| /* |
| * Copyright (C) 2010 The Android Open Source Project |
| * |
| * Licensed under the Apache License, Version 2.0 (the "License"); |
| * you may not use this file except in compliance with the License. |
| * You may obtain a copy of the License at |
| * |
| * http://www.apache.org/licenses/LICENSE-2.0 |
| * |
| * Unless required by applicable law or agreed to in writing, software |
| * distributed under the License is distributed on an "AS IS" BASIS, |
| * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. |
| * See the License for the specific language governing permissions and |
| * limitations under the License. |
| */ |
| |
| /* TO DO: |
| * 1. Perhaps keep several copies of the encrypted key, in case something |
| * goes horribly wrong? |
| * |
| */ |
| |
| #include <sys/types.h> |
| #include <sys/wait.h> |
| #include <sys/stat.h> |
| #include <ctype.h> |
| #include <fcntl.h> |
| #include <inttypes.h> |
| #include <unistd.h> |
| #include <stdio.h> |
| #include <sys/ioctl.h> |
| #include <linux/dm-ioctl.h> |
| #include <libgen.h> |
| #include <stdlib.h> |
| #include <sys/param.h> |
| #include <string.h> |
| #include <sys/mount.h> |
| #include <openssl/evp.h> |
| #include <openssl/sha.h> |
| #include <errno.h> |
| #include <ext4.h> |
| #include <linux/kdev_t.h> |
| #include <fs_mgr.h> |
| #include <time.h> |
| #include <math.h> |
| #include "cryptfs.h" |
| #define LOG_TAG "Cryptfs" |
| #include "cutils/log.h" |
| #include "cutils/properties.h" |
| #include "cutils/android_reboot.h" |
| #include "hardware_legacy/power.h" |
| #include <logwrap/logwrap.h> |
| #include "VolumeManager.h" |
| #include "VoldUtil.h" |
| #include "crypto_scrypt.h" |
| #include "Ext4Crypt.h" |
| #include "ext4_crypt_init_extensions.h" |
| #include "ext4_utils.h" |
| #include "f2fs_sparseblock.h" |
| #include "CheckBattery.h" |
| #include "Process.h" |
| |
| #include <hardware/keymaster0.h> |
| |
| #define UNUSED __attribute__((unused)) |
| |
| #define UNUSED __attribute__((unused)) |
| |
| #ifdef CONFIG_HW_DISK_ENCRYPTION |
| #include "cryptfs_hw.h" |
| #endif |
| |
| #define DM_CRYPT_BUF_SIZE 4096 |
| |
| #define HASH_COUNT 2000 |
| #define KEY_LEN_BYTES 16 |
| #define IV_LEN_BYTES 16 |
| |
| #define KEY_IN_FOOTER "footer" |
| |
| // "default_password" encoded into hex (d=0x64 etc) |
| #define DEFAULT_PASSWORD "64656661756c745f70617373776f7264" |
| |
| #define EXT4_FS 1 |
| #define F2FS_FS 2 |
| |
| #define TABLE_LOAD_RETRIES 10 |
| |
| #define RSA_KEY_SIZE 2048 |
| #define RSA_KEY_SIZE_BYTES (RSA_KEY_SIZE / 8) |
| #define RSA_EXPONENT 0x10001 |
| |
| #define RETRY_MOUNT_ATTEMPTS 10 |
| #define RETRY_MOUNT_DELAY_SECONDS 1 |
| |
| char *me = "cryptfs"; |
| |
| static unsigned char saved_master_key[KEY_LEN_BYTES]; |
| static char *saved_mount_point; |
| static int master_key_saved = 0; |
| static struct crypt_persist_data *persist_data = NULL; |
| |
| static int keymaster_init(keymaster0_device_t **keymaster_dev) |
| { |
| int rc; |
| |
| const hw_module_t* mod; |
| rc = hw_get_module_by_class(KEYSTORE_HARDWARE_MODULE_ID, NULL, &mod); |
| if (rc) { |
| ALOGE("could not find any keystore module"); |
| goto out; |
| } |
| |
| rc = keymaster0_open(mod, keymaster_dev); |
| if (rc) { |
| ALOGE("could not open keymaster device in %s (%s)", |
| KEYSTORE_HARDWARE_MODULE_ID, strerror(-rc)); |
| goto out; |
| } |
| |
| return 0; |
| |
| out: |
| *keymaster_dev = NULL; |
| return rc; |
| } |
| |
| /* Should we use keymaster? */ |
| static int keymaster_check_compatibility() |
| { |
| keymaster0_device_t *keymaster_dev = 0; |
| int rc = 0; |
| |
| if (keymaster_init(&keymaster_dev)) { |
| SLOGE("Failed to init keymaster"); |
| rc = -1; |
| goto out; |
| } |
| |
| SLOGI("keymaster version is %d", keymaster_dev->common.module->module_api_version); |
| |
| if (keymaster_dev->common.module->module_api_version |
| < KEYMASTER_MODULE_API_VERSION_0_3) { |
| rc = 0; |
| goto out; |
| } |
| |
| if (!(keymaster_dev->flags & KEYMASTER_SOFTWARE_ONLY) && |
| (keymaster_dev->flags & KEYMASTER_BLOBS_ARE_STANDALONE)) { |
| rc = 1; |
| } |
| |
| out: |
| keymaster0_close(keymaster_dev); |
| return rc; |
| } |
| |
| /* Create a new keymaster key and store it in this footer */ |
| static int keymaster_create_key(struct crypt_mnt_ftr *ftr) |
| { |
| uint8_t* key = 0; |
| keymaster0_device_t *keymaster_dev = 0; |
| |
| if (keymaster_init(&keymaster_dev)) { |
| SLOGE("Failed to init keymaster"); |
| return -1; |
| } |
| |
| int rc = 0; |
| |
| keymaster_rsa_keygen_params_t params; |
| memset(¶ms, '\0', sizeof(params)); |
| params.public_exponent = RSA_EXPONENT; |
| params.modulus_size = RSA_KEY_SIZE; |
| |
| size_t key_size; |
| if (keymaster_dev->generate_keypair(keymaster_dev, TYPE_RSA, ¶ms, |
| &key, &key_size)) { |
| SLOGE("Failed to generate keypair"); |
| rc = -1; |
| goto out; |
| } |
| |
| if (key_size > KEYMASTER_BLOB_SIZE) { |
| SLOGE("Keymaster key too large for crypto footer"); |
| rc = -1; |
| goto out; |
| } |
| |
| memcpy(ftr->keymaster_blob, key, key_size); |
| ftr->keymaster_blob_size = key_size; |
| |
| out: |
| keymaster0_close(keymaster_dev); |
| free(key); |
| return rc; |
| } |
| |
| /* This signs the given object using the keymaster key. */ |
| static int keymaster_sign_object(struct crypt_mnt_ftr *ftr, |
| const unsigned char *object, |
| const size_t object_size, |
| unsigned char **signature, |
| size_t *signature_size) |
| { |
| int rc = 0; |
| keymaster0_device_t *keymaster_dev = 0; |
| if (keymaster_init(&keymaster_dev)) { |
| SLOGE("Failed to init keymaster"); |
| return -1; |
| } |
| |
| /* We currently set the digest type to DIGEST_NONE because it's the |
| * only supported value for keymaster. A similar issue exists with |
| * PADDING_NONE. Long term both of these should likely change. |
| */ |
| keymaster_rsa_sign_params_t params; |
| params.digest_type = DIGEST_NONE; |
| params.padding_type = PADDING_NONE; |
| |
| unsigned char to_sign[RSA_KEY_SIZE_BYTES]; |
| size_t to_sign_size = sizeof(to_sign); |
| memset(to_sign, 0, RSA_KEY_SIZE_BYTES); |
| |
| // To sign a message with RSA, the message must satisfy two |
| // constraints: |
| // |
| // 1. The message, when interpreted as a big-endian numeric value, must |
| // be strictly less than the public modulus of the RSA key. Note |
| // that because the most significant bit of the public modulus is |
| // guaranteed to be 1 (else it's an (n-1)-bit key, not an n-bit |
| // key), an n-bit message with most significant bit 0 always |
| // satisfies this requirement. |
| // |
| // 2. The message must have the same length in bits as the public |
| // modulus of the RSA key. This requirement isn't mathematically |
| // necessary, but is necessary to ensure consistency in |
| // implementations. |
| switch (ftr->kdf_type) { |
| case KDF_SCRYPT_KEYMASTER: |
| // This ensures the most significant byte of the signed message |
| // is zero. We could have zero-padded to the left instead, but |
| // this approach is slightly more robust against changes in |
| // object size. However, it's still broken (but not unusably |
| // so) because we really should be using a proper RSA padding |
| // function, such as OAEP. |
| // |
| // TODO(paullawrence): When keymaster 0.4 is available, change |
| // this to use the padding options it provides. |
| memcpy(to_sign + 1, object, min(RSA_KEY_SIZE_BYTES - 1, object_size)); |
| SLOGI("Signing safely-padded object"); |
| break; |
| default: |
| SLOGE("Unknown KDF type %d", ftr->kdf_type); |
| return -1; |
| } |
| |
| rc = keymaster_dev->sign_data(keymaster_dev, |
| ¶ms, |
| ftr->keymaster_blob, |
| ftr->keymaster_blob_size, |
| to_sign, |
| to_sign_size, |
| signature, |
| signature_size); |
| |
| keymaster0_close(keymaster_dev); |
| return rc; |
| } |
| |
| /* Store password when userdata is successfully decrypted and mounted. |
| * Cleared by cryptfs_clear_password |
| * |
| * To avoid a double prompt at boot, we need to store the CryptKeeper |
| * password and pass it to KeyGuard, which uses it to unlock KeyStore. |
| * Since the entire framework is torn down and rebuilt after encryption, |
| * we have to use a daemon or similar to store the password. Since vold |
| * is secured against IPC except from system processes, it seems a reasonable |
| * place to store this. |
| * |
| * password should be cleared once it has been used. |
| * |
| * password is aged out after password_max_age_seconds seconds. |
| */ |
| static char* password = 0; |
| static int password_expiry_time = 0; |
| static const int password_max_age_seconds = 60; |
| |
| extern struct fstab *fstab; |
| |
| enum RebootType {reboot, recovery, shutdown}; |
| static void cryptfs_reboot(enum RebootType rt) |
| { |
| switch(rt) { |
| case reboot: |
| property_set(ANDROID_RB_PROPERTY, "reboot"); |
| break; |
| |
| case recovery: |
| property_set(ANDROID_RB_PROPERTY, "reboot,recovery"); |
| break; |
| |
| case shutdown: |
| property_set(ANDROID_RB_PROPERTY, "shutdown"); |
| break; |
| } |
| |
| sleep(20); |
| |
| /* Shouldn't get here, reboot should happen before sleep times out */ |
| return; |
| } |
| |
| static void ioctl_init(struct dm_ioctl *io, size_t dataSize, const char *name, unsigned flags) |
| { |
| memset(io, 0, dataSize); |
| io->data_size = dataSize; |
| io->data_start = sizeof(struct dm_ioctl); |
| io->version[0] = 4; |
| io->version[1] = 0; |
| io->version[2] = 0; |
| io->flags = flags; |
| if (name) { |
| strlcpy(io->name, name, sizeof(io->name)); |
| } |
| } |
| |
| /** |
| * Gets the default device scrypt parameters for key derivation time tuning. |
| * The parameters should lead to about one second derivation time for the |
| * given device. |
| */ |
| static void get_device_scrypt_params(struct crypt_mnt_ftr *ftr) { |
| const int default_params[] = SCRYPT_DEFAULTS; |
| int params[] = SCRYPT_DEFAULTS; |
| char paramstr[PROPERTY_VALUE_MAX]; |
| char *token; |
| char *saveptr; |
| int i; |
| |
| property_get(SCRYPT_PROP, paramstr, ""); |
| if (paramstr[0] != '\0') { |
| /* |
| * The token we're looking for should be three integers separated by |
| * colons (e.g., "12:8:1"). Scan the property to make sure it matches. |
| */ |
| for (i = 0, token = strtok_r(paramstr, ":", &saveptr); |
| token != NULL && i < 3; |
| i++, token = strtok_r(NULL, ":", &saveptr)) { |
| char *endptr; |
| params[i] = strtol(token, &endptr, 10); |
| |
| /* |
| * Check that there was a valid number and it's 8-bit. If not, |
| * break out and the end check will take the default values. |
| */ |
| if ((*token == '\0') || (*endptr != '\0') || params[i] < 0 || params[i] > 255) { |
| break; |
| } |
| } |
| |
| /* |
| * If there were not enough tokens or a token was malformed (not an |
| * integer), it will end up here and the default parameters can be |
| * taken. |
| */ |
| if ((i != 3) || (token != NULL)) { |
| SLOGW("bad scrypt parameters '%s' should be like '12:8:1'; using defaults", paramstr); |
| memcpy(params, default_params, sizeof(params)); |
| } |
| } |
| |
| ftr->N_factor = params[0]; |
| ftr->r_factor = params[1]; |
| ftr->p_factor = params[2]; |
| } |
| |
| static unsigned int get_fs_size(char *dev) |
| { |
| int fd, block_size; |
| struct ext4_super_block sb; |
| off64_t len; |
| |
| if ((fd = open(dev, O_RDONLY|O_CLOEXEC)) < 0) { |
| SLOGE("Cannot open device to get filesystem size "); |
| return 0; |
| } |
| |
| if (lseek64(fd, 1024, SEEK_SET) < 0) { |
| SLOGE("Cannot seek to superblock"); |
| return 0; |
| } |
| |
| if (read(fd, &sb, sizeof(sb)) != sizeof(sb)) { |
| SLOGE("Cannot read superblock"); |
| return 0; |
| } |
| |
| close(fd); |
| |
| if (le32_to_cpu(sb.s_magic) != EXT4_SUPER_MAGIC) { |
| SLOGE("Not a valid ext4 superblock"); |
| return 0; |
| } |
| block_size = 1024 << sb.s_log_block_size; |
| /* compute length in bytes */ |
| len = ( ((off64_t)sb.s_blocks_count_hi << 32) + sb.s_blocks_count_lo) * block_size; |
| |
| /* return length in sectors */ |
| return (unsigned int) (len / 512); |
| } |
| |
| static int get_crypt_ftr_info(char **metadata_fname, off64_t *off) |
| { |
| static int cached_data = 0; |
| static off64_t cached_off = 0; |
| static char cached_metadata_fname[PROPERTY_VALUE_MAX] = ""; |
| int fd; |
| char key_loc[PROPERTY_VALUE_MAX]; |
| char real_blkdev[PROPERTY_VALUE_MAX]; |
| int rc = -1; |
| |
| if (!cached_data) { |
| fs_mgr_get_crypt_info(fstab, key_loc, real_blkdev, sizeof(key_loc)); |
| |
| if (!strcmp(key_loc, KEY_IN_FOOTER)) { |
| if ( (fd = open(real_blkdev, O_RDWR|O_CLOEXEC)) < 0) { |
| SLOGE("Cannot open real block device %s\n", real_blkdev); |
| return -1; |
| } |
| |
| unsigned long nr_sec = 0; |
| get_blkdev_size(fd, &nr_sec); |
| if (nr_sec != 0) { |
| /* If it's an encrypted Android partition, the last 16 Kbytes contain the |
| * encryption info footer and key, and plenty of bytes to spare for future |
| * growth. |
| */ |
| strlcpy(cached_metadata_fname, real_blkdev, sizeof(cached_metadata_fname)); |
| cached_off = ((off64_t)nr_sec * 512) - CRYPT_FOOTER_OFFSET; |
| cached_data = 1; |
| } else { |
| SLOGE("Cannot get size of block device %s\n", real_blkdev); |
| } |
| close(fd); |
| } else { |
| strlcpy(cached_metadata_fname, key_loc, sizeof(cached_metadata_fname)); |
| cached_off = 0; |
| cached_data = 1; |
| } |
| } |
| |
| if (cached_data) { |
| if (metadata_fname) { |
| *metadata_fname = cached_metadata_fname; |
| } |
| if (off) { |
| *off = cached_off; |
| } |
| rc = 0; |
| } |
| |
| return rc; |
| } |
| |
| /* key or salt can be NULL, in which case just skip writing that value. Useful to |
| * update the failed mount count but not change the key. |
