blob: f8df447bd2b6ba830f4d06b33a4c403671f23177 [file] [log] [blame]
/*
* Copyright (C) 2010 The Android Open Source Project
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
/* TO DO:
* 1. Perhaps keep several copies of the encrypted key, in case something
* goes horribly wrong?
*
*/
#include <sys/types.h>
#include <sys/stat.h>
#include <fcntl.h>
#include <unistd.h>
#include <stdio.h>
#include <sys/ioctl.h>
#include <linux/dm-ioctl.h>
#include <libgen.h>
#include <stdlib.h>
#include <sys/param.h>
#include <string.h>
#include <sys/mount.h>
#include <openssl/evp.h>
#include <openssl/sha.h>
#include <errno.h>
#include <sys/reboot.h>
#include "cryptfs.h"
#define LOG_TAG "Cryptfs"
#include "cutils/log.h"
#include "cutils/properties.h"
#define DM_CRYPT_BUF_SIZE 4096
#define DATA_MNT_POINT "/data"
char *me = "cryptfs";
static unsigned char saved_key_sha1[20] = { '\0' };
static int key_sha1_saved = 0;
static void ioctl_init(struct dm_ioctl *io, size_t dataSize, const char *name, unsigned flags)
{
memset(io, 0, dataSize);
io->data_size = dataSize;
io->data_start = sizeof(struct dm_ioctl);
io->version[0] = 4;
io->version[1] = 0;
io->version[2] = 0;
io->flags = flags;
if (name) {
strncpy(io->name, name, sizeof(io->name));
}
}
static unsigned int get_blkdev_size(int fd)
{
unsigned int nr_sec;
if ( (ioctl(fd, BLKGETSIZE, &nr_sec)) == -1) {
nr_sec = 0;
}
return nr_sec;
}
/* key or salt can be NULL, in which case just skip writing that value. Useful to
* update the failed mount count but not change the key.
*/
static int put_crypt_ftr_and_key(char *real_blk_name, struct crypt_mnt_ftr *crypt_ftr,
unsigned char *key, unsigned char *salt)
{
int fd;
unsigned int nr_sec, cnt;
off64_t off;
int rc = -1;
if ( (fd = open(real_blk_name, O_RDWR)) < 0) {
SLOGE("Cannot open real block device %s\n", real_blk_name);
return -1;
}
if ( (nr_sec = get_blkdev_size(fd)) == 0) {
SLOGE("Cannot get size of block device %s\n", real_blk_name);
goto errout;
}
/* If it's an encrypted Android partition, the last 16 Kbytes contain the
* encryption info footer and key, and plenty of bytes to spare for future
* growth.
*/
off = ((off64_t)nr_sec * 512) - CRYPT_FOOTER_OFFSET;
if (lseek64(fd, off, SEEK_SET) == -1) {
SLOGE("Cannot seek to real block device footer\n");
goto errout;
}
if ((cnt = write(fd, crypt_ftr, sizeof(struct crypt_mnt_ftr))) != sizeof(struct crypt_mnt_ftr)) {
SLOGE("Cannot write real block device footer\n");
goto errout;
}
if (key) {
if (crypt_ftr->keysize != 16) {
SLOGE("Keysize of %d bits not supported for real block device %s\n",
crypt_ftr->keysize * 8, real_blk_name);
goto errout;
}
if ( (cnt = write(fd, key, crypt_ftr->keysize)) != crypt_ftr->keysize) {
SLOGE("Cannot write key for real block device %s\n", real_blk_name);
goto errout;
}
}
if (salt) {
/* Compute the offset for start of the crypt footer */
off = ((off64_t)nr_sec * 512) - CRYPT_FOOTER_OFFSET;
/* Add in the length of the footer, key and padding */
off += sizeof(struct crypt_mnt_ftr) + crypt_ftr->keysize + KEY_TO_SALT_PADDING;
if (lseek64(fd, off, SEEK_SET) == -1) {
SLOGE("Cannot seek to real block device salt \n");
goto errout;
}
if ( (cnt = write(fd, salt, SALT_LEN)) != SALT_LEN) {
SLOGE("Cannot write salt for real block device %s\n", real_blk_name);
goto errout;
}
}
/* Success! */
rc = 0;
errout:
close(fd);
return rc;
}
static int get_crypt_ftr_and_key(char *real_blk_name, struct crypt_mnt_ftr *crypt_ftr,
unsigned char *key, unsigned char *salt)
{
int fd;
unsigned int nr_sec, cnt;
off64_t off;
int rc = -1;
if ( (fd = open(real_blk_name, O_RDWR)) < 0) {
SLOGE("Cannot open real block device %s\n", real_blk_name);
return -1;
}
if ( (nr_sec = get_blkdev_size(fd)) == 0) {
SLOGE("Cannot get size of block device %s\n", real_blk_name);
goto errout;
}
/* If it's an encrypted Android partition, the last 16 Kbytes contain the
* encryption info footer and key, and plenty of bytes to spare for future
* growth.
