400m->bus_dev_start) { |
| result = i2400m->bus_dev_start(i2400m); |
| if (result < 0) |
| goto error_bus_dev_start; |
| } |
| i2400m->ready = 1; |
| wmb(); /* see i2400m->ready's documentation */ |
| /* process pending reports from the device */ |
| queue_work(i2400m->work_queue, &i2400m->rx_report_ws); |
| result = i2400m_firmware_check(i2400m); /* fw versions ok? */ |
| if (result < 0) |
| goto error_fw_check; |
| /* At this point is ok to send commands to the device */ |
| result = i2400m_check_mac_addr(i2400m); |
| if (result < 0) |
| goto error_check_mac_addr; |
| result = i2400m_dev_initialize(i2400m); |
| if (result < 0) |
| goto error_dev_initialize; |
| |
| /* We don't want any additional unwanted error recovery triggered |
| * from any other context so if anything went wrong before we come |
| * here, let's keep i2400m->error_recovery untouched and leave it to |
| * dev_reset_handle(). See dev_reset_handle(). */ |
| |
| atomic_dec(&i2400m->error_recovery); |
| /* Every thing works so far, ok, now we are ready to |
| * take error recovery if it's required. */ |
| |
| /* At this point, reports will come for the device and set it |
| * to the right state if it is different than UNINITIALIZED */ |
| d_fnend(3, dev, "(net_dev %p [i2400m %p]) = %d\n", |
| net_dev, i2400m, result); |
| return result; |
| |
| error_dev_initialize: |
| error_check_mac_addr: |
| error_fw_check: |
| i2400m->ready = 0; |
| wmb(); /* see i2400m->ready's documentation */ |
| flush_workqueue(i2400m->work_queue); |
| if (i2400m->bus_dev_stop) |
| i2400m->bus_dev_stop(i2400m); |
| error_bus_dev_start: |
| destroy_workqueue(i2400m->work_queue); |
| error_create_workqueue: |
| i2400m_rx_release(i2400m); |
| error_rx_setup: |
| i2400m_tx_release(i2400m); |
| error_tx_setup: |
| error_bootstrap: |
| if (result == -EL3RST && times-- > 0) { |
| flags = I2400M_BRI_SOFT|I2400M_BRI_MAC_REINIT; |
| goto retry; |
| } |
| d_fnend(3, dev, "(net_dev %p [i2400m %p]) = %d\n", |
| net_dev, i2400m, result); |
| return result; |
| } |
| |
| |
| static |
| int i2400m_dev_start(struct i2400m *i2400m, enum i2400m_bri bm_flags) |
| { |
| int result = 0; |
| mutex_lock(&i2400m->init_mutex); /* Well, start the device */ |
| if (i2400m->updown == 0) { |
| result = __i2400m_dev_start(i2400m, bm_flags); |
| if (result >= 0) { |
| i2400m->updown = 1; |
| i2400m->alive = 1; |
| wmb();/* see i2400m->updown and i2400m->alive's doc */ |
| } |
| } |
| mutex_unlock(&i2400m->init_mutex); |
| return result; |
| } |
| |
| |
| /** |
| * i2400m_dev_stop - Tear down driver communication with the device |
| * |
| * @i2400m: device descriptor |
| * |
| * Returns: 0 if ok, < 0 errno code on error. |
| * |
| * Releases all the resources allocated to communicate with the |
| * device. Note we cannot destroy the workqueue earlier as until RX is |
| * fully destroyed, it could still try to schedule jobs. |
| */ |
| static |
| void __i2400m_dev_stop(struct i2400m *i2400m) |
| { |
| struct wimax_dev *wimax_dev = &i2400m->wimax_dev; |
| struct device *dev = i2400m_dev(i2400m); |
| |
| d_fnstart(3, dev, "(i2400m %p)\n", i2400m); |
| wimax_state_change(wimax_dev, __WIMAX_ST_QUIESCING); |
| i2400m_msg_to_dev_cancel_wait(i2400m, -EL3RST); |
