| /* |
| * Copyright (C) 2010 The Android Open Source Project |
| * |
| * Licensed under the Apache License, Version 2.0 (the "License"); |
| * you may not use this file except in compliance with the License. |
| * You may obtain a copy of the License at |
| * |
| * http://www.apache.org/licenses/LICENSE-2.0 |
| * |
| * Unless required by applicable law or agreed to in writing, software |
| * distributed under the License is distributed on an "AS IS" BASIS, |
| * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. |
| * See the License for the specific language governing permissions and |
| * limitations under the License. |
| */ |
| |
| #define LOG_TAG "Cryptfs" |
| |
| #include "cryptfs.h" |
| |
| #include "Checkpoint.h" |
| #include "CryptoType.h" |
| #include "EncryptInplace.h" |
| #include "FsCrypt.h" |
| #include "Keymaster.h" |
| #include "Process.h" |
| #include "ScryptParameters.h" |
| #include "Utils.h" |
| #include "VoldUtil.h" |
| #include "VolumeManager.h" |
| |
| #include <android-base/parseint.h> |
| #include <android-base/properties.h> |
| #include <android-base/stringprintf.h> |
| #include <bootloader_message/bootloader_message.h> |
| #include <cutils/android_reboot.h> |
| #include <cutils/properties.h> |
| #include <ext4_utils/ext4_utils.h> |
| #include <f2fs_sparseblock.h> |
| #include <fs_mgr.h> |
| #include <fscrypt/fscrypt.h> |
| #include <libdm/dm.h> |
| #include <log/log.h> |
| #include <logwrap/logwrap.h> |
| #include <openssl/evp.h> |
| #include <openssl/sha.h> |
| #include <selinux/selinux.h> |
| #include <wakelock/wakelock.h> |
| |
| #include <ctype.h> |
| #include <errno.h> |
| #include <fcntl.h> |
| #include <inttypes.h> |
| #include <libgen.h> |
| #include <linux/kdev_t.h> |
| #include <math.h> |
| #include <stdio.h> |
| #include <stdlib.h> |
| #include <string.h> |
| #include <sys/mount.h> |
| #include <sys/param.h> |
| #include <sys/stat.h> |
| #include <sys/types.h> |
| #include <sys/wait.h> |
| #include <time.h> |
| #include <unistd.h> |
| |
| #include <chrono> |
| #include <thread> |
| |
| extern "C" { |
| #include <crypto_scrypt.h> |
| } |
| |
| using android::base::ParseUint; |
| using android::base::StringPrintf; |
| using android::fs_mgr::GetEntryForMountPoint; |
| using android::vold::CryptoType; |
| using android::vold::KeyBuffer; |
| using android::vold::KeyGeneration; |
| using namespace android::dm; |
| using namespace std::chrono_literals; |
| |
| /* The current cryptfs version */ |
| #define CURRENT_MAJOR_VERSION 1 |
| #define CURRENT_MINOR_VERSION 3 |
| |
| #define CRYPT_FOOTER_TO_PERSIST_OFFSET 0x1000 |
| #define CRYPT_PERSIST_DATA_SIZE 0x1000 |
| |
| #define MAX_CRYPTO_TYPE_NAME_LEN 64 |
| |
| #define MAX_KEY_LEN 48 |
| #define SALT_LEN 16 |
| #define SCRYPT_LEN 32 |
| |
| /* definitions of flags in the structure below */ |
| #define CRYPT_MNT_KEY_UNENCRYPTED 0x1 /* The key for the partition is not encrypted. */ |
| #define CRYPT_ENCRYPTION_IN_PROGRESS \ |
| 0x2 /* Encryption partially completed, \ |
| encrypted_upto valid*/ |
| #define CRYPT_INCONSISTENT_STATE \ |
| 0x4 /* Set when starting encryption, clear when \ |
| exit cleanly, either through success or \ |
| correctly marked partial encryption */ |
| #define CRYPT_DATA_CORRUPT \ |
| 0x8 /* Set when encryption is fine, but the \ |
| underlying volume is corrupt */ |
| #define CRYPT_FORCE_ENCRYPTION \ |
| 0x10 /* Set when it is time to encrypt this \ |
| volume on boot. Everything in this \ |
| structure is set up correctly as \ |
| though device is encrypted except \ |
| that the master key is encrypted with the \ |
| default password. */ |
| #define CRYPT_FORCE_COMPLETE \ |
| 0x20 /* Set when the above encryption cycle is \ |
| complete. On next cryptkeeper entry, match \ |
| the password. If it matches fix the master \ |
| key and remove this flag. */ |
| |
| /* Allowed values for type in the structure below */ |
| #define CRYPT_TYPE_PASSWORD \ |
| 0 /* master_key is encrypted with a password \ |
| * Must be zero to be compatible with pre-L \ |
| * devices where type is always password.*/ |
| #define CRYPT_TYPE_DEFAULT \ |
| 1 /* master_key is encrypted with default \ |
| * password */ |
| #define CRYPT_TYPE_PATTERN 2 /* master_key is encrypted with a pattern */ |
| #define CRYPT_TYPE_PIN 3 /* master_key is encrypted with a pin */ |
| #define CRYPT_TYPE_MAX_TYPE 3 /* type cannot be larger than this value */ |
| |
| #define CRYPT_MNT_MAGIC 0xD0B5B1C4 |
| #define PERSIST_DATA_MAGIC 0xE950CD44 |
| |
| /* Key Derivation Function algorithms */ |
| #define KDF_PBKDF2 1 |
| #define KDF_SCRYPT 2 |
| /* Algorithms 3 & 4 deprecated before shipping outside of google, so removed */ |
| #define KDF_SCRYPT_KEYMASTER 5 |
| |
| /* Maximum allowed keymaster blob size. */ |
| #define KEYMASTER_BLOB_SIZE 2048 |
| |
| /* __le32 and __le16 defined in system/extras/ext4_utils/ext4_utils.h */ |
| #define __le8 unsigned char |
| |
| #if !defined(SHA256_DIGEST_LENGTH) |
| #define SHA256_DIGEST_LENGTH 32 |
| #endif |
| |
| /* This structure starts 16,384 bytes before the end of a hardware |
| * partition that is encrypted, or in a separate partition. It's location |
| * is specified by a property set in init.<device>.rc. |
| * The structure allocates 48 bytes for a key, but the real key size is |
| * specified in the struct. Currently, the code is hardcoded to use 128 |
| * bit keys. |
| * The fields after salt are only valid in rev 1.1 and later stuctures. |
| * Obviously, the filesystem does not include the last 16 kbytes |
| * of the partition if the crypt_mnt_ftr lives at the end of the |
| * partition. |
| */ |
| |
| struct crypt_mnt_ftr { |
| __le32 magic; /* See above */ |
| __le16 major_version; |
| __le16 minor_version; |
| __le32 ftr_size; /* in bytes, not including key following */ |
| __le32 flags; /* See above */ |
| __le32 keysize; /* in bytes */ |
| __le32 crypt_type; /* how master_key is encrypted. Must be a |
| * CRYPT_TYPE_XXX value */ |
| __le64 fs_size; /* Size of the encrypted fs, in 512 byte sectors */ |
| __le32 failed_decrypt_count; /* count of # of failed attempts to decrypt and |
| mount, set to 0 on successful mount */ |
| unsigned char crypto_type_name[MAX_CRYPTO_TYPE_NAME_LEN]; /* The type of encryption |
| needed to decrypt this |
| partition, null terminated */ |
| __le32 spare2; /* ignored */ |
| unsigned char master_key[MAX_KEY_LEN]; /* The encrypted key for decrypting the filesystem */ |
| unsigned char salt[SALT_LEN]; /* The salt used for this encryption */ |
| __le64 persist_data_offset[2]; /* Absolute offset to both copies of crypt_persist_data |
| * on device with that info, either the footer of the |
| * real_blkdevice or the metadata partition. */ |
| |
| __le32 persist_data_size; /* The number of bytes allocated to each copy of the |
| * persistent data table*/ |
| |
| __le8 kdf_type; /* The key derivation function used. */ |
| |
| /* scrypt parameters. See www.tarsnap.com/scrypt/scrypt.pdf */ |
| __le8 N_factor; /* (1 << N) */ |
| __le8 r_factor; /* (1 << r) */ |
| __le8 p_factor; /* (1 << p) */ |
| __le64 encrypted_upto; /* If we are in state CRYPT_ENCRYPTION_IN_PROGRESS and |
| we have to stop (e.g. power low) this is the last |
| encrypted 512 byte sector.*/ |
| __le8 hash_first_block[SHA256_DIGEST_LENGTH]; /* When CRYPT_ENCRYPTION_IN_PROGRESS |
| set, hash of first block, used |
| to validate before continuing*/ |
| |
| /* key_master key, used to sign the derived key which is then used to generate |
| * the intermediate key |
| * This key should be used for no other purposes! We use this key to sign unpadded |
| * data, which is acceptable but only if the key is not reused elsewhere. */ |
| __le8 keymaster_blob[KEYMASTER_BLOB_SIZE]; |
| __le32 keymaster_blob_size; |
| |
| /* Store scrypt of salted intermediate key. When decryption fails, we can |
| check if this matches, and if it does, we know that the problem is with the |
| drive, and there is no point in asking the user for more passwords. |
| |
| Note that if any part of this structure is corrupt, this will not match and |
| we will continue to believe the user entered the wrong password. In that |
| case the only solution is for the user to enter a password enough times to |
| force a wipe. |
| |
| Note also that there is no need to worry about migration. If this data is |
| wrong, we simply won't recognise a right password, and will continue to |
| prompt. On the first password change, this value will be populated and |
| then we will be OK. |
| */ |
| unsigned char scrypted_intermediate_key[SCRYPT_LEN]; |
| |
| /* sha of this structure with this element set to zero |
| Used when encrypting on reboot to validate structure before doing something |
| fatal |
| */ |
| unsigned char sha256[SHA256_DIGEST_LENGTH]; |
| }; |
| |
| /* Persistant data that should be available before decryption. |
| * Things like airplane mode, locale and timezone are kept |
| * here and can be retrieved by the CryptKeeper UI to properly |
| * configure the phone before asking for the password |
| * This is only valid if the major and minor version above |
| * is set to 1.1 or higher. |
| * |
| * This is a 4K structure. There are 2 copies, and the code alternates |
| * writing one and then clearing the previous one. The reading |
| * code reads the first valid copy it finds, based on the magic number. |
| * The absolute offset to the first of the two copies is kept in rev 1.1 |
| * and higher crypt_mnt_ftr structures. |
| */ |
| struct crypt_persist_entry { |
| char key[PROPERTY_KEY_MAX]; |
| char val[PROPERTY_VALUE_MAX]; |
| }; |
| |
| /* Should be exactly 4K in size */ |
| struct crypt_persist_data { |
| __le32 persist_magic; |
| __le32 persist_valid_entries; |
| __le32 persist_spare[30]; |
| struct crypt_persist_entry persist_entry[0]; |
| }; |
| |
| static int wait_and_unmount(const char* mountpoint, bool kill); |
| |
| typedef int (*kdf_func)(const char* passwd, const unsigned char* salt, unsigned char* ikey, |
| void* params); |
| |
| #define UNUSED __attribute__((unused)) |
| |
| #define HASH_COUNT 2000 |
| |
| constexpr size_t INTERMEDIATE_KEY_LEN_BYTES = 16; |
| constexpr size_t INTERMEDIATE_IV_LEN_BYTES = 16; |
| constexpr size_t INTERMEDIATE_BUF_SIZE = (INTERMEDIATE_KEY_LEN_BYTES + INTERMEDIATE_IV_LEN_BYTES); |
| |
| // SCRYPT_LEN is used by struct crypt_mnt_ftr for its intermediate key. |
| static_assert(INTERMEDIATE_BUF_SIZE == SCRYPT_LEN, "Mismatch of intermediate key sizes"); |
| |
| #define KEY_IN_FOOTER "footer" |
| |
| #define DEFAULT_PASSWORD "default_password" |
| |
| #define CRYPTO_BLOCK_DEVICE "userdata" |
| |
| #define BREADCRUMB_FILE "/data/misc/vold/convert_fde" |
| |
| #define EXT4_FS 1 |
| #define F2FS_FS 2 |
| |
| #define TABLE_LOAD_RETRIES 10 |
| |
| #define RSA_KEY_SIZE 2048 |
| #define RSA_KEY_SIZE_BYTES (RSA_KEY_SIZE / 8) |
| #define RSA_EXPONENT 0x10001 |
| #define KEYMASTER_CRYPTFS_RATE_LIMIT 1 // Maximum one try per second |
| |
| #define RETRY_MOUNT_ATTEMPTS 10 |
| #define RETRY_MOUNT_DELAY_SECONDS 1 |
| |
| #define CREATE_CRYPTO_BLK_DEV_FLAGS_ALLOW_ENCRYPT_OVERRIDE (1) |
| |
| static int put_crypt_ftr_and_key(struct crypt_mnt_ftr* crypt_ftr); |
| |
| static unsigned char saved_master_key[MAX_KEY_LEN]; |
| static char* saved_mount_point; |
| static int master_key_saved = 0; |
| static struct crypt_persist_data* persist_data = NULL; |
| |
| constexpr CryptoType aes_128_cbc = CryptoType() |
| .set_config_name("AES-128-CBC") |
| .set_kernel_name("aes-cbc-essiv:sha256") |
| .set_keysize(16); |
| |
| constexpr CryptoType supported_crypto_types[] = {aes_128_cbc, android::vold::adiantum}; |
| |
| static_assert(validateSupportedCryptoTypes(MAX_KEY_LEN, supported_crypto_types, |
| array_length(supported_crypto_types)), |