| */ |
| static int put_crypt_ftr_and_key(struct crypt_mnt_ftr *crypt_ftr) |
| { |
| int fd; |
| unsigned int cnt; |
| /* starting_off is set to the SEEK_SET offset |
| * where the crypto structure starts |
| */ |
| off64_t starting_off; |
| int rc = -1; |
| char *fname = NULL; |
| struct stat statbuf; |
| |
| if (get_crypt_ftr_info(&fname, &starting_off)) { |
| SLOGE("Unable to get crypt_ftr_info\n"); |
| return -1; |
| } |
| if (fname[0] != '/') { |
| SLOGE("Unexpected value for crypto key location\n"); |
| return -1; |
| } |
| if ( (fd = open(fname, O_RDWR | O_CREAT|O_CLOEXEC, 0600)) < 0) { |
| SLOGE("Cannot open footer file %s for put\n", fname); |
| return -1; |
| } |
| |
| /* Seek to the start of the crypt footer */ |
| if (lseek64(fd, starting_off, SEEK_SET) == -1) { |
| SLOGE("Cannot seek to real block device footer\n"); |
| goto errout; |
| } |
| |
| if ((cnt = write(fd, crypt_ftr, sizeof(struct crypt_mnt_ftr))) != sizeof(struct crypt_mnt_ftr)) { |
| SLOGE("Cannot write real block device footer\n"); |
| goto errout; |
| } |
| |
| fstat(fd, &statbuf); |
| /* If the keys are kept on a raw block device, do not try to truncate it. */ |
| if (S_ISREG(statbuf.st_mode)) { |
| if (ftruncate(fd, 0x4000)) { |
| SLOGE("Cannot set footer file size\n"); |
| goto errout; |
| } |
| } |
| |
| /* Success! */ |
| rc = 0; |
| |
| errout: |
| close(fd); |
| return rc; |
| |
| } |
| |
| static inline int unix_read(int fd, void* buff, int len) |
| { |
| return TEMP_FAILURE_RETRY(read(fd, buff, len)); |
| } |
| |
| static inline int unix_write(int fd, const void* buff, int len) |
| { |
| return TEMP_FAILURE_RETRY(write(fd, buff, len)); |
| } |
| |
| static void init_empty_persist_data(struct crypt_persist_data *pdata, int len) |
| { |
| memset(pdata, 0, len); |
| pdata->persist_magic = PERSIST_DATA_MAGIC; |
| pdata->persist_valid_entries = 0; |
| } |
| |
| /* A routine to update the passed in crypt_ftr to the lastest version. |
| * fd is open read/write on the device that holds the crypto footer and persistent |
| * data, crypt_ftr is a pointer to the struct to be updated, and offset is the |
| * absolute offset to the start of the crypt_mnt_ftr on the passed in fd. |
| */ |
| static void upgrade_crypt_ftr(int fd, struct crypt_mnt_ftr *crypt_ftr, off64_t offset) |
| { |
| int orig_major = crypt_ftr->major_version; |
| int orig_minor = crypt_ftr->minor_version; |
| |
| if ((crypt_ftr->major_version == 1) && (crypt_ftr->minor_version == 0)) { |
| struct crypt_persist_data *pdata; |
| off64_t pdata_offset = offset + CRYPT_FOOTER_TO_PERSIST_OFFSET; |
| |
| SLOGW("upgrading crypto footer to 1.1"); |
| |
| pdata = malloc(CRYPT_PERSIST_DATA_SIZE); |
| if (pdata == NULL) { |
| SLOGE("Cannot allocate persisent data\n"); |
| return; |
| } |
| memset(pdata, 0, CRYPT_PERSIST_DATA_SIZE); |
| |
| /* Need to initialize the persistent data area */ |
| if (lseek64(fd, pdata_offset, SEEK_SET) == -1) { |
| SLOGE("Cannot seek to persisent data offset\n"); |
| free(pdata); |
| return; |
| } |
| /* Write all zeros to the first copy, making it invalid */ |
| unix_write(fd, pdata, CRYPT_PERSIST_DATA_SIZE); |
| |
| /* Write a valid but empty structure to the second copy */ |
| init_empty_persist_data(pdata, CRYPT_PERSIST_DATA_SIZE); |
| unix_write(fd, pdata, CRYPT_PERSIST_DATA_SIZE); |
| |
| /* Update the footer */ |
| crypt_ftr->persist_data_size = CRYPT_PERSIST_DATA_SIZE; |
| crypt_ftr->persist_data_offset[0] = pdata_offset; |
| crypt_ftr->persist_data_offset[1] = pdata_offset + CRYPT_PERSIST_DATA_SIZE; |
| crypt_ftr->minor_version = 1; |
| free(pdata); |
| } |
| |
| if ((crypt_ftr->major_version == 1) && (crypt_ftr->minor_version == 1)) { |
| SLOGW("upgrading crypto footer to 1.2"); |
| /* But keep the old kdf_type. |
| * It will get updated later to KDF_SCRYPT after the password has been verified. |
| */ |
| crypt_ftr->kdf_type = KDF_PBKDF2; |
| get_device_scrypt_params(crypt_ftr); |
| crypt_ftr->minor_version = 2; |
| } |
| |
| if ((crypt_ftr->major_version == 1) && (crypt_ftr->minor_version == 2)) { |
| SLOGW("upgrading crypto footer to 1.3"); |
| crypt_ftr->crypt_type = CRYPT_TYPE_PASSWORD; |
| crypt_ftr->minor_version = 3; |
| } |
| |
| if ((orig_major != crypt_ftr->major_version) || (orig_minor != crypt_ftr->minor_version)) { |
| if (lseek64(fd, offset, SEEK_SET) == -1) { |
| SLOGE("Cannot seek to crypt footer\n"); |
| return; |
| } |
| unix_write(fd, crypt_ftr, sizeof(struct crypt_mnt_ftr)); |
| } |
| } |
| |
| |
| static int get_crypt_ftr_and_key(struct crypt_mnt_ftr *crypt_ftr) |
| { |
| int fd; |
| unsigned int cnt; |
| off64_t starting_off; |
| int rc = -1; |
| char *fname = NULL; |
| struct stat statbuf; |
| |
| if (get_crypt_ftr_info(&fname, &starting_off)) { |
| SLOGE("Unable to get crypt_ftr_info\n"); |
| return -1; |
| } |
| if (fname[0] != '/') { |
| SLOGE("Unexpected value for crypto key location\n"); |
| return -1; |
| } |
| if ( (fd = open(fname, O_RDWR|O_CLOEXEC)) < 0) { |
| SLOGE("Cannot open footer file %s for get\n", fname); |
| return -1; |
| } |
| |
| /* Make sure it's 16 Kbytes in length */ |
| fstat(fd, &statbuf); |
| if (S_ISREG(statbuf.st_mode) && (statbuf.st_size != 0x4000)) { |
| SLOGE("footer file %s is not the expected size!\n", fname); |
| goto errout; |
| } |
| |
| /* Seek to the start of the crypt footer */ |
| if (lseek64(fd, starting_off, SEEK_SET) == -1) { |
| SLOGE("Cannot seek to real block device footer\n"); |
| goto errout; |
| } |
| |
| if ( (cnt = read(fd, crypt_ftr, sizeof(struct crypt_mnt_ftr))) != sizeof(struct crypt_mnt_ftr)) { |
| SLOGE("Cannot read real block device footer\n"); |
| goto errout; |
| } |
| |
| if (crypt_ftr->magic != CRYPT_MNT_MAGIC) { |
| SLOGE("Bad magic for real block device %s\n", fname); |
| goto errout; |
| } |
| |
| if (crypt_ftr->major_version != CURRENT_MAJOR_VERSION) { |
| SLOGE("Cannot understand major version %d real block device footer; expected %d\n", |
| crypt_ftr->major_version, CURRENT_MAJOR_VERSION); |
| goto errout; |
| } |
| |
| if (crypt_ftr->minor_version > CURRENT_MINOR_VERSION) { |
| SLOGW("Warning: crypto footer minor version %d, expected <= %d, continuing...\n", |
| crypt_ftr->minor_version, CURRENT_MINOR_VERSION); |
| } |
| |
| /* If this is a verion 1.0 crypt_ftr, make it a 1.1 crypt footer, and update the |
| * copy on disk before returning. |
| */ |
| if (crypt_ftr->minor_version < CURRENT_MINOR_VERSION) { |
| upgrade_crypt_ftr(fd, crypt_ftr, starting_off); |
| } |
| |
| /* Success! */ |
| rc = 0; |
| |
| errout: |
| close(fd); |
| return rc; |
| } |
| |
| static int validate_persistent_data_storage(struct crypt_mnt_ftr *crypt_ftr) |
| { |
| if (crypt_ftr->persist_data_offset[0] + crypt_ftr->persist_data_size > |
| crypt_ftr->persist_data_offset[1]) { |
| SLOGE("Crypt_ftr persist data regions overlap"); |
| return -1; |
| } |
| |
| if (crypt_ftr->persist_data_offset[0] >= crypt_ftr->persist_data_offset[1]) { |
| SLOGE("Crypt_ftr persist data region 0 starts after region 1"); |
| return -1; |
| } |
| |
| if (((crypt_ftr->persist_data_offset[1] + crypt_ftr->persist_data_size) - |
| (crypt_ftr->persist_data_offset[0] - CRYPT_FOOTER_TO_PERSIST_OFFSET)) > |
| CRYPT_FOOTER_OFFSET) { |
| SLOGE("Persistent data extends past crypto footer"); |
| return -1; |
| } |
| |
| return 0; |
| } |
| |
| static int load_persistent_data(void) |
| { |
| struct crypt_mnt_ftr crypt_ftr; |
| struct crypt_persist_data *pdata = NULL; |
| char encrypted_state[PROPERTY_VALUE_MAX]; |
| char *fname; |
| int found = 0; |
| int fd; |
| int ret; |
| int i; |
| |
| if (persist_data) { |
| /* Nothing to do, we've already loaded or initialized it */ |
| return 0; |
| } |
| |
| |
| /* If not encrypted, just allocate an empty table and initialize it */ |
| property_get("ro.crypto.state", encrypted_state, ""); |
| if (strcmp(encrypted_state, "encrypted") ) { |
| pdata = malloc(CRYPT_PERSIST_DATA_SIZE); |
| if (pdata) { |
| init_empty_persist_data(pdata, CRYPT_PERSIST_DATA_SIZE); |
| persist_data = pdata; |
| return 0; |
| } |
| return -1; |
| } |
| |
| if(get_crypt_ftr_and_key(&crypt_ftr)) { |
| return -1; |
| } |
| |
| if ((crypt_ftr.major_version < 1) |
| || (crypt_ftr.major_version == 1 && crypt_ftr.minor_version < 1)) { |
| SLOGE("Crypt_ftr version doesn't support persistent data"); |
| return -1; |
| } |
| |
| if (get_crypt_ftr_info(&fname, NULL)) { |
| return -1; |
| } |
| |
| ret = validate_persistent_data_storage(&crypt_ftr); |
| if (ret) { |
| return -1; |
| } |
| |
| fd = open(fname, O_RDONLY|O_CLOEXEC); |
| if (fd < 0) { |
| SLOGE("Cannot open %s metadata file", fname); |
| return -1; |
| } |
| |
| if (persist_data == NULL) { |
| pdata = malloc(crypt_ftr.persist_data_size); |
| if (pdata == NULL) { |
| SLOGE("Cannot allocate memory for persistent data"); |
| goto err; |
| } |
| } |
| |
| for (i = 0; i < 2; i++) { |
| if (lseek64(fd, crypt_ftr.persist_data_offset[i], SEEK_SET) < 0) { |
| SLOGE("Cannot seek to read persistent data on %s", fname); |
| goto err2; |
| } |
| if (unix_read(fd, pdata, crypt_ftr.persist_data_size) < 0){ |
| SLOGE("Error reading persistent data on iteration %d", i); |
| goto err2; |
| } |
| if (pdata->persist_magic == PERSIST_DATA_MAGIC) { |
| found = 1; |
| break; |
| } |
| } |
| |
| if (!found) { |
| SLOGI("Could not find valid persistent data, creating"); |
| init_empty_persist_data(pdata, crypt_ftr.persist_data_size); |
| } |
| |
| /* Success */ |
| persist_data = pdata; |
| close(fd); |
| return 0; |
| |
| err2: |
| free(pdata); |
| |
| err: |
| close(fd); |
| return -1; |
| } |
| |
| static int save_persistent_data(void) |
| { |
| struct crypt_mnt_ftr crypt_ftr; |
| struct crypt_persist_data *pdata; |
| char *fname; |
| off64_t write_offset; |
| off64_t erase_offset; |
| int fd; |
| int ret; |
| |
| if (persist_data == NULL) { |
| SLOGE("No persistent data to save"); |
| return -1; |
| } |
| |
| if(get_crypt_ftr_and_key(&crypt_ftr)) { |
| return -1; |
| } |
| |
| if ((crypt_ftr.major_version < 1) |
| || (crypt_ftr.major_version == 1 && crypt_ftr.minor_version < 1)) { |
| SLOGE("Crypt_ftr version doesn't support persistent data"); |
| return -1; |
| } |
| |
| ret = validate_persistent_data_storage(&crypt_ftr); |
| if (ret) { |
| return -1; |
| } |
| |
| if (get_crypt_ftr_info(&fname, NULL)) { |
| return -1; |
| } |
| |
| fd = open(fname, O_RDWR|O_CLOEXEC); |
| if (fd < 0) { |
| SLOGE("Cannot open %s metadata file", fname); |
| return -1; |
| } |
| |
| pdata = malloc(crypt_ftr.persist_data_size); |
| if (pdata == NULL) { |
| SLOGE("Cannot allocate persistant data"); |
| goto err; |
| } |
| |
| if (lseek64(fd, crypt_ftr.persist_data_offset[0], SEEK_SET) < 0) { |
| SLOGE("Cannot seek to read persistent data on %s", fname); |
| goto err2; |
| } |
| |
| if (unix_read(fd, pdata, crypt_ftr.persist_data_size) < 0) { |
| SLOGE("Error reading persistent data before save"); |
| goto err2; |
| } |
| |
| if (pdata->persist_magic == PERSIST_DATA_MAGIC) { |
| /* The first copy is the curent valid copy, so write to |
| * the second copy and erase this one */ |
| write_offset = crypt_ftr.persist_data_offset[1]; |
| erase_offset = crypt_ftr.persist_data_offset[0]; |
| } else { |
| /* The second copy must be the valid copy, so write to |
| * the first copy, and erase the second */ |
| write_offset = crypt_ftr.persist_data_offset[0]; |
| erase_offset = crypt_ftr.persist_data_offset[1]; |
| } |
| |
| /* Write the new copy first, if successful, then erase the old copy */ |
| if (lseek64(fd, write_offset, SEEK_SET) < 0) { |
| SLOGE("Cannot seek to write persistent data"); |
| goto err2; |
| } |
| if (unix_write(fd, persist_data, crypt_ftr.persist_data_size) == |
| (int) crypt_ftr.persist_data_size) { |
| if (lseek64(fd, erase_offset, SEEK_SET) < 0) { |
| SLOGE("Cannot seek to erase previous persistent data"); |
| goto err2; |
| } |
| fsync(fd); |
| memset(pdata, 0, crypt_ftr.persist_data_size); |
| if (unix_write(fd, pdata, crypt_ftr.persist_data_size) != |
| (int) crypt_ftr.persist_data_size) { |
| SLOGE("Cannot write to erase previous persistent data"); |
| goto err2; |
| } |
| fsync(fd); |
| } else { |
| SLOGE("Cannot write to save persistent data"); |
| goto err2; |
| } |
| |
| /* Success */ |
| free(pdata); |
| close(fd); |
| return 0; |
| |
| err2: |
| free(pdata); |
| err: |
| close(fd); |
| return -1; |
| } |
| |
| static int hexdigit (char c) |
| { |
| if (c >= '0' && c <= '9') return c - '0'; |
| c = tolower(c); |
| if (c >= 'a' && c <= 'f') return c - 'a' + 10; |
| return -1; |
| } |
| |
| static unsigned char* convert_hex_ascii_to_key(const char* master_key_ascii, |
| unsigned int* out_keysize) |
| { |
| unsigned int i; |
| *out_keysize = 0; |
| |
| size_t size = strlen (master_key_ascii); |
| if (size % 2) { |
| SLOGE("Trying to convert ascii string of odd length"); |
| return NULL; |
| } |
| |
| unsigned char* master_key = (unsigned char*) malloc(size / 2); |
| if (master_key == 0) { |
| SLOGE("Cannot allocate"); |
| return NULL; |
| } |
| |
| for (i = 0; i < size; i += 2) { |
| int high_nibble = hexdigit (master_key_ascii[i]); |
| int low_nibble = hexdigit (master_key_ascii[i + 1]); |
| |
| if(high_nibble < 0 || low_nibble < 0) { |
| SLOGE("Invalid hex string"); |
| free (master_key); |
| return NULL; |
| } |
| |
| master_key[*out_keysize] = high_nibble * 16 + low_nibble; |
| (*out_keysize)++; |
| } |
| |
| return master_key; |
| } |
| |
| /* Convert a binary key of specified length into an ascii hex string equivalent, |
| * without the leading 0x and with null termination |
| */ |
| static void convert_key_to_hex_ascii(const unsigned char *master_key, |
