| /* |
| * Copyright (c) 2008 Atheros Communications Inc. |
| * |
| * Permission to use, copy, modify, and/or distribute this software for any |
| * purpose with or without fee is hereby granted, provided that the above |
| * copyright notice and this permission notice appear in all copies. |
| * |
| * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES |
| * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF |
| * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR |
| * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES |
| * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN |
| * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF |
| * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE. |
| */ |
| |
| #include "core.h" |
| |
| #define BITS_PER_BYTE 8 |
| #define OFDM_PLCP_BITS 22 |
| #define HT_RC_2_MCS(_rc) ((_rc) & 0x0f) |
| #define HT_RC_2_STREAMS(_rc) ((((_rc) & 0x78) >> 3) + 1) |
| #define L_STF 8 |
| #define L_LTF 8 |
| #define L_SIG 4 |
| #define HT_SIG 8 |
| #define HT_STF 4 |
| #define HT_LTF(_ns) (4 * (_ns)) |
| #define SYMBOL_TIME(_ns) ((_ns) << 2) /* ns * 4 us */ |
| #define SYMBOL_TIME_HALFGI(_ns) (((_ns) * 18 + 4) / 5) /* ns * 3.6 us */ |
| #define NUM_SYMBOLS_PER_USEC(_usec) (_usec >> 2) |
| #define NUM_SYMBOLS_PER_USEC_HALFGI(_usec) (((_usec*5)-4)/18) |
| |
| #define OFDM_SIFS_TIME 16 |
| |
| static u32 bits_per_symbol[][2] = { |
| /* 20MHz 40MHz */ |
| { 26, 54 }, /* 0: BPSK */ |
| { 52, 108 }, /* 1: QPSK 1/2 */ |
| { 78, 162 }, /* 2: QPSK 3/4 */ |
| { 104, 216 }, /* 3: 16-QAM 1/2 */ |
| { 156, 324 }, /* 4: 16-QAM 3/4 */ |
| { 208, 432 }, /* 5: 64-QAM 2/3 */ |
| { 234, 486 }, /* 6: 64-QAM 3/4 */ |
| { 260, 540 }, /* 7: 64-QAM 5/6 */ |
| { 52, 108 }, /* 8: BPSK */ |
| { 104, 216 }, /* 9: QPSK 1/2 */ |
| { 156, 324 }, /* 10: QPSK 3/4 */ |
| { 208, 432 }, /* 11: 16-QAM 1/2 */ |
| { 312, 648 }, /* 12: 16-QAM 3/4 */ |
| { 416, 864 }, /* 13: 64-QAM 2/3 */ |
| { 468, 972 }, /* 14: 64-QAM 3/4 */ |
| { 520, 1080 }, /* 15: 64-QAM 5/6 */ |
| }; |
| |
| #define IS_HT_RATE(_rate) ((_rate) & 0x80) |
| |
| static void ath_tx_send_normal(struct ath_softc *sc, struct ath_txq *txq, |
| struct ath_atx_tid *tid, |
| struct list_head *bf_head); |
| static void ath_tx_complete_buf(struct ath_softc *sc, struct ath_buf *bf, |
| struct list_head *bf_q, |
| int txok, int sendbar); |
| static void ath_tx_txqaddbuf(struct ath_softc *sc, struct ath_txq *txq, |
| struct list_head *head); |
| static void ath_buf_set_rate(struct ath_softc *sc, struct ath_buf *bf); |
| |
| /*********************/ |
| /* Aggregation logic */ |
| /*********************/ |
| |
| static int ath_aggr_query(struct ath_softc *sc, struct ath_node *an, u8 tidno) |
| { |
| struct ath_atx_tid *tid; |
| tid = ATH_AN_2_TID(an, tidno); |
| |
| if (tid->state & AGGR_ADDBA_COMPLETE || |
| tid->state & AGGR_ADDBA_PROGRESS) |
| return 1; |
| else |
| return 0; |
| } |
| |
| static void ath_tx_queue_tid(struct ath_txq *txq, struct ath_atx_tid *tid) |
| { |
| struct ath_atx_ac *ac = tid->ac; |
| |
| if (tid->paused) |
| return; |
| |
| if (tid->sched) |
| return; |
| |
| tid->sched = true; |
| list_add_tail(&tid->list, &ac->tid_q); |
| |
| if (ac->sched) |
| return; |
| |
| ac->sched = true; |
| list_add_tail(&ac->list, &txq->axq_acq); |
| } |
| |
| static void ath_tx_pause_tid(struct ath_softc *sc, struct ath_atx_tid *tid) |
| { |
| struct ath_txq *txq = &sc->tx.txq[tid->ac->qnum]; |
| |
| spin_lock_bh(&txq->axq_lock); |
| tid->paused++; |
| spin_unlock_bh(&txq->axq_lock); |
| } |
| |
| static void ath_tx_resume_tid(struct ath_softc *sc, struct ath_atx_tid *tid) |
| { |
| struct ath_txq *txq = &sc->tx.txq[tid->ac->qnum]; |
| |
| ASSERT(tid->paused > 0); |
| spin_lock_bh(&txq->axq_lock); |
| |
| tid->paused--; |
| |
| if (tid->paused > 0) |
| goto unlock; |
| |
| if (list_empty(&tid->buf_q)) |
| goto unlock; |
| |
| ath_tx_queue_tid(txq, tid); |
| ath_txq_schedule(sc, txq); |
| unlock: |
| spin_unlock_bh(&txq->axq_lock); |
| } |
| |
| static void ath_tx_flush_tid(struct ath_softc *sc, struct ath_atx_tid *tid) |
| { |
| struct ath_txq *txq = &sc->tx.txq[tid->ac->qnum]; |
| struct ath_buf *bf; |
| struct list_head bf_head; |
| INIT_LIST_HEAD(&bf_head); |
| |
| ASSERT(tid->paused > 0); |
| spin_lock_bh(&txq->axq_lock); |
| |
| tid->paused--; |
| |
| if (tid->paused > 0) { |
| spin_unlock_bh(&txq->axq_lock); |
| return; |
| } |
| |
| while (!list_empty(&tid->buf_q)) { |
| bf = list_first_entry(&tid->buf_q, struct ath_buf, list); |
| ASSERT(!bf_isretried(bf)); |
| list_cut_position(&bf_head, &tid->buf_q, &bf->bf_lastfrm->list); |
| ath_tx_send_normal(sc, txq, tid, &bf_head); |
| } |
| |
| spin_unlock_bh(&txq->axq_lock); |
| } |
| |
| static void ath_tx_update_baw(struct ath_softc *sc, struct ath_atx_tid *tid, |
| int seqno) |
| { |
| int index, cindex; |
| |
| index = ATH_BA_INDEX(tid->seq_start, seqno); |
| cindex = (tid->baw_head + index) & (ATH_TID_MAX_BUFS - 1); |
| |
| tid->tx_buf[cindex] = NULL; |
| |
| while (tid->baw_head != tid->baw_tail && !tid->tx_buf[tid->baw_head]) { |
| INCR(tid->seq_start, IEEE80211_SEQ_MAX); |
| INCR(tid->baw_head, ATH_TID_MAX_BUFS); |
| } |
| } |
| |
| static void ath_tx_addto_baw(struct ath_softc *sc, struct ath_atx_tid *tid, |
| struct ath_buf *bf) |
| { |
| int index, cindex; |
| |
| if (bf_isretried(bf)) |
| return; |
| |
| index = ATH_BA_INDEX(tid->seq_start, bf->bf_seqno); |
| cindex = (tid->baw_head + index) & (ATH_TID_MAX_BUFS - 1); |
| |
| ASSERT(tid->tx_buf[cindex] == NULL); |
| tid->tx_buf[cindex] = bf; |
| |
| if (index >= ((tid->baw_tail - tid->baw_head) & |
| (ATH_TID_MAX_BUFS - 1))) { |
| tid->baw_tail = cindex; |
| INCR(tid->baw_tail, ATH_TID_MAX_BUFS); |
| } |
| } |
| |
| /* |
| * TODO: For frame(s) that are in the retry state, we will reuse the |
| * sequence number(s) without setting the retry bit. The |
| * alternative is to give up on these and BAR the receiver's window |
| * forward. |
| */ |
| static void ath_tid_drain(struct ath_softc *sc, struct ath_txq *txq, |
| struct ath_atx_tid *tid) |
| |
| { |
| struct ath_buf *bf; |
| struct list_head bf_head; |
| INIT_LIST_HEAD(&bf_head); |
| |
| for (;;) { |
| if (list_empty(&tid->buf_q)) |
| break; |
| bf = list_first_entry(&tid->buf_q, struct ath_buf, list); |
| |
| list_cut_position(&bf_head, &tid->buf_q, &bf->bf_lastfrm->list); |
| |
| if (bf_isretried(bf)) |
| ath_tx_update_baw(sc, tid, bf->bf_seqno); |
| |
| spin_unlock(&txq->axq_lock); |
| ath_tx_complete_buf(sc, bf, &bf_head, 0, 0); |
| spin_lock(&txq->axq_lock); |
| } |
| |
| tid->seq_next = tid->seq_start; |
| tid->baw_tail = tid->baw_head; |
| } |
| |
| static void ath_tx_set_retry(struct ath_softc *sc, struct ath_buf *bf) |
| { |
| struct sk_buff *skb; |
| struct ieee80211_hdr *hdr; |
| |
| bf->bf_state.bf_type |= BUF_RETRY; |
| bf->bf_retries++; |
| |
| skb = bf->bf_mpdu; |
| hdr = (struct ieee80211_hdr *)skb->data; |
| hdr->frame_control |= cpu_to_le16(IEEE80211_FCTL_RETRY); |
| } |
| |
| static void ath_tx_complete_aggr_rifs(struct ath_softc *sc, struct ath_txq *txq, |
| struct ath_buf *bf, struct list_head *bf_q, |
| int txok) |
| { |
| struct ath_node *an = NULL; |
| struct sk_buff *skb; |
| struct ieee80211_tx_info *tx_info; |
| struct ath_atx_tid *tid = NULL; |
| struct ath_buf *bf_last = bf->bf_lastbf; |
| struct ath_desc *ds = bf_last->bf_desc; |
| struct ath_buf *bf_next, *bf_lastq = NULL; |
| struct list_head bf_head, bf_pending; |
| u16 seq_st = 0; |
| u32 ba[WME_BA_BMP_SIZE >> 5]; |
| int isaggr, txfail, txpending, sendbar = 0, needreset = 0; |
| |
| skb = (struct sk_buff *)bf->bf_mpdu; |
| tx_info = IEEE80211_SKB_CB(skb); |
| |
| if (tx_info->control.sta) { |
| an = (struct ath_node *)tx_info->control.sta->drv_priv; |
| tid = ATH_AN_2_TID(an, bf->bf_tidno); |
| } |
| |
| isaggr = bf_isaggr(bf); |
| if (isaggr) { |
| if (txok) { |
| if (ATH_DS_TX_BA(ds)) { |
| seq_st = ATH_DS_BA_SEQ(ds); |
| memcpy(ba, ATH_DS_BA_BITMAP(ds), |
| WME_BA_BMP_SIZE >> 3); |
| } else { |
| memset(ba, 0, WME_BA_BMP_SIZE >> 3); |
| |
| /* |
| * AR5416 can become deaf/mute when BA |