| complete(&i2400m->msg_completion); |
| i2400m_net_wake_stop(i2400m); |
| i2400m_dev_shutdown(i2400m); |
| /* |
| * Make sure no report hooks are running *before* we stop the |
| * communication infrastructure with the device. |
| */ |
| i2400m->ready = 0; /* nobody can queue work anymore */ |
| wmb(); /* see i2400m->ready's documentation */ |
| flush_workqueue(i2400m->work_queue); |
| |
| if (i2400m->bus_dev_stop) |
| i2400m->bus_dev_stop(i2400m); |
| destroy_workqueue(i2400m->work_queue); |
| i2400m_rx_release(i2400m); |
| i2400m_tx_release(i2400m); |
| wimax_state_change(wimax_dev, WIMAX_ST_DOWN); |
| d_fnend(3, dev, "(i2400m %p) = 0\n", i2400m); |
| } |
| |
| |
| /* |
| * Watch out -- we only need to stop if there is a need for it. The |
| * device could have reset itself and failed to come up again (see |
| * _i2400m_dev_reset_handle()). |
| */ |
| static |
| void i2400m_dev_stop(struct i2400m *i2400m) |
| { |
| mutex_lock(&i2400m->init_mutex); |
| if (i2400m->updown) { |
| __i2400m_dev_stop(i2400m); |
| i2400m->updown = 0; |
| i2400m->alive = 0; |
| wmb(); /* see i2400m->updown and i2400m->alive's doc */ |
| } |
| mutex_unlock(&i2400m->init_mutex); |
| } |
| |
| |
| /* |
| * Listen to PM events to cache the firmware before suspend/hibernation |
| * |
| * When the device comes out of suspend, it might go into reset and |
| * firmware has to be uploaded again. At resume, most of the times, we |
| * can't load firmware images from disk, so we need to cache it. |
| * |
| * i2400m_fw_cache() will allocate a kobject and attach the firmware |
| * to it; that way we don't have to worry too much about the fw loader |
| * hitting a race condition. |
| * |
| * Note: modus operandi stolen from the Orinoco driver; thx. |
| */ |
| static |
| int i2400m_pm_notifier(struct notifier_block *notifier, |
| unsigned long pm_event, |
| void *unused) |
| { |
| struct i2400m *i2400m = |
| container_of(notifier, struct i2400m, pm_notifier); |
| struct device *dev = i2400m_dev(i2400m); |
| |
| d_fnstart(3, dev, "(i2400m %p pm_event %lx)\n", i2400m, pm_event); |
| switch (pm_event) { |
| case PM_HIBERNATION_PREPARE: |
| case PM_SUSPEND_PREPARE: |
| i2400m_fw_cache(i2400m); |
| break; |
| case PM_POST_RESTORE: |
| /* Restore from hibernation failed. We need to clean |
| * up in exactly the same way, so fall through. */ |
| case PM_POST_HIBERNATION: |
| case PM_POST_SUSPEND: |
| i2400m_fw_uncache(i2400m); |
| break; |
| |
| case PM_RESTORE_PREPARE: |
| default: |
| break; |
| } |
| d_fnend(3, dev, "(i2400m %p pm_event %lx) = void\n", i2400m, pm_event); |
| return NOTIFY_DONE; |
| } |
| |
| |
| /* |
| * pre-reset is called before a device is going on reset |
| * |
| * This has to be followed by a call to i2400m_post_reset(), otherwise |
| * bad things might happen. |
| */ |
| int i2400m_pre_reset(struct i2400m *i2400m) |
| { |
| struct device *dev = i2400m_dev(i2400m); |
| |
| d_fnstart(3, dev, "(i2400m %p)\n", i2400m); |
| d_printf(1, dev, "pre-reset shut down\n"); |
| |
| mutex_lock(&i2400m->init_mutex); |
| if (i2400m->updown) { |
| netif_tx_disable(i2400m->wimax_dev.net_dev); |
| __i2400m_dev_stop(i2400m); |
| /* down't set updown to zero -- this way |
| * post_reset can restore properly */ |