| "We have a CryptoType with keysize > MAX_KEY_LEN or which was " |
| "incompletely constructed."); |
| |
| static const CryptoType& get_crypto_type() { |
| // We only want to parse this read-only property once. But we need to wait |
| // until the system is initialized before we can read it. So we use a static |
| // scoped within this function to get it only once. |
| static CryptoType crypto_type = |
| lookup_crypto_algorithm(supported_crypto_types, array_length(supported_crypto_types), |
| aes_128_cbc, "ro.crypto.fde_algorithm"); |
| return crypto_type; |
| } |
| |
| const KeyGeneration cryptfs_get_keygen() { |
| return KeyGeneration{get_crypto_type().get_keysize(), true, false}; |
| } |
| |
| /* Should we use keymaster? */ |
| static int keymaster_check_compatibility() { |
| return keymaster_compatibility_cryptfs_scrypt(); |
| } |
| |
| /* Create a new keymaster key and store it in this footer */ |
| static int keymaster_create_key(struct crypt_mnt_ftr* ftr) { |
| if (ftr->keymaster_blob_size) { |
| SLOGI("Already have key"); |
| return 0; |
| } |
| |
| int rc = keymaster_create_key_for_cryptfs_scrypt( |
| RSA_KEY_SIZE, RSA_EXPONENT, KEYMASTER_CRYPTFS_RATE_LIMIT, ftr->keymaster_blob, |
| KEYMASTER_BLOB_SIZE, &ftr->keymaster_blob_size); |
| if (rc) { |
| if (ftr->keymaster_blob_size > KEYMASTER_BLOB_SIZE) { |
| SLOGE("Keymaster key blob too large"); |
| ftr->keymaster_blob_size = 0; |
| } |
| SLOGE("Failed to generate keypair"); |
| return -1; |
| } |
| return 0; |
| } |
| |
| /* This signs the given object using the keymaster key. */ |
| static int keymaster_sign_object(struct crypt_mnt_ftr* ftr, const unsigned char* object, |
| const size_t object_size, unsigned char** signature, |
| size_t* signature_size) { |
| unsigned char to_sign[RSA_KEY_SIZE_BYTES]; |
| size_t to_sign_size = sizeof(to_sign); |
| memset(to_sign, 0, RSA_KEY_SIZE_BYTES); |
| |
| // To sign a message with RSA, the message must satisfy two |
| // constraints: |
| // |
| // 1. The message, when interpreted as a big-endian numeric value, must |
| // be strictly less than the public modulus of the RSA key. Note |
| // that because the most significant bit of the public modulus is |
| // guaranteed to be 1 (else it's an (n-1)-bit key, not an n-bit |
| // key), an n-bit message with most significant bit 0 always |
| // satisfies this requirement. |
| // |
| // 2. The message must have the same length in bits as the public |
| // modulus of the RSA key. This requirement isn't mathematically |
| // necessary, but is necessary to ensure consistency in |
| // implementations. |
| switch (ftr->kdf_type) { |
| case KDF_SCRYPT_KEYMASTER: |
| // This ensures the most significant byte of the signed message |
| // is zero. We could have zero-padded to the left instead, but |
| // this approach is slightly more robust against changes in |
| // object size. However, it's still broken (but not unusably |
| // so) because we really should be using a proper deterministic |
| // RSA padding function, such as PKCS1. |
| memcpy(to_sign + 1, object, std::min((size_t)RSA_KEY_SIZE_BYTES - 1, object_size)); |
| SLOGI("Signing safely-padded object"); |
| break; |
| default: |
| SLOGE("Unknown KDF type %d", ftr->kdf_type); |
| return -1; |
| } |
| for (;;) { |
| auto result = keymaster_sign_object_for_cryptfs_scrypt( |
| ftr->keymaster_blob, ftr->keymaster_blob_size, KEYMASTER_CRYPTFS_RATE_LIMIT, to_sign, |
| to_sign_size, signature, signature_size); |
| switch (result) { |
| case KeymasterSignResult::ok: |
| return 0; |
| case KeymasterSignResult::upgrade: |
| break; |
| default: |
| return -1; |
| } |
| SLOGD("Upgrading key"); |
| if (keymaster_upgrade_key_for_cryptfs_scrypt( |
| RSA_KEY_SIZE, RSA_EXPONENT, KEYMASTER_CRYPTFS_RATE_LIMIT, ftr->keymaster_blob, |
| ftr->keymaster_blob_size, ftr->keymaster_blob, KEYMASTER_BLOB_SIZE, |
| &ftr->keymaster_blob_size) != 0) { |
| SLOGE("Failed to upgrade key"); |
| return -1; |
| } |
| if (put_crypt_ftr_and_key(ftr) != 0) { |
| SLOGE("Failed to write upgraded key to disk"); |
| } |
| SLOGD("Key upgraded successfully"); |
| } |
| } |
| |
| /* Store password when userdata is successfully decrypted and mounted. |
| * Cleared by cryptfs_clear_password |
| * |
| * To avoid a double prompt at boot, we need to store the CryptKeeper |
| * password and pass it to KeyGuard, which uses it to unlock KeyStore. |
| * Since the entire framework is torn down and rebuilt after encryption, |
| * we have to use a daemon or similar to store the password. Since vold |
| * is secured against IPC except from system processes, it seems a reasonable |
| * place to store this. |
| * |
| * password should be cleared once it has been used. |
| * |
| * password is aged out after password_max_age_seconds seconds. |
| */ |
| static char* password = 0; |
| static int password_expiry_time = 0; |
| static const int password_max_age_seconds = 60; |
| |
| enum class RebootType { reboot, recovery, shutdown }; |
| static void cryptfs_reboot(RebootType rt) { |
| switch (rt) { |
| case RebootType::reboot: |
| property_set(ANDROID_RB_PROPERTY, "reboot"); |
| break; |
| |
| case RebootType::recovery: |
| property_set(ANDROID_RB_PROPERTY, "reboot,recovery"); |
| break; |
| |
| case RebootType::shutdown: |
| property_set(ANDROID_RB_PROPERTY, "shutdown"); |
| break; |
| } |
| |
| sleep(20); |
| |
| /* Shouldn't get here, reboot should happen before sleep times out */ |
| return; |
| } |
| |
| /** |
| * Gets the default device scrypt parameters for key derivation time tuning. |
| * The parameters should lead to about one second derivation time for the |
| * given device. |
| */ |
| static void get_device_scrypt_params(struct crypt_mnt_ftr* ftr) { |
| char paramstr[PROPERTY_VALUE_MAX]; |
| int Nf, rf, pf; |
| |
| property_get(SCRYPT_PROP, paramstr, SCRYPT_DEFAULTS); |
| if (!parse_scrypt_parameters(paramstr, &Nf, &rf, &pf)) { |
| SLOGW("bad scrypt parameters '%s' should be like '12:8:1'; using defaults", paramstr); |
| parse_scrypt_parameters(SCRYPT_DEFAULTS, &Nf, &rf, &pf); |
| } |
| ftr->N_factor = Nf; |
| ftr->r_factor = rf; |
| ftr->p_factor = pf; |
| } |
| |
| static uint64_t get_fs_size(const char* dev) { |
| int fd, block_size; |
| struct ext4_super_block sb; |
| uint64_t len; |
| |
| if ((fd = open(dev, O_RDONLY | O_CLOEXEC)) < 0) { |
| SLOGE("Cannot open device to get filesystem size "); |
| return 0; |
| } |
| |
| if (lseek64(fd, 1024, SEEK_SET) < 0) { |
| SLOGE("Cannot seek to superblock"); |
| return 0; |
| } |
| |
| if (read(fd, &sb, sizeof(sb)) != sizeof(sb)) { |
| SLOGE("Cannot read superblock"); |
| return 0; |
| } |
| |
| close(fd); |
| |
| if (le32_to_cpu(sb.s_magic) != EXT4_SUPER_MAGIC) { |
| SLOGE("Not a valid ext4 superblock"); |
| return 0; |
| } |
| block_size = 1024 << sb.s_log_block_size; |
| /* compute length in bytes */ |
| len = (((uint64_t)sb.s_blocks_count_hi << 32) + sb.s_blocks_count_lo) * block_size; |
| |
| /* return length in sectors */ |
| return len / 512; |
| } |
| |
| static void get_crypt_info(std::string* key_loc, std::string* real_blk_device) { |
| for (const auto& entry : fstab_default) { |
| if (!entry.fs_mgr_flags.vold_managed && |
| (entry.fs_mgr_flags.crypt || entry.fs_mgr_flags.force_crypt || |
| entry.fs_mgr_flags.force_fde_or_fbe || entry.fs_mgr_flags.file_encryption)) { |
| if (key_loc != nullptr) { |
| *key_loc = entry.key_loc; |
| } |
| if (real_blk_device != nullptr) { |
| *real_blk_device = entry.blk_device; |
| } |
| return; |
| } |
| } |
| } |
| |
| static int get_crypt_ftr_info(char** metadata_fname, off64_t* off) { |
| static int cached_data = 0; |
| static uint64_t cached_off = 0; |
| static char cached_metadata_fname[PROPERTY_VALUE_MAX] = ""; |
| char key_loc[PROPERTY_VALUE_MAX]; |
| char real_blkdev[PROPERTY_VALUE_MAX]; |
| int rc = -1; |
| |
| if (!cached_data) { |
| std::string key_loc; |
| std::string real_blkdev; |
| get_crypt_info(&key_loc, &real_blkdev); |
| |
| if (key_loc == KEY_IN_FOOTER) { |
| if (android::vold::GetBlockDevSize(real_blkdev, &cached_off) == android::OK) { |
| /* If it's an encrypted Android partition, the last 16 Kbytes contain the |
| * encryption info footer and key, and plenty of bytes to spare for future |
| * growth. |
| */ |
| strlcpy(cached_metadata_fname, real_blkdev.c_str(), sizeof(cached_metadata_fname)); |
| cached_off -= CRYPT_FOOTER_OFFSET; |
| cached_data = 1; |
| } else { |
| SLOGE("Cannot get size of block device %s\n", real_blkdev.c_str()); |
| } |
| } else { |
| strlcpy(cached_metadata_fname, key_loc.c_str(), sizeof(cached_metadata_fname)); |
| cached_off = 0; |
| cached_data = 1; |
| } |
| } |
| |
| if (cached_data) { |
| if (metadata_fname) { |
| *metadata_fname = cached_metadata_fname; |
| } |
| if (off) { |
| *off = cached_off; |
| } |
| rc = 0; |
| } |
| |
| return rc; |
| } |
| |
| /* Set sha256 checksum in structure */ |
| static void set_ftr_sha(struct crypt_mnt_ftr* crypt_ftr) { |
| SHA256_CTX c; |
| SHA256_Init(&c); |
| memset(crypt_ftr->sha256, 0, sizeof(crypt_ftr->sha256)); |
| SHA256_Update(&c, crypt_ftr, sizeof(*crypt_ftr)); |
| SHA256_Final(crypt_ftr->sha256, &c); |
| } |
| |
| /* key or salt can be NULL, in which case just skip writing that value. Useful to |
| * update the failed mount count but not change the key. |
| */ |
| static int put_crypt_ftr_and_key(struct crypt_mnt_ftr* crypt_ftr) { |
| int fd; |
| unsigned int cnt; |
| /* starting_off is set to the SEEK_SET offset |
| * where the crypto structure starts |
| */ |
| off64_t starting_off; |
| int rc = -1; |
| char* fname = NULL; |
| struct stat statbuf; |
| |
| set_ftr_sha(crypt_ftr); |
| |
| if (get_crypt_ftr_info(&fname, &starting_off)) { |
| SLOGE("Unable to get crypt_ftr_info\n"); |
| return -1; |
| } |
| if (fname[0] != '/') { |
| SLOGE("Unexpected value for crypto key location\n"); |
| return -1; |
| } |
| if ((fd = open(fname, O_RDWR | O_CREAT | O_CLOEXEC, 0600)) < 0) { |
| SLOGE("Cannot open footer file %s for put\n", fname); |
| return -1; |
| } |
| |
| /* Seek to the start of the crypt footer */ |
| if (lseek64(fd, starting_off, SEEK_SET) == -1) { |
| SLOGE("Cannot seek to real block device footer\n"); |
| goto errout; |
| } |
| |
| if ((cnt = write(fd, crypt_ftr, sizeof(struct crypt_mnt_ftr))) != sizeof(struct crypt_mnt_ftr)) { |
| SLOGE("Cannot write real block device footer\n"); |
| goto errout; |
| } |
| |
| fstat(fd, &statbuf); |
| /* If the keys are kept on a raw block device, do not try to truncate it. */ |
| if (S_ISREG(statbuf.st_mode)) { |
| if (ftruncate(fd, 0x4000)) { |
| SLOGE("Cannot set footer file size\n"); |
| goto errout; |
| } |
| } |
| |
| /* Success! */ |
| rc = 0; |
| |
| errout: |
| close(fd); |
| return rc; |
| } |
| |
| static bool check_ftr_sha(const struct crypt_mnt_ftr* crypt_ftr) { |
| struct crypt_mnt_ftr copy; |
| memcpy(©, crypt_ftr, sizeof(copy)); |
| set_ftr_sha(©); |
| return memcmp(copy.sha256, crypt_ftr->sha256, sizeof(copy.sha256)) == 0; |
| } |
| |
| static inline int unix_read(int fd, void* buff, int len) { |
| return TEMP_FAILURE_RETRY(read(fd, buff, len)); |
| } |
| |
| static inline int unix_write(int fd, const void* buff, int len) { |
| return TEMP_FAILURE_RETRY(write(fd, buff, len)); |
| } |
| |
| static void init_empty_persist_data(struct crypt_persist_data* pdata, int len) { |
| memset(pdata, 0, len); |
| pdata->persist_magic = PERSIST_DATA_MAGIC; |
| pdata->persist_valid_entries = 0; |
| } |
| |
| /* A routine to update the passed in crypt_ftr to the lastest version. |
| * fd is open read/write on the device that holds the crypto footer and persistent |
| * data, crypt_ftr is a pointer to the struct to be updated, and offset is the |
| * absolute offset to the start of the crypt_mnt_ftr on the passed in fd. |
| */ |
| static void upgrade_crypt_ftr(int fd, struct crypt_mnt_ftr* crypt_ftr, off64_t offset) { |