*/
off = ((off64_t)nr_sec * 512) - CRYPT_FOOTER_OFFSET;
if (lseek64(fd, off, SEEK_SET) == -1) {
SLOGE("Cannot seek to real block device footer\n");
goto errout;
}
if ( (cnt = read(fd, crypt_ftr, sizeof(struct crypt_mnt_ftr))) != sizeof(struct crypt_mnt_ftr)) {
SLOGE("Cannot read real block device footer\n");
goto errout;
}
if (crypt_ftr->magic != CRYPT_MNT_MAGIC) {
SLOGE("Bad magic for real block device %s\n", real_blk_name);
goto errout;
}
if (crypt_ftr->major_version != 1) {
SLOGE("Cannot understand major version %d real block device footer\n",
crypt_ftr->major_version);
goto errout;
}
if (crypt_ftr->minor_version != 0) {
SLOGW("Warning: crypto footer minor version %d, expected 0, continuing...\n",
crypt_ftr->minor_version);
}
if (crypt_ftr->ftr_size > sizeof(struct crypt_mnt_ftr)) {
/* the footer size is bigger than we expected.
* Skip to it's stated end so we can read the key.
*/
if (lseek(fd, crypt_ftr->ftr_size - sizeof(struct crypt_mnt_ftr), SEEK_CUR) == -1) {
SLOGE("Cannot seek to start of key\n");
goto errout;
}
}
if (crypt_ftr->keysize != 16) {
SLOGE("Keysize of %d bits not supported for real block device %s\n",
crypt_ftr->keysize * 8, real_blk_name);
goto errout;
}
if ( (cnt = read(fd, key, crypt_ftr->keysize)) != crypt_ftr->keysize) {
SLOGE("Cannot read key for real block device %s\n", real_blk_name);
goto errout;
}
if (lseek64(fd, KEY_TO_SALT_PADDING, SEEK_CUR) == -1) {
SLOGE("Cannot seek to real block device salt\n");
goto errout;
}
if ( (cnt = read(fd, salt, SALT_LEN)) != SALT_LEN) {
SLOGE("Cannot read salt for real block device %s\n", real_blk_name);
goto errout;
}
/* Success! */
rc = 0;
errout:
close(fd);
return rc;
}
/* Convert a binary key of specified length into an ascii hex string equivalent,
* without the leading 0x and with null termination
*/
void convert_key_to_hex_ascii(unsigned char *master_key, unsigned int keysize,
char *master_key_ascii)
{
unsigned int i, a;
unsigned char nibble;
for (i=0, a=0; i<keysize; i++, a+=2) {
/* For each byte, write out two ascii hex digits */
nibble = (master_key[i] >> 4) & 0xf;
master_key_ascii[a] = nibble + (nibble > 9 ? 0x37 : 0x30);
nibble = master_key[i] & 0xf;
master_key_ascii[a+1] = nibble + (nibble > 9 ? 0x37 : 0x30);
}
/* Add the null termination */
master_key_ascii[a] = '\0';
}
static int create_crypto_blk_dev(struct crypt_mnt_ftr *crypt_ftr, unsigned char *master_key,
char *real_blk_name, char *crypto_blk_name)
{
char buffer[DM_CRYPT_BUF_SIZE];
char master_key_ascii[129]; /* Large enough to hold 512 bit key and null */
char *crypt_params;
struct dm_ioctl *io;
struct dm_target_spec *tgt;
unsigned int minor;
int fd;
int retval = -1;
char *name ="datadev"; /* FIX ME: Make me a parameter */
if ((fd = open("/dev/device-mapper", O_RDWR)) < 0 ) {
SLOGE("Cannot open device-mapper\n");
goto errout;
}
io = (struct dm_ioctl *) buffer;
ioctl_init(io, DM_CRYPT_BUF_SIZE, name, 0);
if (ioctl(fd, DM_DEV_CREATE, io)) {
SLOGE("Cannot create dm-crypt device\n");
goto errout;
}
/* Get the device status, in particular, the name of it's device file */
ioctl_init(io, DM_CRYPT_BUF_SIZE, name, 0);
if (ioctl(fd, DM_DEV_STATUS, io)) {
SLOGE("Cannot retrieve dm-crypt device status\n");
goto errout;
}
minor = (io->dev & 0xff) | ((io->dev >> 12) & 0xfff00);
snprintf(crypto_blk_name, MAXPATHLEN, "/dev/block/dm-%u", minor);
/* Load the mapping table for this device */
tgt = (struct dm_target_spec *) &buffer[sizeof(struct dm_ioctl)];