| } |
| mutex_unlock(&i2400m->init_mutex); |
| if (i2400m->bus_release) |
| i2400m->bus_release(i2400m); |
| d_fnend(3, dev, "(i2400m %p) = 0\n", i2400m); |
| return 0; |
| } |
| EXPORT_SYMBOL_GPL(i2400m_pre_reset); |
| |
| |
| /* |
| * Restore device state after a reset |
| * |
| * Do the work needed after a device reset to bring it up to the same |
| * state as it was before the reset. |
| * |
| * NOTE: this requires i2400m->init_mutex taken |
| */ |
| int i2400m_post_reset(struct i2400m *i2400m) |
| { |
| int result = 0; |
| struct device *dev = i2400m_dev(i2400m); |
| |
| d_fnstart(3, dev, "(i2400m %p)\n", i2400m); |
| d_printf(1, dev, "post-reset start\n"); |
| if (i2400m->bus_setup) { |
| result = i2400m->bus_setup(i2400m); |
| if (result < 0) { |
| dev_err(dev, "bus-specific setup failed: %d\n", |
| result); |
| goto error_bus_setup; |
| } |
| } |
| mutex_lock(&i2400m->init_mutex); |
| if (i2400m->updown) { |
| result = __i2400m_dev_start( |
| i2400m, I2400M_BRI_SOFT | I2400M_BRI_MAC_REINIT); |
| if (result < 0) |
| goto error_dev_start; |
| } |
| mutex_unlock(&i2400m->init_mutex); |
| d_fnend(3, dev, "(i2400m %p) = %d\n", i2400m, result); |
| return result; |
| |
| error_dev_start: |
| if (i2400m->bus_release) |
| i2400m->bus_release(i2400m); |
| /* even if the device was up, it could not be recovered, so we |
| * mark it as down. */ |
| i2400m->updown = 0; |
| wmb(); /* see i2400m->updown's documentation */ |
| mutex_unlock(&i2400m->init_mutex); |
| error_bus_setup: |
| d_fnend(3, dev, "(i2400m %p) = %d\n", i2400m, result); |
| return result; |
| } |
| EXPORT_SYMBOL_GPL(i2400m_post_reset); |
| |
| |
| /* |
| * The device has rebooted; fix up the device and the driver |
| * |
| * Tear down the driver communication with the device, reload the |
| * firmware and reinitialize the communication with the device. |
| * |
| * If someone calls a reset when the device's firmware is down, in |
| * theory we won't see it because we are not listening. However, just |
| * in case, leave the code to handle it. |
| * |
| * If there is a reset context, use it; this means someone is waiting |
| * for us to tell him when the reset operation is complete and the |
| * device is ready to rock again. |
| * |
| * NOTE: if we are in the process of bringing up or down the |
| * communication with the device [running i2400m_dev_start() or |
| * _stop()], don't do anything, let it fail and handle it. |
| * |
| * This function is ran always in a thread context |
| * |
| * This function gets passed, as payload to i2400m_work() a 'const |
| * char *' ptr with a "reason" why the reset happened (for messages). |
| */ |
| static |
| void __i2400m_dev_reset_handle(struct work_struct *ws) |
| { |
| struct i2400m *i2400m = container_of(ws, struct i2400m, reset_ws); |
| const char *reason = i2400m->reset_reason; |
| struct device *dev = i2400m_dev(i2400m); |
| struct i2400m_reset_ctx *ctx = i2400m->reset_ctx; |
| int result; |
| |
| d_fnstart(3, dev, "(ws %p i2400m %p reason %s)\n", ws, i2400m, reason); |
| |
| i2400m->boot_mode = 1; |
| wmb(); /* Make sure i2400m_msg_to_dev() sees boot_mode */ |
| |
| result = 0; |
| if (mutex_trylock(&i2400m->init_mutex) == 0) { |