| int orig_major = crypt_ftr->major_version; |
| int orig_minor = crypt_ftr->minor_version; |
| |
| if ((crypt_ftr->major_version == 1) && (crypt_ftr->minor_version == 0)) { |
| struct crypt_persist_data* pdata; |
| off64_t pdata_offset = offset + CRYPT_FOOTER_TO_PERSIST_OFFSET; |
| |
| SLOGW("upgrading crypto footer to 1.1"); |
| |
| pdata = (crypt_persist_data*)malloc(CRYPT_PERSIST_DATA_SIZE); |
| if (pdata == NULL) { |
| SLOGE("Cannot allocate persisent data\n"); |
| return; |
| } |
| memset(pdata, 0, CRYPT_PERSIST_DATA_SIZE); |
| |
| /* Need to initialize the persistent data area */ |
| if (lseek64(fd, pdata_offset, SEEK_SET) == -1) { |
| SLOGE("Cannot seek to persisent data offset\n"); |
| free(pdata); |
| return; |
| } |
| /* Write all zeros to the first copy, making it invalid */ |
| unix_write(fd, pdata, CRYPT_PERSIST_DATA_SIZE); |
| |
| /* Write a valid but empty structure to the second copy */ |
| init_empty_persist_data(pdata, CRYPT_PERSIST_DATA_SIZE); |
| unix_write(fd, pdata, CRYPT_PERSIST_DATA_SIZE); |
| |
| /* Update the footer */ |
| crypt_ftr->persist_data_size = CRYPT_PERSIST_DATA_SIZE; |
| crypt_ftr->persist_data_offset[0] = pdata_offset; |
| crypt_ftr->persist_data_offset[1] = pdata_offset + CRYPT_PERSIST_DATA_SIZE; |
| crypt_ftr->minor_version = 1; |
| free(pdata); |
| } |
| |
| if ((crypt_ftr->major_version == 1) && (crypt_ftr->minor_version == 1)) { |
| SLOGW("upgrading crypto footer to 1.2"); |
| /* But keep the old kdf_type. |
| * It will get updated later to KDF_SCRYPT after the password has been verified. |
| */ |
| crypt_ftr->kdf_type = KDF_PBKDF2; |
| get_device_scrypt_params(crypt_ftr); |
| crypt_ftr->minor_version = 2; |
| } |
| |
| if ((crypt_ftr->major_version == 1) && (crypt_ftr->minor_version == 2)) { |
| SLOGW("upgrading crypto footer to 1.3"); |
| crypt_ftr->crypt_type = CRYPT_TYPE_PASSWORD; |
| crypt_ftr->minor_version = 3; |
| } |
| |
| if ((orig_major != crypt_ftr->major_version) || (orig_minor != crypt_ftr->minor_version)) { |
| if (lseek64(fd, offset, SEEK_SET) == -1) { |
| SLOGE("Cannot seek to crypt footer\n"); |
| return; |
| } |
| unix_write(fd, crypt_ftr, sizeof(struct crypt_mnt_ftr)); |
| } |
| } |
| |
| static int get_crypt_ftr_and_key(struct crypt_mnt_ftr* crypt_ftr) { |
| int fd; |
| unsigned int cnt; |
| off64_t starting_off; |
| int rc = -1; |
| char* fname = NULL; |
| struct stat statbuf; |
| |
| if (get_crypt_ftr_info(&fname, &starting_off)) { |
| SLOGE("Unable to get crypt_ftr_info\n"); |
| return -1; |
| } |
| if (fname[0] != '/') { |
| SLOGE("Unexpected value for crypto key location\n"); |
| return -1; |
| } |
| if ((fd = open(fname, O_RDWR | O_CLOEXEC)) < 0) { |
| SLOGE("Cannot open footer file %s for get\n", fname); |
| return -1; |
| } |
| |
| /* Make sure it's 16 Kbytes in length */ |
| fstat(fd, &statbuf); |
| if (S_ISREG(statbuf.st_mode) && (statbuf.st_size != 0x4000)) { |
| SLOGE("footer file %s is not the expected size!\n", fname); |
| goto errout; |
| } |
| |
| /* Seek to the start of the crypt footer */ |
| if (lseek64(fd, starting_off, SEEK_SET) == -1) { |
| SLOGE("Cannot seek to real block device footer\n"); |
| goto errout; |
| } |
| |
| if ((cnt = read(fd, crypt_ftr, sizeof(struct crypt_mnt_ftr))) != sizeof(struct crypt_mnt_ftr)) { |
| SLOGE("Cannot read real block device footer\n"); |
| goto errout; |
| } |
| |
| if (crypt_ftr->magic != CRYPT_MNT_MAGIC) { |
| SLOGE("Bad magic for real block device %s\n", fname); |
| goto errout; |
| } |
| |
| if (crypt_ftr->major_version != CURRENT_MAJOR_VERSION) { |
| SLOGE("Cannot understand major version %d real block device footer; expected %d\n", |
| crypt_ftr->major_version, CURRENT_MAJOR_VERSION); |
| goto errout; |
| } |
| |
| // We risk buffer overflows with oversized keys, so we just reject them. |
| // 0-sized keys are problematic (essentially by-passing encryption), and |
| // AES-CBC key wrapping only works for multiples of 16 bytes. |
| if ((crypt_ftr->keysize == 0) || ((crypt_ftr->keysize % 16) != 0) || |
| (crypt_ftr->keysize > MAX_KEY_LEN)) { |
| SLOGE( |
| "Invalid keysize (%u) for block device %s; Must be non-zero, " |
| "divisible by 16, and <= %d\n", |
| crypt_ftr->keysize, fname, MAX_KEY_LEN); |
| goto errout; |
| } |
| |
| if (crypt_ftr->minor_version > CURRENT_MINOR_VERSION) { |
| SLOGW("Warning: crypto footer minor version %d, expected <= %d, continuing...\n", |
| crypt_ftr->minor_version, CURRENT_MINOR_VERSION); |
| } |
| |
| /* If this is a verion 1.0 crypt_ftr, make it a 1.1 crypt footer, and update the |
| * copy on disk before returning. |
| */ |
| if (crypt_ftr->minor_version < CURRENT_MINOR_VERSION) { |
| upgrade_crypt_ftr(fd, crypt_ftr, starting_off); |
| } |
| |
| /* Success! */ |
| rc = 0; |
| |
| errout: |
| close(fd); |
| return rc; |
| } |
| |
| static int validate_persistent_data_storage(struct crypt_mnt_ftr* crypt_ftr) { |
| if (crypt_ftr->persist_data_offset[0] + crypt_ftr->persist_data_size > |
| crypt_ftr->persist_data_offset[1]) { |
| SLOGE("Crypt_ftr persist data regions overlap"); |
| return -1; |
| } |
| |
| if (crypt_ftr->persist_data_offset[0] >= crypt_ftr->persist_data_offset[1]) { |
| SLOGE("Crypt_ftr persist data region 0 starts after region 1"); |
| return -1; |
| } |
| |
| if (((crypt_ftr->persist_data_offset[1] + crypt_ftr->persist_data_size) - |
| (crypt_ftr->persist_data_offset[0] - CRYPT_FOOTER_TO_PERSIST_OFFSET)) > |
| CRYPT_FOOTER_OFFSET) { |
| SLOGE("Persistent data extends past crypto footer"); |
| return -1; |
| } |
| |
| return 0; |
| } |
| |
| static int load_persistent_data(void) { |
| struct crypt_mnt_ftr crypt_ftr; |
| struct crypt_persist_data* pdata = NULL; |
| char encrypted_state[PROPERTY_VALUE_MAX]; |
| char* fname; |
| int found = 0; |
| int fd; |
| int ret; |
| int i; |
| |
| if (persist_data) { |
| /* Nothing to do, we've already loaded or initialized it */ |
| return 0; |
| } |
| |
| /* If not encrypted, just allocate an empty table and initialize it */ |
| property_get("ro.crypto.state", encrypted_state, ""); |
| if (strcmp(encrypted_state, "encrypted")) { |
| pdata = (crypt_persist_data*)malloc(CRYPT_PERSIST_DATA_SIZE); |
| if (pdata) { |
| init_empty_persist_data(pdata, CRYPT_PERSIST_DATA_SIZE); |
| persist_data = pdata; |
| return 0; |
| } |
| return -1; |
| } |
| |
| if (get_crypt_ftr_and_key(&crypt_ftr)) { |
| return -1; |
| } |
| |
| if ((crypt_ftr.major_version < 1) || |
| (crypt_ftr.major_version == 1 && crypt_ftr.minor_version < 1)) { |
| SLOGE("Crypt_ftr version doesn't support persistent data"); |
| return -1; |
| } |
| |
| if (get_crypt_ftr_info(&fname, NULL)) { |
| return -1; |
| } |
| |
| ret = validate_persistent_data_storage(&crypt_ftr); |
| if (ret) { |
| return -1; |
| } |
| |
| fd = open(fname, O_RDONLY | O_CLOEXEC); |
| if (fd < 0) { |
| SLOGE("Cannot open %s metadata file", fname); |
| return -1; |
| } |
| |
| pdata = (crypt_persist_data*)malloc(crypt_ftr.persist_data_size); |
| if (pdata == NULL) { |
| SLOGE("Cannot allocate memory for persistent data"); |
| goto err; |
| } |
| |
| for (i = 0; i < 2; i++) { |
| if (lseek64(fd, crypt_ftr.persist_data_offset[i], SEEK_SET) < 0) { |
| SLOGE("Cannot seek to read persistent data on %s", fname); |
| goto err2; |
| } |
| if (unix_read(fd, pdata, crypt_ftr.persist_data_size) < 0) { |
| SLOGE("Error reading persistent data on iteration %d", i); |
| goto err2; |
| } |
| if (pdata->persist_magic == PERSIST_DATA_MAGIC) { |
| found = 1; |
| break; |
| } |
| } |
| |
| if (!found) { |
| SLOGI("Could not find valid persistent data, creating"); |
| init_empty_persist_data(pdata, crypt_ftr.persist_data_size); |
| } |
| |
| /* Success */ |
| persist_data = pdata; |
| close(fd); |
| return 0; |
| |
| err2: |
| free(pdata); |
| |
| err: |
| close(fd); |
| return -1; |
| } |
| |
| static int save_persistent_data(void) { |
| struct crypt_mnt_ftr crypt_ftr; |
| struct crypt_persist_data* pdata; |
| char* fname; |
| off64_t write_offset; |
| off64_t erase_offset; |
| int fd; |
| int ret; |
| |
| if (persist_data == NULL) { |
| SLOGE("No persistent data to save"); |
| return -1; |
| } |
| |
| if (get_crypt_ftr_and_key(&crypt_ftr)) { |
| return -1; |
| } |
| |
| if ((crypt_ftr.major_version < 1) || |
| (crypt_ftr.major_version == 1 && crypt_ftr.minor_version < 1)) { |
| SLOGE("Crypt_ftr version doesn't support persistent data"); |
| return -1; |
| } |
| |
| ret = validate_persistent_data_storage(&crypt_ftr); |
| if (ret) { |
| return -1; |
| } |
| |
| if (get_crypt_ftr_info(&fname, NULL)) { |
| return -1; |
| } |
| |
| fd = open(fname, O_RDWR | O_CLOEXEC); |
| if (fd < 0) { |
| SLOGE("Cannot open %s metadata file", fname); |
| return -1; |
| } |
| |
| pdata = (crypt_persist_data*)malloc(crypt_ftr.persist_data_size); |
| if (pdata == NULL) { |
| SLOGE("Cannot allocate persistant data"); |
| goto err; |
| } |
| |
| if (lseek64(fd, crypt_ftr.persist_data_offset[0], SEEK_SET) < 0) { |
| SLOGE("Cannot seek to read persistent data on %s", fname); |
| goto err2; |
| } |
| |
| if (unix_read(fd, pdata, crypt_ftr.persist_data_size) < 0) { |
| SLOGE("Error reading persistent data before save"); |
| goto err2; |
| } |
| |
| if (pdata->persist_magic == PERSIST_DATA_MAGIC) { |
| /* The first copy is the curent valid copy, so write to |
| * the second copy and erase this one */ |
| write_offset = crypt_ftr.persist_data_offset[1]; |
| erase_offset = crypt_ftr.persist_data_offset[0]; |
| } else { |
| /* The second copy must be the valid copy, so write to |
| * the first copy, and erase the second */ |
| write_offset = crypt_ftr.persist_data_offset[0]; |
| erase_offset = crypt_ftr.persist_data_offset[1]; |
| } |
| |
| /* Write the new copy first, if successful, then erase the old copy */ |
| if (lseek64(fd, write_offset, SEEK_SET) < 0) { |
| SLOGE("Cannot seek to write persistent data"); |
| goto err2; |
| } |
| if (unix_write(fd, persist_data, crypt_ftr.persist_data_size) == |
| (int)crypt_ftr.persist_data_size) { |
| if (lseek64(fd, erase_offset, SEEK_SET) < 0) { |
| SLOGE("Cannot seek to erase previous persistent data"); |
| goto err2; |
| } |
| fsync(fd); |
| memset(pdata, 0, crypt_ftr.persist_data_size); |
| if (unix_write(fd, pdata, crypt_ftr.persist_data_size) != (int)crypt_ftr.persist_data_size) { |
| SLOGE("Cannot write to erase previous persistent data"); |
| goto err2; |
| } |
| fsync(fd); |
| } else { |
| SLOGE("Cannot write to save persistent data"); |
| goto err2; |
| } |
| |
| /* Success */ |
| free(pdata); |
| close(fd); |
| return 0; |
| |
| err2: |
| free(pdata); |
| err: |
| close(fd); |
| return -1; |
| } |
| |
| /* Convert a binary key of specified length into an ascii hex string equivalent, |
| * without the leading 0x and with null termination |
| */ |
| static void convert_key_to_hex_ascii(const unsigned char* master_key, unsigned int keysize, |
| char* master_key_ascii) { |
| unsigned int i, a; |
| unsigned char nibble; |
| |
| for (i = 0, a = 0; i < keysize; i++, a += 2) { |
| /* For each byte, write out two ascii hex digits */ |
| nibble = (master_key[i] >> 4) & 0xf; |
| master_key_ascii[a] = nibble + (nibble > 9 ? 0x37 : 0x30); |
| |
| nibble = master_key[i] & 0xf; |
| master_key_ascii[a + 1] = nibble + (nibble > 9 ? 0x37 : 0x30); |
| } |
| |
| /* Add the null termination */ |
| master_key_ascii[a] = '\0'; |
| } |
| |
| /* |
| * If the ro.crypto.fde_sector_size system property is set, append the |
| * parameters to make dm-crypt use the specified crypto sector size and round |
| * the crypto device size down to a crypto sector boundary. |
| */ |
| static int add_sector_size_param(DmTargetCrypt* target, struct crypt_mnt_ftr* ftr) { |
| constexpr char DM_CRYPT_SECTOR_SIZE[] = "ro.crypto.fde_sector_size"; |
| char value[PROPERTY_VALUE_MAX]; |
| |
| if (property_get(DM_CRYPT_SECTOR_SIZE, value, "") > 0) { |