ioctl_init(io, 4096, name, 0);
io->target_count = 1;
tgt->status = 0;
tgt->sector_start = 0;
tgt->length = crypt_ftr->fs_size;
strcpy(tgt->target_type, "crypt");
crypt_params = buffer + sizeof(struct dm_ioctl) + sizeof(struct dm_target_spec);
convert_key_to_hex_ascii(master_key, crypt_ftr->keysize, master_key_ascii);
sprintf(crypt_params, "%s %s 0 %s 0", crypt_ftr->crypto_type_name,
master_key_ascii, real_blk_name);
crypt_params += strlen(crypt_params) + 1;
crypt_params = (char *) (((unsigned long)crypt_params + 7) & ~8); /* Align to an 8 byte boundary */
tgt->next = crypt_params - buffer;
if (ioctl(fd, DM_TABLE_LOAD, io)) {
SLOGE("Cannot load dm-crypt mapping table.\n");
goto errout;
}
/* Resume this device to activate it */
ioctl_init(io, 4096, name, 0);
if (ioctl(fd, DM_DEV_SUSPEND, io)) {
SLOGE("Cannot resume the dm-crypt device\n");
goto errout;
}
/* We made it here with no errors. Woot! */
retval = 0;
errout:
close(fd); /* If fd is <0 from a failed open call, it's safe to just ignore the close error */
return retval;
}
static int delete_crypto_blk_dev(char *crypto_blkdev)
{
int fd;
char buffer[DM_CRYPT_BUF_SIZE];
struct dm_ioctl *io;
char *name ="datadev"; /* FIX ME: Make me a paraameter */
int retval = -1;
if ((fd = open("/dev/device-mapper", O_RDWR)) < 0 ) {
SLOGE("Cannot open device-mapper\n");
goto errout;
}
io = (struct dm_ioctl *) buffer;
ioctl_init(io, DM_CRYPT_BUF_SIZE, name, 0);
if (ioctl(fd, DM_DEV_REMOVE, io)) {
SLOGE("Cannot remove dm-crypt device\n");
goto errout;
}
/* We made it here with no errors. Woot! */
retval = 0;
errout:
close(fd); /* If fd is <0 from a failed open call, it's safe to just ignore the close error */
return retval;
}
#define HASH_COUNT 2000
#define KEY_LEN_BYTES 16
#define IV_LEN_BYTES 16
static void pbkdf2(char *passwd, unsigned char *salt, unsigned char *ikey)
{
/* Turn the password into a key and IV that can decrypt the master key */
PKCS5_PBKDF2_HMAC_SHA1(passwd, strlen(passwd), salt, SALT_LEN,
HASH_COUNT, KEY_LEN_BYTES+IV_LEN_BYTES, ikey);
}
static int encrypt_master_key(char *passwd, unsigned char *salt,
unsigned char *decrypted_master_key,
unsigned char *encrypted_master_key)
{
unsigned char ikey[32+32] = { 0 }; /* Big enough to hold a 256 bit key and 256 bit IV */
EVP_CIPHER_CTX e_ctx;
int encrypted_len, final_len;
/* Turn the password into a key and IV that can decrypt the master key */
pbkdf2(passwd, salt, ikey);
/* Initialize the decryption engine */
if (! EVP_EncryptInit(&e_ctx, EVP_aes_128_cbc(), ikey, ikey+KEY_LEN_BYTES)) {
SLOGE("EVP_EncryptInit failed\n");
return -1;
}
EVP_CIPHER_CTX_set_padding(&e_ctx, 0); /* Turn off padding as our data is block aligned */
/* Encrypt the master key */
if (! EVP_EncryptUpdate(&e_ctx, encrypted_master_key, &encrypted_len,
decrypted_master_key, KEY_LEN_BYTES)) {
SLOGE("EVP_EncryptUpdate failed\n");
return -1;
}
if (! EVP_EncryptFinal(&e_ctx, encrypted_master_key + encrypted_len, &final_len)) {
SLOGE("EVP_EncryptFinal failed\n");
return -1;
}
if (encrypted_len + final_len != KEY_LEN_BYTES) {
SLOGE("EVP_Encryption length check failed with %d, %d bytes\n", encrypted_len, final_len);
return -1;
} else {
return 0;
}
}
static int decrypt_master_key(char *passwd, unsigned char *salt,
unsigned char *encrypted_master_key,
unsigned char *decrypted_master_key)
{
unsigned char ikey[32+32] = { 0 }; /* Big enough to hold a 256 bit key and 256 bit IV */