| /* We are still in i2400m_dev_start() [let it fail] or |
| * i2400m_dev_stop() [we are shutting down anyway, so |
| * ignore it] or we are resetting somewhere else. */ |
| dev_err(dev, "device rebooted somewhere else?\n"); |
| i2400m_msg_to_dev_cancel_wait(i2400m, -EL3RST); |
| complete(&i2400m->msg_completion); |
| goto out; |
| } |
| |
| dev_err(dev, "%s: reinitializing driver\n", reason); |
| rmb(); |
| if (i2400m->updown) { |
| __i2400m_dev_stop(i2400m); |
| i2400m->updown = 0; |
| wmb(); /* see i2400m->updown's documentation */ |
| } |
| |
| if (i2400m->alive) { |
| result = __i2400m_dev_start(i2400m, |
| I2400M_BRI_SOFT | I2400M_BRI_MAC_REINIT); |
| if (result < 0) { |
| dev_err(dev, "%s: cannot start the device: %d\n", |
| reason, result); |
| result = -EUCLEAN; |
| if (atomic_read(&i2400m->bus_reset_retries) |
| >= I2400M_BUS_RESET_RETRIES) { |
| result = -ENODEV; |
| dev_err(dev, "tried too many times to " |
| "reset the device, giving up\n"); |
| } |
| } |
| } |
| |
| if (i2400m->reset_ctx) { |
| ctx->result = result; |
| complete(&ctx->completion); |
| } |
| mutex_unlock(&i2400m->init_mutex); |
| if (result == -EUCLEAN) { |
| /* |
| * We come here because the reset during operational mode |
| * wasn't successfully done and need to proceed to a bus |
| * reset. For the dev_reset_handle() to be able to handle |
| * the reset event later properly, we restore boot_mode back |
| * to the state before previous reset. ie: just like we are |
| * issuing the bus reset for the first time |
| */ |
| i2400m->boot_mode = 0; |
| wmb(); |
| |
| atomic_inc(&i2400m->bus_reset_retries); |
| /* ops, need to clean up [w/ init_mutex not held] */ |
| result = i2400m_reset(i2400m, I2400M_RT_BUS); |
| if (result >= 0) |
| result = -ENODEV; |
| } else { |
| rmb(); |
| if (i2400m->alive) { |
| /* great, we expect the device state up and |
| * dev_start() actually brings the device state up */ |
| i2400m->updown = 1; |
| wmb(); |
| atomic_set(&i2400m->bus_reset_retries, 0); |
| } |
| } |
| out: |
| d_fnend(3, dev, "(ws %p i2400m %p reason %s) = void\n", |
| ws, i2400m, reason); |
| } |
| |
| |
| /** |
| * i2400m_dev_reset_handle - Handle a device's reset in a thread context |
| * |
| * Schedule a device reset handling out on a thread context, so it |
| * is safe to call from atomic context. We can't use the i2400m's |
| * queue as we are going to destroy it and reinitialize it as part of |
| * the driver bringup/bringup process. |
| * |
| * See __i2400m_dev_reset_handle() for details; that takes care of |
| * reinitializing the driver to handle the reset, calling into the |
| * bus-specific functions ops as needed. |
| */ |
| int i2400m_dev_reset_handle(struct i2400m *i2400m, const char *reason) |
| { |
| i2400m->reset_reason = reason; |
| return schedule_work(&i2400m->reset_ws); |
| } |
| EXPORT_SYMBOL_GPL(i2400m_dev_reset_handle); |
| |
| |
| /* |
| * The actual work of error recovery. |
| * |
| * The current implementation of error recovery is to trigger a bus reset. |
| */ |
| static |
| void __i2400m_error_recovery(struct work_struct *ws) |
| { |
| struct i2400m *i2400m = container_of(ws, struct i2400m, recovery_ws); |
| |
| i2400m_reset(i2400m, I2400M_RT_BUS); |
| } |
| |
| /* |