| * issue happens. Chip needs to be reset. |
| * But AP code may have sychronization issues |
| * when perform internal reset in this routine. |
| * Only enable reset in STA mode for now. |
| */ |
| if (sc->sc_ah->ah_opmode == |
| NL80211_IFTYPE_STATION) |
| needreset = 1; |
| } |
| } else { |
| memset(ba, 0, WME_BA_BMP_SIZE >> 3); |
| } |
| } |
| |
| INIT_LIST_HEAD(&bf_pending); |
| INIT_LIST_HEAD(&bf_head); |
| |
| while (bf) { |
| txfail = txpending = 0; |
| bf_next = bf->bf_next; |
| |
| if (ATH_BA_ISSET(ba, ATH_BA_INDEX(seq_st, bf->bf_seqno))) { |
| /* transmit completion, subframe is |
| * acked by block ack */ |
| } else if (!isaggr && txok) { |
| /* transmit completion */ |
| } else { |
| |
| if (!(tid->state & AGGR_CLEANUP) && |
| ds->ds_txstat.ts_flags != ATH9K_TX_SW_ABORTED) { |
| if (bf->bf_retries < ATH_MAX_SW_RETRIES) { |
| ath_tx_set_retry(sc, bf); |
| txpending = 1; |
| } else { |
| bf->bf_state.bf_type |= BUF_XRETRY; |
| txfail = 1; |
| sendbar = 1; |
| } |
| } else { |
| /* |
| * cleanup in progress, just fail |
| * the un-acked sub-frames |
| */ |
| txfail = 1; |
| } |
| } |
| |
| if (bf_next == NULL) { |
| ASSERT(bf->bf_lastfrm == bf_last); |
| if (!list_empty(bf_q)) { |
| bf_lastq = list_entry(bf_q->prev, |
| struct ath_buf, list); |
| list_cut_position(&bf_head, |
| bf_q, &bf_lastq->list); |
| } else { |
| INIT_LIST_HEAD(&bf_head); |
| } |
| } else { |
| ASSERT(!list_empty(bf_q)); |
| list_cut_position(&bf_head, |
| bf_q, &bf->bf_lastfrm->list); |
| } |
| |
| if (!txpending) { |
| /* |
| * complete the acked-ones/xretried ones; update |
| * block-ack window |
| */ |
| spin_lock_bh(&txq->axq_lock); |
| ath_tx_update_baw(sc, tid, bf->bf_seqno); |
| spin_unlock_bh(&txq->axq_lock); |
| |
| ath_tx_complete_buf(sc, bf, &bf_head, !txfail, sendbar); |
| } else { |
| /* |
| * retry the un-acked ones |
| */ |
| if (bf->bf_next == NULL && |
| bf_last->bf_status & ATH_BUFSTATUS_STALE) { |
| struct ath_buf *tbf; |
| |
| /* allocate new descriptor */ |
| spin_lock_bh(&sc->tx.txbuflock); |
| ASSERT(!list_empty((&sc->tx.txbuf))); |
| tbf = list_first_entry(&sc->tx.txbuf, |
| struct ath_buf, list); |
| list_del(&tbf->list); |
| spin_unlock_bh(&sc->tx.txbuflock); |
| |
| ATH_TXBUF_RESET(tbf); |
| |
| /* copy descriptor content */ |
| tbf->bf_mpdu = bf_last->bf_mpdu; |
| tbf->bf_buf_addr = bf_last->bf_buf_addr; |
| *(tbf->bf_desc) = *(bf_last->bf_desc); |
| |
| /* link it to the frame */ |
| if (bf_lastq) { |
| bf_lastq->bf_desc->ds_link = |
| tbf->bf_daddr; |
| bf->bf_lastfrm = tbf; |
| ath9k_hw_cleartxdesc(sc->sc_ah, |
| bf->bf_lastfrm->bf_desc); |
| } else { |
| tbf->bf_state = bf_last->bf_state; |
| tbf->bf_lastfrm = tbf; |
| ath9k_hw_cleartxdesc(sc->sc_ah, |
| tbf->bf_lastfrm->bf_desc); |
| |
| /* copy the DMA context */ |
| tbf->bf_dmacontext = |
| bf_last->bf_dmacontext; |
| } |
| list_add_tail(&tbf->list, &bf_head); |
| } else { |
| /* |
| * Clear descriptor status words for |
| * software retry |
| */ |
| ath9k_hw_cleartxdesc(sc->sc_ah, |
| bf->bf_lastfrm->bf_desc); |
| } |
| |
| /* |
| * Put this buffer to the temporary pending |
| * queue to retain ordering |
| */ |
| list_splice_tail_init(&bf_head, &bf_pending); |
| } |
| |
| bf = bf_next; |
| } |
| |
| if (tid->state & AGGR_CLEANUP) { |
| /* check to see if we're done with cleaning the h/w queue */ |
| spin_lock_bh(&txq->axq_lock); |
| |
| if (tid->baw_head == tid->baw_tail) { |
| tid->state &= ~AGGR_ADDBA_COMPLETE; |
| tid->addba_exchangeattempts = 0; |
| spin_unlock_bh(&txq->axq_lock); |
| |
| tid->state &= ~AGGR_CLEANUP; |
| |
| /* send buffered frames as singles */ |
| ath_tx_flush_tid(sc, tid); |
| } else |
| spin_unlock_bh(&txq->axq_lock); |
| |
| return; |
| } |
| |
| /* |
| * prepend un-acked frames to the beginning of the pending frame queue |
| */ |
| if (!list_empty(&bf_pending)) { |
| spin_lock_bh(&txq->axq_lock); |
| list_splice(&bf_pending, &tid->buf_q); |
| ath_tx_queue_tid(txq, tid); |
| spin_unlock_bh(&txq->axq_lock); |
| } |
| |
| if (needreset) |
| ath_reset(sc, false); |
| |
| return; |
| } |
| |
| static u32 ath_lookup_rate(struct ath_softc *sc, struct ath_buf *bf, |
| struct ath_atx_tid *tid) |
| { |
| struct ath_rate_table *rate_table = sc->cur_rate_table; |
| struct sk_buff *skb; |
| struct ieee80211_tx_info *tx_info; |
| struct ieee80211_tx_rate *rates; |
| struct ath_tx_info_priv *tx_info_priv; |
| u32 max_4ms_framelen, frame_length; |
| u16 aggr_limit, legacy = 0, maxampdu; |
| int i; |
| |
| skb = (struct sk_buff *)bf->bf_mpdu; |
| tx_info = IEEE80211_SKB_CB(skb); |
| rates = tx_info->control.rates; |
| tx_info_priv = |
| (struct ath_tx_info_priv *)tx_info->rate_driver_data[0]; |
| |
| /* |
| * Find the lowest frame length among the rate series that will have a |
| * 4ms transmit duration. |
| * TODO - TXOP limit needs to be considered. |
| */ |
| max_4ms_framelen = ATH_AMPDU_LIMIT_MAX; |
| |
| for (i = 0; i < 4; i++) { |
| if (rates[i].count) { |
| if (!WLAN_RC_PHY_HT(rate_table->info[rates[i].idx].phy)) { |
| legacy = 1; |
| break; |
| } |
| |
| frame_length = |
| rate_table->info[rates[i].idx].max_4ms_framelen; |
| max_4ms_framelen = min(max_4ms_framelen, frame_length); |
| } |
| } |
| |
| /* |
| * limit aggregate size by the minimum rate if rate selected is |
| * not a probe rate, if rate selected is a probe rate then |
| * avoid aggregation of this packet. |
| */ |
| if (tx_info->flags & IEEE80211_TX_CTL_RATE_CTRL_PROBE || legacy) |
| return 0; |
| |
| aggr_limit = min(max_4ms_framelen, |
| (u32)ATH_AMPDU_LIMIT_DEFAULT); |
| |
| /* |
| * h/w can accept aggregates upto 16 bit lengths (65535). |
| * The IE, however can hold upto 65536, which shows up here |
| * as zero. Ignore 65536 since we are constrained by hw. |
| */ |
| maxampdu = tid->an->maxampdu; |
| if (maxampdu) |
| aggr_limit = min(aggr_limit, maxampdu); |
| |
| return aggr_limit; |
| } |
| |
| /* |
| * returns the number of delimiters to be added to |
| * meet the minimum required mpdudensity. |
| * caller should make sure that the rate is HT rate . |
| */ |
| static int ath_compute_num_delims(struct ath_softc *sc, struct ath_atx_tid *tid, |
| struct ath_buf *bf, u16 frmlen) |
| { |
| struct ath_rate_table *rt = sc->cur_rate_table; |
| struct sk_buff *skb = bf->bf_mpdu; |
| struct ieee80211_tx_info *tx_info = IEEE80211_SKB_CB(skb); |
| u32 nsymbits, nsymbols, mpdudensity; |
| u16 minlen; |
| u8 rc, flags, rix; |
| int width, half_gi, ndelim, mindelim; |
| |
| /* Select standard number of delimiters based on frame length alone */ |
| ndelim = ATH_AGGR_GET_NDELIM(frmlen); |
| |
| /* |
| * If encryption enabled, hardware requires some more padding between |
| * subframes. |
| * TODO - this could be improved to be dependent on the rate. |
| * The hardware can keep up at lower rates, but not higher rates |
| */ |
| if (bf->bf_keytype != ATH9K_KEY_TYPE_CLEAR) |
| ndelim += ATH_AGGR_ENCRYPTDELIM; |
| |
| /* |
| * Convert desired mpdu density from microeconds to bytes based |
| * on highest rate in rate series (i.e. first rate) to determine |
| * required minimum length for subframe. Take into account |
| * whether high rate is 20 or 40Mhz and half or full GI. |
| */ |
| mpdudensity = tid->an->mpdudensity; |
| |
| /* |
| * If there is no mpdu density restriction, no further calculation |
| * is needed. |
| */ |
| if (mpdudensity == 0) |
| return ndelim; |
| |
| rix = tx_info->control.rates[0].idx; |
| flags = tx_info->control.rates[0].flags; |
| rc = rt->info[rix].ratecode; |
| width = (flags & IEEE80211_TX_RC_40_MHZ_WIDTH) ? 1 : 0; |
| half_gi = (flags & IEEE80211_TX_RC_SHORT_GI) ? 1 : 0; |
| |
| if (half_gi) |
| nsymbols = NUM_SYMBOLS_PER_USEC_HALFGI(mpdudensity); |
| else |
| nsymbols = NUM_SYMBOLS_PER_USEC(mpdudensity); |
| |
| if (nsymbols == 0) |
| nsymbols = 1; |
| |
| nsymbits = bits_per_symbol[HT_RC_2_MCS(rc)][width]; |
| minlen = (nsymbols * nsymbits) / BITS_PER_BYTE; |
| |
| /* Is frame shorter than required minimum length? */ |
| if (frmlen < minlen) { |
| /* Get the minimum number of delimiters required. */ |