EVP_CIPHER_CTX d_ctx;
int decrypted_len, final_len;
/* Turn the password into a key and IV that can decrypt the master key */
pbkdf2(passwd, salt, ikey);
/* Initialize the decryption engine */
if (! EVP_DecryptInit(&d_ctx, EVP_aes_128_cbc(), ikey, ikey+KEY_LEN_BYTES)) {
return -1;
}
EVP_CIPHER_CTX_set_padding(&d_ctx, 0); /* Turn off padding as our data is block aligned */
/* Decrypt the master key */
if (! EVP_DecryptUpdate(&d_ctx, decrypted_master_key, &decrypted_len,
encrypted_master_key, KEY_LEN_BYTES)) {
return -1;
}
if (! EVP_DecryptFinal(&d_ctx, decrypted_master_key + decrypted_len, &final_len)) {
return -1;
}
if (decrypted_len + final_len != KEY_LEN_BYTES) {
return -1;
} else {
return 0;
}
}
static int create_encrypted_random_key(char *passwd, unsigned char *master_key, unsigned char *salt)
{
int fd;
unsigned char key_buf[KEY_LEN_BYTES];
EVP_CIPHER_CTX e_ctx;
int encrypted_len, final_len;
/* Get some random bits for a key */
fd = open("/dev/urandom", O_RDONLY);
read(fd, key_buf, sizeof(key_buf));
read(fd, salt, SALT_LEN);
close(fd);
/* Now encrypt it with the password */
return encrypt_master_key(passwd, salt, key_buf, master_key);
}
static int get_orig_mount_parms(char *mount_point, char *fs_type, char *real_blkdev,
unsigned long *mnt_flags, char *fs_options)
{
char mount_point2[32];
char fs_flags[32];
property_get("ro.crypto.fs_type", fs_type, "");
property_get("ro.crypto.fs_real_blkdev", real_blkdev, "");
property_get("ro.crypto.fs_mnt_point", mount_point2, "");
property_get("ro.crypto.fs_options", fs_options, "");
property_get("ro.crypto.fs_flags", fs_flags, "");
*mnt_flags = strtol(fs_flags, 0, 0);
if (strcmp(mount_point, mount_point2)) {
/* Consistency check. These should match. If not, something odd happened. */
return -1;
}
return 0;
}
static int wait_and_unmount(char *mountpoint)
{
int i, rc;
#define WAIT_UNMOUNT_COUNT 20
/* Now umount the tmpfs filesystem */
for (i=0; i<WAIT_UNMOUNT_COUNT; i++) {
if (umount(mountpoint)) {
sleep(1);
i++;
} else {
break;
}
}
if (i < WAIT_UNMOUNT_COUNT) {
SLOGD("unmounting %s succeeded\n", mountpoint);
rc = 0;
} else {
SLOGE("unmounting %s failed\n", mountpoint);
rc = -1;
}
return rc;
}
#define DATA_PREP_TIMEOUT 100
static int prep_data_fs(void)
{
int i;
/* Do the prep of the /data filesystem */
property_set("vold.post_fs_data_done", "0");
property_set("vold.decrypt", "trigger_post_fs_data");
SLOGD("Just triggered post_fs_data\n");
/* Wait a max of 25 seconds, hopefully it takes much less */
for (i=0; i<DATA_PREP_TIMEOUT; i++) {
char p[16];;
property_get("vold.post_fs_data_done", p, "0");
if (*p == '1') {
break;
} else {
usleep(250000);
}
}
if (i == DATA_PREP_TIMEOUT) {
/* Ugh, we failed to prep /data in time. Bail. */
return -1;
} else {
SLOGD("post_fs_data done\n");
return 0;
}
}
int cryptfs_restart(void)
{
char fs_type[32];
char real_blkdev[MAXPATHLEN];
char crypto_blkdev[MAXPATHLEN];
char fs_options[256];
unsigned long mnt_flags;
struct stat statbuf;
int rc = -1, i;
static int restart_successful = 0;
/* Validate that it's OK to call this routine */
if (! key_sha1_saved) {
SLOGE("Encrypted filesystem not validated, aborting");
return -1;
}
if (restart_successful) {
SLOGE("System already restarted with encrypted disk, aborting");
return -1;
}
/* Here is where we shut down the framework. The init scripts
* start all services in one of three classes: core, main or late_start.