| unsigned int sector_size; |
| |
| if (!ParseUint(value, §or_size) || sector_size < 512 || sector_size > 4096 || |
| (sector_size & (sector_size - 1)) != 0) { |
| SLOGE("Invalid value for %s: %s. Must be >= 512, <= 4096, and a power of 2\n", |
| DM_CRYPT_SECTOR_SIZE, value); |
| return -1; |
| } |
| |
| target->SetSectorSize(sector_size); |
| |
| // With this option, IVs will match the sector numbering, instead |
| // of being hard-coded to being based on 512-byte sectors. |
| target->SetIvLargeSectors(); |
| |
| // Round the crypto device size down to a crypto sector boundary. |
| ftr->fs_size &= ~((sector_size / 512) - 1); |
| } |
| return 0; |
| } |
| |
| static int create_crypto_blk_dev(struct crypt_mnt_ftr* crypt_ftr, const unsigned char* master_key, |
| const char* real_blk_name, std::string* crypto_blk_name, |
| const char* name, uint32_t flags) { |
| auto& dm = DeviceMapper::Instance(); |
| |
| // We need two ASCII characters to represent each byte, and need space for |
| // the '\0' terminator. |
| char master_key_ascii[MAX_KEY_LEN * 2 + 1]; |
| convert_key_to_hex_ascii(master_key, crypt_ftr->keysize, master_key_ascii); |
| |
| auto target = std::make_unique<DmTargetCrypt>(0, crypt_ftr->fs_size, |
| (const char*)crypt_ftr->crypto_type_name, |
| master_key_ascii, 0, real_blk_name, 0); |
| target->AllowDiscards(); |
| |
| if (flags & CREATE_CRYPTO_BLK_DEV_FLAGS_ALLOW_ENCRYPT_OVERRIDE) { |
| target->AllowEncryptOverride(); |
| } |
| if (add_sector_size_param(target.get(), crypt_ftr)) { |
| SLOGE("Error processing dm-crypt sector size param\n"); |
| return -1; |
| } |
| |
| DmTable table; |
| table.AddTarget(std::move(target)); |
| |
| int load_count = 1; |
| while (load_count < TABLE_LOAD_RETRIES) { |
| if (dm.CreateDevice(name, table)) { |
| break; |
| } |
| load_count++; |
| } |
| |
| if (load_count >= TABLE_LOAD_RETRIES) { |
| SLOGE("Cannot load dm-crypt mapping table.\n"); |
| return -1; |
| } |
| if (load_count > 1) { |
| SLOGI("Took %d tries to load dmcrypt table.\n", load_count); |
| } |
| |
| if (!dm.GetDmDevicePathByName(name, crypto_blk_name)) { |
| SLOGE("Cannot determine dm-crypt path for %s.\n", name); |
| return -1; |
| } |
| |
| /* Ensure the dm device has been created before returning. */ |
| if (android::vold::WaitForFile(crypto_blk_name->c_str(), 1s) < 0) { |
| // WaitForFile generates a suitable log message |
| return -1; |
| } |
| return 0; |
| } |
| |
| static int delete_crypto_blk_dev(const std::string& name) { |
| bool ret; |
| auto& dm = DeviceMapper::Instance(); |
| // TODO(b/149396179) there appears to be a race somewhere in the system where trying |
| // to delete the device fails with EBUSY; for now, work around this by retrying. |
| int tries = 5; |
| while (tries-- > 0) { |
| ret = dm.DeleteDevice(name); |
| if (ret || errno != EBUSY) { |
| break; |
| } |
| SLOGW("DM_DEV Cannot remove dm-crypt device %s: %s, retrying...\n", name.c_str(), |
| strerror(errno)); |
| std::this_thread::sleep_for(std::chrono::milliseconds(100)); |
| } |
| if (!ret) { |
| SLOGE("DM_DEV Cannot remove dm-crypt device %s: %s\n", name.c_str(), strerror(errno)); |
| return -1; |
| } |
| return 0; |
| } |
| |
| static int pbkdf2(const char* passwd, const unsigned char* salt, unsigned char* ikey, |
| void* params UNUSED) { |
| SLOGI("Using pbkdf2 for cryptfs KDF"); |
| |
| /* Turn the password into a key and IV that can decrypt the master key */ |
| return PKCS5_PBKDF2_HMAC_SHA1(passwd, strlen(passwd), salt, SALT_LEN, HASH_COUNT, |
| INTERMEDIATE_BUF_SIZE, ikey) != 1; |
| } |
| |
| static int scrypt(const char* passwd, const unsigned char* salt, unsigned char* ikey, void* params) { |
| SLOGI("Using scrypt for cryptfs KDF"); |
| |
| struct crypt_mnt_ftr* ftr = (struct crypt_mnt_ftr*)params; |
| |
| int N = 1 << ftr->N_factor; |
| int r = 1 << ftr->r_factor; |
| int p = 1 << ftr->p_factor; |
| |
| /* Turn the password into a key and IV that can decrypt the master key */ |
| crypto_scrypt((const uint8_t*)passwd, strlen(passwd), salt, SALT_LEN, N, r, p, ikey, |
| INTERMEDIATE_BUF_SIZE); |
| |
| return 0; |
| } |
| |
| static int scrypt_keymaster(const char* passwd, const unsigned char* salt, unsigned char* ikey, |
| void* params) { |
| SLOGI("Using scrypt with keymaster for cryptfs KDF"); |
| |
| int rc; |
| size_t signature_size; |
| unsigned char* signature; |
| struct crypt_mnt_ftr* ftr = (struct crypt_mnt_ftr*)params; |
| |
| int N = 1 << ftr->N_factor; |
| int r = 1 << ftr->r_factor; |
| int p = 1 << ftr->p_factor; |
| |
| rc = crypto_scrypt((const uint8_t*)passwd, strlen(passwd), salt, SALT_LEN, N, r, p, ikey, |
| INTERMEDIATE_BUF_SIZE); |
| |
| if (rc) { |
| SLOGE("scrypt failed"); |
| return -1; |
| } |
| |
| if (keymaster_sign_object(ftr, ikey, INTERMEDIATE_BUF_SIZE, &signature, &signature_size)) { |
| SLOGE("Signing failed"); |
| return -1; |
| } |
| |
| rc = crypto_scrypt(signature, signature_size, salt, SALT_LEN, N, r, p, ikey, |
| INTERMEDIATE_BUF_SIZE); |
| free(signature); |
| |
| if (rc) { |
| SLOGE("scrypt failed"); |
| return -1; |
| } |
| |
| return 0; |
| } |
| |
| static int encrypt_master_key(const char* passwd, const unsigned char* salt, |
| const unsigned char* decrypted_master_key, |
| unsigned char* encrypted_master_key, struct crypt_mnt_ftr* crypt_ftr) { |
| unsigned char ikey[INTERMEDIATE_BUF_SIZE] = {0}; |
| EVP_CIPHER_CTX e_ctx; |
| int encrypted_len, final_len; |
| int rc = 0; |
| |
| /* Turn the password into an intermediate key and IV that can decrypt the master key */ |
| get_device_scrypt_params(crypt_ftr); |
| |
| switch (crypt_ftr->kdf_type) { |
| case KDF_SCRYPT_KEYMASTER: |
| if (keymaster_create_key(crypt_ftr)) { |
| SLOGE("keymaster_create_key failed"); |
| return -1; |
| } |
| |
| if (scrypt_keymaster(passwd, salt, ikey, crypt_ftr)) { |
| SLOGE("scrypt failed"); |
| return -1; |
| } |
| break; |
| |
| case KDF_SCRYPT: |
| if (scrypt(passwd, salt, ikey, crypt_ftr)) { |
| SLOGE("scrypt failed"); |
| return -1; |
| } |
| break; |
| |
| default: |
| SLOGE("Invalid kdf_type"); |
| return -1; |
| } |
| |
| /* Initialize the decryption engine */ |
| EVP_CIPHER_CTX_init(&e_ctx); |
| if (!EVP_EncryptInit_ex(&e_ctx, EVP_aes_128_cbc(), NULL, ikey, |
| ikey + INTERMEDIATE_KEY_LEN_BYTES)) { |
| SLOGE("EVP_EncryptInit failed\n"); |
| return -1; |
| } |
| EVP_CIPHER_CTX_set_padding(&e_ctx, 0); /* Turn off padding as our data is block aligned */ |
| |
| /* Encrypt the master key */ |
| if (!EVP_EncryptUpdate(&e_ctx, encrypted_master_key, &encrypted_len, decrypted_master_key, |
| crypt_ftr->keysize)) { |
| SLOGE("EVP_EncryptUpdate failed\n"); |
| return -1; |
| } |
| if (!EVP_EncryptFinal_ex(&e_ctx, encrypted_master_key + encrypted_len, &final_len)) { |
| SLOGE("EVP_EncryptFinal failed\n"); |
| return -1; |
| } |
| |
| if (encrypted_len + final_len != static_cast<int>(crypt_ftr->keysize)) { |
| SLOGE("EVP_Encryption length check failed with %d, %d bytes\n", encrypted_len, final_len); |
| return -1; |
| } |
| |
| /* Store the scrypt of the intermediate key, so we can validate if it's a |
| password error or mount error when things go wrong. |
| Note there's no need to check for errors, since if this is incorrect, we |
| simply won't wipe userdata, which is the correct default behavior |
| */ |
| int N = 1 << crypt_ftr->N_factor; |
| int r = 1 << crypt_ftr->r_factor; |
| int p = 1 << crypt_ftr->p_factor; |
| |
| rc = crypto_scrypt(ikey, INTERMEDIATE_KEY_LEN_BYTES, crypt_ftr->salt, sizeof(crypt_ftr->salt), |
| N, r, p, crypt_ftr->scrypted_intermediate_key, |
| sizeof(crypt_ftr->scrypted_intermediate_key)); |
| |
| if (rc) { |
| SLOGE("encrypt_master_key: crypto_scrypt failed"); |
| } |
| |
| EVP_CIPHER_CTX_cleanup(&e_ctx); |
| |
| return 0; |
| } |
| |
| static int decrypt_master_key_aux(const char* passwd, unsigned char* salt, |
| const unsigned char* encrypted_master_key, size_t keysize, |
| unsigned char* decrypted_master_key, kdf_func kdf, |
| void* kdf_params, unsigned char** intermediate_key, |
| size_t* intermediate_key_size) { |
| unsigned char ikey[INTERMEDIATE_BUF_SIZE] = {0}; |
| EVP_CIPHER_CTX d_ctx; |
| int decrypted_len, final_len; |
| |
| /* Turn the password into an intermediate key and IV that can decrypt the |
| master key */ |
| if (kdf(passwd, salt, ikey, kdf_params)) { |
| SLOGE("kdf failed"); |
| return -1; |
| } |
| |
| /* Initialize the decryption engine */ |
| EVP_CIPHER_CTX_init(&d_ctx); |
| if (!EVP_DecryptInit_ex(&d_ctx, EVP_aes_128_cbc(), NULL, ikey, |
| ikey + INTERMEDIATE_KEY_LEN_BYTES)) { |
| return -1; |
| } |
| EVP_CIPHER_CTX_set_padding(&d_ctx, 0); /* Turn off padding as our data is block aligned */ |
| /* Decrypt the master key */ |
| if (!EVP_DecryptUpdate(&d_ctx, decrypted_master_key, &decrypted_len, encrypted_master_key, |
| keysize)) { |
| return -1; |
| } |
| if (!EVP_DecryptFinal_ex(&d_ctx, decrypted_master_key + decrypted_len, &final_len)) { |
| return -1; |
| } |
| |
| if (decrypted_len + final_len != static_cast<int>(keysize)) { |
| return -1; |
| } |
| |
| /* Copy intermediate key if needed by params */ |
| if (intermediate_key && intermediate_key_size) { |
| *intermediate_key = (unsigned char*)malloc(INTERMEDIATE_KEY_LEN_BYTES); |
| if (*intermediate_key) { |
| memcpy(*intermediate_key, ikey, INTERMEDIATE_KEY_LEN_BYTES); |
| *intermediate_key_size = INTERMEDIATE_KEY_LEN_BYTES; |
| } |
| } |
| |
| EVP_CIPHER_CTX_cleanup(&d_ctx); |
| |
| return 0; |
| } |
| |
| static void get_kdf_func(struct crypt_mnt_ftr* ftr, kdf_func* kdf, void** kdf_params) { |
| if (ftr->kdf_type == KDF_SCRYPT_KEYMASTER) { |
| *kdf = scrypt_keymaster; |
| *kdf_params = ftr; |
| } else if (ftr->kdf_type == KDF_SCRYPT) { |
| *kdf = scrypt; |
| *kdf_params = ftr; |
| } else { |
| *kdf = pbkdf2; |
| *kdf_params = NULL; |
| } |
| } |
| |
| static int decrypt_master_key(const char* passwd, unsigned char* decrypted_master_key, |
| struct crypt_mnt_ftr* crypt_ftr, unsigned char** intermediate_key, |
| size_t* intermediate_key_size) { |
| kdf_func kdf; |
| void* kdf_params; |
| int ret; |
| |
| get_kdf_func(crypt_ftr, &kdf, &kdf_params); |
| ret = decrypt_master_key_aux(passwd, crypt_ftr->salt, crypt_ftr->master_key, crypt_ftr->keysize, |
| decrypted_master_key, kdf, kdf_params, intermediate_key, |
| intermediate_key_size); |
| if (ret != 0) { |
| SLOGW("failure decrypting master key"); |
| } |
| |
| return ret; |
| } |
| |
| static int create_encrypted_random_key(const char* passwd, unsigned char* master_key, |
| unsigned char* salt, struct crypt_mnt_ftr* crypt_ftr) { |
| unsigned char key_buf[MAX_KEY_LEN]; |
| |
| /* Get some random bits for a key and salt */ |
| if (android::vold::ReadRandomBytes(sizeof(key_buf), reinterpret_cast<char*>(key_buf)) != 0) { |
| return -1; |
| } |
| if (android::vold::ReadRandomBytes(SALT_LEN, reinterpret_cast<char*>(salt)) != 0) { |
| return -1; |
| } |
| |
| /* Now encrypt it with the password */ |
| return encrypt_master_key(passwd, salt, key_buf, master_key, crypt_ftr); |
| } |
| |
| static int wait_and_unmount(const char* mountpoint, bool kill) { |
| int i, err, rc; |
| #define WAIT_UNMOUNT_COUNT 20 |
| |
| /* Now umount the tmpfs filesystem */ |
| for (i = 0; i < WAIT_UNMOUNT_COUNT; i++) { |
| if (umount(mountpoint) == 0) { |
| break; |
| } |
| |
| if (errno == EINVAL) { |
| /* EINVAL is returned if the directory is not a mountpoint, |
| * i.e. there is no filesystem mounted there. So just get out. |
| */ |
| break; |
| } |
| |
| err = errno; |
| |
| /* If allowed, be increasingly aggressive before the last two retries */ |
| if (kill) { |
| if (i == (WAIT_UNMOUNT_COUNT - 3)) { |
| SLOGW("sending SIGHUP to processes with open files\n"); |
| android::vold::KillProcessesWithOpenFiles(mountpoint, SIGTERM); |
| } else if (i == (WAIT_UNMOUNT_COUNT - 2)) { |