| mindelim = (minlen - frmlen) / ATH_AGGR_DELIM_SZ; |
| ndelim = max(mindelim, ndelim); |
| } |
| |
| return ndelim; |
| } |
| |
| static enum ATH_AGGR_STATUS ath_tx_form_aggr(struct ath_softc *sc, |
| struct ath_atx_tid *tid, struct list_head *bf_q, |
| struct ath_buf **bf_last, struct aggr_rifs_param *param, |
| int *prev_frames) |
| { |
| #define PADBYTES(_len) ((4 - ((_len) % 4)) % 4) |
| struct ath_buf *bf, *tbf, *bf_first, *bf_prev = NULL; |
| struct list_head bf_head; |
| int rl = 0, nframes = 0, ndelim; |
| u16 aggr_limit = 0, al = 0, bpad = 0, |
| al_delta, h_baw = tid->baw_size / 2; |
| enum ATH_AGGR_STATUS status = ATH_AGGR_DONE; |
| int prev_al = 0; |
| INIT_LIST_HEAD(&bf_head); |
| |
| BUG_ON(list_empty(&tid->buf_q)); |
| |
| bf_first = list_first_entry(&tid->buf_q, struct ath_buf, list); |
| |
| do { |
| bf = list_first_entry(&tid->buf_q, struct ath_buf, list); |
| |
| /* |
| * do not step over block-ack window |
| */ |
| if (!BAW_WITHIN(tid->seq_start, tid->baw_size, bf->bf_seqno)) { |
| status = ATH_AGGR_BAW_CLOSED; |
| break; |
| } |
| |
| if (!rl) { |
| aggr_limit = ath_lookup_rate(sc, bf, tid); |
| rl = 1; |
| } |
| |
| /* |
| * do not exceed aggregation limit |
| */ |
| al_delta = ATH_AGGR_DELIM_SZ + bf->bf_frmlen; |
| |
| if (nframes && (aggr_limit < |
| (al + bpad + al_delta + prev_al))) { |
| status = ATH_AGGR_LIMITED; |
| break; |
| } |
| |
| /* |
| * do not exceed subframe limit |
| */ |
| if ((nframes + *prev_frames) >= |
| min((int)h_baw, ATH_AMPDU_SUBFRAME_DEFAULT)) { |
| status = ATH_AGGR_LIMITED; |
| break; |
| } |
| |
| /* |
| * add padding for previous frame to aggregation length |
| */ |
| al += bpad + al_delta; |
| |
| /* |
| * Get the delimiters needed to meet the MPDU |
| * density for this node. |
| */ |
| ndelim = ath_compute_num_delims(sc, tid, bf_first, bf->bf_frmlen); |
| |
| bpad = PADBYTES(al_delta) + (ndelim << 2); |
| |
| bf->bf_next = NULL; |
| bf->bf_lastfrm->bf_desc->ds_link = 0; |
| |
| /* |
| * this packet is part of an aggregate |
| * - remove all descriptors belonging to this frame from |
| * software queue |
| * - add it to block ack window |
| * - set up descriptors for aggregation |
| */ |
| list_cut_position(&bf_head, &tid->buf_q, &bf->bf_lastfrm->list); |
| ath_tx_addto_baw(sc, tid, bf); |
| |
| list_for_each_entry(tbf, &bf_head, list) { |
| ath9k_hw_set11n_aggr_middle(sc->sc_ah, |
| tbf->bf_desc, ndelim); |
| } |
| |
| /* |
| * link buffers of this frame to the aggregate |
| */ |
| list_splice_tail_init(&bf_head, bf_q); |
| nframes++; |
| |
| if (bf_prev) { |
| bf_prev->bf_next = bf; |
| bf_prev->bf_lastfrm->bf_desc->ds_link = bf->bf_daddr; |
| } |
| bf_prev = bf; |
| |
| } while (!list_empty(&tid->buf_q)); |
| |
| bf_first->bf_al = al; |
| bf_first->bf_nframes = nframes; |
| *bf_last = bf_prev; |
| return status; |
| #undef PADBYTES |
| } |
| |
| static void ath_tx_sched_aggr(struct ath_softc *sc, struct ath_txq *txq, |
| struct ath_atx_tid *tid) |
| { |
| struct ath_buf *bf, *tbf, *bf_last, *bf_lastaggr = NULL; |
| enum ATH_AGGR_STATUS status; |
| struct list_head bf_q; |
| struct aggr_rifs_param param = {0, 0, 0, 0, NULL}; |
| int prev_frames = 0; |
| |
| do { |
| if (list_empty(&tid->buf_q)) |
| return; |
| |
| INIT_LIST_HEAD(&bf_q); |
| |
| status = ath_tx_form_aggr(sc, tid, &bf_q, &bf_lastaggr, ¶m, |
| &prev_frames); |
| |
| /* |
| * no frames picked up to be aggregated; block-ack |
| * window is not open |
| */ |
| if (list_empty(&bf_q)) |
| break; |
| |
| bf = list_first_entry(&bf_q, struct ath_buf, list); |
| bf_last = list_entry(bf_q.prev, struct ath_buf, list); |
| bf->bf_lastbf = bf_last; |
| |
| /* |
| * if only one frame, send as non-aggregate |
| */ |
| if (bf->bf_nframes == 1) { |
| ASSERT(bf->bf_lastfrm == bf_last); |
| |
| bf->bf_state.bf_type &= ~BUF_AGGR; |
| /* |
| * clear aggr bits for every descriptor |
| * XXX TODO: is there a way to optimize it? |
| */ |
| list_for_each_entry(tbf, &bf_q, list) { |
| ath9k_hw_clr11n_aggr(sc->sc_ah, tbf->bf_desc); |
| } |
| |
| ath_buf_set_rate(sc, bf); |
| ath_tx_txqaddbuf(sc, txq, &bf_q); |
| continue; |
| } |
| |
| /* |
| * setup first desc with rate and aggr info |
| */ |
| bf->bf_state.bf_type |= BUF_AGGR; |
| ath_buf_set_rate(sc, bf); |
| ath9k_hw_set11n_aggr_first(sc->sc_ah, bf->bf_desc, bf->bf_al); |
| |
| /* |
| * anchor last frame of aggregate correctly |
| */ |
| ASSERT(bf_lastaggr); |
| ASSERT(bf_lastaggr->bf_lastfrm == bf_last); |
| tbf = bf_lastaggr; |
| ath9k_hw_set11n_aggr_last(sc->sc_ah, tbf->bf_desc); |
| |
| /* XXX: We don't enter into this loop, consider removing this */ |
| while (!list_empty(&bf_q) && !list_is_last(&tbf->list, &bf_q)) { |
| tbf = list_entry(tbf->list.next, struct ath_buf, list); |
| ath9k_hw_set11n_aggr_last(sc->sc_ah, tbf->bf_desc); |
| } |
| |
| txq->axq_aggr_depth++; |
| |
| /* |
| * Normal aggregate, queue to hardware |
| */ |
| ath_tx_txqaddbuf(sc, txq, &bf_q); |
| |
| } while (txq->axq_depth < ATH_AGGR_MIN_QDEPTH && |
| status != ATH_AGGR_BAW_CLOSED); |
| } |
| |
| int ath_tx_aggr_start(struct ath_softc *sc, struct ieee80211_sta *sta, |
| u16 tid, u16 *ssn) |
| { |
| struct ath_atx_tid *txtid; |
| struct ath_node *an; |
| |
| an = (struct ath_node *)sta->drv_priv; |
| |
| if (sc->sc_flags & SC_OP_TXAGGR) { |
| txtid = ATH_AN_2_TID(an, tid); |
| txtid->state |= AGGR_ADDBA_PROGRESS; |
| ath_tx_pause_tid(sc, txtid); |
| } |
| |
| return 0; |
| } |
| |
| int ath_tx_aggr_stop(struct ath_softc *sc, struct ieee80211_sta *sta, u16 tid) |
| { |
| struct ath_node *an = (struct ath_node *)sta->drv_priv; |
| struct ath_atx_tid *txtid = ATH_AN_2_TID(an, tid); |
| struct ath_txq *txq = &sc->tx.txq[txtid->ac->qnum]; |
| struct ath_buf *bf; |
| struct list_head bf_head; |
| INIT_LIST_HEAD(&bf_head); |
| |
| if (txtid->state & AGGR_CLEANUP) |
| return 0; |
| |
| if (!(txtid->state & AGGR_ADDBA_COMPLETE)) { |
| txtid->addba_exchangeattempts = 0; |
| return 0; |
| } |
| |
| ath_tx_pause_tid(sc, txtid); |
| |
| /* drop all software retried frames and mark this TID */ |
| spin_lock_bh(&txq->axq_lock); |
| while (!list_empty(&txtid->buf_q)) { |
| bf = list_first_entry(&txtid->buf_q, struct ath_buf, list); |
| if (!bf_isretried(bf)) { |
| /* |
| * NB: it's based on the assumption that |
| * software retried frame will always stay |
| * at the head of software queue. |
| */ |
| break; |
| } |
| list_cut_position(&bf_head, |
| &txtid->buf_q, &bf->bf_lastfrm->list); |
| ath_tx_update_baw(sc, txtid, bf->bf_seqno); |
| ath_tx_complete_buf(sc, bf, &bf_head, 0, 0); |
| } |
| |
| if (txtid->baw_head != txtid->baw_tail) { |
| spin_unlock_bh(&txq->axq_lock); |
| txtid->state |= AGGR_CLEANUP; |
| } else { |
| txtid->state &= ~AGGR_ADDBA_COMPLETE; |
| txtid->addba_exchangeattempts = 0; |
| spin_unlock_bh(&txq->axq_lock); |
| ath_tx_flush_tid(sc, txtid); |
| } |
| |
| return 0; |
| } |
| |
| void ath_tx_aggr_resume(struct ath_softc *sc, struct ieee80211_sta *sta, u16 tid) |
| { |
| struct ath_atx_tid *txtid; |
| struct ath_node *an; |
| |
| an = (struct ath_node *)sta->drv_priv; |
| |
| if (sc->sc_flags & SC_OP_TXAGGR) { |
| txtid = ATH_AN_2_TID(an, tid); |
| txtid->baw_size = |
| IEEE80211_MIN_AMPDU_BUF << sta->ht_cap.ampdu_factor; |
| txtid->state |= AGGR_ADDBA_COMPLETE; |
| txtid->state &= ~AGGR_ADDBA_PROGRESS; |
| ath_tx_resume_tid(sc, txtid); |
| } |
| } |
| |
| bool ath_tx_aggr_check(struct ath_softc *sc, struct ath_node *an, u8 tidno) |
| { |
| struct ath_atx_tid *txtid; |
| |
| if (!(sc->sc_flags & SC_OP_TXAGGR)) |
| return false; |
| |
| txtid = ATH_AN_2_TID(an, tidno); |
| |
| if (!(txtid->state & AGGR_ADDBA_COMPLETE)) { |
| if (!(txtid->state & AGGR_ADDBA_PROGRESS) && |
| (txtid->addba_exchangeattempts < ADDBA_EXCHANGE_ATTEMPTS)) { |
| txtid->addba_exchangeattempts++; |
| return true; |
| } |
| } |
| |
| return false; |
| } |
| |
| /********************/ |
| /* Queue Management */ |
| /********************/ |
| |
| static u32 ath_txq_depth(struct ath_softc *sc, int qnum) |
| { |
| return sc->tx.txq[qnum].axq_depth; |
| } |
| |