* On boot, we start core and main. Now, we stop main, but not core,
* as core includes vold and a few other really important things that
* we need to keep running. Once main has stopped, we should be able
* to umount the tmpfs /data, then mount the encrypted /data.
* We then restart the class main, and also the class late_start.
* At the moment, I've only put a few things in late_start that I know
* are not needed to bring up the framework, and that also cause problems
* with unmounting the tmpfs /data, but I hope to add add more services
* to the late_start class as we optimize this to decrease the delay
* till the user is asked for the password to the filesystem.
*/
/* The init files are setup to stop the class main when vold.decrypt is
* set to trigger_reset_main.
*/
property_set("vold.decrypt", "trigger_reset_main");
SLOGD("Just asked init to shut down class main\n");
/* Now that the framework is shutdown, we should be able to umount()
* the tmpfs filesystem, and mount the real one.
*/
property_get("ro.crypto.fs_crypto_blkdev", crypto_blkdev, "");
if (strlen(crypto_blkdev) == 0) {
SLOGE("fs_crypto_blkdev not set\n");
return -1;
}
if (! get_orig_mount_parms(DATA_MNT_POINT, fs_type, real_blkdev, &mnt_flags, fs_options)) {
SLOGD("Just got orig mount parms\n");
if (! (rc = wait_and_unmount(DATA_MNT_POINT)) ) {
/* If that succeeded, then mount the decrypted filesystem */
mount(crypto_blkdev, DATA_MNT_POINT, fs_type, mnt_flags, fs_options);
/* Create necessary paths on /data */
if (prep_data_fs()) {
return -1;
}
/* startup service classes main and late_start */
property_set("vold.decrypt", "trigger_restart_framework");
SLOGD("Just triggered restart_framework\n");
/* Give it a few moments to get started */
sleep(1);
}
}
if (rc == 0) {
restart_successful = 1;
}
return rc;
}
static int test_mount_encrypted_fs(char *passwd, char *mount_point)
{
struct crypt_mnt_ftr crypt_ftr;
/* Allocate enough space for a 256 bit key, but we may use less */
unsigned char encrypted_master_key[32], decrypted_master_key[32];
unsigned char salt[SALT_LEN];
char crypto_blkdev[MAXPATHLEN];
char real_blkdev[MAXPATHLEN];
char fs_type[32];
char fs_options[256];
char tmp_mount_point[64];
unsigned long mnt_flags;
unsigned int orig_failed_decrypt_count;
char encrypted_state[32];
int rc;
property_get("ro.crypto.state", encrypted_state, "");
if ( key_sha1_saved || strcmp(encrypted_state, "encrypted") ) {
SLOGE("encrypted fs already validated or not running with encryption, aborting");
return -1;
}
if (get_orig_mount_parms(mount_point, fs_type, real_blkdev, &mnt_flags, fs_options)) {
SLOGE("Error reading original mount parms for mount point %s\n", mount_point);
return -1;
}
if (get_crypt_ftr_and_key(real_blkdev, &crypt_ftr, encrypted_master_key, salt)) {
SLOGE("Error getting crypt footer and key\n");
return -1;
}
SLOGD("crypt_ftr->fs_size = %lld\n", crypt_ftr.fs_size);
orig_failed_decrypt_count = crypt_ftr.failed_decrypt_count;
if (! (crypt_ftr.flags & CRYPT_MNT_KEY_UNENCRYPTED) ) {
decrypt_master_key(passwd, salt, encrypted_master_key, decrypted_master_key);
}
if (create_crypto_blk_dev(&crypt_ftr, decrypted_master_key,
real_blkdev, crypto_blkdev)) {
SLOGE("Error creating decrypted block device\n");
return -1;
}
/* If init detects an encrypted filesystme, it writes a file for each such
* encrypted fs into the tmpfs /data filesystem, and then the framework finds those
* files and passes that data to me */
/* Create a tmp mount point to try mounting the decryptd fs
* Since we're here, the mount_point should be a tmpfs filesystem, so make
* a directory in it to test mount the decrypted filesystem.