| SLOGW("sending SIGKILL to processes with open files\n"); |
| android::vold::KillProcessesWithOpenFiles(mountpoint, SIGKILL); |
| } |
| } |
| |
| sleep(1); |
| } |
| |
| if (i < WAIT_UNMOUNT_COUNT) { |
| SLOGD("unmounting %s succeeded\n", mountpoint); |
| rc = 0; |
| } else { |
| android::vold::KillProcessesWithOpenFiles(mountpoint, 0); |
| SLOGE("unmounting %s failed: %s\n", mountpoint, strerror(err)); |
| rc = -1; |
| } |
| |
| return rc; |
| } |
| |
| static void prep_data_fs(void) { |
| // NOTE: post_fs_data results in init calling back around to vold, so all |
| // callers to this method must be async |
| |
| /* Do the prep of the /data filesystem */ |
| property_set("vold.post_fs_data_done", "0"); |
| property_set("vold.decrypt", "trigger_post_fs_data"); |
| SLOGD("Just triggered post_fs_data"); |
| |
| /* Wait a max of 50 seconds, hopefully it takes much less */ |
| while (!android::base::WaitForProperty("vold.post_fs_data_done", "1", std::chrono::seconds(15))) { |
| /* We timed out to prep /data in time. Continue wait. */ |
| SLOGE("waited 15s for vold.post_fs_data_done, still waiting..."); |
| } |
| SLOGD("post_fs_data done"); |
| } |
| |
| static void cryptfs_set_corrupt() { |
| // Mark the footer as bad |
| struct crypt_mnt_ftr crypt_ftr; |
| if (get_crypt_ftr_and_key(&crypt_ftr)) { |
| SLOGE("Failed to get crypto footer - panic"); |
| return; |
| } |
| |
| crypt_ftr.flags |= CRYPT_DATA_CORRUPT; |
| if (put_crypt_ftr_and_key(&crypt_ftr)) { |
| SLOGE("Failed to set crypto footer - panic"); |
| return; |
| } |
| } |
| |
| static void cryptfs_trigger_restart_min_framework() { |
| if (fs_mgr_do_tmpfs_mount(DATA_MNT_POINT)) { |
| SLOGE("Failed to mount tmpfs on data - panic"); |
| return; |
| } |
| |
| if (property_set("vold.decrypt", "trigger_post_fs_data")) { |
| SLOGE("Failed to trigger post fs data - panic"); |
| return; |
| } |
| |
| if (property_set("vold.decrypt", "trigger_restart_min_framework")) { |
| SLOGE("Failed to trigger restart min framework - panic"); |
| return; |
| } |
| } |
| |
| /* returns < 0 on failure */ |
| static int cryptfs_restart_internal(int restart_main) { |
| char crypto_blkdev[MAXPATHLEN]; |
| int rc = -1; |
| static int restart_successful = 0; |
| |
| /* Validate that it's OK to call this routine */ |
| if (!master_key_saved) { |
| SLOGE("Encrypted filesystem not validated, aborting"); |
| return -1; |
| } |
| |
| if (restart_successful) { |
| SLOGE("System already restarted with encrypted disk, aborting"); |
| return -1; |
| } |
| |
| if (restart_main) { |
| /* Here is where we shut down the framework. The init scripts |
| * start all services in one of these classes: core, early_hal, hal, |
| * main and late_start. To get to the minimal UI for PIN entry, we |
| * need to start core, early_hal, hal and main. When we want to |
| * shutdown the framework again, we need to stop most of the services in |
| * these classes, but only those services that were started after |
| * /data was mounted. This excludes critical services like vold and |
| * ueventd, which need to keep running. We could possible stop |
| * even fewer services, but because we want services to pick up APEX |
| * libraries from the real /data, restarting is better, as it makes |
| * these devices consistent with FBE devices and lets them use the |
| * most recent code. |
| * |
| * Once these services have stopped, we should be able |
| * to umount the tmpfs /data, then mount the encrypted /data. |
| * We then restart the class core, hal, main, and also the class |
| * late_start. |
| * |
| * At the moment, I've only put a few things in late_start that I know |
| * are not needed to bring up the framework, and that also cause problems |
| * with unmounting the tmpfs /data, but I hope to add add more services |
| * to the late_start class as we optimize this to decrease the delay |
| * till the user is asked for the password to the filesystem. |
| */ |
| |
| /* The init files are setup to stop the right set of services when |
| * vold.decrypt is set to trigger_shutdown_framework. |
| */ |
| property_set("vold.decrypt", "trigger_shutdown_framework"); |
| SLOGD("Just asked init to shut down class main\n"); |
| |
| /* Ugh, shutting down the framework is not synchronous, so until it |
| * can be fixed, this horrible hack will wait a moment for it all to |
| * shut down before proceeding. Without it, some devices cannot |
| * restart the graphics services. |
| */ |
| sleep(2); |
| } |
| |
| /* Now that the framework is shutdown, we should be able to umount() |
| * the tmpfs filesystem, and mount the real one. |
| */ |
| |
| property_get("ro.crypto.fs_crypto_blkdev", crypto_blkdev, ""); |
| if (strlen(crypto_blkdev) == 0) { |
| SLOGE("fs_crypto_blkdev not set\n"); |
| return -1; |
| } |
| |
| if (!(rc = wait_and_unmount(DATA_MNT_POINT, true))) { |
| /* If ro.crypto.readonly is set to 1, mount the decrypted |
| * filesystem readonly. This is used when /data is mounted by |
| * recovery mode. |
| */ |
| char ro_prop[PROPERTY_VALUE_MAX]; |
| property_get("ro.crypto.readonly", ro_prop, ""); |
| if (strlen(ro_prop) > 0 && std::stoi(ro_prop)) { |
| auto entry = GetEntryForMountPoint(&fstab_default, DATA_MNT_POINT); |
| if (entry != nullptr) { |
| entry->flags |= MS_RDONLY; |
| } |
| } |
| |
| /* If that succeeded, then mount the decrypted filesystem */ |
| int retries = RETRY_MOUNT_ATTEMPTS; |
| int mount_rc; |
| |
| /* |
| * fs_mgr_do_mount runs fsck. Use setexeccon to run trusted |
| * partitions in the fsck domain. |
| */ |
| if (setexeccon(android::vold::sFsckContext)) { |
| SLOGE("Failed to setexeccon"); |
| return -1; |
| } |
| bool needs_cp = android::vold::cp_needsCheckpoint(); |
| while ((mount_rc = fs_mgr_do_mount(&fstab_default, DATA_MNT_POINT, crypto_blkdev, 0, |
| needs_cp)) != 0) { |
| if (mount_rc == FS_MGR_DOMNT_BUSY) { |
| /* TODO: invoke something similar to |
| Process::killProcessWithOpenFiles(DATA_MNT_POINT, |
| retries > RETRY_MOUNT_ATTEMPT/2 ? 1 : 2 ) */ |
| SLOGI("Failed to mount %s because it is busy - waiting", crypto_blkdev); |
| if (--retries) { |
| sleep(RETRY_MOUNT_DELAY_SECONDS); |
| } else { |
| /* Let's hope that a reboot clears away whatever is keeping |
| the mount busy */ |
| cryptfs_reboot(RebootType::reboot); |
| } |
| } else { |
| SLOGE("Failed to mount decrypted data"); |
| cryptfs_set_corrupt(); |
| cryptfs_trigger_restart_min_framework(); |
| SLOGI("Started framework to offer wipe"); |
| if (setexeccon(NULL)) { |
| SLOGE("Failed to setexeccon"); |
| } |
| return -1; |
| } |
| } |
| if (setexeccon(NULL)) { |
| SLOGE("Failed to setexeccon"); |
| return -1; |
| } |
| |
| /* Create necessary paths on /data */ |
| prep_data_fs(); |
| property_set("vold.decrypt", "trigger_load_persist_props"); |
| |
| /* startup service classes main and late_start */ |
| property_set("vold.decrypt", "trigger_restart_framework"); |
| SLOGD("Just triggered restart_framework\n"); |
| |
| /* Give it a few moments to get started */ |
| sleep(1); |
| } |
| |
| if (rc == 0) { |
| restart_successful = 1; |
| } |
| |
| return rc; |
| } |
| |
| int cryptfs_restart(void) { |
| SLOGI("cryptfs_restart"); |
| if (fscrypt_is_native()) { |
| SLOGE("cryptfs_restart not valid for file encryption:"); |
| return -1; |
| } |
| |
| /* Call internal implementation forcing a restart of main service group */ |
| return cryptfs_restart_internal(1); |
| } |
| |
| static int do_crypto_complete(const char* mount_point) { |
| struct crypt_mnt_ftr crypt_ftr; |
| char encrypted_state[PROPERTY_VALUE_MAX]; |
| |
| property_get("ro.crypto.state", encrypted_state, ""); |
| if (strcmp(encrypted_state, "encrypted")) { |
| SLOGE("not running with encryption, aborting"); |
| return CRYPTO_COMPLETE_NOT_ENCRYPTED; |
| } |
| |
| // crypto_complete is full disk encrypted status |
| if (fscrypt_is_native()) { |
| return CRYPTO_COMPLETE_NOT_ENCRYPTED; |
| } |
| |
| if (get_crypt_ftr_and_key(&crypt_ftr)) { |
| std::string key_loc; |
| get_crypt_info(&key_loc, nullptr); |
| |
| /* |
| * Only report this error if key_loc is a file and it exists. |
| * If the device was never encrypted, and /data is not mountable for |
| * some reason, returning 1 should prevent the UI from presenting the |
| * a "enter password" screen, or worse, a "press button to wipe the |
| * device" screen. |
| */ |
| if (!key_loc.empty() && key_loc[0] == '/' && (access("key_loc", F_OK) == -1)) { |
| SLOGE("master key file does not exist, aborting"); |
| return CRYPTO_COMPLETE_NOT_ENCRYPTED; |
| } else { |
| SLOGE("Error getting crypt footer and key\n"); |
| return CRYPTO_COMPLETE_BAD_METADATA; |
| } |
| } |
| |
| // Test for possible error flags |
| if (crypt_ftr.flags & CRYPT_ENCRYPTION_IN_PROGRESS) { |
| SLOGE("Encryption process is partway completed\n"); |
| return CRYPTO_COMPLETE_PARTIAL; |
| } |
| |
| if (crypt_ftr.flags & CRYPT_INCONSISTENT_STATE) { |
| SLOGE("Encryption process was interrupted but cannot continue\n"); |
| return CRYPTO_COMPLETE_INCONSISTENT; |
| } |
| |
| if (crypt_ftr.flags & CRYPT_DATA_CORRUPT) { |
| SLOGE("Encryption is successful but data is corrupt\n"); |
| return CRYPTO_COMPLETE_CORRUPT; |
| } |
| |
| /* We passed the test! We shall diminish, and return to the west */ |
| return CRYPTO_COMPLETE_ENCRYPTED; |
| } |
| |
| static int test_mount_encrypted_fs(struct crypt_mnt_ftr* crypt_ftr, const char* passwd, |
| const char* mount_point, const char* label) { |
| unsigned char decrypted_master_key[MAX_KEY_LEN]; |
| std::string crypto_blkdev; |
| std::string real_blkdev; |
| char tmp_mount_point[64]; |
| unsigned int orig_failed_decrypt_count; |
| int rc; |
| int use_keymaster = 0; |
| int upgrade = 0; |
| unsigned char* intermediate_key = 0; |
| size_t intermediate_key_size = 0; |
| int N = 1 << crypt_ftr->N_factor; |
| int r = 1 << crypt_ftr->r_factor; |
| int p = 1 << crypt_ftr->p_factor; |
| |
| SLOGD("crypt_ftr->fs_size = %lld\n", crypt_ftr->fs_size); |
| orig_failed_decrypt_count = crypt_ftr->failed_decrypt_count; |
| |
| if (!(crypt_ftr->flags & CRYPT_MNT_KEY_UNENCRYPTED)) { |
| if (decrypt_master_key(passwd, decrypted_master_key, crypt_ftr, &intermediate_key, |
| &intermediate_key_size)) { |
| SLOGE("Failed to decrypt master key\n"); |
| rc = -1; |
| goto errout; |
| } |
| } |
| |
| get_crypt_info(nullptr, &real_blkdev); |
| |
| // Create crypto block device - all (non fatal) code paths |
| // need it |
| if (create_crypto_blk_dev(crypt_ftr, decrypted_master_key, real_blkdev.c_str(), &crypto_blkdev, |
| label, 0)) { |
| SLOGE("Error creating decrypted block device\n"); |
| rc = -1; |
| goto errout; |
| } |
| |
| /* Work out if the problem is the password or the data */ |
| unsigned char scrypted_intermediate_key[sizeof(crypt_ftr->scrypted_intermediate_key)]; |
| |
| rc = crypto_scrypt(intermediate_key, intermediate_key_size, crypt_ftr->salt, |
| sizeof(crypt_ftr->salt), N, r, p, scrypted_intermediate_key, |
| sizeof(scrypted_intermediate_key)); |
| |
| // Does the key match the crypto footer? |
| if (rc == 0 && memcmp(scrypted_intermediate_key, crypt_ftr->scrypted_intermediate_key, |
| sizeof(scrypted_intermediate_key)) == 0) { |
| SLOGI("Password matches"); |
| rc = 0; |
| } else { |
| /* Try mounting the file system anyway, just in case the problem's with |
| * the footer, not the key. */ |
| snprintf(tmp_mount_point, sizeof(tmp_mount_point), "%s/tmp_mnt", mount_point); |
| mkdir(tmp_mount_point, 0755); |
| if (fs_mgr_do_mount(&fstab_default, DATA_MNT_POINT, |
| const_cast<char*>(crypto_blkdev.c_str()), tmp_mount_point)) { |
| SLOGE("Error temp mounting decrypted block device\n"); |
| delete_crypto_blk_dev(label); |
| |
| rc = ++crypt_ftr->failed_decrypt_count; |
| put_crypt_ftr_and_key(crypt_ftr); |
| } else { |
| /* Success! */ |