| static void ath_get_beaconconfig(struct ath_softc *sc, int if_id, |
| struct ath_beacon_config *conf) |
| { |
| struct ieee80211_hw *hw = sc->hw; |
| |
| /* fill in beacon config data */ |
| |
| conf->beacon_interval = hw->conf.beacon_int; |
| conf->listen_interval = 100; |
| conf->dtim_count = 1; |
| conf->bmiss_timeout = ATH_DEFAULT_BMISS_LIMIT * conf->listen_interval; |
| } |
| |
| static void ath_txq_drain_pending_buffers(struct ath_softc *sc, |
| struct ath_txq *txq) |
| { |
| struct ath_atx_ac *ac, *ac_tmp; |
| struct ath_atx_tid *tid, *tid_tmp; |
| |
| list_for_each_entry_safe(ac, ac_tmp, &txq->axq_acq, list) { |
| list_del(&ac->list); |
| ac->sched = false; |
| list_for_each_entry_safe(tid, tid_tmp, &ac->tid_q, list) { |
| list_del(&tid->list); |
| tid->sched = false; |
| ath_tid_drain(sc, txq, tid); |
| } |
| } |
| } |
| |
| struct ath_txq *ath_txq_setup(struct ath_softc *sc, int qtype, int subtype) |
| { |
| struct ath_hal *ah = sc->sc_ah; |
| struct ath9k_tx_queue_info qi; |
| int qnum; |
| |
| memset(&qi, 0, sizeof(qi)); |
| qi.tqi_subtype = subtype; |
| qi.tqi_aifs = ATH9K_TXQ_USEDEFAULT; |
| qi.tqi_cwmin = ATH9K_TXQ_USEDEFAULT; |
| qi.tqi_cwmax = ATH9K_TXQ_USEDEFAULT; |
| qi.tqi_physCompBuf = 0; |
| |
| /* |
| * Enable interrupts only for EOL and DESC conditions. |
| * We mark tx descriptors to receive a DESC interrupt |
| * when a tx queue gets deep; otherwise waiting for the |
| * EOL to reap descriptors. Note that this is done to |
| * reduce interrupt load and this only defers reaping |
| * descriptors, never transmitting frames. Aside from |
| * reducing interrupts this also permits more concurrency. |
| * The only potential downside is if the tx queue backs |
| * up in which case the top half of the kernel may backup |
| * due to a lack of tx descriptors. |
| * |
| * The UAPSD queue is an exception, since we take a desc- |
| * based intr on the EOSP frames. |
| */ |
| if (qtype == ATH9K_TX_QUEUE_UAPSD) |
| qi.tqi_qflags = TXQ_FLAG_TXDESCINT_ENABLE; |
| else |
| qi.tqi_qflags = TXQ_FLAG_TXEOLINT_ENABLE | |
| TXQ_FLAG_TXDESCINT_ENABLE; |
| qnum = ath9k_hw_setuptxqueue(ah, qtype, &qi); |
| if (qnum == -1) { |
| /* |
| * NB: don't print a message, this happens |
| * normally on parts with too few tx queues |
| */ |
| return NULL; |
| } |
| if (qnum >= ARRAY_SIZE(sc->tx.txq)) { |
| DPRINTF(sc, ATH_DBG_FATAL, |
| "qnum %u out of range, max %u!\n", |
| qnum, (unsigned int)ARRAY_SIZE(sc->tx.txq)); |
| ath9k_hw_releasetxqueue(ah, qnum); |
| return NULL; |
| } |
| if (!ATH_TXQ_SETUP(sc, qnum)) { |
| struct ath_txq *txq = &sc->tx.txq[qnum]; |
| |
| txq->axq_qnum = qnum; |
| txq->axq_link = NULL; |
| INIT_LIST_HEAD(&txq->axq_q); |
| INIT_LIST_HEAD(&txq->axq_acq); |
| spin_lock_init(&txq->axq_lock); |
| txq->axq_depth = 0; |
| txq->axq_aggr_depth = 0; |
| txq->axq_totalqueued = 0; |
| txq->axq_linkbuf = NULL; |
| sc->tx.txqsetup |= 1<<qnum; |
| } |
| return &sc->tx.txq[qnum]; |
| } |
| |
| static int ath_tx_get_qnum(struct ath_softc *sc, int qtype, int haltype) |
| { |
| int qnum; |
| |
| switch (qtype) { |
| case ATH9K_TX_QUEUE_DATA: |
| if (haltype >= ARRAY_SIZE(sc->tx.hwq_map)) { |
| DPRINTF(sc, ATH_DBG_FATAL, |
| "HAL AC %u out of range, max %zu!\n", |
| haltype, ARRAY_SIZE(sc->tx.hwq_map)); |
| return -1; |
| } |
| qnum = sc->tx.hwq_map[haltype]; |
| break; |
| case ATH9K_TX_QUEUE_BEACON: |
| qnum = sc->beacon.beaconq; |
| break; |
| case ATH9K_TX_QUEUE_CAB: |
| qnum = sc->beacon.cabq->axq_qnum; |
| break; |
| default: |
| qnum = -1; |
| } |
| return qnum; |
| } |
| |
| struct ath_txq *ath_test_get_txq(struct ath_softc *sc, struct sk_buff *skb) |
| { |
| struct ath_txq *txq = NULL; |
| int qnum; |
| |
| qnum = ath_get_hal_qnum(skb_get_queue_mapping(skb), sc); |
| txq = &sc->tx.txq[qnum]; |
| |
| spin_lock_bh(&txq->axq_lock); |
| |
| if (txq->axq_depth >= (ATH_TXBUF - 20)) { |
| DPRINTF(sc, ATH_DBG_FATAL, |
| "TX queue: %d is full, depth: %d\n", |
| qnum, txq->axq_depth); |
| ieee80211_stop_queue(sc->hw, skb_get_queue_mapping(skb)); |
| txq->stopped = 1; |
| spin_unlock_bh(&txq->axq_lock); |
| return NULL; |
| } |
| |
| spin_unlock_bh(&txq->axq_lock); |
| |
| return txq; |
| } |
| |
| int ath_txq_update(struct ath_softc *sc, int qnum, |
| struct ath9k_tx_queue_info *qinfo) |
| { |
| struct ath_hal *ah = sc->sc_ah; |
| int error = 0; |
| struct ath9k_tx_queue_info qi; |
| |
| if (qnum == sc->beacon.beaconq) { |
| /* |
| * XXX: for beacon queue, we just save the parameter. |
| * It will be picked up by ath_beaconq_config when |
| * it's necessary. |
| */ |
| sc->beacon.beacon_qi = *qinfo; |
| return 0; |
| } |
| |
| ASSERT(sc->tx.txq[qnum].axq_qnum == qnum); |
| |
| ath9k_hw_get_txq_props(ah, qnum, &qi); |
| qi.tqi_aifs = qinfo->tqi_aifs; |
| qi.tqi_cwmin = qinfo->tqi_cwmin; |
| qi.tqi_cwmax = qinfo->tqi_cwmax; |
| qi.tqi_burstTime = qinfo->tqi_burstTime; |
| qi.tqi_readyTime = qinfo->tqi_readyTime; |
| |
| if (!ath9k_hw_set_txq_props(ah, qnum, &qi)) { |
| DPRINTF(sc, ATH_DBG_FATAL, |
| "Unable to update hardware queue %u!\n", qnum); |
| error = -EIO; |
| } else { |
| ath9k_hw_resettxqueue(ah, qnum); |
| } |
| |
| return error; |
| } |
| |
| int ath_cabq_update(struct ath_softc *sc) |
| { |
| struct ath9k_tx_queue_info qi; |
| int qnum = sc->beacon.cabq->axq_qnum; |
| struct ath_beacon_config conf; |
| |
| ath9k_hw_get_txq_props(sc->sc_ah, qnum, &qi); |
| /* |
| * Ensure the readytime % is within the bounds. |
| */ |
| if (sc->sc_config.cabqReadytime < ATH9K_READY_TIME_LO_BOUND) |
| sc->sc_config.cabqReadytime = ATH9K_READY_TIME_LO_BOUND; |
| else if (sc->sc_config.cabqReadytime > ATH9K_READY_TIME_HI_BOUND) |
| sc->sc_config.cabqReadytime = ATH9K_READY_TIME_HI_BOUND; |
| |
| ath_get_beaconconfig(sc, ATH_IF_ID_ANY, &conf); |
| qi.tqi_readyTime = |
| (conf.beacon_interval * sc->sc_config.cabqReadytime) / 100; |
| ath_txq_update(sc, qnum, &qi); |
| |
| return 0; |
| } |
| |
| /* |
| * Drain a given TX queue (could be Beacon or Data) |
| * |
| * This assumes output has been stopped and |
| * we do not need to block ath_tx_tasklet. |
| */ |
| void ath_draintxq(struct ath_softc *sc, struct ath_txq *txq, bool retry_tx) |
| { |
| struct ath_buf *bf, *lastbf; |
| struct list_head bf_head; |
| |
| INIT_LIST_HEAD(&bf_head); |
| |
| for (;;) { |
| spin_lock_bh(&txq->axq_lock); |
| |
| if (list_empty(&txq->axq_q)) { |
| txq->axq_link = NULL; |
| txq->axq_linkbuf = NULL; |
| spin_unlock_bh(&txq->axq_lock); |
| break; |
| } |
| |
| bf = list_first_entry(&txq->axq_q, struct ath_buf, list); |
| |
| if (bf->bf_status & ATH_BUFSTATUS_STALE) { |
| list_del(&bf->list); |
| spin_unlock_bh(&txq->axq_lock); |
| |
| spin_lock_bh(&sc->tx.txbuflock); |
| list_add_tail(&bf->list, &sc->tx.txbuf); |
| spin_unlock_bh(&sc->tx.txbuflock); |
| continue; |
| } |
| |
| lastbf = bf->bf_lastbf; |
| if (!retry_tx) |
| lastbf->bf_desc->ds_txstat.ts_flags = |
| ATH9K_TX_SW_ABORTED; |
| |
| /* remove ath_buf's of the same mpdu from txq */ |
| list_cut_position(&bf_head, &txq->axq_q, &lastbf->list); |
| txq->axq_depth--; |
| |
| spin_unlock_bh(&txq->axq_lock); |
| |
| if (bf_isampdu(bf)) |
| ath_tx_complete_aggr_rifs(sc, txq, bf, &bf_head, 0); |
| else |
| ath_tx_complete_buf(sc, bf, &bf_head, 0, 0); |
| } |
| |
| /* flush any pending frames if aggregation is enabled */ |
| if (sc->sc_flags & SC_OP_TXAGGR) { |
| if (!retry_tx) { |
| spin_lock_bh(&txq->axq_lock); |
| ath_txq_drain_pending_buffers(sc, txq); |
| spin_unlock_bh(&txq->axq_lock); |
| } |
| } |
| } |
| |
| void ath_drain_all_txq(struct ath_softc *sc, bool retry_tx) |
| { |
| struct ath_hal *ah = sc->sc_ah; |
| struct ath_txq *txq; |
| int i, npend = 0; |
| |
| if (sc->sc_flags & SC_OP_INVALID) |
| return; |
| |
| /* Stop beacon queue */ |
| ath9k_hw_stoptxdma(sc->sc_ah, sc->beacon.beaconq); |
| |
| /* Stop data queues */ |
| for (i = 0; i < ATH9K_NUM_TX_QUEUES; i++) { |
| if (ATH_TXQ_SETUP(sc, i)) { |
| txq = &sc->tx.txq[i]; |
| ath9k_hw_stoptxdma(ah, txq->axq_qnum); |
| npend += ath9k_hw_numtxpending(ah, txq->axq_qnum); |
| } |
| } |
| |
| if (npend) { |
| int r; |
| |