*/
sprintf(tmp_mount_point, "%s/tmp_mnt", mount_point);
mkdir(tmp_mount_point, 0755);
if ( mount(crypto_blkdev, tmp_mount_point, "ext4", MS_RDONLY, "") ) {
SLOGE("Error temp mounting decrypted block device\n");
delete_crypto_blk_dev(crypto_blkdev);
crypt_ftr.failed_decrypt_count++;
} else {
/* Success, so just umount and we'll mount it properly when we restart
* the framework.
*/
umount(tmp_mount_point);
crypt_ftr.failed_decrypt_count = 0;
}
if (orig_failed_decrypt_count != crypt_ftr.failed_decrypt_count) {
put_crypt_ftr_and_key(real_blkdev, &crypt_ftr, 0, 0);
}
if (crypt_ftr.failed_decrypt_count) {
/* We failed to mount the device, so return an error */
rc = crypt_ftr.failed_decrypt_count;
} else {
/* Woot! Success! Save the name of the crypto block device
* so we can mount it when restarting the framework.
*/
property_set("ro.crypto.fs_crypto_blkdev", crypto_blkdev);
/* Also save a SHA1 of the master key so we can know if we
* successfully decrypted the key when we want to change the
* password on it.
*/
SHA1(decrypted_master_key, KEY_LEN_BYTES, saved_key_sha1);
key_sha1_saved = 1;
rc = 0;
}
return rc;
}
int cryptfs_check_passwd(char *passwd)
{
int rc = -1;
rc = test_mount_encrypted_fs(passwd, DATA_MNT_POINT);
return rc;
}
/* Initialize a crypt_mnt_ftr structure. The keysize is
* defaulted to 16 bytes, and the filesystem size to 0.
* Presumably, at a minimum, the caller will update the
* filesystem size and crypto_type_name after calling this function.
*/
static void cryptfs_init_crypt_mnt_ftr(struct crypt_mnt_ftr *ftr)
{
ftr->magic = CRYPT_MNT_MAGIC;
ftr->major_version = 1;
ftr->minor_version = 0;
ftr->ftr_size = sizeof(struct crypt_mnt_ftr);
ftr->flags = 0;
ftr->keysize = 16;
ftr->spare1 = 0;
ftr->fs_size = 0;
ftr->failed_decrypt_count = 0;
ftr->crypto_type_name[0] = '\0';
}
static int cryptfs_enable_wipe(char *crypto_blkdev, off64_t size)
{
char cmdline[256];
int rc = -1;
snprintf(cmdline, sizeof(cmdline), "/system/bin/make_ext4fs -a /data -l %lld %s",
size * 512, crypto_blkdev);
SLOGI("Making empty filesystem with command %s\n", cmdline);
if (system(cmdline)) {
SLOGE("Error creating empty filesystem on %s\n", crypto_blkdev);
} else {
SLOGD("Successfully created empty filesystem on %s\n", crypto_blkdev);
rc = 0;
}
return rc;
}
static inline int unix_read(int fd, void* buff, int len)
{
int ret;
do { ret = read(fd, buff, len); } while (ret < 0 && errno == EINTR);
return ret;
}
static inline int unix_write(int fd, const void* buff, int len)
{
int ret;
do { ret = write(fd, buff, len); } while (ret < 0 && errno == EINTR);
return ret;
}
#define CRYPT_INPLACE_BUFSIZE 4096
#define CRYPT_SECTORS_PER_BUFSIZE (CRYPT_INPLACE_BUFSIZE / 512)
static int cryptfs_enable_inplace(char *crypto_blkdev, char *real_blkdev, off64_t size)
{
int realfd, cryptofd;
char *buf[CRYPT_INPLACE_BUFSIZE];
int rc = -1;
off64_t numblocks, i, remainder;
off64_t one_pct, cur_pct, new_pct;
if ( (realfd = open(real_blkdev, O_RDONLY)) < 0) {
SLOGE("Error opening real_blkdev %s for inplace encrypt\n", real_blkdev);
return -1;
}
if ( (cryptofd = open(crypto_blkdev, O_WRONLY)) < 0) {
SLOGE("Error opening crypto_blkdev %s for inplace encrypt\n", crypto_blkdev);
close(realfd);
return -1;
}
/* This is pretty much a simple loop of reading 4K, and writing 4K.