| unsigned int keysize, char *master_key_ascii) { |
| unsigned int i, a; |
| unsigned char nibble; |
| |
| for (i=0, a=0; i<keysize; i++, a+=2) { |
| /* For each byte, write out two ascii hex digits */ |
| nibble = (master_key[i] >> 4) & 0xf; |
| master_key_ascii[a] = nibble + (nibble > 9 ? 0x37 : 0x30); |
| |
| nibble = master_key[i] & 0xf; |
| master_key_ascii[a+1] = nibble + (nibble > 9 ? 0x37 : 0x30); |
| } |
| |
| /* Add the null termination */ |
| master_key_ascii[a] = '\0'; |
| |
| } |
| |
| static int load_crypto_mapping_table(struct crypt_mnt_ftr *crypt_ftr, |
| const unsigned char *master_key, const char *real_blk_name, |
| const char *name, int fd, const char *extra_params) { |
| _Alignas(struct dm_ioctl) char buffer[DM_CRYPT_BUF_SIZE]; |
| struct dm_ioctl *io; |
| struct dm_target_spec *tgt; |
| char *crypt_params; |
| char master_key_ascii[129]; /* Large enough to hold 512 bit key and null */ |
| int i; |
| |
| io = (struct dm_ioctl *) buffer; |
| |
| /* Load the mapping table for this device */ |
| tgt = (struct dm_target_spec *) &buffer[sizeof(struct dm_ioctl)]; |
| |
| ioctl_init(io, DM_CRYPT_BUF_SIZE, name, 0); |
| io->target_count = 1; |
| tgt->status = 0; |
| tgt->sector_start = 0; |
| tgt->length = crypt_ftr->fs_size; |
| #ifdef CONFIG_HW_DISK_ENCRYPTION |
| if (!strcmp((char *)crypt_ftr->crypto_type_name, "aes-xts")) { |
| strlcpy(tgt->target_type, "req-crypt", DM_MAX_TYPE_NAME); |
| } |
| else { |
| strlcpy(tgt->target_type, "crypt", DM_MAX_TYPE_NAME); |
| } |
| #else |
| strlcpy(tgt->target_type, "crypt", DM_MAX_TYPE_NAME); |
| #endif |
| |
| crypt_params = buffer + sizeof(struct dm_ioctl) + sizeof(struct dm_target_spec); |
| convert_key_to_hex_ascii(master_key, crypt_ftr->keysize, master_key_ascii); |
| sprintf(crypt_params, "%s %s 0 %s 0 %s", crypt_ftr->crypto_type_name, |
| master_key_ascii, real_blk_name, extra_params); |
| crypt_params += strlen(crypt_params) + 1; |
| crypt_params = (char *) (((unsigned long)crypt_params + 7) & ~8); /* Align to an 8 byte boundary */ |
| tgt->next = crypt_params - buffer; |
| |
| for (i = 0; i < TABLE_LOAD_RETRIES; i++) { |
| if (! ioctl(fd, DM_TABLE_LOAD, io)) { |
| break; |
| } |
| usleep(500000); |
| } |
| |
| if (i == TABLE_LOAD_RETRIES) { |
| /* We failed to load the table, return an error */ |
| return -1; |
| } else { |
| return i + 1; |
| } |
| } |
| |
| |
| static int get_dm_crypt_version(int fd, const char *name, int *version) |
| { |
| char buffer[DM_CRYPT_BUF_SIZE]; |
| struct dm_ioctl *io; |
| struct dm_target_versions *v; |
| |
| io = (struct dm_ioctl *) buffer; |
| |
| ioctl_init(io, DM_CRYPT_BUF_SIZE, name, 0); |
| |
| if (ioctl(fd, DM_LIST_VERSIONS, io)) { |
| return -1; |
| } |
| |
| /* Iterate over the returned versions, looking for name of "crypt". |
| * When found, get and return the version. |
| */ |
| v = (struct dm_target_versions *) &buffer[sizeof(struct dm_ioctl)]; |
| while (v->next) { |
| #ifdef CONFIG_HW_DISK_ENCRYPTION |
| if (! strcmp(v->name, "crypt") || ! strcmp(v->name, "req-crypt")) { |
| #else |
| if (! strcmp(v->name, "crypt")) { |
| #endif |
| /* We found the crypt driver, return the version, and get out */ |
| version[0] = v->version[0]; |
| version[1] = v->version[1]; |
| version[2] = v->version[2]; |
| return 0; |
| } |
| v = (struct dm_target_versions *)(((char *)v) + v->next); |
| } |
| |
| return -1; |
| } |
| |
| static int create_crypto_blk_dev(struct crypt_mnt_ftr *crypt_ftr, |
| const unsigned char *master_key, const char *real_blk_name, |
| char *crypto_blk_name, const char *name) { |
| char buffer[DM_CRYPT_BUF_SIZE]; |
| struct dm_ioctl *io; |
| unsigned int minor; |
| int fd=0; |
| int retval = -1; |
| int version[3]; |
| char *extra_params; |
| int load_count; |
| |
| if ((fd = open("/dev/device-mapper", O_RDWR|O_CLOEXEC)) < 0 ) { |
| SLOGE("Cannot open device-mapper\n"); |
| goto errout; |
| } |
| |
| io = (struct dm_ioctl *) buffer; |
| |
| ioctl_init(io, DM_CRYPT_BUF_SIZE, name, 0); |
| if (ioctl(fd, DM_DEV_CREATE, io)) { |
| SLOGE("Cannot create dm-crypt device\n"); |
| goto errout; |
| } |
| |
| /* Get the device status, in particular, the name of it's device file */ |
| ioctl_init(io, DM_CRYPT_BUF_SIZE, name, 0); |
| if (ioctl(fd, DM_DEV_STATUS, io)) { |
| SLOGE("Cannot retrieve dm-crypt device status\n"); |
| goto errout; |
| } |
| minor = (io->dev & 0xff) | ((io->dev >> 12) & 0xfff00); |
| snprintf(crypto_blk_name, MAXPATHLEN, "/dev/block/dm-%u", minor); |
| |
| extra_params = ""; |
| if (! get_dm_crypt_version(fd, name, version)) { |
| /* Support for allow_discards was added in version 1.11.0 */ |
| if ((version[0] >= 2) || |
| ((version[0] == 1) && (version[1] >= 11))) { |
| extra_params = "1 allow_discards"; |
| SLOGI("Enabling support for allow_discards in dmcrypt.\n"); |
| } |
| } |
| |
| load_count = load_crypto_mapping_table(crypt_ftr, master_key, real_blk_name, name, |
| fd, extra_params); |
| if (load_count < 0) { |
| SLOGE("Cannot load dm-crypt mapping table.\n"); |
| goto errout; |
| } else if (load_count > 1) { |
| SLOGI("Took %d tries to load dmcrypt table.\n", load_count); |
| } |
| |
| /* Resume this device to activate it */ |
| ioctl_init(io, DM_CRYPT_BUF_SIZE, name, 0); |
| |
| if (ioctl(fd, DM_DEV_SUSPEND, io)) { |
| SLOGE("Cannot resume the dm-crypt device\n"); |
| goto errout; |
| } |
| |
| /* We made it here with no errors. Woot! */ |
| retval = 0; |
| |
| errout: |
| close(fd); /* If fd is <0 from a failed open call, it's safe to just ignore the close error */ |
| |
| return retval; |
| } |
| |
| static int delete_crypto_blk_dev(char *name) |
| { |
| int fd; |
| char buffer[DM_CRYPT_BUF_SIZE]; |
| struct dm_ioctl *io; |
| int retval = -1; |
| |
| if ((fd = open("/dev/device-mapper", O_RDWR|O_CLOEXEC)) < 0 ) { |
| SLOGE("Cannot open device-mapper\n"); |
| goto errout; |
| } |
| |
| io = (struct dm_ioctl *) buffer; |
| |
| ioctl_init(io, DM_CRYPT_BUF_SIZE, name, 0); |
| if (ioctl(fd, DM_DEV_REMOVE, io)) { |
| SLOGE("Cannot remove dm-crypt device\n"); |
| goto errout; |
| } |
| |
| /* We made it here with no errors. Woot! */ |
| retval = 0; |
| |
| errout: |
| close(fd); /* If fd is <0 from a failed open call, it's safe to just ignore the close error */ |
| |
| return retval; |
| |
| } |
| |
| static int pbkdf2(const char *passwd, const unsigned char *salt, |
| unsigned char *ikey, void *params UNUSED) |
| { |
| SLOGI("Using pbkdf2 for cryptfs KDF"); |
| |
| /* Turn the password into a key and IV that can decrypt the master key */ |
| unsigned int keysize; |
| char* master_key = (char*)convert_hex_ascii_to_key(passwd, &keysize); |
| if (!master_key) return -1; |
| PKCS5_PBKDF2_HMAC_SHA1(master_key, keysize, salt, SALT_LEN, |
| HASH_COUNT, KEY_LEN_BYTES+IV_LEN_BYTES, ikey); |
| |
| memset(master_key, 0, keysize); |
| free (master_key); |
| return 0; |
| } |
| |
| static int scrypt(const char *passwd, const unsigned char *salt, |
| unsigned char *ikey, void *params) |
| { |
| SLOGI("Using scrypt for cryptfs KDF"); |
| |
| struct crypt_mnt_ftr *ftr = (struct crypt_mnt_ftr *) params; |
| |
| int N = 1 << ftr->N_factor; |
| int r = 1 << ftr->r_factor; |
| int p = 1 << ftr->p_factor; |
| |
| /* Turn the password into a key and IV that can decrypt the master key */ |
| unsigned int keysize; |
| unsigned char* master_key = convert_hex_ascii_to_key(passwd, &keysize); |
| if (!master_key) return -1; |
| crypto_scrypt(master_key, keysize, salt, SALT_LEN, N, r, p, ikey, |
| KEY_LEN_BYTES + IV_LEN_BYTES); |
| |
| memset(master_key, 0, keysize); |
| free (master_key); |
| return 0; |
| } |
| |
| static int scrypt_keymaster(const char *passwd, const unsigned char *salt, |
| unsigned char *ikey, void *params) |
| { |
| SLOGI("Using scrypt with keymaster for cryptfs KDF"); |
| |
| int rc; |
| unsigned int key_size; |
| size_t signature_size; |
| unsigned char* signature; |
| struct crypt_mnt_ftr *ftr = (struct crypt_mnt_ftr *) params; |
| |
| int N = 1 << ftr->N_factor; |
| int r = 1 << ftr->r_factor; |
| int p = 1 << ftr->p_factor; |
| |
| unsigned char* master_key = convert_hex_ascii_to_key(passwd, &key_size); |
| if (!master_key) { |
| SLOGE("Failed to convert passwd from hex"); |
| return -1; |
| } |
| |
| rc = crypto_scrypt(master_key, key_size, salt, SALT_LEN, |
| N, r, p, ikey, KEY_LEN_BYTES + IV_LEN_BYTES); |
| memset(master_key, 0, key_size); |
| free(master_key); |
| |
| if (rc) { |
| SLOGE("scrypt failed"); |
| return -1; |
| } |
| |
| if (keymaster_sign_object(ftr, ikey, KEY_LEN_BYTES + IV_LEN_BYTES, |
| &signature, &signature_size)) { |
| SLOGE("Signing failed"); |
| return -1; |
| } |
| |
| rc = crypto_scrypt(signature, signature_size, salt, SALT_LEN, |
| N, r, p, ikey, KEY_LEN_BYTES + IV_LEN_BYTES); |
| free(signature); |
| |
| if (rc) { |
| SLOGE("scrypt failed"); |
| return -1; |
| } |
| |
| return 0; |
| } |
| |
| static int encrypt_master_key(const char *passwd, const unsigned char *salt, |
| const unsigned char *decrypted_master_key, |
| unsigned char *encrypted_master_key, |
| struct crypt_mnt_ftr *crypt_ftr) |
| { |
| unsigned char ikey[32+32] = { 0 }; /* Big enough to hold a 256 bit key and 256 bit IV */ |
| EVP_CIPHER_CTX e_ctx; |
| int encrypted_len, final_len; |
| int rc = 0; |
| |
| /* Turn the password into an intermediate key and IV that can decrypt the master key */ |
| get_device_scrypt_params(crypt_ftr); |
| |
| switch (crypt_ftr->kdf_type) { |
| case KDF_SCRYPT_KEYMASTER: |
| if (keymaster_create_key(crypt_ftr)) { |
| SLOGE("keymaster_create_key failed"); |
| return -1; |
| } |
| |
| if (scrypt_keymaster(passwd, salt, ikey, crypt_ftr)) { |
| SLOGE("scrypt failed"); |
| return -1; |
| } |
| break; |
| |
| case KDF_SCRYPT: |
| if (scrypt(passwd, salt, ikey, crypt_ftr)) { |
| SLOGE("scrypt failed"); |
| return -1; |
| } |
| break; |
| |
| default: |
| SLOGE("Invalid kdf_type"); |
| return -1; |
| } |
| |
| /* Initialize the decryption engine */ |
| EVP_CIPHER_CTX_init(&e_ctx); |
| if (! EVP_EncryptInit_ex(&e_ctx, EVP_aes_128_cbc(), NULL, ikey, ikey+KEY_LEN_BYTES)) { |
| SLOGE("EVP_EncryptInit failed\n"); |
| return -1; |
| } |
| EVP_CIPHER_CTX_set_padding(&e_ctx, 0); /* Turn off padding as our data is block aligned */ |
| |
| /* Encrypt the master key */ |
| if (! EVP_EncryptUpdate(&e_ctx, encrypted_master_key, &encrypted_len, |
| decrypted_master_key, KEY_LEN_BYTES)) { |
| SLOGE("EVP_EncryptUpdate failed\n"); |
| return -1; |
| } |
| if (! EVP_EncryptFinal_ex(&e_ctx, encrypted_master_key + encrypted_len, &final_len)) { |
| SLOGE("EVP_EncryptFinal failed\n"); |
| return -1; |
| } |
| |
| if (encrypted_len + final_len != KEY_LEN_BYTES) { |
| SLOGE("EVP_Encryption length check failed with %d, %d bytes\n", encrypted_len, final_len); |
| return -1; |
| } |
| |
| /* Store the scrypt of the intermediate key, so we can validate if it's a |
| password error or mount error when things go wrong. |
| Note there's no need to check for errors, since if this is incorrect, we |
| simply won't wipe userdata, which is the correct default behavior |
| */ |
| int N = 1 << crypt_ftr->N_factor; |
| int r = 1 << crypt_ftr->r_factor; |
| int p = 1 << crypt_ftr->p_factor; |
| |
| rc = crypto_scrypt(ikey, KEY_LEN_BYTES, |
| crypt_ftr->salt, sizeof(crypt_ftr->salt), N, r, p, |
| crypt_ftr->scrypted_intermediate_key, |
| sizeof(crypt_ftr->scrypted_intermediate_key)); |
| |
| if (rc) { |
| SLOGE("encrypt_master_key: crypto_scrypt failed"); |
| } |
| |
| return 0; |
| } |
| |
| static int decrypt_master_key_aux(const char *passwd, unsigned char *salt, |
| unsigned char *encrypted_master_key, |
| unsigned char *decrypted_master_key, |
| kdf_func kdf, void *kdf_params, |
| unsigned char** intermediate_key, |
| size_t* intermediate_key_size) |
| { |
| unsigned char ikey[32+32] = { 0 }; /* Big enough to hold a 256 bit key and 256 bit IV */ |
| EVP_CIPHER_CTX d_ctx; |
| int decrypted_len, final_len; |
| |
| /* Turn the password into an intermediate key and IV that can decrypt the |
| master key */ |
| if (kdf(passwd, salt, ikey, kdf_params)) { |
| SLOGE("kdf failed"); |
| return -1; |
| } |
| |
| /* Initialize the decryption engine */ |
| EVP_CIPHER_CTX_init(&d_ctx); |
| if (! EVP_DecryptInit_ex(&d_ctx, EVP_aes_128_cbc(), NULL, ikey, ikey+KEY_LEN_BYTES)) { |
| return -1; |
| } |
| EVP_CIPHER_CTX_set_padding(&d_ctx, 0); /* Turn off padding as our data is block aligned */ |
| /* Decrypt the master key */ |
| if (! EVP_DecryptUpdate(&d_ctx, decrypted_master_key, &decrypted_len, |
| encrypted_master_key, KEY_LEN_BYTES)) { |
| return -1; |
| } |
| if (! EVP_DecryptFinal_ex(&d_ctx, decrypted_master_key + decrypted_len, &final_len)) { |
| return -1; |
| } |
| |
| if (decrypted_len + final_len != KEY_LEN_BYTES) { |
| return -1; |
| } |
| |
| /* Copy intermediate key if needed by params */ |
| if (intermediate_key && intermediate_key_size) { |
| *intermediate_key = (unsigned char*) malloc(KEY_LEN_BYTES); |
| if (intermediate_key) { |
| memcpy(*intermediate_key, ikey, KEY_LEN_BYTES); |
| *intermediate_key_size = KEY_LEN_BYTES; |
| } |
| } |
| |
| return 0; |
| } |
| |
| static void get_kdf_func(struct crypt_mnt_ftr *ftr, kdf_func *kdf, void** kdf_params) |
| { |
| if (ftr->kdf_type == KDF_SCRYPT_KEYMASTER) { |
| *kdf = scrypt_keymaster; |
| *kdf_params = ftr; |
| } else if (ftr->kdf_type == KDF_SCRYPT) { |
| *kdf = scrypt; |
| *kdf_params = ftr; |
| } else { |
| *kdf = pbkdf2; |
| *kdf_params = NULL; |
| } |
| } |
| |
| static int decrypt_master_key(const char *passwd, unsigned char *decrypted_master_key, |
| struct crypt_mnt_ftr *crypt_ftr, |
| unsigned char** intermediate_key, |