| DPRINTF(sc, ATH_DBG_XMIT, "Unable to stop TxDMA. Reset HAL!\n"); |
| |
| spin_lock_bh(&sc->sc_resetlock); |
| r = ath9k_hw_reset(ah, sc->sc_ah->ah_curchan, true); |
| if (r) |
| DPRINTF(sc, ATH_DBG_FATAL, |
| "Unable to reset hardware; reset status %u\n", |
| r); |
| spin_unlock_bh(&sc->sc_resetlock); |
| } |
| |
| for (i = 0; i < ATH9K_NUM_TX_QUEUES; i++) { |
| if (ATH_TXQ_SETUP(sc, i)) |
| ath_draintxq(sc, &sc->tx.txq[i], retry_tx); |
| } |
| } |
| |
| void ath_tx_cleanupq(struct ath_softc *sc, struct ath_txq *txq) |
| { |
| ath9k_hw_releasetxqueue(sc->sc_ah, txq->axq_qnum); |
| sc->tx.txqsetup &= ~(1<<txq->axq_qnum); |
| } |
| |
| void ath_txq_schedule(struct ath_softc *sc, struct ath_txq *txq) |
| { |
| struct ath_atx_ac *ac; |
| struct ath_atx_tid *tid; |
| |
| if (list_empty(&txq->axq_acq)) |
| return; |
| |
| ac = list_first_entry(&txq->axq_acq, struct ath_atx_ac, list); |
| list_del(&ac->list); |
| ac->sched = false; |
| |
| do { |
| if (list_empty(&ac->tid_q)) |
| return; |
| |
| tid = list_first_entry(&ac->tid_q, struct ath_atx_tid, list); |
| list_del(&tid->list); |
| tid->sched = false; |
| |
| if (tid->paused) |
| continue; |
| |
| if ((txq->axq_depth % 2) == 0) |
| ath_tx_sched_aggr(sc, txq, tid); |
| |
| /* |
| * add tid to round-robin queue if more frames |
| * are pending for the tid |
| */ |
| if (!list_empty(&tid->buf_q)) |
| ath_tx_queue_tid(txq, tid); |
| |
| break; |
| } while (!list_empty(&ac->tid_q)); |
| |
| if (!list_empty(&ac->tid_q)) { |
| if (!ac->sched) { |
| ac->sched = true; |
| list_add_tail(&ac->list, &txq->axq_acq); |
| } |
| } |
| } |
| |
| int ath_tx_setup(struct ath_softc *sc, int haltype) |
| { |
| struct ath_txq *txq; |
| |
| if (haltype >= ARRAY_SIZE(sc->tx.hwq_map)) { |
| DPRINTF(sc, ATH_DBG_FATAL, |
| "HAL AC %u out of range, max %zu!\n", |
| haltype, ARRAY_SIZE(sc->tx.hwq_map)); |
| return 0; |
| } |
| txq = ath_txq_setup(sc, ATH9K_TX_QUEUE_DATA, haltype); |
| if (txq != NULL) { |
| sc->tx.hwq_map[haltype] = txq->axq_qnum; |
| return 1; |
| } else |
| return 0; |
| } |
| |
| /***********/ |
| /* TX, DMA */ |
| /***********/ |
| |
| /* |
| * Insert a chain of ath_buf (descriptors) on a txq and |
| * assume the descriptors are already chained together by caller. |
| */ |
| static void ath_tx_txqaddbuf(struct ath_softc *sc, struct ath_txq *txq, |
| struct list_head *head) |
| { |
| struct ath_hal *ah = sc->sc_ah; |
| struct ath_buf *bf; |
| |
| /* |
| * Insert the frame on the outbound list and |
| * pass it on to the hardware. |
| */ |
| |
| if (list_empty(head)) |
| return; |
| |
| bf = list_first_entry(head, struct ath_buf, list); |
| |
| list_splice_tail_init(head, &txq->axq_q); |
| txq->axq_depth++; |
| txq->axq_totalqueued++; |
| txq->axq_linkbuf = list_entry(txq->axq_q.prev, struct ath_buf, list); |
| |
| DPRINTF(sc, ATH_DBG_QUEUE, |
| "qnum: %d, txq depth: %d\n", txq->axq_qnum, txq->axq_depth); |
| |
| if (txq->axq_link == NULL) { |
| ath9k_hw_puttxbuf(ah, txq->axq_qnum, bf->bf_daddr); |
| DPRINTF(sc, ATH_DBG_XMIT, |
| "TXDP[%u] = %llx (%p)\n", |
| txq->axq_qnum, ito64(bf->bf_daddr), bf->bf_desc); |
| } else { |
| *txq->axq_link = bf->bf_daddr; |
| DPRINTF(sc, ATH_DBG_XMIT, "link[%u] (%p)=%llx (%p)\n", |
| txq->axq_qnum, txq->axq_link, |
| ito64(bf->bf_daddr), bf->bf_desc); |
| } |
| txq->axq_link = &(bf->bf_lastbf->bf_desc->ds_link); |
| ath9k_hw_txstart(ah, txq->axq_qnum); |
| } |
| |
| static struct ath_buf *ath_tx_get_buffer(struct ath_softc *sc) |
| { |
| struct ath_buf *bf = NULL; |
| |
| spin_lock_bh(&sc->tx.txbuflock); |
| |
| if (unlikely(list_empty(&sc->tx.txbuf))) { |
| spin_unlock_bh(&sc->tx.txbuflock); |
| return NULL; |
| } |
| |
| bf = list_first_entry(&sc->tx.txbuf, struct ath_buf, list); |
| list_del(&bf->list); |
| |
| spin_unlock_bh(&sc->tx.txbuflock); |
| |
| return bf; |
| } |
| |
| static void ath_tx_send_ampdu(struct ath_softc *sc, struct ath_atx_tid *tid, |
| struct list_head *bf_head, |
| struct ath_tx_control *txctl) |
| { |
| struct ath_buf *bf; |
| |
| BUG_ON(list_empty(bf_head)); |
| |
| bf = list_first_entry(bf_head, struct ath_buf, list); |
| bf->bf_state.bf_type |= BUF_AMPDU; |
| |
| /* |
| * Do not queue to h/w when any of the following conditions is true: |
| * - there are pending frames in software queue |
| * - the TID is currently paused for ADDBA/BAR request |
| * - seqno is not within block-ack window |
| * - h/w queue depth exceeds low water mark |
| */ |
| if (!list_empty(&tid->buf_q) || tid->paused || |
| !BAW_WITHIN(tid->seq_start, tid->baw_size, bf->bf_seqno) || |
| txctl->txq->axq_depth >= ATH_AGGR_MIN_QDEPTH) { |
| /* |
| * Add this frame to software queue for scheduling later |
| * for aggregation. |
| */ |
| list_splice_tail_init(bf_head, &tid->buf_q); |
| ath_tx_queue_tid(txctl->txq, tid); |
| return; |
| } |
| |
| /* Add sub-frame to BAW */ |
| ath_tx_addto_baw(sc, tid, bf); |
| |
| /* Queue to h/w without aggregation */ |
| bf->bf_nframes = 1; |
| bf->bf_lastbf = bf->bf_lastfrm; /* one single frame */ |
| ath_buf_set_rate(sc, bf); |
| ath_tx_txqaddbuf(sc, txctl->txq, bf_head); |
| |
| return; |
| } |
| |
| static void ath_tx_send_normal(struct ath_softc *sc, struct ath_txq *txq, |
| struct ath_atx_tid *tid, |
| struct list_head *bf_head) |
| { |
| struct ath_buf *bf; |
| |
| BUG_ON(list_empty(bf_head)); |
| |
| bf = list_first_entry(bf_head, struct ath_buf, list); |
| bf->bf_state.bf_type &= ~BUF_AMPDU; |
| |
| /* update starting sequence number for subsequent ADDBA request */ |
| INCR(tid->seq_start, IEEE80211_SEQ_MAX); |
| |
| bf->bf_nframes = 1; |
| bf->bf_lastbf = bf->bf_lastfrm; |
| ath_buf_set_rate(sc, bf); |
| ath_tx_txqaddbuf(sc, txq, bf_head); |
| } |
| |
| static enum ath9k_pkt_type get_hw_packet_type(struct sk_buff *skb) |
| { |
| struct ieee80211_hdr *hdr; |
| enum ath9k_pkt_type htype; |
| __le16 fc; |
| |
| hdr = (struct ieee80211_hdr *)skb->data; |
| fc = hdr->frame_control; |
| |
| if (ieee80211_is_beacon(fc)) |
| htype = ATH9K_PKT_TYPE_BEACON; |
| else if (ieee80211_is_probe_resp(fc)) |
| htype = ATH9K_PKT_TYPE_PROBE_RESP; |
| else if (ieee80211_is_atim(fc)) |
| htype = ATH9K_PKT_TYPE_ATIM; |
| else if (ieee80211_is_pspoll(fc)) |
| htype = ATH9K_PKT_TYPE_PSPOLL; |
| else |
| htype = ATH9K_PKT_TYPE_NORMAL; |
| |
| return htype; |
| } |
| |
| static bool is_pae(struct sk_buff *skb) |
| { |
| struct ieee80211_hdr *hdr; |
| __le16 fc; |
| |
| hdr = (struct ieee80211_hdr *)skb->data; |
| fc = hdr->frame_control; |
| |
| if (ieee80211_is_data(fc)) { |
| if (ieee80211_is_nullfunc(fc) || |
| /* Port Access Entity (IEEE 802.1X) */ |
| (skb->protocol == cpu_to_be16(ETH_P_PAE))) { |
| return true; |
| } |
| } |
| |
| return false; |
| } |
| |
| static int get_hw_crypto_keytype(struct sk_buff *skb) |
| { |
| struct ieee80211_tx_info *tx_info = IEEE80211_SKB_CB(skb); |
| |
| if (tx_info->control.hw_key) { |
| if (tx_info->control.hw_key->alg == ALG_WEP) |
| return ATH9K_KEY_TYPE_WEP; |
| else if (tx_info->control.hw_key->alg == ALG_TKIP) |
| return ATH9K_KEY_TYPE_TKIP; |
| else if (tx_info->control.hw_key->alg == ALG_CCMP) |
| return ATH9K_KEY_TYPE_AES; |
| } |
| |
| return ATH9K_KEY_TYPE_CLEAR; |
| } |
| |
| static void assign_aggr_tid_seqno(struct sk_buff *skb, |
| struct ath_buf *bf) |
| { |
| struct ieee80211_tx_info *tx_info = IEEE80211_SKB_CB(skb); |
| struct ieee80211_hdr *hdr; |
| struct ath_node *an; |
| struct ath_atx_tid *tid; |
| __le16 fc; |
| u8 *qc; |
| |
| if (!tx_info->control.sta) |
| return; |
| |
| an = (struct ath_node *)tx_info->control.sta->drv_priv; |
| hdr = (struct ieee80211_hdr *)skb->data; |
| fc = hdr->frame_control; |
| |
| if (ieee80211_is_data_qos(fc)) { |
| qc = ieee80211_get_qos_ctl(hdr); |
| bf->bf_tidno = qc[0] & 0xf; |
| } |
| |
| /* |
| * For HT capable stations, we save tidno for later use. |
| * We also override seqno set by upper layer with the one |
| * in tx aggregation state. |
| * |
| * If fragmentation is on, the sequence number is |
| * not overridden, since it has been |
| * incremented by the fragmentation routine. |
| * |