* The size passed in is the number of 512 byte sectors in the filesystem.
* So compute the number of whole 4K blocks we should read/write,
* and the remainder.
*/
numblocks = size / CRYPT_SECTORS_PER_BUFSIZE;
remainder = size % CRYPT_SECTORS_PER_BUFSIZE;
SLOGE("Encrypting filesystem in place...");
one_pct = numblocks / 100;
cur_pct = 0;
/* process the majority of the filesystem in blocks */
for (i=0; i<numblocks; i++) {
new_pct = i / one_pct;
if (new_pct > cur_pct) {
char buf[8];
cur_pct = new_pct;
snprintf(buf, sizeof(buf), "%lld", cur_pct);
property_set("vold.encrypt_progress", buf);
}
if (unix_read(realfd, buf, CRYPT_INPLACE_BUFSIZE) <= 0) {
SLOGE("Error reading real_blkdev %s for inplace encrypt\n", crypto_blkdev);
goto errout;
}
if (unix_write(cryptofd, buf, CRYPT_INPLACE_BUFSIZE) <= 0) {
SLOGE("Error writing crypto_blkdev %s for inplace encrypt\n", crypto_blkdev);
goto errout;
}
}
/* Do any remaining sectors */
for (i=0; i<remainder; i++) {
if (unix_read(realfd, buf, 512) <= 0) {
SLOGE("Error reading rival sectors from real_blkdev %s for inplace encrypt\n", crypto_blkdev);
goto errout;
}
if (unix_write(cryptofd, buf, 512) <= 0) {
SLOGE("Error writing final sectors to crypto_blkdev %s for inplace encrypt\n", crypto_blkdev);
goto errout;
}
}
property_set("vold.encrypt_progress", "100");
rc = 0;
errout:
close(realfd);
close(cryptofd);
return rc;
}
#define CRYPTO_ENABLE_WIPE 1
#define CRYPTO_ENABLE_INPLACE 2
#define FRAMEWORK_BOOT_WAIT 60
int cryptfs_enable(char *howarg, char *passwd)
{
int how = 0;
char crypto_blkdev[MAXPATHLEN], real_blkdev[MAXPATHLEN];
char fs_type[32], fs_options[256], mount_point[32];
unsigned long mnt_flags, nr_sec;
unsigned char master_key[16], decrypted_master_key[16];
unsigned char salt[SALT_LEN];
int rc=-1, fd, i;
struct crypt_mnt_ftr crypt_ftr;
char tmpfs_options[80];
char encrypted_state[32];
property_get("ro.crypto.state", encrypted_state, "");
if (strcmp(encrypted_state, "unencrypted")) {
SLOGE("Device is already running encrypted, aborting");
return -1;
}
if (!strcmp(howarg, "wipe")) {
how = CRYPTO_ENABLE_WIPE;
} else if (! strcmp(howarg, "inplace")) {
how = CRYPTO_ENABLE_INPLACE;
} else {
/* Shouldn't happen, as CommandListener vets the args */
return -1;
}
get_orig_mount_parms(mount_point, fs_type, real_blkdev, &mnt_flags, fs_options);
/* The init files are setup to stop the class main and late start when
* vold sets trigger_shutdown_framework.
*/
property_set("vold.decrypt", "trigger_shutdown_framework");
SLOGD("Just asked init to shut down class main\n");
if (wait_and_unmount("/mnt/sdcard")) {
return -1;
}
/* Now unmount the /data partition. */
if (wait_and_unmount(DATA_MNT_POINT)) {
return -1;
}
/* Do extra work for a better UX when doing the long inplace encryption */
if (how == CRYPTO_ENABLE_INPLACE) {
/* Now that /data is unmounted, we need to mount a tmpfs
* /data, set a property saying we're doing inplace encryption,
* and restart the framework.