| size_t* intermediate_key_size) |
| { |
| kdf_func kdf; |
| void *kdf_params; |
| int ret; |
| |
| get_kdf_func(crypt_ftr, &kdf, &kdf_params); |
| ret = decrypt_master_key_aux(passwd, crypt_ftr->salt, crypt_ftr->master_key, |
| decrypted_master_key, kdf, kdf_params, |
| intermediate_key, intermediate_key_size); |
| if (ret != 0) { |
| SLOGW("failure decrypting master key"); |
| } |
| |
| return ret; |
| } |
| |
| static int create_encrypted_random_key(char *passwd, unsigned char *master_key, unsigned char *salt, |
| struct crypt_mnt_ftr *crypt_ftr) { |
| int fd; |
| unsigned char key_buf[KEY_LEN_BYTES]; |
| |
| /* Get some random bits for a key */ |
| fd = open("/dev/urandom", O_RDONLY|O_CLOEXEC); |
| read(fd, key_buf, sizeof(key_buf)); |
| read(fd, salt, SALT_LEN); |
| close(fd); |
| |
| /* Now encrypt it with the password */ |
| return encrypt_master_key(passwd, salt, key_buf, master_key, crypt_ftr); |
| } |
| |
| static int wait_and_unmount(char *mountpoint, bool kill) |
| { |
| int i, err, rc; |
| #define WAIT_UNMOUNT_COUNT 20 |
| |
| /* Now umount the tmpfs filesystem */ |
| for (i=0; i<WAIT_UNMOUNT_COUNT; i++) { |
| if (umount(mountpoint) == 0) { |
| break; |
| } |
| |
| if (errno == EINVAL) { |
| /* EINVAL is returned if the directory is not a mountpoint, |
| * i.e. there is no filesystem mounted there. So just get out. |
| */ |
| break; |
| } |
| |
| err = errno; |
| |
| /* If allowed, be increasingly aggressive before the last two retries */ |
| if (kill) { |
| if (i == (WAIT_UNMOUNT_COUNT - 3)) { |
| SLOGW("sending SIGHUP to processes with open files\n"); |
| vold_killProcessesWithOpenFiles(mountpoint, SIGTERM); |
| } else if (i == (WAIT_UNMOUNT_COUNT - 2)) { |
| SLOGW("sending SIGKILL to processes with open files\n"); |
| vold_killProcessesWithOpenFiles(mountpoint, SIGKILL); |
| } |
| } |
| |
| sleep(1); |
| } |
| |
| if (i < WAIT_UNMOUNT_COUNT) { |
| SLOGD("unmounting %s succeeded\n", mountpoint); |
| rc = 0; |
| } else { |
| vold_killProcessesWithOpenFiles(mountpoint, 0); |
| SLOGE("unmounting %s failed: %s\n", mountpoint, strerror(err)); |
| rc = -1; |
| } |
| |
| return rc; |
| } |
| |
| #define DATA_PREP_TIMEOUT 200 |
| static int prep_data_fs(void) |
| { |
| int i; |
| |
| /* Do the prep of the /data filesystem */ |
| property_set("vold.post_fs_data_done", "0"); |
| property_set("vold.decrypt", "trigger_post_fs_data"); |
| SLOGD("Just triggered post_fs_data\n"); |
| |
| /* Wait a max of 50 seconds, hopefully it takes much less */ |
| for (i=0; i<DATA_PREP_TIMEOUT; i++) { |
| char p[PROPERTY_VALUE_MAX]; |
| |
| property_get("vold.post_fs_data_done", p, "0"); |
| if (*p == '1') { |
| break; |
| } else { |
| usleep(250000); |
| } |
| } |
| if (i == DATA_PREP_TIMEOUT) { |
| /* Ugh, we failed to prep /data in time. Bail. */ |
| SLOGE("post_fs_data timed out!\n"); |
| return -1; |
| } else { |
| SLOGD("post_fs_data done\n"); |
| return 0; |
| } |
| } |
| |
| static void cryptfs_set_corrupt() |
| { |
| // Mark the footer as bad |
| struct crypt_mnt_ftr crypt_ftr; |
| if (get_crypt_ftr_and_key(&crypt_ftr)) { |
| SLOGE("Failed to get crypto footer - panic"); |
| return; |
| } |
| |
| crypt_ftr.flags |= CRYPT_DATA_CORRUPT; |
| if (put_crypt_ftr_and_key(&crypt_ftr)) { |
| SLOGE("Failed to set crypto footer - panic"); |
| return; |
| } |
| } |
| |
| static void cryptfs_trigger_restart_min_framework() |
| { |
| if (fs_mgr_do_tmpfs_mount(DATA_MNT_POINT)) { |
| SLOGE("Failed to mount tmpfs on data - panic"); |
| return; |
| } |
| |
| if (property_set("vold.decrypt", "trigger_post_fs_data")) { |
| SLOGE("Failed to trigger post fs data - panic"); |
| return; |
| } |
| |
| if (property_set("vold.decrypt", "trigger_restart_min_framework")) { |
| SLOGE("Failed to trigger restart min framework - panic"); |
| return; |
| } |
| } |
| |
| /* returns < 0 on failure */ |
| static int cryptfs_restart_internal(int restart_main) |
| { |
| char crypto_blkdev[MAXPATHLEN]; |
| int rc = -1; |
| static int restart_successful = 0; |
| |
| /* Validate that it's OK to call this routine */ |
| if (! master_key_saved) { |
| SLOGE("Encrypted filesystem not validated, aborting"); |
| return -1; |
| } |
| |
| if (restart_successful) { |
| SLOGE("System already restarted with encrypted disk, aborting"); |
| return -1; |
| } |
| |
| if (restart_main) { |
| /* Here is where we shut down the framework. The init scripts |
| * start all services in one of three classes: core, main or late_start. |
| * On boot, we start core and main. Now, we stop main, but not core, |
| * as core includes vold and a few other really important things that |
| * we need to keep running. Once main has stopped, we should be able |
| * to umount the tmpfs /data, then mount the encrypted /data. |
| * We then restart the class main, and also the class late_start. |
| * At the moment, I've only put a few things in late_start that I know |
| * are not needed to bring up the framework, and that also cause problems |
| * with unmounting the tmpfs /data, but I hope to add add more services |
| * to the late_start class as we optimize this to decrease the delay |
| * till the user is asked for the password to the filesystem. |
| */ |
| |
| /* The init files are setup to stop the class main when vold.decrypt is |
| * set to trigger_reset_main. |
| */ |
| property_set("vold.decrypt", "trigger_reset_main"); |
| SLOGD("Just asked init to shut down class main\n"); |
| |
| /* Ugh, shutting down the framework is not synchronous, so until it |
| * can be fixed, this horrible hack will wait a moment for it all to |
| * shut down before proceeding. Without it, some devices cannot |
| * restart the graphics services. |
| */ |
| sleep(2); |
| } |
| |
| /* Now that the framework is shutdown, we should be able to umount() |
| * the tmpfs filesystem, and mount the real one. |
| */ |
| |
| property_get("ro.crypto.fs_crypto_blkdev", crypto_blkdev, ""); |
| if (strlen(crypto_blkdev) == 0) { |
| SLOGE("fs_crypto_blkdev not set\n"); |
| return -1; |
| } |
| |
| if (! (rc = wait_and_unmount(DATA_MNT_POINT, true)) ) { |
| /* If ro.crypto.readonly is set to 1, mount the decrypted |
| * filesystem readonly. This is used when /data is mounted by |
| * recovery mode. |
| */ |
| char ro_prop[PROPERTY_VALUE_MAX]; |
| property_get("ro.crypto.readonly", ro_prop, ""); |
| if (strlen(ro_prop) > 0 && atoi(ro_prop)) { |
| struct fstab_rec* rec = fs_mgr_get_entry_for_mount_point(fstab, DATA_MNT_POINT); |
| rec->flags |= MS_RDONLY; |
| } |
| |
| /* If that succeeded, then mount the decrypted filesystem */ |
| int retries = RETRY_MOUNT_ATTEMPTS; |
| int mount_rc; |
| while ((mount_rc = fs_mgr_do_mount(fstab, DATA_MNT_POINT, |
| crypto_blkdev, 0)) |
| != 0) { |
| if (mount_rc == FS_MGR_DOMNT_BUSY) { |
| /* TODO: invoke something similar to |
| Process::killProcessWithOpenFiles(DATA_MNT_POINT, |
| retries > RETRY_MOUNT_ATTEMPT/2 ? 1 : 2 ) */ |
| SLOGI("Failed to mount %s because it is busy - waiting", |
| crypto_blkdev); |
| if (--retries) { |
| sleep(RETRY_MOUNT_DELAY_SECONDS); |
| } else { |
| /* Let's hope that a reboot clears away whatever is keeping |
| the mount busy */ |
| cryptfs_reboot(reboot); |
| } |
| } else { |
| SLOGE("Failed to mount decrypted data"); |
| cryptfs_set_corrupt(); |
| cryptfs_trigger_restart_min_framework(); |
| SLOGI("Started framework to offer wipe"); |
| return -1; |
| } |
| } |
| |
| property_set("vold.decrypt", "trigger_load_persist_props"); |
| /* Create necessary paths on /data */ |
| if (prep_data_fs()) { |
| return -1; |
| } |
| |
| /* startup service classes main and late_start */ |
| property_set("vold.decrypt", "trigger_restart_framework"); |
| SLOGD("Just triggered restart_framework\n"); |
| |
| /* Give it a few moments to get started */ |
| sleep(1); |
| } |
| |
| if (rc == 0) { |
| restart_successful = 1; |
| } |
| |
| return rc; |
| } |
| |
| int cryptfs_restart(void) |
| { |
| SLOGI("cryptfs_restart"); |
| if (e4crypt_crypto_complete(DATA_MNT_POINT) == 0) { |
| struct fstab_rec* rec; |
| int rc; |
| |
| if (e4crypt_restart(DATA_MNT_POINT)) { |
| SLOGE("Can't unmount e4crypt temp volume\n"); |
| return -1; |
| } |
| |
| rec = fs_mgr_get_entry_for_mount_point(fstab, DATA_MNT_POINT); |
| if (!rec) { |
| SLOGE("Can't get fstab record for %s\n", DATA_MNT_POINT); |
| return -1; |
| } |
| |
| rc = fs_mgr_do_mount(fstab, DATA_MNT_POINT, rec->blk_device, 0); |
| if (rc) { |
| SLOGE("Can't mount %s\n", DATA_MNT_POINT); |
| return rc; |
| } |
| |
| property_set("vold.decrypt", "trigger_restart_framework"); |
| return 0; |
| } |
| |
| /* Call internal implementation forcing a restart of main service group */ |
| return cryptfs_restart_internal(1); |
| } |
| |
| static int do_crypto_complete(char *mount_point) |
| { |
| struct crypt_mnt_ftr crypt_ftr; |
| char encrypted_state[PROPERTY_VALUE_MAX]; |
| char key_loc[PROPERTY_VALUE_MAX]; |
| |
| property_get("ro.crypto.state", encrypted_state, ""); |
| if (strcmp(encrypted_state, "encrypted") ) { |
| SLOGE("not running with encryption, aborting"); |
| return CRYPTO_COMPLETE_NOT_ENCRYPTED; |
| } |
| |
| if (e4crypt_crypto_complete(mount_point) == 0) { |
| return CRYPTO_COMPLETE_ENCRYPTED; |
| } |
| |
| if (get_crypt_ftr_and_key(&crypt_ftr)) { |
| fs_mgr_get_crypt_info(fstab, key_loc, 0, sizeof(key_loc)); |
| |
| /* |
| * Only report this error if key_loc is a file and it exists. |
| * If the device was never encrypted, and /data is not mountable for |
| * some reason, returning 1 should prevent the UI from presenting the |
| * a "enter password" screen, or worse, a "press button to wipe the |
| * device" screen. |
| */ |
| if ((key_loc[0] == '/') && (access("key_loc", F_OK) == -1)) { |
| SLOGE("master key file does not exist, aborting"); |
| return CRYPTO_COMPLETE_NOT_ENCRYPTED; |
| } else { |
| SLOGE("Error getting crypt footer and key\n"); |
| return CRYPTO_COMPLETE_BAD_METADATA; |
| } |
| } |
| |
| // Test for possible error flags |
| if (crypt_ftr.flags & CRYPT_ENCRYPTION_IN_PROGRESS){ |
| SLOGE("Encryption process is partway completed\n"); |
| return CRYPTO_COMPLETE_PARTIAL; |
| } |
| |
| if (crypt_ftr.flags & CRYPT_INCONSISTENT_STATE){ |
| SLOGE("Encryption process was interrupted but cannot continue\n"); |
| return CRYPTO_COMPLETE_INCONSISTENT; |
| } |
| |
| if (crypt_ftr.flags & CRYPT_DATA_CORRUPT){ |
| SLOGE("Encryption is successful but data is corrupt\n"); |
| return CRYPTO_COMPLETE_CORRUPT; |
| } |
| |
| /* We passed the test! We shall diminish, and return to the west */ |
| return CRYPTO_COMPLETE_ENCRYPTED; |
| } |
| |
| static int test_mount_encrypted_fs(struct crypt_mnt_ftr* crypt_ftr, |
| char *passwd, char *mount_point, char *label) |
| { |
| /* Allocate enough space for a 256 bit key, but we may use less */ |
| unsigned char decrypted_master_key[32]; |
| char crypto_blkdev[MAXPATHLEN]; |
| char real_blkdev[MAXPATHLEN]; |
| char tmp_mount_point[64]; |
| unsigned int orig_failed_decrypt_count; |
| int rc; |
| int use_keymaster = 0; |
| int upgrade = 0; |
| unsigned char* intermediate_key = 0; |
| size_t intermediate_key_size = 0; |
| |
| SLOGD("crypt_ftr->fs_size = %lld\n", crypt_ftr->fs_size); |
| orig_failed_decrypt_count = crypt_ftr->failed_decrypt_count; |
| |
| if (! (crypt_ftr->flags & CRYPT_MNT_KEY_UNENCRYPTED) ) { |
| if (decrypt_master_key(passwd, decrypted_master_key, crypt_ftr, |
| &intermediate_key, &intermediate_key_size)) { |
| SLOGE("Failed to decrypt master key\n"); |
| rc = -1; |
| goto errout; |
| } |
| } |
| |
| fs_mgr_get_crypt_info(fstab, 0, real_blkdev, sizeof(real_blkdev)); |
| |
| #ifdef CONFIG_HW_DISK_ENCRYPTION |
| if (!strcmp((char *)crypt_ftr->crypto_type_name, "aes-xts")) { |
| if(!set_hw_device_encryption_key(passwd, (char*) crypt_ftr->crypto_type_name)) { |
| SLOGE("Hardware encryption key does not match"); |
| } |
| } |
| #endif |
| |
| // Create crypto block device - all (non fatal) code paths |
| // need it |
| if (create_crypto_blk_dev(crypt_ftr, decrypted_master_key, |
| real_blkdev, crypto_blkdev, label)) { |
| SLOGE("Error creating decrypted block device\n"); |
| rc = -1; |
| goto errout; |
| } |
| |
| /* Work out if the problem is the password or the data */ |
| unsigned char scrypted_intermediate_key[sizeof(crypt_ftr-> |
| scrypted_intermediate_key)]; |
| int N = 1 << crypt_ftr->N_factor; |
| int r = 1 << crypt_ftr->r_factor; |
| int p = 1 << crypt_ftr->p_factor; |
| |
| rc = crypto_scrypt(intermediate_key, intermediate_key_size, |
| crypt_ftr->salt, sizeof(crypt_ftr->salt), |
| N, r, p, scrypted_intermediate_key, |
| sizeof(scrypted_intermediate_key)); |
| |
| // Does the key match the crypto footer? |
| if (rc == 0 && memcmp(scrypted_intermediate_key, |
| crypt_ftr->scrypted_intermediate_key, |
| sizeof(scrypted_intermediate_key)) == 0) { |
| SLOGI("Password matches"); |
| rc = 0; |
| } else { |
| /* Try mounting the file system anyway, just in case the problem's with |
| * the footer, not the key. */ |
| sprintf(tmp_mount_point, "%s/tmp_mnt", mount_point); |
| mkdir(tmp_mount_point, 0755); |
| if (fs_mgr_do_mount(fstab, DATA_MNT_POINT, crypto_blkdev, tmp_mount_point)) { |
| SLOGE("Error temp mounting decrypted block device\n"); |
| delete_crypto_blk_dev(label); |
| |
| rc = ++crypt_ftr->failed_decrypt_count; |
| put_crypt_ftr_and_key(crypt_ftr); |
| } else { |
| /* Success! */ |
| SLOGI("Password did not match but decrypted drive mounted - continue"); |
| umount(tmp_mount_point); |
| rc = 0; |
| } |
| } |
| |
| if (rc == 0) { |
| crypt_ftr->failed_decrypt_count = 0; |
| if (orig_failed_decrypt_count != 0) { |
| put_crypt_ftr_and_key(crypt_ftr); |
| } |