| * FIXME: check if the fragmentation threshold exceeds |
| * IEEE80211 max. |
| */ |
| tid = ATH_AN_2_TID(an, bf->bf_tidno); |
| hdr->seq_ctrl = cpu_to_le16(tid->seq_next << |
| IEEE80211_SEQ_SEQ_SHIFT); |
| bf->bf_seqno = tid->seq_next; |
| INCR(tid->seq_next, IEEE80211_SEQ_MAX); |
| } |
| |
| static int setup_tx_flags(struct ath_softc *sc, struct sk_buff *skb, |
| struct ath_txq *txq) |
| { |
| struct ieee80211_tx_info *tx_info = IEEE80211_SKB_CB(skb); |
| int flags = 0; |
| |
| flags |= ATH9K_TXDESC_CLRDMASK; /* needed for crypto errors */ |
| flags |= ATH9K_TXDESC_INTREQ; |
| |
| if (tx_info->flags & IEEE80211_TX_CTL_NO_ACK) |
| flags |= ATH9K_TXDESC_NOACK; |
| if (tx_info->control.rates[0].flags & IEEE80211_TX_RC_USE_RTS_CTS) |
| flags |= ATH9K_TXDESC_RTSENA; |
| |
| return flags; |
| } |
| |
| /* |
| * rix - rate index |
| * pktlen - total bytes (delims + data + fcs + pads + pad delims) |
| * width - 0 for 20 MHz, 1 for 40 MHz |
| * half_gi - to use 4us v/s 3.6 us for symbol time |
| */ |
| static u32 ath_pkt_duration(struct ath_softc *sc, u8 rix, struct ath_buf *bf, |
| int width, int half_gi, bool shortPreamble) |
| { |
| struct ath_rate_table *rate_table = sc->cur_rate_table; |
| u32 nbits, nsymbits, duration, nsymbols; |
| u8 rc; |
| int streams, pktlen; |
| |
| pktlen = bf_isaggr(bf) ? bf->bf_al : bf->bf_frmlen; |
| rc = rate_table->info[rix].ratecode; |
| |
| /* for legacy rates, use old function to compute packet duration */ |
| if (!IS_HT_RATE(rc)) |
| return ath9k_hw_computetxtime(sc->sc_ah, rate_table, pktlen, |
| rix, shortPreamble); |
| |
| /* find number of symbols: PLCP + data */ |
| nbits = (pktlen << 3) + OFDM_PLCP_BITS; |
| nsymbits = bits_per_symbol[HT_RC_2_MCS(rc)][width]; |
| nsymbols = (nbits + nsymbits - 1) / nsymbits; |
| |
| if (!half_gi) |
| duration = SYMBOL_TIME(nsymbols); |
| else |
| duration = SYMBOL_TIME_HALFGI(nsymbols); |
| |
| /* addup duration for legacy/ht training and signal fields */ |
| streams = HT_RC_2_STREAMS(rc); |
| duration += L_STF + L_LTF + L_SIG + HT_SIG + HT_STF + HT_LTF(streams); |
| |
| return duration; |
| } |
| |
| static void ath_buf_set_rate(struct ath_softc *sc, struct ath_buf *bf) |
| { |
| struct ath_hal *ah = sc->sc_ah; |
| struct ath_rate_table *rt; |
| struct ath_desc *ds = bf->bf_desc; |
| struct ath_desc *lastds = bf->bf_lastbf->bf_desc; |
| struct ath9k_11n_rate_series series[4]; |
| struct sk_buff *skb; |
| struct ieee80211_tx_info *tx_info; |
| struct ieee80211_tx_rate *rates; |
| struct ieee80211_hdr *hdr; |
| struct ieee80211_hw *hw = sc->hw; |
| int i, flags, rtsctsena = 0, enable_g_protection = 0; |
| u32 ctsduration = 0; |
| u8 rix = 0, cix, ctsrate = 0; |
| __le16 fc; |
| |
| memset(series, 0, sizeof(struct ath9k_11n_rate_series) * 4); |
| |
| skb = (struct sk_buff *)bf->bf_mpdu; |
| hdr = (struct ieee80211_hdr *)skb->data; |
| fc = hdr->frame_control; |
| tx_info = IEEE80211_SKB_CB(skb); |
| rates = tx_info->control.rates; |
| |
| if (ieee80211_has_morefrags(fc) || |
| (le16_to_cpu(hdr->seq_ctrl) & IEEE80211_SCTL_FRAG)) { |
| rates[1].count = rates[2].count = rates[3].count = 0; |
| rates[1].idx = rates[2].idx = rates[3].idx = 0; |
| rates[0].count = ATH_TXMAXTRY; |
| } |
| |
| /* get the cix for the lowest valid rix */ |
| rt = sc->cur_rate_table; |
| for (i = 3; i >= 0; i--) { |
| if (rates[i].count && (rates[i].idx >= 0)) { |
| rix = rates[i].idx; |
| break; |
| } |
| } |
| |
| flags = (bf->bf_flags & (ATH9K_TXDESC_RTSENA | ATH9K_TXDESC_CTSENA)); |
| cix = rt->info[rix].ctrl_rate; |
| |
| /* All protection frames are transmited at 2Mb/s for 802.11g, |
| * otherwise we transmit them at 1Mb/s */ |
| if (hw->conf.channel->band == IEEE80211_BAND_2GHZ && |
| !conf_is_ht(&hw->conf)) |
| enable_g_protection = 1; |
| |
| /* |
| * If 802.11g protection is enabled, determine whether to use RTS/CTS or |
| * just CTS. Note that this is only done for OFDM/HT unicast frames. |
| */ |
| if (sc->sc_protmode != PROT_M_NONE && !(bf->bf_flags & ATH9K_TXDESC_NOACK) |
| && (rt->info[rix].phy == WLAN_RC_PHY_OFDM || |
| WLAN_RC_PHY_HT(rt->info[rix].phy))) { |
| if (sc->sc_protmode == PROT_M_RTSCTS) |
| flags = ATH9K_TXDESC_RTSENA; |
| else if (sc->sc_protmode == PROT_M_CTSONLY) |
| flags = ATH9K_TXDESC_CTSENA; |
| |
| cix = rt->info[enable_g_protection].ctrl_rate; |
| rtsctsena = 1; |
| } |
| |
| /* For 11n, the default behavior is to enable RTS for hw retried frames. |
| * We enable the global flag here and let rate series flags determine |
| * which rates will actually use RTS. |
| */ |
| if ((ah->ah_caps.hw_caps & ATH9K_HW_CAP_HT) && bf_isdata(bf)) { |
| /* 802.11g protection not needed, use our default behavior */ |
| if (!rtsctsena) |
| flags = ATH9K_TXDESC_RTSENA; |
| } |
| |
| /* Set protection if aggregate protection on */ |
| if (sc->sc_config.ath_aggr_prot && |
| (!bf_isaggr(bf) || (bf_isaggr(bf) && bf->bf_al < 8192))) { |
| flags = ATH9K_TXDESC_RTSENA; |
| cix = rt->info[enable_g_protection].ctrl_rate; |
| rtsctsena = 1; |
| } |
| |
| /* For AR5416 - RTS cannot be followed by a frame larger than 8K */ |
| if (bf_isaggr(bf) && (bf->bf_al > ah->ah_caps.rts_aggr_limit)) |
| flags &= ~(ATH9K_TXDESC_RTSENA); |
| |
| /* |
| * CTS transmit rate is derived from the transmit rate by looking in the |
| * h/w rate table. We must also factor in whether or not a short |
| * preamble is to be used. NB: cix is set above where RTS/CTS is enabled |
| */ |
| ctsrate = rt->info[cix].ratecode | |
| (bf_isshpreamble(bf) ? rt->info[cix].short_preamble : 0); |
| |
| for (i = 0; i < 4; i++) { |
| if (!rates[i].count || (rates[i].idx < 0)) |
| continue; |
| |
| rix = rates[i].idx; |
| |
| series[i].Rate = rt->info[rix].ratecode | |
| (bf_isshpreamble(bf) ? rt->info[rix].short_preamble : 0); |
| |
| series[i].Tries = rates[i].count; |
| |
| series[i].RateFlags = ( |
| (rates[i].flags & IEEE80211_TX_RC_USE_RTS_CTS) ? |
| ATH9K_RATESERIES_RTS_CTS : 0) | |
| ((rates[i].flags & IEEE80211_TX_RC_40_MHZ_WIDTH) ? |
| ATH9K_RATESERIES_2040 : 0) | |
| ((rates[i].flags & IEEE80211_TX_RC_SHORT_GI) ? |
| ATH9K_RATESERIES_HALFGI : 0); |
| |
| series[i].PktDuration = ath_pkt_duration(sc, rix, bf, |
| (rates[i].flags & IEEE80211_TX_RC_40_MHZ_WIDTH) != 0, |
| (rates[i].flags & IEEE80211_TX_RC_SHORT_GI), |
| bf_isshpreamble(bf)); |
| |
| series[i].ChSel = sc->sc_tx_chainmask; |
| |
| if (rtsctsena) |
| series[i].RateFlags |= ATH9K_RATESERIES_RTS_CTS; |
| } |
| |
| /* set dur_update_en for l-sig computation except for PS-Poll frames */ |
| ath9k_hw_set11n_ratescenario(ah, ds, lastds, !bf_ispspoll(bf), |
| ctsrate, ctsduration, |
| series, 4, flags); |
| |
| if (sc->sc_config.ath_aggr_prot && flags) |
| ath9k_hw_set11n_burstduration(ah, ds, 8192); |
| } |
| |
| static int ath_tx_setup_buffer(struct ath_softc *sc, struct ath_buf *bf, |
| struct sk_buff *skb, |
| struct ath_tx_control *txctl) |
| { |
| struct ieee80211_tx_info *tx_info = IEEE80211_SKB_CB(skb); |
| struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)skb->data; |
| struct ath_tx_info_priv *tx_info_priv; |
| int hdrlen; |
| __le16 fc; |
| |
| tx_info_priv = kzalloc(sizeof(*tx_info_priv), GFP_ATOMIC); |
| if (unlikely(!tx_info_priv)) |
| return -ENOMEM; |
| tx_info->rate_driver_data[0] = tx_info_priv; |
| hdrlen = ieee80211_get_hdrlen_from_skb(skb); |
| fc = hdr->frame_control; |
| |
| ATH_TXBUF_RESET(bf); |
| |
| bf->bf_frmlen = skb->len + FCS_LEN - (hdrlen & 3); |
| |
| ieee80211_is_data(fc) ? |
| (bf->bf_state.bf_type |= BUF_DATA) : |
| (bf->bf_state.bf_type &= ~BUF_DATA); |
| ieee80211_is_back_req(fc) ? |
| (bf->bf_state.bf_type |= BUF_BAR) : |
| (bf->bf_state.bf_type &= ~BUF_BAR); |
| ieee80211_is_pspoll(fc) ? |
| (bf->bf_state.bf_type |= BUF_PSPOLL) : |
| (bf->bf_state.bf_type &= ~BUF_PSPOLL); |
| (sc->sc_flags & SC_OP_PREAMBLE_SHORT) ? |
| (bf->bf_state.bf_type |= BUF_SHORT_PREAMBLE) : |
| (bf->bf_state.bf_type &= ~BUF_SHORT_PREAMBLE); |
| (conf_is_ht(&sc->hw->conf) && !is_pae(skb) && |
| (tx_info->flags & IEEE80211_TX_CTL_AMPDU)) ? |
| (bf->bf_state.bf_type |= BUF_HT) : |
| (bf->bf_state.bf_type &= ~BUF_HT); |