| SLOGI("Password did not match but decrypted drive mounted - continue"); |
| umount(tmp_mount_point); |
| rc = 0; |
| } |
| } |
| |
| if (rc == 0) { |
| crypt_ftr->failed_decrypt_count = 0; |
| if (orig_failed_decrypt_count != 0) { |
| put_crypt_ftr_and_key(crypt_ftr); |
| } |
| |
| /* Save the name of the crypto block device |
| * so we can mount it when restarting the framework. */ |
| property_set("ro.crypto.fs_crypto_blkdev", crypto_blkdev.c_str()); |
| |
| /* Also save a the master key so we can reencrypted the key |
| * the key when we want to change the password on it. */ |
| memcpy(saved_master_key, decrypted_master_key, crypt_ftr->keysize); |
| saved_mount_point = strdup(mount_point); |
| master_key_saved = 1; |
| SLOGD("%s(): Master key saved\n", __FUNCTION__); |
| rc = 0; |
| |
| // Upgrade if we're not using the latest KDF. |
| use_keymaster = keymaster_check_compatibility(); |
| if (crypt_ftr->kdf_type == KDF_SCRYPT_KEYMASTER) { |
| // Don't allow downgrade |
| } else if (use_keymaster == 1 && crypt_ftr->kdf_type != KDF_SCRYPT_KEYMASTER) { |
| crypt_ftr->kdf_type = KDF_SCRYPT_KEYMASTER; |
| upgrade = 1; |
| } else if (use_keymaster == 0 && crypt_ftr->kdf_type != KDF_SCRYPT) { |
| crypt_ftr->kdf_type = KDF_SCRYPT; |
| upgrade = 1; |
| } |
| |
| if (upgrade) { |
| rc = encrypt_master_key(passwd, crypt_ftr->salt, saved_master_key, |
| crypt_ftr->master_key, crypt_ftr); |
| if (!rc) { |
| rc = put_crypt_ftr_and_key(crypt_ftr); |
| } |
| SLOGD("Key Derivation Function upgrade: rc=%d\n", rc); |
| |
| // Do not fail even if upgrade failed - machine is bootable |
| // Note that if this code is ever hit, there is a *serious* problem |
| // since KDFs should never fail. You *must* fix the kdf before |
| // proceeding! |
| if (rc) { |
| SLOGW( |
| "Upgrade failed with error %d," |
| " but continuing with previous state", |
| rc); |
| rc = 0; |
| } |
| } |
| } |
| |
| errout: |
| if (intermediate_key) { |
| memset(intermediate_key, 0, intermediate_key_size); |
| free(intermediate_key); |
| } |
| return rc; |
| } |
| |
| /* |
| * Called by vold when it's asked to mount an encrypted external |
| * storage volume. The incoming partition has no crypto header/footer, |
| * as any metadata is been stored in a separate, small partition. We |
| * assume it must be using our same crypt type and keysize. |
| */ |
| int cryptfs_setup_ext_volume(const char* label, const char* real_blkdev, const KeyBuffer& key, |
| std::string* out_crypto_blkdev) { |
| auto crypto_type = get_crypto_type(); |
| if (key.size() != crypto_type.get_keysize()) { |
| SLOGE("Raw keysize %zu does not match crypt keysize %zu", key.size(), |
| crypto_type.get_keysize()); |
| return -1; |
| } |
| uint64_t nr_sec = 0; |
| if (android::vold::GetBlockDev512Sectors(real_blkdev, &nr_sec) != android::OK) { |
| SLOGE("Failed to get size of %s: %s", real_blkdev, strerror(errno)); |
| return -1; |
| } |
| |
| struct crypt_mnt_ftr ext_crypt_ftr; |
| memset(&ext_crypt_ftr, 0, sizeof(ext_crypt_ftr)); |
| ext_crypt_ftr.fs_size = nr_sec; |
| ext_crypt_ftr.keysize = crypto_type.get_keysize(); |
| strlcpy((char*)ext_crypt_ftr.crypto_type_name, crypto_type.get_kernel_name(), |
| MAX_CRYPTO_TYPE_NAME_LEN); |
| uint32_t flags = 0; |
| if (fscrypt_is_native() && |
| android::base::GetBoolProperty("ro.crypto.allow_encrypt_override", false)) |
| flags |= CREATE_CRYPTO_BLK_DEV_FLAGS_ALLOW_ENCRYPT_OVERRIDE; |
| |
| return create_crypto_blk_dev(&ext_crypt_ftr, reinterpret_cast<const unsigned char*>(key.data()), |
| real_blkdev, out_crypto_blkdev, label, flags); |
| } |
| |
| int cryptfs_crypto_complete(void) { |
| return do_crypto_complete("/data"); |
| } |
| |
| int check_unmounted_and_get_ftr(struct crypt_mnt_ftr* crypt_ftr) { |
| char encrypted_state[PROPERTY_VALUE_MAX]; |
| property_get("ro.crypto.state", encrypted_state, ""); |
| if (master_key_saved || strcmp(encrypted_state, "encrypted")) { |
| SLOGE( |
| "encrypted fs already validated or not running with encryption," |
| " aborting"); |
| return -1; |
| } |
| |
| if (get_crypt_ftr_and_key(crypt_ftr)) { |
| SLOGE("Error getting crypt footer and key"); |
| return -1; |
| } |
| |
| return 0; |
| } |
| |
| int cryptfs_check_passwd(const char* passwd) { |
| SLOGI("cryptfs_check_passwd"); |
| if (fscrypt_is_native()) { |
| SLOGE("cryptfs_check_passwd not valid for file encryption"); |
| return -1; |
| } |
| |
| struct crypt_mnt_ftr crypt_ftr; |
| int rc; |
| |
| rc = check_unmounted_and_get_ftr(&crypt_ftr); |
| if (rc) { |
| SLOGE("Could not get footer"); |
| return rc; |
| } |
| |
| rc = test_mount_encrypted_fs(&crypt_ftr, passwd, DATA_MNT_POINT, CRYPTO_BLOCK_DEVICE); |
| if (rc) { |
| SLOGE("Password did not match"); |
| return rc; |
| } |
| |
| if (crypt_ftr.flags & CRYPT_FORCE_COMPLETE) { |
| // Here we have a default actual password but a real password |
| // we must test against the scrypted value |
| // First, we must delete the crypto block device that |
| // test_mount_encrypted_fs leaves behind as a side effect |
| delete_crypto_blk_dev(CRYPTO_BLOCK_DEVICE); |
| rc = test_mount_encrypted_fs(&crypt_ftr, DEFAULT_PASSWORD, DATA_MNT_POINT, |
| CRYPTO_BLOCK_DEVICE); |
| if (rc) { |
| SLOGE("Default password did not match on reboot encryption"); |
| return rc; |
| } |
| |
| crypt_ftr.flags &= ~CRYPT_FORCE_COMPLETE; |
| put_crypt_ftr_and_key(&crypt_ftr); |
| rc = cryptfs_changepw(crypt_ftr.crypt_type, passwd); |
| if (rc) { |
| SLOGE("Could not change password on reboot encryption"); |
| return rc; |
| } |
| } |
| |
| if (crypt_ftr.crypt_type != CRYPT_TYPE_DEFAULT) { |
| cryptfs_clear_password(); |
| password = strdup(passwd); |
| struct timespec now; |
| clock_gettime(CLOCK_BOOTTIME, &now); |
| password_expiry_time = now.tv_sec + password_max_age_seconds; |
| } |
| |
| return rc; |
| } |
| |
| int cryptfs_verify_passwd(const char* passwd) { |
| struct crypt_mnt_ftr crypt_ftr; |
| unsigned char decrypted_master_key[MAX_KEY_LEN]; |
| char encrypted_state[PROPERTY_VALUE_MAX]; |
| int rc; |
| |
| property_get("ro.crypto.state", encrypted_state, ""); |
| if (strcmp(encrypted_state, "encrypted")) { |
| SLOGE("device not encrypted, aborting"); |
| return -2; |
| } |
| |
| if (!master_key_saved) { |
| SLOGE("encrypted fs not yet mounted, aborting"); |
| return -1; |
| } |
| |
| if (!saved_mount_point) { |
| SLOGE("encrypted fs failed to save mount point, aborting"); |
| return -1; |
| } |
| |
| if (get_crypt_ftr_and_key(&crypt_ftr)) { |
| SLOGE("Error getting crypt footer and key\n"); |
| return -1; |
| } |
| |
| if (crypt_ftr.flags & CRYPT_MNT_KEY_UNENCRYPTED) { |
| /* If the device has no password, then just say the password is valid */ |
| rc = 0; |
| } else { |
| decrypt_master_key(passwd, decrypted_master_key, &crypt_ftr, 0, 0); |
| if (!memcmp(decrypted_master_key, saved_master_key, crypt_ftr.keysize)) { |
| /* They match, the password is correct */ |
| rc = 0; |
| } else { |
| /* If incorrect, sleep for a bit to prevent dictionary attacks */ |
| sleep(1); |
| rc = 1; |
| } |
| } |
| |
| return rc; |
| } |
| |
| /* Initialize a crypt_mnt_ftr structure. The keysize is |
| * defaulted to get_crypto_type().get_keysize() bytes, and the filesystem size to 0. |
| * Presumably, at a minimum, the caller will update the |
| * filesystem size and crypto_type_name after calling this function. |
| */ |
| static int cryptfs_init_crypt_mnt_ftr(struct crypt_mnt_ftr* ftr) { |
| off64_t off; |
| |
| memset(ftr, 0, sizeof(struct crypt_mnt_ftr)); |
| ftr->magic = CRYPT_MNT_MAGIC; |
| ftr->major_version = CURRENT_MAJOR_VERSION; |
| ftr->minor_version = CURRENT_MINOR_VERSION; |
| ftr->ftr_size = sizeof(struct crypt_mnt_ftr); |
| ftr->keysize = get_crypto_type().get_keysize(); |
| |
| switch (keymaster_check_compatibility()) { |
| case 1: |
| ftr->kdf_type = KDF_SCRYPT_KEYMASTER; |
| break; |
| |
| case 0: |
| ftr->kdf_type = KDF_SCRYPT; |
| break; |
| |
| default: |
| SLOGE("keymaster_check_compatibility failed"); |
| return -1; |
| } |
| |
| get_device_scrypt_params(ftr); |
| |
| ftr->persist_data_size = CRYPT_PERSIST_DATA_SIZE; |
| if (get_crypt_ftr_info(NULL, &off) == 0) { |
| ftr->persist_data_offset[0] = off + CRYPT_FOOTER_TO_PERSIST_OFFSET; |
| ftr->persist_data_offset[1] = off + CRYPT_FOOTER_TO_PERSIST_OFFSET + ftr->persist_data_size; |
| } |
| |
| return 0; |
| } |
| |
| #define FRAMEWORK_BOOT_WAIT 60 |
| |
| static int cryptfs_SHA256_fileblock(const char* filename, __le8* buf) { |
| int fd = open(filename, O_RDONLY | O_CLOEXEC); |
| if (fd == -1) { |
| SLOGE("Error opening file %s", filename); |
| return -1; |
| } |
| |
| char block[CRYPT_INPLACE_BUFSIZE]; |
| memset(block, 0, sizeof(block)); |
| if (unix_read(fd, block, sizeof(block)) < 0) { |
| SLOGE("Error reading file %s", filename); |
| close(fd); |
| return -1; |
| } |
| |
| close(fd); |
| |
| SHA256_CTX c; |
| SHA256_Init(&c); |
| SHA256_Update(&c, block, sizeof(block)); |
| SHA256_Final(buf, &c); |
| |
| return 0; |
| } |
| |
| static int cryptfs_enable_all_volumes(struct crypt_mnt_ftr* crypt_ftr, const char* crypto_blkdev, |
| const char* real_blkdev, int previously_encrypted_upto) { |
| off64_t cur_encryption_done = 0, tot_encryption_size = 0; |
| int rc = -1; |
| |
| /* The size of the userdata partition, and add in the vold volumes below */ |
| tot_encryption_size = crypt_ftr->fs_size; |
| |
| rc = cryptfs_enable_inplace(crypto_blkdev, real_blkdev, crypt_ftr->fs_size, &cur_encryption_done, |
| tot_encryption_size, previously_encrypted_upto, true); |
| |
| if (rc == ENABLE_INPLACE_ERR_DEV) { |
| /* Hack for b/17898962 */ |
| SLOGE("cryptfs_enable: crypto block dev failure. Must reboot...\n"); |
| cryptfs_reboot(RebootType::reboot); |
| } |
| |
| if (!rc) { |
| crypt_ftr->encrypted_upto = cur_encryption_done; |
| } |
| |
| if (!rc && crypt_ftr->encrypted_upto == crypt_ftr->fs_size) { |
| /* The inplace routine never actually sets the progress to 100% due |
| * to the round down nature of integer division, so set it here */ |
| property_set("vold.encrypt_progress", "100"); |
| } |
| |
| return rc; |
| } |
| |
| static int vold_unmountAll(void) { |
| VolumeManager* vm = VolumeManager::Instance(); |
| return vm->unmountAll(); |
| } |
| |
| int cryptfs_enable_internal(int crypt_type, const char* passwd, int no_ui) { |
| std::string crypto_blkdev; |
| std::string real_blkdev; |
| unsigned char decrypted_master_key[MAX_KEY_LEN]; |
| int rc = -1, i; |
| struct crypt_mnt_ftr crypt_ftr; |
| struct crypt_persist_data* pdata; |
| char encrypted_state[PROPERTY_VALUE_MAX]; |
| char lockid[32] = {0}; |
| std::string key_loc; |
| int num_vols; |
| off64_t previously_encrypted_upto = 0; |
| bool rebootEncryption = false; |
| bool onlyCreateHeader = false; |
| std::unique_ptr<android::wakelock::WakeLock> wakeLock = nullptr; |
| |
| if (get_crypt_ftr_and_key(&crypt_ftr) == 0) { |
| if (crypt_ftr.flags & CRYPT_ENCRYPTION_IN_PROGRESS) { |
| /* An encryption was underway and was interrupted */ |
| previously_encrypted_upto = crypt_ftr.encrypted_upto; |
| crypt_ftr.encrypted_upto = 0; |
| crypt_ftr.flags &= ~CRYPT_ENCRYPTION_IN_PROGRESS; |
| |
| /* At this point, we are in an inconsistent state. Until we successfully |
| complete encryption, a reboot will leave us broken. So mark the |
| encryption failed in case that happens. |
| On successfully completing encryption, remove this flag */ |
| crypt_ftr.flags |= CRYPT_INCONSISTENT_STATE; |
| |
| put_crypt_ftr_and_key(&crypt_ftr); |
| } else if (crypt_ftr.flags & CRYPT_FORCE_ENCRYPTION) { |
| if (!check_ftr_sha(&crypt_ftr)) { |
| memset(&crypt_ftr, 0, sizeof(crypt_ftr)); |
| put_crypt_ftr_and_key(&crypt_ftr); |
| goto error_unencrypted; |
| } |
| |
| /* Doing a reboot-encryption*/ |
| crypt_ftr.flags &= ~CRYPT_FORCE_ENCRYPTION; |
| crypt_ftr.flags |= CRYPT_FORCE_COMPLETE; |
| rebootEncryption = true; |
| } |