| |
| /* Save the name of the crypto block device |
| * so we can mount it when restarting the framework. */ |
| property_set("ro.crypto.fs_crypto_blkdev", crypto_blkdev); |
| |
| /* Also save a the master key so we can reencrypted the key |
| * the key when we want to change the password on it. */ |
| memcpy(saved_master_key, decrypted_master_key, KEY_LEN_BYTES); |
| saved_mount_point = strdup(mount_point); |
| master_key_saved = 1; |
| SLOGD("%s(): Master key saved\n", __FUNCTION__); |
| rc = 0; |
| |
| // Upgrade if we're not using the latest KDF. |
| use_keymaster = keymaster_check_compatibility(); |
| if (crypt_ftr->kdf_type == KDF_SCRYPT_KEYMASTER) { |
| // Don't allow downgrade |
| } else if (use_keymaster == 1 && crypt_ftr->kdf_type != KDF_SCRYPT_KEYMASTER) { |
| crypt_ftr->kdf_type = KDF_SCRYPT_KEYMASTER; |
| upgrade = 1; |
| } else if (use_keymaster == 0 && crypt_ftr->kdf_type != KDF_SCRYPT) { |
| crypt_ftr->kdf_type = KDF_SCRYPT; |
| upgrade = 1; |
| } |
| |
| if (upgrade) { |
| rc = encrypt_master_key(passwd, crypt_ftr->salt, saved_master_key, |
| crypt_ftr->master_key, crypt_ftr); |
| if (!rc) { |
| rc = put_crypt_ftr_and_key(crypt_ftr); |
| } |
| SLOGD("Key Derivation Function upgrade: rc=%d\n", rc); |
| |
| // Do not fail even if upgrade failed - machine is bootable |
| // Note that if this code is ever hit, there is a *serious* problem |
| // since KDFs should never fail. You *must* fix the kdf before |
| // proceeding! |
| if (rc) { |
| SLOGW("Upgrade failed with error %d," |
| " but continuing with previous state", |
| rc); |
| rc = 0; |
| } |
| } |
| } |
| |
| errout: |
| if (intermediate_key) { |
| memset(intermediate_key, 0, intermediate_key_size); |
| free(intermediate_key); |
| } |
| return rc; |
| } |
| |
| /* |
| * Called by vold when it's asked to mount an encrypted external |
| * storage volume. The incoming partition has no crypto header/footer, |
| * as any metadata is been stored in a separate, small partition. |
| * |
| * out_crypto_blkdev must be MAXPATHLEN. |
| */ |
| int cryptfs_setup_ext_volume(const char* label, const char* real_blkdev, |
| const unsigned char* key, int keysize, char* out_crypto_blkdev) { |
| int fd = open(real_blkdev, O_RDONLY|O_CLOEXEC); |
| if (fd == -1) { |
| SLOGE("Failed to open %s: %s", real_blkdev, strerror(errno)); |
| return -1; |
| } |
| |
| unsigned long nr_sec = 0; |
| get_blkdev_size(fd, &nr_sec); |
| close(fd); |
| |
| if (nr_sec == 0) { |
| SLOGE("Failed to get size of %s: %s", real_blkdev, strerror(errno)); |
| return -1; |
| } |
| |
| struct crypt_mnt_ftr ext_crypt_ftr; |
| memset(&ext_crypt_ftr, 0, sizeof(ext_crypt_ftr)); |
| ext_crypt_ftr.fs_size = nr_sec; |
| ext_crypt_ftr.keysize = keysize; |
| strcpy((char*) ext_crypt_ftr.crypto_type_name, "aes-cbc-essiv:sha256"); |
| |
| return create_crypto_blk_dev(&ext_crypt_ftr, key, real_blkdev, |
| out_crypto_blkdev, label); |
| } |
| |
| /* |
| * Called by vold when it's asked to unmount an encrypted external |
| * storage volume. |
| */ |
| int cryptfs_revert_ext_volume(const char* label) { |
| return delete_crypto_blk_dev((char*) label); |
| } |
| |
| int cryptfs_crypto_complete(void) |
| { |
| return do_crypto_complete("/data"); |
| } |
| |
| int check_unmounted_and_get_ftr(struct crypt_mnt_ftr* crypt_ftr) |
| { |
| char encrypted_state[PROPERTY_VALUE_MAX]; |
| property_get("ro.crypto.state", encrypted_state, ""); |
| if ( master_key_saved || strcmp(encrypted_state, "encrypted") ) { |
| SLOGE("encrypted fs already validated or not running with encryption," |
| " aborting"); |
| return -1; |
| } |
| |
| if (get_crypt_ftr_and_key(crypt_ftr)) { |
| SLOGE("Error getting crypt footer and key"); |
| return -1; |
| } |
| |
| return 0; |
| } |
| |
| /* |
| * TODO - transition patterns to new format in calling code |
| * and remove this vile hack, and the use of hex in |
| * the password passing code. |
| * |
| * Patterns are passed in zero based (i.e. the top left dot |
| * is represented by zero, the top middle one etc), but we want |
| * to store them '1' based. |
| * This is to allow us to migrate the calling code to use this |
| * convention. It also solves a nasty problem whereby scrypt ignores |
| * trailing zeros, so patterns ending at the top left could be |
| * truncated, and similarly, you could add the top left to any |
| * pattern and still match. |
| * adjust_passwd is a hack function that returns the alternate representation |
| * if the password appears to be a pattern (hex numbers all less than 09) |
| * If it succeeds we need to try both, and in particular try the alternate |
| * first. If the original matches, then we need to update the footer |
| * with the alternate. |
| * All code that accepts passwords must adjust them first. Since |
| * cryptfs_check_passwd is always the first function called after a migration |
| * (and indeed on any boot) we only need to do the double try in this |
| * function. |
| */ |
| char* adjust_passwd(const char* passwd) |
| { |
| size_t index, length; |
| |
| if (!passwd) { |
| return 0; |
| } |
| |
| // Check even length. Hex encoded passwords are always |
| // an even length, since each character encodes to two characters. |
| length = strlen(passwd); |
| if (length % 2) { |
| SLOGW("Password not correctly hex encoded."); |
| return 0; |
| } |
| |
| // Check password is old-style pattern - a collection of hex |
| // encoded bytes less than 9 (00 through 08) |
| for (index = 0; index < length; index +=2) { |
| if (passwd[index] != '0' |
| || passwd[index + 1] < '0' || passwd[index + 1] > '8') { |
| return 0; |
| } |
| } |
| |
| // Allocate room for adjusted passwd and null terminate |
| char* adjusted = malloc(length + 1); |
| adjusted[length] = 0; |
| |
| // Add 0x31 ('1') to each character |
| for (index = 0; index < length; index += 2) { |
| // output is 31 through 39 so set first byte to three, second to src + 1 |
| adjusted[index] = '3'; |
| adjusted[index + 1] = passwd[index + 1] + 1; |
| } |
| |
| return adjusted; |
| } |
| |
| int cryptfs_check_passwd(char *passwd) |
| { |
| SLOGI("cryptfs_check_passwd"); |
| if (e4crypt_crypto_complete(DATA_MNT_POINT) == 0) { |
| return e4crypt_check_passwd(DATA_MNT_POINT, passwd); |
| } |
| |
| struct crypt_mnt_ftr crypt_ftr; |
| int rc; |
| |
| rc = check_unmounted_and_get_ftr(&crypt_ftr); |
| if (rc) |
| return rc; |
| |
| char* adjusted_passwd = adjust_passwd(passwd); |
| if (adjusted_passwd) { |
| int failed_decrypt_count = crypt_ftr.failed_decrypt_count; |
| rc = test_mount_encrypted_fs(&crypt_ftr, adjusted_passwd, |
| DATA_MNT_POINT, "userdata"); |
| |
| // Maybe the original one still works? |
| if (rc) { |
| // Don't double count this failure |
| crypt_ftr.failed_decrypt_count = failed_decrypt_count; |
| rc = test_mount_encrypted_fs(&crypt_ftr, passwd, |
| DATA_MNT_POINT, "userdata"); |
| if (!rc) { |
| // cryptfs_changepw also adjusts so pass original |
| // Note that adjust_passwd only recognises patterns |
| // so we can safely use CRYPT_TYPE_PATTERN |
| SLOGI("Updating pattern to new format"); |
| cryptfs_changepw(CRYPT_TYPE_PATTERN, passwd); |
| } |
| } |
| free(adjusted_passwd); |
| } else { |
| rc = test_mount_encrypted_fs(&crypt_ftr, passwd, |
| DATA_MNT_POINT, "userdata"); |
| } |
| |
| if (rc == 0 && crypt_ftr.crypt_type != CRYPT_TYPE_DEFAULT) { |
| cryptfs_clear_password(); |
| password = strdup(passwd); |
| struct timespec now; |
| clock_gettime(CLOCK_BOOTTIME, &now); |
| password_expiry_time = now.tv_sec + password_max_age_seconds; |
| } |
| |
| return rc; |
| } |
| |
| int cryptfs_verify_passwd(char *passwd) |
| { |
| struct crypt_mnt_ftr crypt_ftr; |
| /* Allocate enough space for a 256 bit key, but we may use less */ |
| unsigned char decrypted_master_key[32]; |
| char encrypted_state[PROPERTY_VALUE_MAX]; |
| int rc; |
| |
| property_get("ro.crypto.state", encrypted_state, ""); |
| if (strcmp(encrypted_state, "encrypted") ) { |
| SLOGE("device not encrypted, aborting"); |
| return -2; |
| } |
| |
| if (!master_key_saved) { |
| SLOGE("encrypted fs not yet mounted, aborting"); |
| return -1; |
| } |
| |
| if (!saved_mount_point) { |
| SLOGE("encrypted fs failed to save mount point, aborting"); |
| return -1; |
| } |
| |
| if (get_crypt_ftr_and_key(&crypt_ftr)) { |
| SLOGE("Error getting crypt footer and key\n"); |
| return -1; |
| } |
| |
| if (crypt_ftr.flags & CRYPT_MNT_KEY_UNENCRYPTED) { |
| /* If the device has no password, then just say the password is valid */ |
| rc = 0; |
| } else { |
| char* adjusted_passwd = adjust_passwd(passwd); |
| if (adjusted_passwd) { |
| passwd = adjusted_passwd; |
| } |
| |
| decrypt_master_key(passwd, decrypted_master_key, &crypt_ftr, 0, 0); |
| if (!memcmp(decrypted_master_key, saved_master_key, crypt_ftr.keysize)) { |
| /* They match, the password is correct */ |
| rc = 0; |
| } else { |
| /* If incorrect, sleep for a bit to prevent dictionary attacks */ |
| sleep(1); |
| rc = 1; |
| } |
| |
| free(adjusted_passwd); |
| } |
| |
| return rc; |
| } |
| |
| /* Initialize a crypt_mnt_ftr structure. The keysize is |
| * defaulted to 16 bytes, and the filesystem size to 0. |
| * Presumably, at a minimum, the caller will update the |
| * filesystem size and crypto_type_name after calling this function. |
| */ |
| static int cryptfs_init_crypt_mnt_ftr(struct crypt_mnt_ftr *ftr) |
| { |
| off64_t off; |
| |
| memset(ftr, 0, sizeof(struct crypt_mnt_ftr)); |
| ftr->magic = CRYPT_MNT_MAGIC; |
| ftr->major_version = CURRENT_MAJOR_VERSION; |
| ftr->minor_version = CURRENT_MINOR_VERSION; |
| ftr->ftr_size = sizeof(struct crypt_mnt_ftr); |
| ftr->keysize = KEY_LEN_BYTES; |
| |
| switch (keymaster_check_compatibility()) { |
| case 1: |
| ftr->kdf_type = KDF_SCRYPT_KEYMASTER; |
| break; |
| |
| case 0: |
| ftr->kdf_type = KDF_SCRYPT; |
| break; |
| |
| default: |
| SLOGE("keymaster_check_compatibility failed"); |
| return -1; |
| } |
| |
| get_device_scrypt_params(ftr); |
| |
| ftr->persist_data_size = CRYPT_PERSIST_DATA_SIZE; |
| if (get_crypt_ftr_info(NULL, &off) == 0) { |
| ftr->persist_data_offset[0] = off + CRYPT_FOOTER_TO_PERSIST_OFFSET; |
| ftr->persist_data_offset[1] = off + CRYPT_FOOTER_TO_PERSIST_OFFSET + |
| ftr->persist_data_size; |
| } |
| |
| return 0; |
| } |
| |
| static int cryptfs_enable_wipe(char *crypto_blkdev, off64_t size, int type) |
| { |
| const char *args[10]; |
| char size_str[32]; /* Must be large enough to hold a %lld and null byte */ |
| int num_args; |
| int status; |
| int tmp; |
| int rc = -1; |
| |
| if (type == EXT4_FS) { |
| args[0] = "/system/bin/make_ext4fs"; |
| args[1] = "-a"; |
| args[2] = "/data"; |
| args[3] = "-l"; |
| snprintf(size_str, sizeof(size_str), "%" PRId64, size * 512); |
| args[4] = size_str; |
| args[5] = crypto_blkdev; |
| num_args = 6; |
| SLOGI("Making empty filesystem with command %s %s %s %s %s %s\n", |
| args[0], args[1], args[2], args[3], args[4], args[5]); |
| } else if (type == F2FS_FS) { |
| args[0] = "/system/bin/mkfs.f2fs"; |
| args[1] = "-t"; |
| args[2] = "-d1"; |
| args[3] = crypto_blkdev; |
| snprintf(size_str, sizeof(size_str), "%" PRId64, size); |
| args[4] = size_str; |
| num_args = 5; |
| SLOGI("Making empty filesystem with command %s %s %s %s %s\n", |
| args[0], args[1], args[2], args[3], args[4]); |
| } else { |
| SLOGE("cryptfs_enable_wipe(): unknown filesystem type %d\n", type); |
| return -1; |
| } |
| |
| tmp = android_fork_execvp(num_args, (char **)args, &status, false, true); |
| |
| if (tmp != 0) { |
| SLOGE("Error creating empty filesystem on %s due to logwrap error\n", crypto_blkdev); |
| } else { |
| if (WIFEXITED(status)) { |
| if (WEXITSTATUS(status)) { |
| SLOGE("Error creating filesystem on %s, exit status %d ", |
| crypto_blkdev, WEXITSTATUS(status)); |
| } else { |
| SLOGD("Successfully created filesystem on %s\n", crypto_blkdev); |
| rc = 0; |
| } |
| } else { |
| SLOGE("Error creating filesystem on %s, did not exit normally\n", crypto_blkdev); |
| } |
| } |
| |
| return rc; |
| } |
| |
| #define CRYPT_INPLACE_BUFSIZE 4096 |
| #define CRYPT_SECTORS_PER_BUFSIZE (CRYPT_INPLACE_BUFSIZE / CRYPT_SECTOR_SIZE) |
| #define CRYPT_SECTOR_SIZE 512 |
| |
| /* aligned 32K writes tends to make flash happy. |
| * SD card association recommends it. |
| */ |
| #ifndef CONFIG_HW_DISK_ENCRYPTION |
| #define BLOCKS_AT_A_TIME 8 |
| #else |
| #define BLOCKS_AT_A_TIME 1024 |
| #endif |
| |
| struct encryptGroupsData |
| { |
| int realfd; |
| int cryptofd; |
| off64_t numblocks; |
| off64_t one_pct, cur_pct, new_pct; |
| off64_t blocks_already_done, tot_numblocks; |
| off64_t used_blocks_already_done, tot_used_blocks; |
| char* real_blkdev, * crypto_blkdev; |
| int count; |
| off64_t offset; |
| char* buffer; |
| off64_t last_written_sector; |
| int completed; |
| time_t time_started; |
| int remaining_time; |
| }; |
| |
| static void update_progress(struct encryptGroupsData* data, int is_used) |
| { |
| data->blocks_already_done++; |
| |
| if (is_used) { |
| data->used_blocks_already_done++; |
| } |
| if (data->tot_used_blocks) { |
| data->new_pct = data->used_blocks_already_done / data->one_pct; |
| } else { |
| data->new_pct = data->blocks_already_done / data->one_pct; |
| } |
| |
| if (data->new_pct > data->cur_pct) { |
| char buf[8]; |
| data->cur_pct = data->new_pct; |
| snprintf(buf, sizeof(buf), "%" PRId64, data->cur_pct); |
| property_set("vold.encrypt_progress", buf); |
| } |
| |
| if (data->cur_pct >= 5) { |
| struct timespec time_now; |
| if (clock_gettime(CLOCK_MONOTONIC, &time_now)) { |
| SLOGW("Error getting time"); |
| } else { |
| double elapsed_time = difftime(time_now.tv_sec, data->time_started); |