| |
| bf->bf_flags = setup_tx_flags(sc, skb, txctl->txq); |
| |
| bf->bf_keytype = get_hw_crypto_keytype(skb); |
| |
| if (bf->bf_keytype != ATH9K_KEY_TYPE_CLEAR) { |
| bf->bf_frmlen += tx_info->control.hw_key->icv_len; |
| bf->bf_keyix = tx_info->control.hw_key->hw_key_idx; |
| } else { |
| bf->bf_keyix = ATH9K_TXKEYIX_INVALID; |
| } |
| |
| if (ieee80211_is_data_qos(fc) && (sc->sc_flags & SC_OP_TXAGGR)) |
| assign_aggr_tid_seqno(skb, bf); |
| |
| bf->bf_mpdu = skb; |
| |
| bf->bf_dmacontext = dma_map_single(sc->dev, skb->data, |
| skb->len, DMA_TO_DEVICE); |
| if (unlikely(dma_mapping_error(sc->dev, bf->bf_dmacontext))) { |
| bf->bf_mpdu = NULL; |
| DPRINTF(sc, ATH_DBG_CONFIG, |
| "dma_mapping_error() on TX\n"); |
| return -ENOMEM; |
| } |
| |
| bf->bf_buf_addr = bf->bf_dmacontext; |
| return 0; |
| } |
| |
| /* FIXME: tx power */ |
| static void ath_tx_start_dma(struct ath_softc *sc, struct ath_buf *bf, |
| struct ath_tx_control *txctl) |
| { |
| struct sk_buff *skb = (struct sk_buff *)bf->bf_mpdu; |
| struct ieee80211_tx_info *tx_info = IEEE80211_SKB_CB(skb); |
| struct ath_node *an = NULL; |
| struct list_head bf_head; |
| struct ath_desc *ds; |
| struct ath_atx_tid *tid; |
| struct ath_hal *ah = sc->sc_ah; |
| int frm_type; |
| |
| frm_type = get_hw_packet_type(skb); |
| |
| INIT_LIST_HEAD(&bf_head); |
| list_add_tail(&bf->list, &bf_head); |
| |
| ds = bf->bf_desc; |
| ds->ds_link = 0; |
| ds->ds_data = bf->bf_buf_addr; |
| |
| ath9k_hw_set11n_txdesc(ah, ds, bf->bf_frmlen, frm_type, MAX_RATE_POWER, |
| bf->bf_keyix, bf->bf_keytype, bf->bf_flags); |
| |
| ath9k_hw_filltxdesc(ah, ds, |
| skb->len, /* segment length */ |
| true, /* first segment */ |
| true, /* last segment */ |
| ds); /* first descriptor */ |
| |
| bf->bf_lastfrm = bf; |
| |
| spin_lock_bh(&txctl->txq->axq_lock); |
| |
| if (bf_isht(bf) && (sc->sc_flags & SC_OP_TXAGGR) && |
| tx_info->control.sta) { |
| an = (struct ath_node *)tx_info->control.sta->drv_priv; |
| tid = ATH_AN_2_TID(an, bf->bf_tidno); |
| |
| if (ath_aggr_query(sc, an, bf->bf_tidno)) { |
| /* |
| * Try aggregation if it's a unicast data frame |
| * and the destination is HT capable. |
| */ |
| ath_tx_send_ampdu(sc, tid, &bf_head, txctl); |
| } else { |
| /* |
| * Send this frame as regular when ADDBA |
| * exchange is neither complete nor pending. |
| */ |
| ath_tx_send_normal(sc, txctl->txq, |
| tid, &bf_head); |
| } |
| } else { |
| bf->bf_lastbf = bf; |
| bf->bf_nframes = 1; |
| |
| ath_buf_set_rate(sc, bf); |
| ath_tx_txqaddbuf(sc, txctl->txq, &bf_head); |
| } |
| |
| spin_unlock_bh(&txctl->txq->axq_lock); |
| } |
| |
| /* Upon failure caller should free skb */ |
| int ath_tx_start(struct ath_softc *sc, struct sk_buff *skb, |
| struct ath_tx_control *txctl) |
| { |
| struct ath_buf *bf; |
| int r; |
| |
| bf = ath_tx_get_buffer(sc); |
| if (!bf) { |
| DPRINTF(sc, ATH_DBG_XMIT, "TX buffers are full\n"); |
| return -1; |
| } |
| |
| r = ath_tx_setup_buffer(sc, bf, skb, txctl); |
| if (unlikely(r)) { |
| struct ath_txq *txq = txctl->txq; |
| |
| DPRINTF(sc, ATH_DBG_FATAL, "TX mem alloc failure\n"); |
| |
| /* upon ath_tx_processq() this TX queue will be resumed, we |
| * guarantee this will happen by knowing beforehand that |
| * we will at least have to run TX completionon one buffer |
| * on the queue */ |
| spin_lock_bh(&txq->axq_lock); |
| if (ath_txq_depth(sc, txq->axq_qnum) > 1) { |
| ieee80211_stop_queue(sc->hw, |
| skb_get_queue_mapping(skb)); |
| txq->stopped = 1; |
| } |
| spin_unlock_bh(&txq->axq_lock); |
| |
| spin_lock_bh(&sc->tx.txbuflock); |
| list_add_tail(&bf->list, &sc->tx.txbuf); |
| spin_unlock_bh(&sc->tx.txbuflock); |
| |
| return r; |
| } |
| |
| ath_tx_start_dma(sc, bf, txctl); |
| |
| return 0; |
| } |
| |
| void ath_tx_cabq(struct ath_softc *sc, struct sk_buff *skb) |
| { |
| int hdrlen, padsize; |
| struct ieee80211_tx_info *info = IEEE80211_SKB_CB(skb); |
| struct ath_tx_control txctl; |
| |
| memset(&txctl, 0, sizeof(struct ath_tx_control)); |
| |
| /* |
| * As a temporary workaround, assign seq# here; this will likely need |
| * to be cleaned up to work better with Beacon transmission and virtual |
| * BSSes. |
| */ |
| if (info->flags & IEEE80211_TX_CTL_ASSIGN_SEQ) { |
| struct ieee80211_hdr *hdr = (struct ieee80211_hdr *) skb->data; |
| if (info->flags & IEEE80211_TX_CTL_FIRST_FRAGMENT) |
| sc->tx.seq_no += 0x10; |
| hdr->seq_ctrl &= cpu_to_le16(IEEE80211_SCTL_FRAG); |
| hdr->seq_ctrl |= cpu_to_le16(sc->tx.seq_no); |
| } |
| |
| /* Add the padding after the header if this is not already done */ |
| hdrlen = ieee80211_get_hdrlen_from_skb(skb); |
| if (hdrlen & 3) { |
| padsize = hdrlen % 4; |
| if (skb_headroom(skb) < padsize) { |
| DPRINTF(sc, ATH_DBG_XMIT, "TX CABQ padding failed\n"); |
| dev_kfree_skb_any(skb); |
| return; |
| } |
| skb_push(skb, padsize); |
| memmove(skb->data, skb->data + padsize, hdrlen); |
| } |
| |
| txctl.txq = sc->beacon.cabq; |
| |
| DPRINTF(sc, ATH_DBG_XMIT, "transmitting CABQ packet, skb: %p\n", skb); |
| |
| if (ath_tx_start(sc, skb, &txctl) != 0) { |
| DPRINTF(sc, ATH_DBG_XMIT, "CABQ TX failed\n"); |
| goto exit; |
| } |
| |
| return; |
| exit: |
| dev_kfree_skb_any(skb); |
| } |
| |
| /*****************/ |
| /* TX Completion */ |
| /*****************/ |
| |
| static void ath_tx_complete(struct ath_softc *sc, struct sk_buff *skb, |
| struct ath_xmit_status *tx_status) |
| { |
| struct ieee80211_hw *hw = sc->hw; |
| struct ieee80211_tx_info *tx_info = IEEE80211_SKB_CB(skb); |
| struct ath_tx_info_priv *tx_info_priv = ATH_TX_INFO_PRIV(tx_info); |
| int hdrlen, padsize; |
| |
| DPRINTF(sc, ATH_DBG_XMIT, "TX complete: skb: %p\n", skb); |
| |
| if (tx_info->flags & IEEE80211_TX_CTL_NO_ACK || |
| tx_info->flags & IEEE80211_TX_STAT_TX_FILTERED) { |
| kfree(tx_info_priv); |
| tx_info->rate_driver_data[0] = NULL; |
| } |
| |
| if (tx_status->flags & ATH_TX_BAR) { |
| tx_info->flags |= IEEE80211_TX_STAT_AMPDU_NO_BACK; |
| tx_status->flags &= ~ATH_TX_BAR; |
| } |
| |
| if (!(tx_status->flags & (ATH_TX_ERROR | ATH_TX_XRETRY))) { |
| /* Frame was ACKed */ |
| tx_info->flags |= IEEE80211_TX_STAT_ACK; |
| } |
| |
| tx_info->status.rates[0].count = tx_status->retries + 1; |
| |
| hdrlen = ieee80211_get_hdrlen_from_skb(skb); |
| padsize = hdrlen & 3; |
| if (padsize && hdrlen >= 24) { |
| /* |
| * Remove MAC header padding before giving the frame back to |
| * mac80211. |
| */ |
| memmove(skb->data + padsize, skb->data, hdrlen); |
| skb_pull(skb, padsize); |
| } |
| |
| ieee80211_tx_status(hw, skb); |
| } |
| |
| static void ath_tx_complete_buf(struct ath_softc *sc, struct ath_buf *bf, |
| struct list_head *bf_q, |
| int txok, int sendbar) |
| { |
| struct sk_buff *skb = bf->bf_mpdu; |
| struct ath_xmit_status tx_status; |
| unsigned long flags; |
| |
| /* |
| * Set retry information. |
| * NB: Don't use the information in the descriptor, because the frame |
| * could be software retried. |
| */ |
| tx_status.retries = bf->bf_retries; |
| tx_status.flags = 0; |
| |
| if (sendbar) |
| tx_status.flags = ATH_TX_BAR; |
| |
| if (!txok) { |
| tx_status.flags |= ATH_TX_ERROR; |
| |
| if (bf_isxretried(bf)) |
| tx_status.flags |= ATH_TX_XRETRY; |
| } |
| |
| dma_unmap_single(sc->dev, bf->bf_dmacontext, skb->len, DMA_TO_DEVICE); |
| ath_tx_complete(sc, skb, &tx_status); |
| |
| /* |
| * Return the list of ath_buf of this mpdu to free queue |
| */ |
| spin_lock_irqsave(&sc->tx.txbuflock, flags); |
| list_splice_tail_init(bf_q, &sc->tx.txbuf); |
| spin_unlock_irqrestore(&sc->tx.txbuflock, flags); |
| } |
| |
| static int ath_tx_num_badfrms(struct ath_softc *sc, struct ath_buf *bf, |
| int txok) |
| { |
| struct ath_buf *bf_last = bf->bf_lastbf; |
| struct ath_desc *ds = bf_last->bf_desc; |
| u16 seq_st = 0; |
| u32 ba[WME_BA_BMP_SIZE >> 5]; |
| int ba_index; |
| int nbad = 0; |
| int isaggr = 0; |
| |
| if (ds->ds_txstat.ts_flags == ATH9K_TX_SW_ABORTED) |
| return 0; |
| |
| isaggr = bf_isaggr(bf); |
| if (isaggr) { |
| seq_st = ATH_DS_BA_SEQ(ds); |
| memcpy(ba, ATH_DS_BA_BITMAP(ds), WME_BA_BMP_SIZE >> 3); |