| * Schedule a work struct for error recovery. |
| * |
| * The intention of error recovery is to bring back the device to some |
| * known state whenever TX sees -110 (-ETIMEOUT) on copying the data to |
| * the device. The TX failure could mean a device bus stuck, so the current |
| * error recovery implementation is to trigger a bus reset to the device |
| * and hopefully it can bring back the device. |
| * |
| * The actual work of error recovery has to be in a thread context because |
| * it is kicked off in the TX thread (i2400ms->tx_workqueue) which is to be |
| * destroyed by the error recovery mechanism (currently a bus reset). |
| * |
| * Also, there may be already a queue of TX works that all hit |
| * the -ETIMEOUT error condition because the device is stuck already. |
| * Since bus reset is used as the error recovery mechanism and we don't |
| * want consecutive bus resets simply because the multiple TX works |
| * in the queue all hit the same device erratum, the flag "error_recovery" |
| * is introduced for preventing unwanted consecutive bus resets. |
| * |
| * Error recovery shall only be invoked again if previous one was completed. |
| * The flag error_recovery is set when error recovery mechanism is scheduled, |
| * and is checked when we need to schedule another error recovery. If it is |
| * in place already, then we shouldn't schedule another one. |
| */ |
| void i2400m_error_recovery(struct i2400m *i2400m) |
| { |
| if (atomic_add_return(1, &i2400m->error_recovery) == 1) |
| schedule_work(&i2400m->recovery_ws); |
| else |
| atomic_dec(&i2400m->error_recovery); |
| } |
| EXPORT_SYMBOL_GPL(i2400m_error_recovery); |
| |
| /* |
| * Alloc the command and ack buffers for boot mode |
| * |
| * Get the buffers needed to deal with boot mode messages. |
| */ |
| static |
| int i2400m_bm_buf_alloc(struct i2400m *i2400m) |
| { |
| int result; |
| |
| result = -ENOMEM; |
| i2400m->bm_cmd_buf = kzalloc(I2400M_BM_CMD_BUF_SIZE, GFP_KERNEL); |
| if (i2400m->bm_cmd_buf == NULL) |
| goto error_bm_cmd_kzalloc; |
| i2400m->bm_ack_buf = kzalloc(I2400M_BM_ACK_BUF_SIZE, GFP_KERNEL); |
| if (i2400m->bm_ack_buf == NULL) |
| goto error_bm_ack_buf_kzalloc; |
| return 0; |
| |
| error_bm_ack_buf_kzalloc: |
| kfree(i2400m->bm_cmd_buf); |
| error_bm_cmd_kzalloc: |
| return result; |
| } |
| |
| |
| /* |
| * Free boot mode command and ack buffers. |
| */ |
| static |
| void i2400m_bm_buf_free(struct i2400m *i2400m) |
| { |
| kfree(i2400m->bm_ack_buf); |
| kfree(i2400m->bm_cmd_buf); |
| } |
| |
| |
| /** |
| * i2400m_init - Initialize a 'struct i2400m' from all zeroes |
| * |
| * This is a bus-generic API call. |
| */ |
| void i2400m_init(struct i2400m *i2400m) |
| { |
| wimax_dev_init(&i2400m->wimax_dev); |
| |
| i2400m->boot_mode = 1; |
| i2400m->rx_reorder = 1; |
| init_waitqueue_head(&i2400m->state_wq); |
| |
| spin_lock_init(&i2400m->tx_lock); |
| i2400m->tx_pl_min = UINT_MAX; |
| i2400m->tx_size_min = UINT_MAX; |
| |
| spin_lock_init(&i2400m->rx_lock); |
| i2400m->rx_pl_min = UINT_MAX; |
| i2400m->rx_size_min = UINT_MAX; |
| INIT_LIST_HEAD(&i2400m->rx_reports); |
| INIT_WORK(&i2400m->rx_report_ws, i2400m_report_hook_work); |
| |
| mutex_init(&i2400m->msg_mutex); |
| init_completion(&i2400m->msg_completion); |