*/
property_get("ro.crypto.tmpfs_options", tmpfs_options, "");
if (mount("tmpfs", DATA_MNT_POINT, "tmpfs", MS_NOATIME | MS_NOSUID | MS_NODEV,
tmpfs_options) < 0) {
return -1;
}
/* Tells the framework that inplace encryption is starting */
property_set("vold.encrypt_progress", "0");
/* restart the framework. */
/* Create necessary paths on /data */
if (prep_data_fs()) {
return -1;
}
/* startup service classes main and late_start */
property_set("vold.decrypt", "trigger_restart_min_framework");
SLOGD("Just triggered restart_min_framework\n");
/* OK, the framework is restarted and will soon be showing a
* progress bar. Time to setup an encrypted mapping, and
* either write a new filesystem, or encrypt in place updating
* the progress bar as we work.
*/
}
/* Start the actual work of making an encrypted filesystem */
fd = open(real_blkdev, O_RDONLY);
if ( (nr_sec = get_blkdev_size(fd)) == 0) {
SLOGE("Cannot get size of block device %s\n", real_blkdev);
return -1;
}
close(fd);
/* Initialize a crypt_mnt_ftr for the partition */
cryptfs_init_crypt_mnt_ftr(&crypt_ftr);
crypt_ftr.fs_size = nr_sec - (CRYPT_FOOTER_OFFSET / 512);
strcpy((char *)crypt_ftr.crypto_type_name, "aes-cbc-essiv:sha256");
/* Make an encrypted master key */
if (create_encrypted_random_key(passwd, master_key, salt)) {
SLOGE("Cannot create encrypted master key\n");
return -1;
}
/* Write the key to the end of the partition */
put_crypt_ftr_and_key(real_blkdev, &crypt_ftr, master_key, salt);
decrypt_master_key(passwd, salt, master_key, decrypted_master_key);
create_crypto_blk_dev(&crypt_ftr, decrypted_master_key, real_blkdev, crypto_blkdev);
if (how == CRYPTO_ENABLE_WIPE) {
rc = cryptfs_enable_wipe(crypto_blkdev, crypt_ftr.fs_size);
} else if (how == CRYPTO_ENABLE_INPLACE) {
rc = cryptfs_enable_inplace(crypto_blkdev, real_blkdev, crypt_ftr.fs_size);
} else {
/* Shouldn't happen */
SLOGE("cryptfs_enable: internal error, unknown option\n");
return -1;
}
/* Undo the dm-crypt mapping whether we succeed or not */
delete_crypto_blk_dev(crypto_blkdev);
if (! rc) {
/* Success */
sleep(2); /* Give the UI a change to show 100% progress */
sync();
reboot(LINUX_REBOOT_CMD_RESTART);
}
/* Only returns on error */
return rc;
}
int cryptfs_changepw(char *oldpw, char *newpw)
{
struct crypt_mnt_ftr crypt_ftr;
unsigned char encrypted_master_key[32], decrypted_master_key[32];
unsigned char salt[SALT_LEN];
unsigned char new_key_sha1[20];
char real_blkdev[MAXPATHLEN];
/* This is only allowed after we've successfully decrypted the master key */
if (! key_sha1_saved) {
SLOGE("Key not saved, aborting");
return -1;
}
property_get("ro.crypto.fs_real_blkdev", real_blkdev, "");
if (strlen(real_blkdev) == 0) {
SLOGE("Can't find real blkdev");
return -1;
}
/* get key */
if (get_crypt_ftr_and_key(real_blkdev, &crypt_ftr, encrypted_master_key, salt)) {
SLOGE("Error getting crypt footer and key");
return -1;
}
/* decrypt key with old passwd */
decrypt_master_key(oldpw, salt, encrypted_master_key, decrypted_master_key);
/* compute sha1 of decrypted key */
SHA1(decrypted_master_key, KEY_LEN_BYTES, new_key_sha1);
/* If computed sha1 and saved sha1 match, encrypt key with new passwd */
if (! memcmp(saved_key_sha1, new_key_sha1, sizeof(saved_key_sha1))) {
/* they match, it's safe to re-encrypt the key */
encrypt_master_key(newpw, salt, decrypted_master_key, encrypted_master_key);
/* save the key */
put_crypt_ftr_and_key(real_blkdev, &crypt_ftr, encrypted_master_key, 0);
} else {
SLOGE("SHA1 mismatch");
return -1;
}
return 0;
}