| } |
| |
| while (bf) { |
| ba_index = ATH_BA_INDEX(seq_st, bf->bf_seqno); |
| if (!txok || (isaggr && !ATH_BA_ISSET(ba, ba_index))) |
| nbad++; |
| |
| bf = bf->bf_next; |
| } |
| |
| return nbad; |
| } |
| |
| static void ath_tx_rc_status(struct ath_buf *bf, struct ath_desc *ds, int nbad) |
| { |
| struct sk_buff *skb = (struct sk_buff *)bf->bf_mpdu; |
| struct ieee80211_tx_info *tx_info = IEEE80211_SKB_CB(skb); |
| struct ath_tx_info_priv *tx_info_priv = ATH_TX_INFO_PRIV(tx_info); |
| |
| tx_info_priv->update_rc = false; |
| if (ds->ds_txstat.ts_status & ATH9K_TXERR_FILT) |
| tx_info->flags |= IEEE80211_TX_STAT_TX_FILTERED; |
| |
| if ((ds->ds_txstat.ts_status & ATH9K_TXERR_FILT) == 0 && |
| (bf->bf_flags & ATH9K_TXDESC_NOACK) == 0) { |
| if (bf_isdata(bf)) { |
| memcpy(&tx_info_priv->tx, &ds->ds_txstat, |
| sizeof(tx_info_priv->tx)); |
| tx_info_priv->n_frames = bf->bf_nframes; |
| tx_info_priv->n_bad_frames = nbad; |
| tx_info_priv->update_rc = true; |
| } |
| } |
| } |
| |
| static void ath_tx_processq(struct ath_softc *sc, struct ath_txq *txq) |
| { |
| struct ath_hal *ah = sc->sc_ah; |
| struct ath_buf *bf, *lastbf, *bf_held = NULL; |
| struct list_head bf_head; |
| struct ath_desc *ds; |
| int txok, nbad = 0; |
| int status; |
| |
| DPRINTF(sc, ATH_DBG_QUEUE, "tx queue %d (%x), link %p\n", |
| txq->axq_qnum, ath9k_hw_gettxbuf(sc->sc_ah, txq->axq_qnum), |
| txq->axq_link); |
| |
| for (;;) { |
| spin_lock_bh(&txq->axq_lock); |
| if (list_empty(&txq->axq_q)) { |
| txq->axq_link = NULL; |
| txq->axq_linkbuf = NULL; |
| spin_unlock_bh(&txq->axq_lock); |
| break; |
| } |
| bf = list_first_entry(&txq->axq_q, struct ath_buf, list); |
| |
| /* |
| * There is a race condition that a BH gets scheduled |
| * after sw writes TxE and before hw re-load the last |
| * descriptor to get the newly chained one. |
| * Software must keep the last DONE descriptor as a |
| * holding descriptor - software does so by marking |
| * it with the STALE flag. |
| */ |
| bf_held = NULL; |
| if (bf->bf_status & ATH_BUFSTATUS_STALE) { |
| bf_held = bf; |
| if (list_is_last(&bf_held->list, &txq->axq_q)) { |
| /* FIXME: |
| * The holding descriptor is the last |
| * descriptor in queue. It's safe to remove |
| * the last holding descriptor in BH context. |
| */ |
| spin_unlock_bh(&txq->axq_lock); |
| break; |
| } else { |
| bf = list_entry(bf_held->list.next, |
| struct ath_buf, list); |
| } |
| } |
| |
| lastbf = bf->bf_lastbf; |
| ds = lastbf->bf_desc; |
| |
| status = ath9k_hw_txprocdesc(ah, ds); |
| if (status == -EINPROGRESS) { |
| spin_unlock_bh(&txq->axq_lock); |
| break; |
| } |
| if (bf->bf_desc == txq->axq_lastdsWithCTS) |
| txq->axq_lastdsWithCTS = NULL; |
| if (ds == txq->axq_gatingds) |
| txq->axq_gatingds = NULL; |
| |
| /* |
| * Remove ath_buf's of the same transmit unit from txq, |
| * however leave the last descriptor back as the holding |
| * descriptor for hw. |
| */ |
| lastbf->bf_status |= ATH_BUFSTATUS_STALE; |
| INIT_LIST_HEAD(&bf_head); |
| |
| if (!list_is_singular(&lastbf->list)) |
| list_cut_position(&bf_head, |
| &txq->axq_q, lastbf->list.prev); |
| |
| txq->axq_depth--; |
| |
| if (bf_isaggr(bf)) |
| txq->axq_aggr_depth--; |
| |
| txok = (ds->ds_txstat.ts_status == 0); |
| |
| spin_unlock_bh(&txq->axq_lock); |
| |
| if (bf_held) { |
| list_del(&bf_held->list); |
| spin_lock_bh(&sc->tx.txbuflock); |
| list_add_tail(&bf_held->list, &sc->tx.txbuf); |
| spin_unlock_bh(&sc->tx.txbuflock); |
| } |
| |
| if (!bf_isampdu(bf)) { |
| /* |
| * This frame is sent out as a single frame. |
| * Use hardware retry status for this frame. |
| */ |
| bf->bf_retries = ds->ds_txstat.ts_longretry; |
| if (ds->ds_txstat.ts_status & ATH9K_TXERR_XRETRY) |
| bf->bf_state.bf_type |= BUF_XRETRY; |
| nbad = 0; |
| } else { |
| nbad = ath_tx_num_badfrms(sc, bf, txok); |
| } |
| |
| ath_tx_rc_status(bf, ds, nbad); |
| |
| if (bf_isampdu(bf)) |
| ath_tx_complete_aggr_rifs(sc, txq, bf, &bf_head, txok); |
| else |
| ath_tx_complete_buf(sc, bf, &bf_head, txok, 0); |
| |
| spin_lock_bh(&txq->axq_lock); |
| if (txq->stopped && ath_txq_depth(sc, txq->axq_qnum) <= |
| (ATH_TXBUF - 20)) { |
| int qnum; |
| qnum = ath_get_mac80211_qnum(txq->axq_qnum, sc); |
| if (qnum != -1) { |
| ieee80211_wake_queue(sc->hw, qnum); |
| txq->stopped = 0; |
| } |
| |
| } |
| |
| if (sc->sc_flags & SC_OP_TXAGGR) |
| ath_txq_schedule(sc, txq); |
| spin_unlock_bh(&txq->axq_lock); |
| } |
| } |
| |
| |
| void ath_tx_tasklet(struct ath_softc *sc) |
| { |
| int i; |
| u32 qcumask = ((1 << ATH9K_NUM_TX_QUEUES) - 1); |
| |
| ath9k_hw_gettxintrtxqs(sc->sc_ah, &qcumask); |
| |
| for (i = 0; i < ATH9K_NUM_TX_QUEUES; i++) { |
| if (ATH_TXQ_SETUP(sc, i) && (qcumask & (1 << i))) |
| ath_tx_processq(sc, &sc->tx.txq[i]); |
| } |
| } |
| |
| /*****************/ |
| /* Init, Cleanup */ |
| /*****************/ |
| |
| int ath_tx_init(struct ath_softc *sc, int nbufs) |
| { |
| int error = 0; |
| |
| do { |
| spin_lock_init(&sc->tx.txbuflock); |
| |
| error = ath_descdma_setup(sc, &sc->tx.txdma, &sc->tx.txbuf, |
| "tx", nbufs, 1); |
| if (error != 0) { |
| DPRINTF(sc, ATH_DBG_FATAL, |
| "Failed to allocate tx descriptors: %d\n", |
| error); |
| break; |
| } |
| |
| error = ath_descdma_setup(sc, &sc->beacon.bdma, &sc->beacon.bbuf, |
| "beacon", ATH_BCBUF, 1); |
| if (error != 0) { |
| DPRINTF(sc, ATH_DBG_FATAL, |
| "Failed to allocate beacon descriptors: %d\n", |
| error); |
| break; |
| } |
| |
| } while (0); |
| |
| if (error != 0) |
| ath_tx_cleanup(sc); |
| |
| return error; |
| } |
| |
| int ath_tx_cleanup(struct ath_softc *sc) |
| { |
| if (sc->beacon.bdma.dd_desc_len != 0) |
| ath_descdma_cleanup(sc, &sc->beacon.bdma, &sc->beacon.bbuf); |
| |
| if (sc->tx.txdma.dd_desc_len != 0) |
| ath_descdma_cleanup(sc, &sc->tx.txdma, &sc->tx.txbuf); |
| |
| return 0; |
| } |
| |
| void ath_tx_node_init(struct ath_softc *sc, struct ath_node *an) |
| { |
| struct ath_atx_tid *tid; |
| struct ath_atx_ac *ac; |
| int tidno, acno; |
| |
| for (tidno = 0, tid = &an->tid[tidno]; |
| tidno < WME_NUM_TID; |
| tidno++, tid++) { |
| tid->an = an; |
| tid->tidno = tidno; |
| tid->seq_start = tid->seq_next = 0; |
| tid->baw_size = WME_MAX_BA; |
| tid->baw_head = tid->baw_tail = 0; |
| tid->sched = false; |
| tid->paused = false; |
| tid->state &= ~AGGR_CLEANUP; |
| INIT_LIST_HEAD(&tid->buf_q); |
| acno = TID_TO_WME_AC(tidno); |
| tid->ac = &an->ac[acno]; |
| tid->state &= ~AGGR_ADDBA_COMPLETE; |
| tid->state &= ~AGGR_ADDBA_PROGRESS; |
| tid->addba_exchangeattempts = 0; |
| } |
| |
| for (acno = 0, ac = &an->ac[acno]; |
| acno < WME_NUM_AC; acno++, ac++) { |
| ac->sched = false; |
| INIT_LIST_HEAD(&ac->tid_q); |
| |
| switch (acno) { |
| case WME_AC_BE: |
| ac->qnum = ath_tx_get_qnum(sc, |
| ATH9K_TX_QUEUE_DATA, ATH9K_WME_AC_BE); |
| break; |
| case WME_AC_BK: |
| ac->qnum = ath_tx_get_qnum(sc, |
| ATH9K_TX_QUEUE_DATA, ATH9K_WME_AC_BK); |
| break; |
| case WME_AC_VI: |
| ac->qnum = ath_tx_get_qnum(sc, |
| ATH9K_TX_QUEUE_DATA, ATH9K_WME_AC_VI); |
| break; |
| case WME_AC_VO: |
| ac->qnum = ath_tx_get_qnum(sc, |
| ATH9K_TX_QUEUE_DATA, ATH9K_WME_AC_VO); |
| break; |
| } |
| } |
| } |
| |
| void ath_tx_node_cleanup(struct ath_softc *sc, struct ath_node *an) |
| { |
| int i; |
| struct ath_atx_ac *ac, *ac_tmp; |
| struct ath_atx_tid *tid, *tid_tmp; |
| struct ath_txq *txq; |
| |
| for (i = 0; i < ATH9K_NUM_TX_QUEUES; i++) { |
| if (ATH_TXQ_SETUP(sc, i)) { |
| txq = &sc->tx.txq[i]; |
| |
| spin_lock(&txq->axq_lock); |
| |
| list_for_each_entry_safe(ac, |
| ac_tmp, &txq->axq_acq, list) { |
| tid = list_first_entry(&ac->tid_q, |
| struct ath_atx_tid, list); |
| if (tid && tid->an != an) |
| continue; |
| list_del(&ac->list); |
| ac->sched = false; |
| |
| list_for_each_entry_safe(tid, |
| tid_tmp, &ac->tid_q, list) { |
| list_del(&tid->list); |
| tid->sched = false; |
| ath_tid_drain(sc, txq, tid); |
| tid->state &= ~AGGR_ADDBA_COMPLETE; |
| tid->addba_exchangeattempts = 0; |
| tid->state &= ~AGGR_CLEANUP; |
| } |
| } |
| |
| spin_unlock(&txq->axq_lock); |
| } |
| } |
| } |