| |
| mutex_init(&i2400m->init_mutex); |
| /* wake_tx_ws is initialized in i2400m_tx_setup() */ |
| |
| INIT_WORK(&i2400m->reset_ws, __i2400m_dev_reset_handle); |
| INIT_WORK(&i2400m->recovery_ws, __i2400m_error_recovery); |
| |
| atomic_set(&i2400m->bus_reset_retries, 0); |
| |
| i2400m->alive = 0; |
| |
| /* initialize error_recovery to 1 for denoting we |
| * are not yet ready to take any error recovery */ |
| atomic_set(&i2400m->error_recovery, 1); |
| } |
| EXPORT_SYMBOL_GPL(i2400m_init); |
| |
| |
| int i2400m_reset(struct i2400m *i2400m, enum i2400m_reset_type rt) |
| { |
| struct net_device *net_dev = i2400m->wimax_dev.net_dev; |
| |
| /* |
| * Make sure we stop TXs and down the carrier before |
| * resetting; this is needed to avoid things like |
| * i2400m_wake_tx() scheduling stuff in parallel. |
| */ |
| if (net_dev->reg_state == NETREG_REGISTERED) { |
| netif_tx_disable(net_dev); |
| netif_carrier_off(net_dev); |
| } |
| return i2400m->bus_reset(i2400m, rt); |
| } |
| EXPORT_SYMBOL_GPL(i2400m_reset); |
| |
| |
| /** |
| * i2400m_setup - bus-generic setup function for the i2400m device |
| * |
| * @i2400m: device descriptor (bus-specific parts have been initialized) |
| * |
| * Returns: 0 if ok, < 0 errno code on error. |
| * |
| * Sets up basic device comunication infrastructure, boots the ROM to |
| * read the MAC address, registers with the WiMAX and network stacks |
| * and then brings up the device. |
| */ |
| int i2400m_setup(struct i2400m *i2400m, enum i2400m_bri bm_flags) |
| { |
| int result = -ENODEV; |
| struct device *dev = i2400m_dev(i2400m); |
| struct wimax_dev *wimax_dev = &i2400m->wimax_dev; |
| struct net_device *net_dev = i2400m->wimax_dev.net_dev; |
| |
| d_fnstart(3, dev, "(i2400m %p)\n", i2400m); |
| |
| snprintf(wimax_dev->name, sizeof(wimax_dev->name), |
| "i2400m-%s:%s", dev->bus->name, dev_name(dev)); |
| |
| result = i2400m_bm_buf_alloc(i2400m); |
| if (result < 0) { |
| dev_err(dev, "cannot allocate bootmode scratch buffers\n"); |
| goto error_bm_buf_alloc; |
| } |
| |
| if (i2400m->bus_setup) { |
| result = i2400m->bus_setup(i2400m); |
| if (result < 0) { |
| dev_err(dev, "bus-specific setup failed: %d\n", |
| result); |
| goto error_bus_setup; |
| } |
| } |
| |
| result = i2400m_bootrom_init(i2400m, bm_flags); |
| if (result < 0) { |
| dev_err(dev, "read mac addr: bootrom init " |
| "failed: %d\n", result); |
| goto error_bootrom_init; |
| } |
| result = i2400m_read_mac_addr(i2400m); |
| if (result < 0) |
| goto error_read_mac_addr; |
| eth_random_addr(i2400m->src_mac_addr); |
| |
| i2400m->pm_notifier.notifier_call = i2400m_pm_notifier; |
| register_pm_notifier(&i2400m->pm_notifier); |
| |
| result = register_netdev(net_dev); /* Okey dokey, bring it up */ |
| if (result < 0) { |
| dev_err(dev, "cannot register i2400m network device: %d\n", |
| result); |
| goto error_register_netdev; |
| } |
| netif_carrier_off(net_dev); |
| |
| i2400m->wimax_dev.op_msg_from_user = i2400m_op_msg_from_user; |
| i2400m->wimax_dev.op_rfkill_sw_toggle = i2400m_op_rfkill_sw_toggle; |
| i2400m->wimax_dev.op_reset = i2400m_op_reset; |
| |
| result = wimax_dev_add(&i2400m->wimax_dev, net_dev); |
| if (result < 0) |
| goto error_wimax_dev_add; |