| off64_t remaining_blocks = data->tot_used_blocks |
| - data->used_blocks_already_done; |
| int remaining_time = (int)(elapsed_time * remaining_blocks |
| / data->used_blocks_already_done); |
| |
| // Change time only if not yet set, lower, or a lot higher for |
| // best user experience |
| if (data->remaining_time == -1 |
| || remaining_time < data->remaining_time |
| || remaining_time > data->remaining_time + 60) { |
| char buf[8]; |
| snprintf(buf, sizeof(buf), "%d", remaining_time); |
| property_set("vold.encrypt_time_remaining", buf); |
| data->remaining_time = remaining_time; |
| } |
| } |
| } |
| } |
| |
| static void log_progress(struct encryptGroupsData const* data, bool completed) |
| { |
| // Precondition - if completed data = 0 else data != 0 |
| |
| // Track progress so we can skip logging blocks |
| static off64_t offset = -1; |
| |
| // Need to close existing 'Encrypting from' log? |
| if (completed || (offset != -1 && data->offset != offset)) { |
| SLOGI("Encrypted to sector %" PRId64, |
| offset / info.block_size * CRYPT_SECTOR_SIZE); |
| offset = -1; |
| } |
| |
| // Need to start new 'Encrypting from' log? |
| if (!completed && offset != data->offset) { |
| SLOGI("Encrypting from sector %" PRId64, |
| data->offset / info.block_size * CRYPT_SECTOR_SIZE); |
| } |
| |
| // Update offset |
| if (!completed) { |
| offset = data->offset + (off64_t)data->count * info.block_size; |
| } |
| } |
| |
| static int flush_outstanding_data(struct encryptGroupsData* data) |
| { |
| if (data->count == 0) { |
| return 0; |
| } |
| |
| SLOGV("Copying %d blocks at offset %" PRIx64, data->count, data->offset); |
| |
| if (pread64(data->realfd, data->buffer, |
| info.block_size * data->count, data->offset) |
| <= 0) { |
| SLOGE("Error reading real_blkdev %s for inplace encrypt", |
| data->real_blkdev); |
| return -1; |
| } |
| |
| if (pwrite64(data->cryptofd, data->buffer, |
| info.block_size * data->count, data->offset) |
| <= 0) { |
| SLOGE("Error writing crypto_blkdev %s for inplace encrypt", |
| data->crypto_blkdev); |
| return -1; |
| } else { |
| log_progress(data, false); |
| } |
| |
| data->count = 0; |
| data->last_written_sector = (data->offset + data->count) |
| / info.block_size * CRYPT_SECTOR_SIZE - 1; |
| return 0; |
| } |
| |
| static int encrypt_groups(struct encryptGroupsData* data) |
| { |
| unsigned int i; |
| u8 *block_bitmap = 0; |
| unsigned int block; |
| off64_t ret; |
| int rc = -1; |
| |
| data->buffer = malloc(info.block_size * BLOCKS_AT_A_TIME); |
| if (!data->buffer) { |
| SLOGE("Failed to allocate crypto buffer"); |
| goto errout; |
| } |
| |
| block_bitmap = malloc(info.block_size); |
| if (!block_bitmap) { |
| SLOGE("failed to allocate block bitmap"); |
| goto errout; |
| } |
| |
| for (i = 0; i < aux_info.groups; ++i) { |
| SLOGI("Encrypting group %d", i); |
| |
| u32 first_block = aux_info.first_data_block + i * info.blocks_per_group; |
| u32 block_count = min(info.blocks_per_group, |
| aux_info.len_blocks - first_block); |
| |
| off64_t offset = (u64)info.block_size |
| * aux_info.bg_desc[i].bg_block_bitmap; |
| |
| ret = pread64(data->realfd, block_bitmap, info.block_size, offset); |
| if (ret != (int)info.block_size) { |
| SLOGE("failed to read all of block group bitmap %d", i); |
| goto errout; |
| } |
| |
| offset = (u64)info.block_size * first_block; |
| |
| data->count = 0; |
| |
| for (block = 0; block < block_count; block++) { |
| int used = bitmap_get_bit(block_bitmap, block); |
| update_progress(data, used); |
| if (used) { |
| if (data->count == 0) { |
| data->offset = offset; |
| } |
| data->count++; |
| } else { |
| if (flush_outstanding_data(data)) { |
| goto errout; |
| } |
| } |
| |
| offset += info.block_size; |
| |
| /* Write data if we are aligned or buffer size reached */ |
| if (offset % (info.block_size * BLOCKS_AT_A_TIME) == 0 |
| || data->count == BLOCKS_AT_A_TIME) { |
| if (flush_outstanding_data(data)) { |
| goto errout; |
| } |
| } |
| |
| if (!is_battery_ok_to_continue()) { |
| SLOGE("Stopping encryption due to low battery"); |
| rc = 0; |
| goto errout; |
| } |
| |
| } |
| if (flush_outstanding_data(data)) { |
| goto errout; |
| } |
| } |
| |
| data->completed = 1; |
| rc = 0; |
| |
| errout: |
| log_progress(0, true); |
| free(data->buffer); |
| free(block_bitmap); |
| return rc; |
| } |
| |
| static int cryptfs_enable_inplace_ext4(char *crypto_blkdev, |
| char *real_blkdev, |
| off64_t size, |
| off64_t *size_already_done, |
| off64_t tot_size, |
| off64_t previously_encrypted_upto) |
| { |
| u32 i; |
| struct encryptGroupsData data; |
| int rc; // Can't initialize without causing warning -Wclobbered |
| |
| if (previously_encrypted_upto > *size_already_done) { |
| SLOGD("Not fast encrypting since resuming part way through"); |
| return -1; |
| } |
| |
| memset(&data, 0, sizeof(data)); |
| data.real_blkdev = real_blkdev; |
| data.crypto_blkdev = crypto_blkdev; |
| |
| if ( (data.realfd = open(real_blkdev, O_RDWR|O_CLOEXEC)) < 0) { |
| SLOGE("Error opening real_blkdev %s for inplace encrypt. err=%d(%s)\n", |
| real_blkdev, errno, strerror(errno)); |
| rc = -1; |
| goto errout; |
| } |
| |
| if ( (data.cryptofd = open(crypto_blkdev, O_WRONLY|O_CLOEXEC)) < 0) { |
| SLOGE("Error opening crypto_blkdev %s for ext4 inplace encrypt. err=%d(%s)\n", |
| crypto_blkdev, errno, strerror(errno)); |
| rc = ENABLE_INPLACE_ERR_DEV; |
| goto errout; |
| } |
| |
| if (setjmp(setjmp_env)) { |
| SLOGE("Reading ext4 extent caused an exception\n"); |
| rc = -1; |
| goto errout; |
| } |
| |
| if (read_ext(data.realfd, 0) != 0) { |
| SLOGE("Failed to read ext4 extent\n"); |
| rc = -1; |
| goto errout; |
| } |
| |
| data.numblocks = size / CRYPT_SECTORS_PER_BUFSIZE; |
| data.tot_numblocks = tot_size / CRYPT_SECTORS_PER_BUFSIZE; |
| data.blocks_already_done = *size_already_done / CRYPT_SECTORS_PER_BUFSIZE; |
| |
| SLOGI("Encrypting ext4 filesystem in place..."); |
| |
| data.tot_used_blocks = data.numblocks; |
| for (i = 0; i < aux_info.groups; ++i) { |
| data.tot_used_blocks -= aux_info.bg_desc[i].bg_free_blocks_count; |
| } |
| |
| data.one_pct = data.tot_used_blocks / 100; |
| data.cur_pct = 0; |
| |
| struct timespec time_started = {0}; |
| if (clock_gettime(CLOCK_MONOTONIC, &time_started)) { |
| SLOGW("Error getting time at start"); |
| // Note - continue anyway - we'll run with 0 |
| } |
| data.time_started = time_started.tv_sec; |
| data.remaining_time = -1; |
| |
| rc = encrypt_groups(&data); |
| if (rc) { |
| SLOGE("Error encrypting groups"); |
| goto errout; |
| } |
| |
| *size_already_done += data.completed ? size : data.last_written_sector; |
| rc = 0; |
| |
| errout: |
| close(data.realfd); |
| close(data.cryptofd); |
| |
| return rc; |
| } |
| |
| static void log_progress_f2fs(u64 block, bool completed) |
| { |
| // Precondition - if completed data = 0 else data != 0 |
| |
| // Track progress so we can skip logging blocks |
| static u64 last_block = (u64)-1; |
| |
| // Need to close existing 'Encrypting from' log? |
| if (completed || (last_block != (u64)-1 && block != last_block + 1)) { |
| SLOGI("Encrypted to block %" PRId64, last_block); |
| last_block = -1; |
| } |
| |
| // Need to start new 'Encrypting from' log? |
| if (!completed && (last_block == (u64)-1 || block != last_block + 1)) { |
| SLOGI("Encrypting from block %" PRId64, block); |
| } |
| |
| // Update offset |
| if (!completed) { |
| last_block = block; |
| } |
| } |
| |
| static int encrypt_one_block_f2fs(u64 pos, void *data) |
| { |
| struct encryptGroupsData *priv_dat = (struct encryptGroupsData *)data; |
| |
| priv_dat->blocks_already_done = pos - 1; |
| update_progress(priv_dat, 1); |
| |
| off64_t offset = pos * CRYPT_INPLACE_BUFSIZE; |
| |
| if (pread64(priv_dat->realfd, priv_dat->buffer, CRYPT_INPLACE_BUFSIZE, offset) <= 0) { |
| SLOGE("Error reading real_blkdev %s for f2fs inplace encrypt", priv_dat->crypto_blkdev); |
| return -1; |
| } |
| |
| if (pwrite64(priv_dat->cryptofd, priv_dat->buffer, CRYPT_INPLACE_BUFSIZE, offset) <= 0) { |
| SLOGE("Error writing crypto_blkdev %s for f2fs inplace encrypt", priv_dat->crypto_blkdev); |
| return -1; |
| } else { |
| log_progress_f2fs(pos, false); |
| } |
| |
| return 0; |
| } |
| |
| static int cryptfs_enable_inplace_f2fs(char *crypto_blkdev, |
| char *real_blkdev, |
| off64_t size, |
| off64_t *size_already_done, |
| off64_t tot_size, |
| off64_t previously_encrypted_upto) |
| { |
| struct encryptGroupsData data; |
| struct f2fs_info *f2fs_info = NULL; |
| int rc = ENABLE_INPLACE_ERR_OTHER; |
| if (previously_encrypted_upto > *size_already_done) { |
| SLOGD("Not fast encrypting since resuming part way through"); |
| return ENABLE_INPLACE_ERR_OTHER; |
| } |
| memset(&data, 0, sizeof(data)); |
| data.real_blkdev = real_blkdev; |
| data.crypto_blkdev = crypto_blkdev; |
| data.realfd = -1; |
| data.cryptofd = -1; |
| if ( (data.realfd = open64(real_blkdev, O_RDWR|O_CLOEXEC)) < 0) { |
| SLOGE("Error opening real_blkdev %s for f2fs inplace encrypt\n", |
| real_blkdev); |
| goto errout; |
| } |
| if ( (data.cryptofd = open64(crypto_blkdev, O_WRONLY|O_CLOEXEC)) < 0) { |
| SLOGE("Error opening crypto_blkdev %s for f2fs inplace encrypt. err=%d(%s)\n", |
| crypto_blkdev, errno, strerror(errno)); |
| rc = ENABLE_INPLACE_ERR_DEV; |
| goto errout; |
| } |
| |
| f2fs_info = generate_f2fs_info(data.realfd); |
| if (!f2fs_info) |
| goto errout; |
| |
| data.numblocks = size / CRYPT_SECTORS_PER_BUFSIZE; |
| data.tot_numblocks = tot_size / CRYPT_SECTORS_PER_BUFSIZE; |
| data.blocks_already_done = *size_already_done / CRYPT_SECTORS_PER_BUFSIZE; |
| |
| data.tot_used_blocks = get_num_blocks_used(f2fs_info); |
| |
| data.one_pct = data.tot_used_blocks / 100; |
| data.cur_pct = 0; |
| data.time_started = time(NULL); |
| data.remaining_time = -1; |
| |
| data.buffer = malloc(f2fs_info->block_size); |
| if (!data.buffer) { |
| SLOGE("Failed to allocate crypto buffer"); |
| goto errout; |
| } |
| |
| data.count = 0; |
| |
| /* Currently, this either runs to completion, or hits a nonrecoverable error */ |
| rc = run_on_used_blocks(data.blocks_already_done, f2fs_info, &encrypt_one_block_f2fs, &data); |
| |
| if (rc) { |
| SLOGE("Error in running over f2fs blocks"); |
| rc = ENABLE_INPLACE_ERR_OTHER; |
| goto errout; |
| } |
| |
| *size_already_done += size; |
| rc = 0; |
| |
| errout: |
| if (rc) |
| SLOGE("Failed to encrypt f2fs filesystem on %s", real_blkdev); |
| |
| log_progress_f2fs(0, true); |
| free(f2fs_info); |
| free(data.buffer); |
| close(data.realfd); |
| close(data.cryptofd); |
| |
| return rc; |
| } |
| |
| static int cryptfs_enable_inplace_full(char *crypto_blkdev, char *real_blkdev, |
| off64_t size, off64_t *size_already_done, |
| off64_t tot_size, |
| off64_t previously_encrypted_upto) |
| { |
| int realfd, cryptofd; |
| char *buf[CRYPT_INPLACE_BUFSIZE]; |
| int rc = ENABLE_INPLACE_ERR_OTHER; |
| off64_t numblocks, i, remainder; |
| off64_t one_pct, cur_pct, new_pct; |
| off64_t blocks_already_done, tot_numblocks; |
| |
| if ( (realfd = open(real_blkdev, O_RDONLY|O_CLOEXEC)) < 0) { |
| SLOGE("Error opening real_blkdev %s for inplace encrypt\n", real_blkdev); |
| return ENABLE_INPLACE_ERR_OTHER; |
| } |
| |
| if ( (cryptofd = open(crypto_blkdev, O_WRONLY|O_CLOEXEC)) < 0) { |
| SLOGE("Error opening crypto_blkdev %s for inplace encrypt. err=%d(%s)\n", |
| crypto_blkdev, errno, strerror(errno)); |
| close(realfd); |
| return ENABLE_INPLACE_ERR_DEV; |
| } |
| |
| /* This is pretty much a simple loop of reading 4K, and writing 4K. |
| * The size passed in is the number of 512 byte sectors in the filesystem. |
| * So compute the number of whole 4K blocks we should read/write, |
| * and the remainder. |
| */ |
| numblocks = size / CRYPT_SECTORS_PER_BUFSIZE; |
| remainder = size % CRYPT_SECTORS_PER_BUFSIZE; |
| tot_numblocks = tot_size / CRYPT_SECTORS_PER_BUFSIZE; |
| blocks_already_done = *size_already_done / CRYPT_SECTORS_PER_BUFSIZE; |
| |
| SLOGE("Encrypting filesystem in place..."); |
| |
| i = previously_encrypted_upto + 1 - *size_already_done; |
| |
| if (lseek64(realfd, i * CRYPT_SECTOR_SIZE, SEEK_SET) < 0) { |
| SLOGE("Cannot seek to previously encrypted point on %s", real_blkdev); |
| goto errout; |
| } |
| |
| if (lseek64(cryptofd, i * CRYPT_SECTOR_SIZE, SEEK_SET) < 0) { |
| SLOGE("Cannot seek to previously encrypted point on %s", crypto_blkdev); |
| goto errout; |
| } |
| |
| for (;i < size && i % CRYPT_SECTORS_PER_BUFSIZE != 0; ++i) { |
| if (unix_read(realfd, buf, CRYPT_SECTOR_SIZE) <= 0) { |
| SLOGE("Error reading initial sectors from real_blkdev %s for " |
| "inplace encrypt\n", crypto_blkdev); |
| goto errout; |
| } |
| if (unix_write(cryptofd, buf, CRYPT_SECTOR_SIZE) <= 0) { |
| SLOGE("Error writing initial sectors to crypto_blkdev %s for " |
| "inplace encrypt\n", crypto_blkdev); |
| goto errout; |
| } else { |
| SLOGI("Encrypted 1 block at %" PRId64, i); |
| } |
| } |
| |
| one_pct = tot_numblocks / 100; |
| cur_pct = 0; |
| /* process the majority of the filesystem in blocks */ |
| for (i/=CRYPT_SECTORS_PER_BUFSIZE; i<numblocks; i++) { |
| new_pct = (i + blocks_already_done) / one_pct; |
| if (new_pct > cur_pct) { |
| char buf[8]; |
| |
| cur_pct = new_pct; |
| snprintf(buf, sizeof(buf), "%" PRId64, cur_pct); |
| property_set("vold.encrypt_progress", buf); |
| } |
| if (unix_read(realfd, buf, CRYPT_INPLACE_BUFSIZE) <= 0) { |
| SLOGE("Error reading real_blkdev %s for inplace encrypt", crypto_blkdev); |
| goto errout; |
| } |
| if (unix_write(cryptofd, buf, CRYPT_INPLACE_BUFSIZE) <= 0) { |