| } else { |
| // We don't want to accidentally reference invalid data. |
| memset(&crypt_ftr, 0, sizeof(crypt_ftr)); |
| } |
| |
| property_get("ro.crypto.state", encrypted_state, ""); |
| if (!strcmp(encrypted_state, "encrypted") && !previously_encrypted_upto) { |
| SLOGE("Device is already running encrypted, aborting"); |
| goto error_unencrypted; |
| } |
| |
| get_crypt_info(&key_loc, &real_blkdev); |
| |
| /* Get the size of the real block device */ |
| uint64_t nr_sec; |
| if (android::vold::GetBlockDev512Sectors(real_blkdev, &nr_sec) != android::OK) { |
| SLOGE("Cannot get size of block device %s\n", real_blkdev.c_str()); |
| goto error_unencrypted; |
| } |
| |
| /* If doing inplace encryption, make sure the orig fs doesn't include the crypto footer */ |
| if (key_loc == KEY_IN_FOOTER) { |
| uint64_t fs_size_sec, max_fs_size_sec; |
| fs_size_sec = get_fs_size(real_blkdev.c_str()); |
| if (fs_size_sec == 0) fs_size_sec = get_f2fs_filesystem_size_sec(real_blkdev.data()); |
| |
| max_fs_size_sec = nr_sec - (CRYPT_FOOTER_OFFSET / CRYPT_SECTOR_SIZE); |
| |
| if (fs_size_sec > max_fs_size_sec) { |
| SLOGE("Orig filesystem overlaps crypto footer region. Cannot encrypt in place."); |
| goto error_unencrypted; |
| } |
| } |
| |
| /* Get a wakelock as this may take a while, and we don't want the |
| * device to sleep on us. We'll grab a partial wakelock, and if the UI |
| * wants to keep the screen on, it can grab a full wakelock. |
| */ |
| snprintf(lockid, sizeof(lockid), "enablecrypto%d", (int)getpid()); |
| wakeLock = std::make_unique<android::wakelock::WakeLock>(lockid); |
| |
| /* The init files are setup to stop the class main and late start when |
| * vold sets trigger_shutdown_framework. |
| */ |
| property_set("vold.decrypt", "trigger_shutdown_framework"); |
| SLOGD("Just asked init to shut down class main\n"); |
| |
| /* Ask vold to unmount all devices that it manages */ |
| if (vold_unmountAll()) { |
| SLOGE("Failed to unmount all vold managed devices"); |
| } |
| |
| /* no_ui means we are being called from init, not settings. |
| Now we always reboot from settings, so !no_ui means reboot |
| */ |
| if (!no_ui) { |
| /* Try fallback, which is to reboot and try there */ |
| onlyCreateHeader = true; |
| FILE* breadcrumb = fopen(BREADCRUMB_FILE, "we"); |
| if (breadcrumb == 0) { |
| SLOGE("Failed to create breadcrumb file"); |
| goto error_shutting_down; |
| } |
| fclose(breadcrumb); |
| } |
| |
| /* Do extra work for a better UX when doing the long inplace encryption */ |
| if (!onlyCreateHeader) { |
| /* Now that /data is unmounted, we need to mount a tmpfs |
| * /data, set a property saying we're doing inplace encryption, |
| * and restart the framework. |
| */ |
| wait_and_unmount(DATA_MNT_POINT, true); |
| if (fs_mgr_do_tmpfs_mount(DATA_MNT_POINT)) { |
| goto error_shutting_down; |
| } |
| /* Tells the framework that inplace encryption is starting */ |
| property_set("vold.encrypt_progress", "0"); |
| |
| /* restart the framework. */ |
| /* Create necessary paths on /data */ |
| prep_data_fs(); |
| |
| /* Ugh, shutting down the framework is not synchronous, so until it |
| * can be fixed, this horrible hack will wait a moment for it all to |
| * shut down before proceeding. Without it, some devices cannot |
| * restart the graphics services. |
| */ |
| sleep(2); |
| } |
| |
| /* Start the actual work of making an encrypted filesystem */ |
| /* Initialize a crypt_mnt_ftr for the partition */ |
| if (previously_encrypted_upto == 0 && !rebootEncryption) { |
| if (cryptfs_init_crypt_mnt_ftr(&crypt_ftr)) { |
| goto error_shutting_down; |
| } |
| |
| if (key_loc == KEY_IN_FOOTER) { |
| crypt_ftr.fs_size = nr_sec - (CRYPT_FOOTER_OFFSET / CRYPT_SECTOR_SIZE); |
| } else { |
| crypt_ftr.fs_size = nr_sec; |
| } |
| /* At this point, we are in an inconsistent state. Until we successfully |
| complete encryption, a reboot will leave us broken. So mark the |
| encryption failed in case that happens. |
| On successfully completing encryption, remove this flag */ |
| if (onlyCreateHeader) { |
| crypt_ftr.flags |= CRYPT_FORCE_ENCRYPTION; |
| } else { |
| crypt_ftr.flags |= CRYPT_INCONSISTENT_STATE; |
| } |
| crypt_ftr.crypt_type = crypt_type; |
| strlcpy((char*)crypt_ftr.crypto_type_name, get_crypto_type().get_kernel_name(), |
| MAX_CRYPTO_TYPE_NAME_LEN); |
| |
| /* Make an encrypted master key */ |
| if (create_encrypted_random_key(onlyCreateHeader ? DEFAULT_PASSWORD : passwd, |
| crypt_ftr.master_key, crypt_ftr.salt, &crypt_ftr)) { |
| SLOGE("Cannot create encrypted master key\n"); |
| goto error_shutting_down; |
| } |
| |
| /* Replace scrypted intermediate key if we are preparing for a reboot */ |
| if (onlyCreateHeader) { |
| unsigned char fake_master_key[MAX_KEY_LEN]; |
| unsigned char encrypted_fake_master_key[MAX_KEY_LEN]; |
| memset(fake_master_key, 0, sizeof(fake_master_key)); |
| encrypt_master_key(passwd, crypt_ftr.salt, fake_master_key, encrypted_fake_master_key, |
| &crypt_ftr); |
| } |
| |
| /* Write the key to the end of the partition */ |
| put_crypt_ftr_and_key(&crypt_ftr); |
| |
| /* If any persistent data has been remembered, save it. |
| * If none, create a valid empty table and save that. |
| */ |
| if (!persist_data) { |
| pdata = (crypt_persist_data*)malloc(CRYPT_PERSIST_DATA_SIZE); |
| if (pdata) { |
| init_empty_persist_data(pdata, CRYPT_PERSIST_DATA_SIZE); |
| persist_data = pdata; |
| } |
| } |
| if (persist_data) { |
| save_persistent_data(); |
| } |
| } |
| |
| if (onlyCreateHeader) { |
| sleep(2); |
| cryptfs_reboot(RebootType::reboot); |
| } |
| |
| if (!no_ui || rebootEncryption) { |
| /* startup service classes main and late_start */ |
| property_set("vold.decrypt", "trigger_restart_min_framework"); |
| SLOGD("Just triggered restart_min_framework\n"); |
| |
| /* OK, the framework is restarted and will soon be showing a |
| * progress bar. Time to setup an encrypted mapping, and |
| * either write a new filesystem, or encrypt in place updating |
| * the progress bar as we work. |
| */ |
| } |
| |
| decrypt_master_key(passwd, decrypted_master_key, &crypt_ftr, 0, 0); |
| create_crypto_blk_dev(&crypt_ftr, decrypted_master_key, real_blkdev.c_str(), &crypto_blkdev, |
| CRYPTO_BLOCK_DEVICE, 0); |
| |
| /* If we are continuing, check checksums match */ |
| rc = 0; |
| if (previously_encrypted_upto) { |
| __le8 hash_first_block[SHA256_DIGEST_LENGTH]; |
| rc = cryptfs_SHA256_fileblock(crypto_blkdev.c_str(), hash_first_block); |
| |
| if (!rc && |
| memcmp(hash_first_block, crypt_ftr.hash_first_block, sizeof(hash_first_block)) != 0) { |
| SLOGE("Checksums do not match - trigger wipe"); |
| rc = -1; |
| } |
| } |
| |
| if (!rc) { |
| rc = cryptfs_enable_all_volumes(&crypt_ftr, crypto_blkdev.c_str(), real_blkdev.data(), |
| previously_encrypted_upto); |
| } |
| |
| /* Calculate checksum if we are not finished */ |
| if (!rc && crypt_ftr.encrypted_upto != crypt_ftr.fs_size) { |
| rc = cryptfs_SHA256_fileblock(crypto_blkdev.c_str(), crypt_ftr.hash_first_block); |
| if (rc) { |
| SLOGE("Error calculating checksum for continuing encryption"); |
| rc = -1; |
| } |
| } |
| |
| /* Undo the dm-crypt mapping whether we succeed or not */ |
| delete_crypto_blk_dev(CRYPTO_BLOCK_DEVICE); |
| |
| if (!rc) { |
| /* Success */ |
| crypt_ftr.flags &= ~CRYPT_INCONSISTENT_STATE; |
| |
| if (crypt_ftr.encrypted_upto != crypt_ftr.fs_size) { |
| SLOGD("Encrypted up to sector %lld - will continue after reboot", |
| crypt_ftr.encrypted_upto); |
| crypt_ftr.flags |= CRYPT_ENCRYPTION_IN_PROGRESS; |
| } |
| |
| put_crypt_ftr_and_key(&crypt_ftr); |
| |
| if (crypt_ftr.encrypted_upto == crypt_ftr.fs_size) { |
| char value[PROPERTY_VALUE_MAX]; |
| property_get("ro.crypto.state", value, ""); |
| if (!strcmp(value, "")) { |
| /* default encryption - continue first boot sequence */ |
| property_set("ro.crypto.state", "encrypted"); |
| property_set("ro.crypto.type", "block"); |
| wakeLock.reset(nullptr); |
| if (rebootEncryption && crypt_ftr.crypt_type != CRYPT_TYPE_DEFAULT) { |
| // Bring up cryptkeeper that will check the password and set it |
| property_set("vold.decrypt", "trigger_shutdown_framework"); |
| sleep(2); |
| property_set("vold.encrypt_progress", ""); |
| cryptfs_trigger_restart_min_framework(); |
| } else { |
| cryptfs_check_passwd(DEFAULT_PASSWORD); |
| cryptfs_restart_internal(1); |
| } |
| return 0; |
| } else { |
| sleep(2); /* Give the UI a chance to show 100% progress */ |
| cryptfs_reboot(RebootType::reboot); |
| } |
| } else { |
| sleep(2); /* Partially encrypted, ensure writes flushed to ssd */ |
| cryptfs_reboot(RebootType::shutdown); |
| } |
| } else { |
| char value[PROPERTY_VALUE_MAX]; |
| |
| property_get("ro.vold.wipe_on_crypt_fail", value, "0"); |
| if (!strcmp(value, "1")) { |
| /* wipe data if encryption failed */ |
| SLOGE("encryption failed - rebooting into recovery to wipe data\n"); |
| std::string err; |
| const std::vector<std::string> options = { |
| "--wipe_data\n--reason=cryptfs_enable_internal\n"}; |
| if (!write_bootloader_message(options, &err)) { |
| SLOGE("could not write bootloader message: %s", err.c_str()); |
| } |
| cryptfs_reboot(RebootType::recovery); |
| } else { |
| /* set property to trigger dialog */ |
| property_set("vold.encrypt_progress", "error_partially_encrypted"); |
| } |
| return -1; |
| } |
| |
| /* hrm, the encrypt step claims success, but the reboot failed. |
| * This should not happen. |
| * Set the property and return. Hope the framework can deal with it. |
| */ |
| property_set("vold.encrypt_progress", "error_reboot_failed"); |
| return rc; |
| |
| error_unencrypted: |
| property_set("vold.encrypt_progress", "error_not_encrypted"); |
| return -1; |
| |
| error_shutting_down: |
| /* we failed, and have not encrypted anthing, so the users's data is still intact, |
| * but the framework is stopped and not restarted to show the error, so it's up to |
| * vold to restart the system. |
| */ |
| SLOGE( |
| "Error enabling encryption after framework is shutdown, no data changed, restarting " |
| "system"); |
| cryptfs_reboot(RebootType::reboot); |
| |
| /* shouldn't get here */ |
| property_set("vold.encrypt_progress", "error_shutting_down"); |
| return -1; |
| } |
| |
| int cryptfs_enable(int type, const char* passwd, int no_ui) { |
| return cryptfs_enable_internal(type, passwd, no_ui); |
| } |
| |
| int cryptfs_enable_default(int no_ui) { |
| return cryptfs_enable_internal(CRYPT_TYPE_DEFAULT, DEFAULT_PASSWORD, no_ui); |
| } |
| |
| int cryptfs_changepw(int crypt_type, const char* newpw) { |
| if (fscrypt_is_native()) { |
| SLOGE("cryptfs_changepw not valid for file encryption"); |
| return -1; |
| } |
| |
| struct crypt_mnt_ftr crypt_ftr; |
| int rc; |
| |
| /* This is only allowed after we've successfully decrypted the master key */ |
| if (!master_key_saved) { |
| SLOGE("Key not saved, aborting"); |
| return -1; |
| } |
| |
| if (crypt_type < 0 || crypt_type > CRYPT_TYPE_MAX_TYPE) { |
| SLOGE("Invalid crypt_type %d", crypt_type); |
| return -1; |
| } |
| |
| /* get key */ |
| if (get_crypt_ftr_and_key(&crypt_ftr)) { |
| SLOGE("Error getting crypt footer and key"); |
| return -1; |
| } |
| |
| crypt_ftr.crypt_type = crypt_type; |
| |
| rc = encrypt_master_key(crypt_type == CRYPT_TYPE_DEFAULT ? DEFAULT_PASSWORD : newpw, |
| crypt_ftr.salt, saved_master_key, crypt_ftr.master_key, &crypt_ftr); |
| if (rc) { |
| SLOGE("Encrypt master key failed: %d", rc); |
| return -1; |
| } |
| /* save the key */ |
| put_crypt_ftr_and_key(&crypt_ftr); |
| |
| return 0; |
| } |
| |
| static unsigned int persist_get_max_entries(int encrypted) { |
| struct crypt_mnt_ftr crypt_ftr; |
| unsigned int dsize; |
| |
| /* If encrypted, use the values from the crypt_ftr, otherwise |
| * use the values for the current spec. |