| |
| /* Now setup all that requires a registered net and wimax device. */ |
| result = sysfs_create_group(&net_dev->dev.kobj, &i2400m_dev_attr_group); |
| if (result < 0) { |
| dev_err(dev, "cannot setup i2400m's sysfs: %d\n", result); |
| goto error_sysfs_setup; |
| } |
| |
| result = i2400m_debugfs_add(i2400m); |
| if (result < 0) { |
| dev_err(dev, "cannot setup i2400m's debugfs: %d\n", result); |
| goto error_debugfs_setup; |
| } |
| |
| result = i2400m_dev_start(i2400m, bm_flags); |
| if (result < 0) |
| goto error_dev_start; |
| d_fnend(3, dev, "(i2400m %p) = %d\n", i2400m, result); |
| return result; |
| |
| error_dev_start: |
| i2400m_debugfs_rm(i2400m); |
| error_debugfs_setup: |
| sysfs_remove_group(&i2400m->wimax_dev.net_dev->dev.kobj, |
| &i2400m_dev_attr_group); |
| error_sysfs_setup: |
| wimax_dev_rm(&i2400m->wimax_dev); |
| error_wimax_dev_add: |
| unregister_netdev(net_dev); |
| error_register_netdev: |
| unregister_pm_notifier(&i2400m->pm_notifier); |
| error_read_mac_addr: |
| error_bootrom_init: |
| if (i2400m->bus_release) |
| i2400m->bus_release(i2400m); |
| error_bus_setup: |
| i2400m_bm_buf_free(i2400m); |
| error_bm_buf_alloc: |
| d_fnend(3, dev, "(i2400m %p) = %d\n", i2400m, result); |
| return result; |
| } |
| EXPORT_SYMBOL_GPL(i2400m_setup); |
| |
| |
| /** |
| * i2400m_release - release the bus-generic driver resources |
| * |
| * Sends a disconnect message and undoes any setup done by i2400m_setup() |
| */ |
| void i2400m_release(struct i2400m *i2400m) |
| { |
| struct device *dev = i2400m_dev(i2400m); |
| |
| d_fnstart(3, dev, "(i2400m %p)\n", i2400m); |
| netif_stop_queue(i2400m->wimax_dev.net_dev); |
| |
| i2400m_dev_stop(i2400m); |
| |
| cancel_work_sync(&i2400m->reset_ws); |
| cancel_work_sync(&i2400m->recovery_ws); |
| |
| i2400m_debugfs_rm(i2400m); |
| sysfs_remove_group(&i2400m->wimax_dev.net_dev->dev.kobj, |
| &i2400m_dev_attr_group); |
| wimax_dev_rm(&i2400m->wimax_dev); |
| unregister_netdev(i2400m->wimax_dev.net_dev); |
| unregister_pm_notifier(&i2400m->pm_notifier); |
| if (i2400m->bus_release) |
| i2400m->bus_release(i2400m); |
| i2400m_bm_buf_free(i2400m); |
| d_fnend(3, dev, "(i2400m %p) = void\n", i2400m); |
| } |
| EXPORT_SYMBOL_GPL(i2400m_release); |
| |
| |
| /* |
| * Debug levels control; see debug.h |
| */ |
| struct d_level D_LEVEL[] = { |
| D_SUBMODULE_DEFINE(control), |
| D_SUBMODULE_DEFINE(driver), |
| D_SUBMODULE_DEFINE(debugfs), |
| D_SUBMODULE_DEFINE(fw), |
| D_SUBMODULE_DEFINE(netdev), |
| D_SUBMODULE_DEFINE(rfkill), |
| D_SUBMODULE_DEFINE(rx), |
| D_SUBMODULE_DEFINE(sysfs), |
| D_SUBMODULE_DEFINE(tx), |
| }; |
| size_t D_LEVEL_SIZE = ARRAY_SIZE(D_LEVEL); |
| |
| |
| static |
| int __init i2400m_driver_init(void) |
| { |
| d_parse_params(D_LEVEL, D_LEVEL_SIZE, i2400m_debug_params, |
| "i2400m.debug"); |
| return i2400m_barker_db_init(i2400m_barkers_params); |
| } |
| module_init(i2400m_driver_init); |
| |
| static |
| void __exit i2400m_driver_exit(void) |
| { |
| i2400m_barker_db_exit(); |
| } |
| module_exit(i2400m_driver_exit); |
| |
| MODULE_AUTHOR("Intel Corporation <linux-wimax@intel.com>"); |
| MODULE_DESCRIPTION("Intel 2400M WiMAX networking bus-generic driver"); |
| MODULE_LICENSE("GPL"); |