| SLOGE("Error writing crypto_blkdev %s for inplace encrypt", crypto_blkdev); |
| goto errout; |
| } else { |
| SLOGD("Encrypted %d block at %" PRId64, |
| CRYPT_SECTORS_PER_BUFSIZE, |
| i * CRYPT_SECTORS_PER_BUFSIZE); |
| } |
| |
| if (!is_battery_ok_to_continue()) { |
| SLOGE("Stopping encryption due to low battery"); |
| *size_already_done += (i + 1) * CRYPT_SECTORS_PER_BUFSIZE - 1; |
| rc = 0; |
| goto errout; |
| } |
| } |
| |
| /* Do any remaining sectors */ |
| for (i=0; i<remainder; i++) { |
| if (unix_read(realfd, buf, CRYPT_SECTOR_SIZE) <= 0) { |
| SLOGE("Error reading final sectors from real_blkdev %s for inplace encrypt", crypto_blkdev); |
| goto errout; |
| } |
| if (unix_write(cryptofd, buf, CRYPT_SECTOR_SIZE) <= 0) { |
| SLOGE("Error writing final sectors to crypto_blkdev %s for inplace encrypt", crypto_blkdev); |
| goto errout; |
| } else { |
| SLOGI("Encrypted 1 block at next location"); |
| } |
| } |
| |
| *size_already_done += size; |
| rc = 0; |
| |
| errout: |
| close(realfd); |
| close(cryptofd); |
| |
| return rc; |
| } |
| |
| /* returns on of the ENABLE_INPLACE_* return codes */ |
| static int cryptfs_enable_inplace(char *crypto_blkdev, char *real_blkdev, |
| off64_t size, off64_t *size_already_done, |
| off64_t tot_size, |
| off64_t previously_encrypted_upto) |
| { |
| int rc_ext4, rc_f2fs, rc_full; |
| if (previously_encrypted_upto) { |
| SLOGD("Continuing encryption from %" PRId64, previously_encrypted_upto); |
| } |
| |
| if (*size_already_done + size < previously_encrypted_upto) { |
| *size_already_done += size; |
| return 0; |
| } |
| |
| /* TODO: identify filesystem type. |
| * As is, cryptfs_enable_inplace_ext4 will fail on an f2fs partition, and |
| * then we will drop down to cryptfs_enable_inplace_f2fs. |
| * */ |
| if ((rc_ext4 = cryptfs_enable_inplace_ext4(crypto_blkdev, real_blkdev, |
| size, size_already_done, |
| tot_size, previously_encrypted_upto)) == 0) { |
| return 0; |
| } |
| SLOGD("cryptfs_enable_inplace_ext4()=%d\n", rc_ext4); |
| |
| if ((rc_f2fs = cryptfs_enable_inplace_f2fs(crypto_blkdev, real_blkdev, |
| size, size_already_done, |
| tot_size, previously_encrypted_upto)) == 0) { |
| return 0; |
| } |
| SLOGD("cryptfs_enable_inplace_f2fs()=%d\n", rc_f2fs); |
| |
| rc_full = cryptfs_enable_inplace_full(crypto_blkdev, real_blkdev, |
| size, size_already_done, tot_size, |
| previously_encrypted_upto); |
| SLOGD("cryptfs_enable_inplace_full()=%d\n", rc_full); |
| |
| /* Hack for b/17898962, the following is the symptom... */ |
| if (rc_ext4 == ENABLE_INPLACE_ERR_DEV |
| && rc_f2fs == ENABLE_INPLACE_ERR_DEV |
| && rc_full == ENABLE_INPLACE_ERR_DEV) { |
| return ENABLE_INPLACE_ERR_DEV; |
| } |
| return rc_full; |
| } |
| |
| #define CRYPTO_ENABLE_WIPE 1 |
| #define CRYPTO_ENABLE_INPLACE 2 |
| |
| #define FRAMEWORK_BOOT_WAIT 60 |
| |
| static int cryptfs_SHA256_fileblock(const char* filename, __le8* buf) |
| { |
| int fd = open(filename, O_RDONLY|O_CLOEXEC); |
| if (fd == -1) { |
| SLOGE("Error opening file %s", filename); |
| return -1; |
| } |
| |
| char block[CRYPT_INPLACE_BUFSIZE]; |
| memset(block, 0, sizeof(block)); |
| if (unix_read(fd, block, sizeof(block)) < 0) { |
| SLOGE("Error reading file %s", filename); |
| close(fd); |
| return -1; |
| } |
| |
| close(fd); |
| |
| SHA256_CTX c; |
| SHA256_Init(&c); |
| SHA256_Update(&c, block, sizeof(block)); |
| SHA256_Final(buf, &c); |
| |
| return 0; |
| } |
| |
| static int get_fs_type(struct fstab_rec *rec) |
| { |
| if (!strcmp(rec->fs_type, "ext4")) { |
| return EXT4_FS; |
| } else if (!strcmp(rec->fs_type, "f2fs")) { |
| return F2FS_FS; |
| } else { |
| return -1; |
| } |
| } |
| |
| static int cryptfs_enable_all_volumes(struct crypt_mnt_ftr *crypt_ftr, int how, |
| char *crypto_blkdev, char *real_blkdev, |
| int previously_encrypted_upto) |
| { |
| off64_t cur_encryption_done=0, tot_encryption_size=0; |
| int rc = -1; |
| |
| if (!is_battery_ok_to_start()) { |
| SLOGW("Not starting encryption due to low battery"); |
| return 0; |
| } |
| |
| /* The size of the userdata partition, and add in the vold volumes below */ |
| tot_encryption_size = crypt_ftr->fs_size; |
| |
| if (how == CRYPTO_ENABLE_WIPE) { |
| struct fstab_rec* rec = fs_mgr_get_entry_for_mount_point(fstab, DATA_MNT_POINT); |
| int fs_type = get_fs_type(rec); |
| if (fs_type < 0) { |
| SLOGE("cryptfs_enable: unsupported fs type %s\n", rec->fs_type); |
| return -1; |
| } |
| rc = cryptfs_enable_wipe(crypto_blkdev, crypt_ftr->fs_size, fs_type); |
| } else if (how == CRYPTO_ENABLE_INPLACE) { |
| rc = cryptfs_enable_inplace(crypto_blkdev, real_blkdev, |
| crypt_ftr->fs_size, &cur_encryption_done, |
| tot_encryption_size, |
| previously_encrypted_upto); |
| |
| if (rc == ENABLE_INPLACE_ERR_DEV) { |
| /* Hack for b/17898962 */ |
| SLOGE("cryptfs_enable: crypto block dev failure. Must reboot...\n"); |
| cryptfs_reboot(reboot); |
| } |
| |
| if (!rc) { |
| crypt_ftr->encrypted_upto = cur_encryption_done; |
| } |
| |
| if (!rc && crypt_ftr->encrypted_upto == crypt_ftr->fs_size) { |
| /* The inplace routine never actually sets the progress to 100% due |
| * to the round down nature of integer division, so set it here */ |
| property_set("vold.encrypt_progress", "100"); |
| } |
| } else { |
| /* Shouldn't happen */ |
| SLOGE("cryptfs_enable: internal error, unknown option\n"); |
| rc = -1; |
| } |
| |
| return rc; |
| } |
| |
| int cryptfs_enable_internal(char *howarg, int crypt_type, char *passwd, |
| int allow_reboot) |
| { |
| int how = 0; |
| char crypto_blkdev[MAXPATHLEN], real_blkdev[MAXPATHLEN]; |
| unsigned char decrypted_master_key[KEY_LEN_BYTES]; |
| int rc=-1, i; |
| struct crypt_mnt_ftr crypt_ftr; |
| struct crypt_persist_data *pdata; |
| char encrypted_state[PROPERTY_VALUE_MAX]; |
| char lockid[32] = { 0 }; |
| char key_loc[PROPERTY_VALUE_MAX]; |
| int num_vols; |
| off64_t previously_encrypted_upto = 0; |
| |
| if (!strcmp(howarg, "wipe")) { |
| how = CRYPTO_ENABLE_WIPE; |
| } else if (! strcmp(howarg, "inplace")) { |
| how = CRYPTO_ENABLE_INPLACE; |
| } else { |
| /* Shouldn't happen, as CommandListener vets the args */ |
| goto error_unencrypted; |
| } |
| |
| /* See if an encryption was underway and interrupted */ |
| if (how == CRYPTO_ENABLE_INPLACE |
| && get_crypt_ftr_and_key(&crypt_ftr) == 0 |
| && (crypt_ftr.flags & CRYPT_ENCRYPTION_IN_PROGRESS)) { |
| previously_encrypted_upto = crypt_ftr.encrypted_upto; |
| crypt_ftr.encrypted_upto = 0; |
| crypt_ftr.flags &= ~CRYPT_ENCRYPTION_IN_PROGRESS; |
| |
| /* At this point, we are in an inconsistent state. Until we successfully |
| complete encryption, a reboot will leave us broken. So mark the |
| encryption failed in case that happens. |
| On successfully completing encryption, remove this flag */ |
| crypt_ftr.flags |= CRYPT_INCONSISTENT_STATE; |
| |
| put_crypt_ftr_and_key(&crypt_ftr); |
| } |
| |
| property_get("ro.crypto.state", encrypted_state, ""); |
| if (!strcmp(encrypted_state, "encrypted") && !previously_encrypted_upto) { |
| SLOGE("Device is already running encrypted, aborting"); |
| goto error_unencrypted; |
| } |
| |
| // TODO refactor fs_mgr_get_crypt_info to get both in one call |
| fs_mgr_get_crypt_info(fstab, key_loc, 0, sizeof(key_loc)); |
| fs_mgr_get_crypt_info(fstab, 0, real_blkdev, sizeof(real_blkdev)); |
| |
| /* Get the size of the real block device */ |
| int fd = open(real_blkdev, O_RDONLY|O_CLOEXEC); |
| if (fd == -1) { |
| SLOGE("Cannot open block device %s\n", real_blkdev); |
| goto error_unencrypted; |
| } |
| unsigned long nr_sec; |
| get_blkdev_size(fd, &nr_sec); |
| if (nr_sec == 0) { |
| SLOGE("Cannot get size of block device %s\n", real_blkdev); |
| goto error_unencrypted; |
| } |
| close(fd); |
| |
| /* If doing inplace encryption, make sure the orig fs doesn't include the crypto footer */ |
| if ((how == CRYPTO_ENABLE_INPLACE) && (!strcmp(key_loc, KEY_IN_FOOTER))) { |
| unsigned int fs_size_sec, max_fs_size_sec; |
| fs_size_sec = get_fs_size(real_blkdev); |
| if (fs_size_sec == 0) |
| fs_size_sec = get_f2fs_filesystem_size_sec(real_blkdev); |
| |
| max_fs_size_sec = nr_sec - (CRYPT_FOOTER_OFFSET / CRYPT_SECTOR_SIZE); |
| |
| if (fs_size_sec > max_fs_size_sec) { |
| SLOGE("Orig filesystem overlaps crypto footer region. Cannot encrypt in place."); |
| goto error_unencrypted; |
| } |
| } |
| |
| /* Get a wakelock as this may take a while, and we don't want the |
| * device to sleep on us. We'll grab a partial wakelock, and if the UI |
| * wants to keep the screen on, it can grab a full wakelock. |
| */ |
| snprintf(lockid, sizeof(lockid), "enablecrypto%d", (int) getpid()); |
| acquire_wake_lock(PARTIAL_WAKE_LOCK, lockid); |
| |
| /* The init files are setup to stop the class main and late start when |
| * vold sets trigger_shutdown_framework. |
| */ |
| property_set("vold.decrypt", "trigger_shutdown_framework"); |
| SLOGD("Just asked init to shut down class main\n"); |
| |
| /* Ask vold to unmount all devices that it manages */ |
| if (vold_unmountAll()) { |
| SLOGE("Failed to unmount all vold managed devices"); |
| } |
| |
| /* Now unmount the /data partition. */ |
| if (wait_and_unmount(DATA_MNT_POINT, false)) { |
| if (allow_reboot) { |
| goto error_shutting_down; |
| } else { |
| goto error_unencrypted; |
| } |
| } |
| |
| /* Do extra work for a better UX when doing the long inplace encryption */ |
| if (how == CRYPTO_ENABLE_INPLACE) { |
| /* Now that /data is unmounted, we need to mount a tmpfs |
| * /data, set a property saying we're doing inplace encryption, |
| * and restart the framework. |
| */ |
| if (fs_mgr_do_tmpfs_mount(DATA_MNT_POINT)) { |
| goto error_shutting_down; |
| } |
| /* Tells the framework that inplace encryption is starting */ |
| property_set("vold.encrypt_progress", "0"); |
| |
| /* restart the framework. */ |
| /* Create necessary paths on /data */ |
| if (prep_data_fs()) { |
| goto error_shutting_down; |
| } |
| |
| /* Ugh, shutting down the framework is not synchronous, so until it |
| * can be fixed, this horrible hack will wait a moment for it all to |
| * shut down before proceeding. Without it, some devices cannot |
| * restart the graphics services. |
| */ |
| sleep(2); |
| } |
| |
| /* Start the actual work of making an encrypted filesystem */ |
| /* Initialize a crypt_mnt_ftr for the partition */ |
| if (previously_encrypted_upto == 0) { |
| if (cryptfs_init_crypt_mnt_ftr(&crypt_ftr)) { |
| goto error_shutting_down; |
| } |
| |
| if (!strcmp(key_loc, KEY_IN_FOOTER)) { |
| crypt_ftr.fs_size = nr_sec |
| - (CRYPT_FOOTER_OFFSET / CRYPT_SECTOR_SIZE); |
| } else { |
| crypt_ftr.fs_size = nr_sec; |
| } |
| /* At this point, we are in an inconsistent state. Until we successfully |
| complete encryption, a reboot will leave us broken. So mark the |
| encryption failed in case that happens. |
| On successfully completing encryption, remove this flag */ |
| crypt_ftr.flags |= CRYPT_INCONSISTENT_STATE; |
| crypt_ftr.crypt_type = crypt_type; |
| #ifndef CONFIG_HW_DISK_ENCRYPTION |
| strlcpy((char *)crypt_ftr.crypto_type_name, "aes-cbc-essiv:sha256", MAX_CRYPTO_TYPE_NAME_LEN); |
| #else |
| strlcpy((char *)crypt_ftr.crypto_type_name, "aes-xts", MAX_CRYPTO_TYPE_NAME_LEN); |
| |
| rc = clear_hw_device_encryption_key(); |
| if (!rc) { |
| SLOGE("Error clearing device encryption hardware key. rc = %d", rc); |
| } |
| |
| rc = set_hw_device_encryption_key(passwd, |
| (char*) crypt_ftr.crypto_type_name); |
| if (!rc) { |
| SLOGE("Error initializing device encryption hardware key. rc = %d", rc); |
| goto error_shutting_down; |
| } |
| #endif |
| |
| /* Make an encrypted master key */ |
| if (create_encrypted_random_key(passwd, crypt_ftr.master_key, crypt_ftr.salt, &crypt_ftr)) { |
| SLOGE("Cannot create encrypted master key\n"); |
| goto error_shutting_down; |
| } |
| |
| /* Write the key to the end of the partition */ |
| put_crypt_ftr_and_key(&crypt_ftr); |
| |
| /* If any persistent data has been remembered, save it. |
| * If none, create a valid empty table and save that. |
| */ |
| if (!persist_data) { |
| pdata = malloc(CRYPT_PERSIST_DATA_SIZE); |
| if (pdata) { |
| init_empty_persist_data(pdata, CRYPT_PERSIST_DATA_SIZE); |
| persist_data = pdata; |
| } |
| } |
| if (persist_data) { |
| save_persistent_data(); |
| } |
| } |
| |
| if (how == CRYPTO_ENABLE_INPLACE) { |
| /* startup service classes main and late_start */ |
| property_set("vold.decrypt", "trigger_restart_min_framework"); |
| SLOGD("Just triggered restart_min_framework\n"); |
| |
| /* OK, the framework is restarted and will soon be showing a |
| * progress bar. Time to setup an encrypted mapping, and |
| * either write a new filesystem, or encrypt in place updating |
| * the progress bar as we work. |
| */ |
| } |
| |
| decrypt_master_key(passwd, decrypted_master_key, &crypt_ftr, 0, 0); |
| create_crypto_blk_dev(&crypt_ftr, decrypted_master_key, real_blkdev, crypto_blkdev, |
| "userdata"); |
| |
| /* If we are continuing, check checksums match */ |
| rc = 0; |
| if (previously_encrypted_upto) { |
| __le8 hash_first_block[SHA256_DIGEST_LENGTH]; |
| rc = cryptfs_SHA256_fileblock(crypto_blkdev, hash_first_block); |
| |
| if (!rc && memcmp(hash_first_block, crypt_ftr.hash_first_block, |
| sizeof(hash_first_block)) != 0) { |
| SLOGE("Checksums do not match - trigger wipe"); |
| rc = -1; |
| } |
| } |
| |
| if (!rc) { |
| rc = cryptfs_enable_all_volumes(&crypt_ftr, how, |
| crypto_blkdev, real_blkdev, |
| previously_encrypted_upto); |
| } |
| |
| /* Calculate checksum if we are not finished */ |
| if (!rc && how == CRYPTO_ENABLE_INPLACE |
| && crypt_ftr.encrypted_upto != crypt_ftr.fs_size) { |