| */ |
| if (encrypted) { |
| if (get_crypt_ftr_and_key(&crypt_ftr)) { |
| /* Something is wrong, assume no space for entries */ |
| return 0; |
| } |
| dsize = crypt_ftr.persist_data_size; |
| } else { |
| dsize = CRYPT_PERSIST_DATA_SIZE; |
| } |
| |
| if (dsize > sizeof(struct crypt_persist_data)) { |
| return (dsize - sizeof(struct crypt_persist_data)) / sizeof(struct crypt_persist_entry); |
| } else { |
| return 0; |
| } |
| } |
| |
| static int persist_get_key(const char* fieldname, char* value) { |
| unsigned int i; |
| |
| if (persist_data == NULL) { |
| return -1; |
| } |
| for (i = 0; i < persist_data->persist_valid_entries; i++) { |
| if (!strncmp(persist_data->persist_entry[i].key, fieldname, PROPERTY_KEY_MAX)) { |
| /* We found it! */ |
| strlcpy(value, persist_data->persist_entry[i].val, PROPERTY_VALUE_MAX); |
| return 0; |
| } |
| } |
| |
| return -1; |
| } |
| |
| static int persist_set_key(const char* fieldname, const char* value, int encrypted) { |
| unsigned int i; |
| unsigned int num; |
| unsigned int max_persistent_entries; |
| |
| if (persist_data == NULL) { |
| return -1; |
| } |
| |
| max_persistent_entries = persist_get_max_entries(encrypted); |
| |
| num = persist_data->persist_valid_entries; |
| |
| for (i = 0; i < num; i++) { |
| if (!strncmp(persist_data->persist_entry[i].key, fieldname, PROPERTY_KEY_MAX)) { |
| /* We found an existing entry, update it! */ |
| memset(persist_data->persist_entry[i].val, 0, PROPERTY_VALUE_MAX); |
| strlcpy(persist_data->persist_entry[i].val, value, PROPERTY_VALUE_MAX); |
| return 0; |
| } |
| } |
| |
| /* We didn't find it, add it to the end, if there is room */ |
| if (persist_data->persist_valid_entries < max_persistent_entries) { |
| memset(&persist_data->persist_entry[num], 0, sizeof(struct crypt_persist_entry)); |
| strlcpy(persist_data->persist_entry[num].key, fieldname, PROPERTY_KEY_MAX); |
| strlcpy(persist_data->persist_entry[num].val, value, PROPERTY_VALUE_MAX); |
| persist_data->persist_valid_entries++; |
| return 0; |
| } |
| |
| return -1; |
| } |
| |
| /** |
| * Test if key is part of the multi-entry (field, index) sequence. Return non-zero if key is in the |
| * sequence and its index is greater than or equal to index. Return 0 otherwise. |
| */ |
| int match_multi_entry(const char* key, const char* field, unsigned index) { |
| std::string key_ = key; |
| std::string field_ = field; |
| |
| std::string parsed_field; |
| unsigned parsed_index; |
| |
| std::string::size_type split = key_.find_last_of('_'); |
| if (split == std::string::npos) { |
| parsed_field = key_; |
| parsed_index = 0; |
| } else { |
| parsed_field = key_.substr(0, split); |
| parsed_index = std::stoi(key_.substr(split + 1)); |
| } |
| |
| return parsed_field == field_ && parsed_index >= index; |
| } |
| |
| /* |
| * Delete entry/entries from persist_data. If the entries are part of a multi-segment field, all |
| * remaining entries starting from index will be deleted. |
| * returns PERSIST_DEL_KEY_OK if deletion succeeds, |
| * PERSIST_DEL_KEY_ERROR_NO_FIELD if the field does not exist, |
| * and PERSIST_DEL_KEY_ERROR_OTHER if error occurs. |
| * |
| */ |
| static int persist_del_keys(const char* fieldname, unsigned index) { |
| unsigned int i; |
| unsigned int j; |
| unsigned int num; |
| |
| if (persist_data == NULL) { |
| return PERSIST_DEL_KEY_ERROR_OTHER; |
| } |
| |
| num = persist_data->persist_valid_entries; |
| |
| j = 0; // points to the end of non-deleted entries. |
| // Filter out to-be-deleted entries in place. |
| for (i = 0; i < num; i++) { |
| if (!match_multi_entry(persist_data->persist_entry[i].key, fieldname, index)) { |
| persist_data->persist_entry[j] = persist_data->persist_entry[i]; |
| j++; |
| } |
| } |
| |
| if (j < num) { |
| persist_data->persist_valid_entries = j; |
| // Zeroise the remaining entries |
| memset(&persist_data->persist_entry[j], 0, (num - j) * sizeof(struct crypt_persist_entry)); |
| return PERSIST_DEL_KEY_OK; |
| } else { |
| // Did not find an entry matching the given fieldname |
| return PERSIST_DEL_KEY_ERROR_NO_FIELD; |
| } |
| } |
| |
| static int persist_count_keys(const char* fieldname) { |
| unsigned int i; |
| unsigned int count; |
| |
| if (persist_data == NULL) { |
| return -1; |
| } |
| |
| count = 0; |
| for (i = 0; i < persist_data->persist_valid_entries; i++) { |
| if (match_multi_entry(persist_data->persist_entry[i].key, fieldname, 0)) { |
| count++; |
| } |
| } |
| |
| return count; |
| } |
| |
| /* Return the value of the specified field. */ |
| int cryptfs_getfield(const char* fieldname, char* value, int len) { |
| if (fscrypt_is_native()) { |
| SLOGE("Cannot get field when file encrypted"); |
| return -1; |
| } |
| |
| char temp_value[PROPERTY_VALUE_MAX]; |
| /* CRYPTO_GETFIELD_OK is success, |
| * CRYPTO_GETFIELD_ERROR_NO_FIELD is value not set, |
| * CRYPTO_GETFIELD_ERROR_BUF_TOO_SMALL is buffer (as given by len) too small, |
| * CRYPTO_GETFIELD_ERROR_OTHER is any other error |
| */ |
| int rc = CRYPTO_GETFIELD_ERROR_OTHER; |
| int i; |
| char temp_field[PROPERTY_KEY_MAX]; |
| |
| if (persist_data == NULL) { |
| load_persistent_data(); |
| if (persist_data == NULL) { |
| SLOGE("Getfield error, cannot load persistent data"); |
| goto out; |
| } |
| } |
| |
| // Read value from persistent entries. If the original value is split into multiple entries, |
| // stitch them back together. |
| if (!persist_get_key(fieldname, temp_value)) { |
| // We found it, copy it to the caller's buffer and keep going until all entries are read. |
| if (strlcpy(value, temp_value, len) >= (unsigned)len) { |
| // value too small |
| rc = CRYPTO_GETFIELD_ERROR_BUF_TOO_SMALL; |
| goto out; |
| } |
| rc = CRYPTO_GETFIELD_OK; |
| |
| for (i = 1; /* break explicitly */; i++) { |
| if (snprintf(temp_field, sizeof(temp_field), "%s_%d", fieldname, i) >= |
| (int)sizeof(temp_field)) { |
| // If the fieldname is very long, we stop as soon as it begins to overflow the |
| // maximum field length. At this point we have in fact fully read out the original |
| // value because cryptfs_setfield would not allow fields with longer names to be |
| // written in the first place. |
| break; |
| } |
| if (!persist_get_key(temp_field, temp_value)) { |
| if (strlcat(value, temp_value, len) >= (unsigned)len) { |
| // value too small. |
| rc = CRYPTO_GETFIELD_ERROR_BUF_TOO_SMALL; |
| goto out; |
| } |
| } else { |
| // Exhaust all entries. |
| break; |
| } |
| } |
| } else { |
| /* Sadness, it's not there. Return the error */ |
| rc = CRYPTO_GETFIELD_ERROR_NO_FIELD; |
| } |
| |
| out: |
| return rc; |
| } |
| |
| /* Set the value of the specified field. */ |
| int cryptfs_setfield(const char* fieldname, const char* value) { |
| if (fscrypt_is_native()) { |
| SLOGE("Cannot set field when file encrypted"); |
| return -1; |
| } |
| |
| char encrypted_state[PROPERTY_VALUE_MAX]; |
| /* 0 is success, negative values are error */ |
| int rc = CRYPTO_SETFIELD_ERROR_OTHER; |
| int encrypted = 0; |
| unsigned int field_id; |
| char temp_field[PROPERTY_KEY_MAX]; |
| unsigned int num_entries; |
| unsigned int max_keylen; |
| |
| if (persist_data == NULL) { |
| load_persistent_data(); |
| if (persist_data == NULL) { |
| SLOGE("Setfield error, cannot load persistent data"); |
| goto out; |
| } |
| } |
| |
| property_get("ro.crypto.state", encrypted_state, ""); |
| if (!strcmp(encrypted_state, "encrypted")) { |
| encrypted = 1; |
| } |
| |
| // Compute the number of entries required to store value, each entry can store up to |
| // (PROPERTY_VALUE_MAX - 1) chars |
| if (strlen(value) == 0) { |
| // Empty value also needs one entry to store. |
| num_entries = 1; |
| } else { |
| num_entries = (strlen(value) + (PROPERTY_VALUE_MAX - 1) - 1) / (PROPERTY_VALUE_MAX - 1); |
| } |
| |
| max_keylen = strlen(fieldname); |
| if (num_entries > 1) { |
| // Need an extra "_%d" suffix. |
| max_keylen += 1 + log10(num_entries); |
| } |
| if (max_keylen > PROPERTY_KEY_MAX - 1) { |
| rc = CRYPTO_SETFIELD_ERROR_FIELD_TOO_LONG; |
| goto out; |
| } |
| |
| // Make sure we have enough space to write the new value |
| if (persist_data->persist_valid_entries + num_entries - persist_count_keys(fieldname) > |
| persist_get_max_entries(encrypted)) { |
| rc = CRYPTO_SETFIELD_ERROR_VALUE_TOO_LONG; |
| goto out; |
| } |
| |
| // Now that we know persist_data has enough space for value, let's delete the old field first |
| // to make up space. |
| persist_del_keys(fieldname, 0); |
| |
| if (persist_set_key(fieldname, value, encrypted)) { |
| // fail to set key, should not happen as we have already checked the available space |
| SLOGE("persist_set_key() error during setfield()"); |
| goto out; |
| } |
| |
| for (field_id = 1; field_id < num_entries; field_id++) { |
| snprintf(temp_field, sizeof(temp_field), "%s_%u", fieldname, field_id); |
| |
| if (persist_set_key(temp_field, value + field_id * (PROPERTY_VALUE_MAX - 1), encrypted)) { |
| // fail to set key, should not happen as we have already checked the available space. |
| SLOGE("persist_set_key() error during setfield()"); |
| goto out; |
| } |
| } |
| |
| /* If we are running encrypted, save the persistent data now */ |
| if (encrypted) { |
| if (save_persistent_data()) { |
| SLOGE("Setfield error, cannot save persistent data"); |
| goto out; |
| } |
| } |
| |
| rc = CRYPTO_SETFIELD_OK; |
| |
| out: |
| return rc; |
| } |
| |
| /* Checks userdata. Attempt to mount the volume if default- |
| * encrypted. |
| * On success trigger next init phase and return 0. |
| * Currently do not handle failure - see TODO below. |
| */ |
| int cryptfs_mount_default_encrypted(void) { |
| int crypt_type = cryptfs_get_password_type(); |
| if (crypt_type < 0 || crypt_type > CRYPT_TYPE_MAX_TYPE) { |
| SLOGE("Bad crypt type - error"); |
| } else if (crypt_type != CRYPT_TYPE_DEFAULT) { |
| SLOGD( |
| "Password is not default - " |
| "starting min framework to prompt"); |
| property_set("vold.decrypt", "trigger_restart_min_framework"); |
| return 0; |
| } else if (cryptfs_check_passwd(DEFAULT_PASSWORD) == 0) { |
| SLOGD("Password is default - restarting filesystem"); |
| cryptfs_restart_internal(0); |
| return 0; |
| } else { |
| SLOGE("Encrypted, default crypt type but can't decrypt"); |
| } |
| |
| /** Corrupt. Allow us to boot into framework, which will detect bad |
| crypto when it calls do_crypto_complete, then do a factory reset |
| */ |
| property_set("vold.decrypt", "trigger_restart_min_framework"); |
| return 0; |
| } |
| |
| /* Returns type of the password, default, pattern, pin or password. |
| */ |
| int cryptfs_get_password_type(void) { |
| if (fscrypt_is_native()) { |
| SLOGE("cryptfs_get_password_type not valid for file encryption"); |
| return -1; |
| } |
| |
| struct crypt_mnt_ftr crypt_ftr; |
| |
| if (get_crypt_ftr_and_key(&crypt_ftr)) { |
| SLOGE("Error getting crypt footer and key\n"); |
| return -1; |
| } |
| |
| if (crypt_ftr.flags & CRYPT_INCONSISTENT_STATE) { |
| return -1; |
| } |
| |
| return crypt_ftr.crypt_type; |
| } |
| |
| const char* cryptfs_get_password() { |
| if (fscrypt_is_native()) { |
| SLOGE("cryptfs_get_password not valid for file encryption"); |
| return 0; |
| } |
| |
| struct timespec now; |
| clock_gettime(CLOCK_BOOTTIME, &now); |
| if (now.tv_sec < password_expiry_time) { |
| return password; |
| } else { |
| cryptfs_clear_password(); |
| return 0; |
| } |
| } |
| |
| void cryptfs_clear_password() { |
| if (password) { |
| size_t len = strlen(password); |
| memset(password, 0, len); |
| free(password); |
| password = 0; |
| password_expiry_time = 0; |
| } |
| } |
| |
| int cryptfs_isConvertibleToFBE() { |
| auto entry = GetEntryForMountPoint(&fstab_default, DATA_MNT_POINT); |
| return entry && entry->fs_mgr_flags.force_fde_or_fbe; |
| } |