| rc = cryptfs_SHA256_fileblock(crypto_blkdev, |
| crypt_ftr.hash_first_block); |
| if (rc) { |
| SLOGE("Error calculating checksum for continuing encryption"); |
| rc = -1; |
| } |
| } |
| |
| /* Undo the dm-crypt mapping whether we succeed or not */ |
| delete_crypto_blk_dev("userdata"); |
| |
| if (! rc) { |
| /* Success */ |
| crypt_ftr.flags &= ~CRYPT_INCONSISTENT_STATE; |
| |
| if (how == CRYPTO_ENABLE_INPLACE |
| && crypt_ftr.encrypted_upto != crypt_ftr.fs_size) { |
| SLOGD("Encrypted up to sector %lld - will continue after reboot", |
| crypt_ftr.encrypted_upto); |
| crypt_ftr.flags |= CRYPT_ENCRYPTION_IN_PROGRESS; |
| } |
| |
| put_crypt_ftr_and_key(&crypt_ftr); |
| |
| if (how == CRYPTO_ENABLE_WIPE |
| || crypt_ftr.encrypted_upto == crypt_ftr.fs_size) { |
| char value[PROPERTY_VALUE_MAX]; |
| property_get("ro.crypto.state", value, ""); |
| if (!strcmp(value, "")) { |
| /* default encryption - continue first boot sequence */ |
| property_set("ro.crypto.state", "encrypted"); |
| release_wake_lock(lockid); |
| cryptfs_check_passwd(DEFAULT_PASSWORD); |
| cryptfs_restart_internal(1); |
| return 0; |
| } else { |
| sleep(2); /* Give the UI a chance to show 100% progress */ |
| cryptfs_reboot(reboot); |
| } |
| } else { |
| sleep(2); /* Partially encrypted, ensure writes flushed to ssd */ |
| cryptfs_reboot(shutdown); |
| } |
| } else { |
| char value[PROPERTY_VALUE_MAX]; |
| |
| property_get("ro.vold.wipe_on_crypt_fail", value, "0"); |
| if (!strcmp(value, "1")) { |
| /* wipe data if encryption failed */ |
| SLOGE("encryption failed - rebooting into recovery to wipe data\n"); |
| mkdir("/cache/recovery", 0700); |
| int fd = open("/cache/recovery/command", O_RDWR|O_CREAT|O_TRUNC|O_CLOEXEC, 0600); |
| if (fd >= 0) { |
| write(fd, "--wipe_data\n", strlen("--wipe_data\n") + 1); |
| write(fd, "--reason=cryptfs_enable_internal\n", strlen("--reason=cryptfs_enable_internal\n") + 1); |
| close(fd); |
| } else { |
| SLOGE("could not open /cache/recovery/command\n"); |
| } |
| cryptfs_reboot(recovery); |
| } else { |
| /* set property to trigger dialog */ |
| property_set("vold.encrypt_progress", "error_partially_encrypted"); |
| release_wake_lock(lockid); |
| } |
| return -1; |
| } |
| |
| /* hrm, the encrypt step claims success, but the reboot failed. |
| * This should not happen. |
| * Set the property and return. Hope the framework can deal with it. |
| */ |
| property_set("vold.encrypt_progress", "error_reboot_failed"); |
| release_wake_lock(lockid); |
| return rc; |
| |
| error_unencrypted: |
| property_set("vold.encrypt_progress", "error_not_encrypted"); |
| if (lockid[0]) { |
| release_wake_lock(lockid); |
| } |
| return -1; |
| |
| error_shutting_down: |
| /* we failed, and have not encrypted anthing, so the users's data is still intact, |
| * but the framework is stopped and not restarted to show the error, so it's up to |
| * vold to restart the system. |
| */ |
| SLOGE("Error enabling encryption after framework is shutdown, no data changed, restarting system"); |
| cryptfs_reboot(reboot); |
| |
| /* shouldn't get here */ |
| property_set("vold.encrypt_progress", "error_shutting_down"); |
| if (lockid[0]) { |
| release_wake_lock(lockid); |
| } |
| return -1; |
| } |
| |
| int cryptfs_enable(char *howarg, int type, char *passwd, int allow_reboot) |
| { |
| char* adjusted_passwd = adjust_passwd(passwd); |
| if (adjusted_passwd) { |
| passwd = adjusted_passwd; |
| } |
| |
| int rc = cryptfs_enable_internal(howarg, type, passwd, allow_reboot); |
| |
| free(adjusted_passwd); |
| return rc; |
| } |
| |
| int cryptfs_enable_default(char *howarg, int allow_reboot) |
| { |
| return cryptfs_enable_internal(howarg, CRYPT_TYPE_DEFAULT, |
| DEFAULT_PASSWORD, allow_reboot); |
| } |
| |
| int cryptfs_changepw(int crypt_type, const char *newpw) |
| { |
| if (e4crypt_crypto_complete(DATA_MNT_POINT) == 0) { |
| return e4crypt_change_password(DATA_MNT_POINT, crypt_type, newpw); |
| } |
| |
| struct crypt_mnt_ftr crypt_ftr; |
| int rc; |
| |
| /* This is only allowed after we've successfully decrypted the master key */ |
| if (!master_key_saved) { |
| SLOGE("Key not saved, aborting"); |
| return -1; |
| } |
| |
| if (crypt_type < 0 || crypt_type > CRYPT_TYPE_MAX_TYPE) { |
| SLOGE("Invalid crypt_type %d", crypt_type); |
| return -1; |
| } |
| |
| /* get key */ |
| if (get_crypt_ftr_and_key(&crypt_ftr)) { |
| SLOGE("Error getting crypt footer and key"); |
| return -1; |
| } |
| |
| crypt_ftr.crypt_type = crypt_type; |
| |
| char* adjusted_passwd = adjust_passwd(newpw); |
| if (adjusted_passwd) { |
| newpw = adjusted_passwd; |
| } |
| |
| rc = encrypt_master_key(crypt_type == CRYPT_TYPE_DEFAULT ? DEFAULT_PASSWORD |
| : newpw, |
| crypt_ftr.salt, |
| saved_master_key, |
| crypt_ftr.master_key, |
| &crypt_ftr); |
| free(adjusted_passwd); |
| if (rc) { |
| SLOGE("Encrypt master key failed: %d", rc); |
| return -1; |
| } |
| /* save the key */ |
| put_crypt_ftr_and_key(&crypt_ftr); |
| |
| #ifdef CONFIG_HW_DISK_ENCRYPTION |
| if (!strcmp((char *)crypt_ftr.crypto_type_name, "aes-xts")) { |
| if (crypt_type == CRYPT_TYPE_DEFAULT) { |
| int rc = update_hw_device_encryption_key(DEFAULT_PASSWORD, (char*) crypt_ftr.crypto_type_name); |
| SLOGD("Update hardware encryption key to default for crypt_type: %d. rc = %d", crypt_type, rc); |
| if (!rc) |
| return -1; |
| } else { |
| int rc = update_hw_device_encryption_key(newpw, (char*) crypt_ftr.crypto_type_name); |
| SLOGD("Update hardware encryption key for crypt_type: %d. rc = %d", crypt_type, rc); |
| if (!rc) |
| return -1; |
| } |
| } |
| #endif |
| return 0; |
| } |
| |
| static unsigned int persist_get_max_entries(int encrypted) { |
| struct crypt_mnt_ftr crypt_ftr; |
| unsigned int dsize; |
| unsigned int max_persistent_entries; |
| |
| /* If encrypted, use the values from the crypt_ftr, otherwise |
| * use the values for the current spec. |
| */ |
| if (encrypted) { |
| if (get_crypt_ftr_and_key(&crypt_ftr)) { |
| return -1; |
| } |
| dsize = crypt_ftr.persist_data_size; |
| } else { |
| dsize = CRYPT_PERSIST_DATA_SIZE; |
| } |
| |
| max_persistent_entries = (dsize - sizeof(struct crypt_persist_data)) / |
| sizeof(struct crypt_persist_entry); |
| |
| return max_persistent_entries; |
| } |
| |
| static int persist_get_key(const char *fieldname, char *value) |
| { |
| unsigned int i; |
| |
| if (persist_data == NULL) { |
| return -1; |
| } |
| for (i = 0; i < persist_data->persist_valid_entries; i++) { |
| if (!strncmp(persist_data->persist_entry[i].key, fieldname, PROPERTY_KEY_MAX)) { |
| /* We found it! */ |
| strlcpy(value, persist_data->persist_entry[i].val, PROPERTY_VALUE_MAX); |
| return 0; |
| } |
| } |
| |
| return -1; |
| } |
| |
| static int persist_set_key(const char *fieldname, const char *value, int encrypted) |
| { |
| unsigned int i; |
| unsigned int num; |
| unsigned int max_persistent_entries; |
| |
| if (persist_data == NULL) { |
| return -1; |
| } |
| |
| max_persistent_entries = persist_get_max_entries(encrypted); |
| |
| num = persist_data->persist_valid_entries; |
| |
| for (i = 0; i < num; i++) { |
| if (!strncmp(persist_data->persist_entry[i].key, fieldname, PROPERTY_KEY_MAX)) { |
| /* We found an existing entry, update it! */ |
| memset(persist_data->persist_entry[i].val, 0, PROPERTY_VALUE_MAX); |
| strlcpy(persist_data->persist_entry[i].val, value, PROPERTY_VALUE_MAX); |
| return 0; |
| } |
| } |
| |
| /* We didn't find it, add it to the end, if there is room */ |
| if (persist_data->persist_valid_entries < max_persistent_entries) { |
| memset(&persist_data->persist_entry[num], 0, sizeof(struct crypt_persist_entry)); |
| strlcpy(persist_data->persist_entry[num].key, fieldname, PROPERTY_KEY_MAX); |
| strlcpy(persist_data->persist_entry[num].val, value, PROPERTY_VALUE_MAX); |
| persist_data->persist_valid_entries++; |
| return 0; |
| } |
| |
| return -1; |
| } |
| |
| /** |
| * Test if key is part of the multi-entry (field, index) sequence. Return non-zero if key is in the |
| * sequence and its index is greater than or equal to index. Return 0 otherwise. |
| */ |
| static int match_multi_entry(const char *key, const char *field, unsigned index) { |
| unsigned int field_len; |
| unsigned int key_index; |
| field_len = strlen(field); |
| |
| if (index == 0) { |
| // The first key in a multi-entry field is just the filedname itself. |
| if (!strcmp(key, field)) { |
| return 1; |
| } |
| } |
| // Match key against "%s_%d" % (field, index) |
| if (strlen(key) < field_len + 1 + 1) { |
| // Need at least a '_' and a digit. |
| return 0; |
| } |
| if (strncmp(key, field, field_len)) { |
| // If the key does not begin with field, it's not a match. |
| return 0; |
| } |
| if (1 != sscanf(&key[field_len],"_%d", &key_index)) { |
| return 0; |
| } |
| return key_index >= index; |
| } |
| |
| /* |
| * Delete entry/entries from persist_data. If the entries are part of a multi-segment field, all |
| * remaining entries starting from index will be deleted. |
| * returns PERSIST_DEL_KEY_OK if deletion succeeds, |
| * PERSIST_DEL_KEY_ERROR_NO_FIELD if the field does not exist, |
| * and PERSIST_DEL_KEY_ERROR_OTHER if error occurs. |
| * |
| */ |
| static int persist_del_keys(const char *fieldname, unsigned index) |
| { |
| unsigned int i; |
| unsigned int j; |
| unsigned int num; |
| |
| if (persist_data == NULL) { |
| return PERSIST_DEL_KEY_ERROR_OTHER; |
| } |
| |
| num = persist_data->persist_valid_entries; |
| |
| j = 0; // points to the end of non-deleted entries. |
| // Filter out to-be-deleted entries in place. |
| for (i = 0; i < num; i++) { |
| if (!match_multi_entry(persist_data->persist_entry[i].key, fieldname, index)) { |
| persist_data->persist_entry[j] = persist_data->persist_entry[i]; |
| j++; |
| } |
| } |
| |
| if (j < num) { |
| persist_data->persist_valid_entries = j; |
| // Zeroise the remaining entries |
| memset(&persist_data->persist_entry[j], 0, (num - j) * sizeof(struct crypt_persist_entry)); |
| return PERSIST_DEL_KEY_OK; |
| } else { |
| // Did not find an entry matching the given fieldname |
| return PERSIST_DEL_KEY_ERROR_NO_FIELD; |
| } |
| } |
| |
| static int persist_count_keys(const char *fieldname) |
| { |
| unsigned int i; |
| unsigned int count; |
| |
| if (persist_data == NULL) { |
| return -1; |
| } |
| |
| count = 0; |
| for (i = 0; i < persist_data->persist_valid_entries; i++) { |
| if (match_multi_entry(persist_data->persist_entry[i].key, fieldname, 0)) { |
| count++; |
| } |
| } |
| |
| return count; |
| } |
| |
| /* Return the value of the specified field. */ |
| int cryptfs_getfield(const char *fieldname, char *value, int len) |
| { |
| char temp_value[PROPERTY_VALUE_MAX]; |
| /* CRYPTO_GETFIELD_OK is success, |
| * CRYPTO_GETFIELD_ERROR_NO_FIELD is value not set, |
| * CRYPTO_GETFIELD_ERROR_BUF_TOO_SMALL is buffer (as given by len) too small, |
| * CRYPTO_GETFIELD_ERROR_OTHER is any other error |
| */ |
| int rc = CRYPTO_GETFIELD_ERROR_OTHER; |
| int i; |
| char temp_field[PROPERTY_KEY_MAX]; |
| |
| if (persist_data == NULL) { |
| load_persistent_data(); |
| if (persist_data == NULL) { |
| SLOGE("Getfield error, cannot load persistent data"); |
| goto out; |
| } |
| } |
| |
| // Read value from persistent entries. If the original value is split into multiple entries, |
| // stitch them back together. |
| if (!persist_get_key(fieldname, temp_value)) { |
| // We found it, copy it to the caller's buffer and keep going until all entries are read. |
| if (strlcpy(value, temp_value, len) >= (unsigned) len) { |
| // value too small |
| rc = CRYPTO_GETFIELD_ERROR_BUF_TOO_SMALL; |
| goto out; |
| } |
| rc = CRYPTO_GETFIELD_OK; |
| |
| for (i = 1; /* break explicitly */; i++) { |
| if (snprintf(temp_field, sizeof(temp_field), "%s_%d", fieldname, i) >= |
| (int) sizeof(temp_field)) { |
| // If the fieldname is very long, we stop as soon as it begins to overflow the |
| // maximum field length. At this point we have in fact fully read out the original |
| // value because cryptfs_setfield would not allow fields with longer names to be |
| // written in the first place. |
| break; |
| } |
| if (!persist_get_key(temp_field, temp_value)) { |
| if (strlcat(value, temp_value, len) >= (unsigned)len) { |
| // value too small. |
| rc = CRYPTO_GETFIELD_ERROR_BUF_TOO_SMALL; |
| goto out; |
| } |
| } else { |
| // Exhaust all entries. |
| break; |
| } |
| } |
| } else { |
| /* Sadness, it's not there. Return the error */ |
| rc = CRYPTO_GETFIELD_ERROR_NO_FIELD; |
| } |
| |
| out: |
| return rc; |
| } |
| |
| /* Set the value of the specified field. */ |
| int cryptfs_setfield(const char *fieldname, const char *value) |
| { |
| char encrypted_state[PROPERTY_VALUE_MAX]; |
| /* 0 is success, negative values are error */ |
| int rc = CRYPTO_SETFIELD_ERROR_OTHER; |
| int encrypted = 0; |
| unsigned int field_id; |
| char temp_field[PROPERTY_KEY_MAX]; |
| unsigned int num_entries; |
| unsigned int max_keylen; |
| |
| if (persist_data == NULL) { |
| load_persistent_data(); |
| if (persist_data == NULL) { |
| SLOGE("Setfield error, cannot load persistent data"); |
| goto out; |
| } |
| } |
| |
| property_get("ro.crypto.state", encrypted_state, ""); |
| if (!strcmp(encrypted_state, "encrypted") ) { |
| encrypted = 1; |
| } |
| |
| // Compute the number of entries required to store value, each entry can store up to |
| // (PROPERTY_VALUE_MAX - 1) chars |
| if (strlen(value) == 0) { |
| // Empty value also needs one entry to store. |
| num_entries = 1; |
| } else { |
| num_entries = (strlen(value) + (PROPERTY_VALUE_MAX - 1) - 1) / (PROPERTY_VALUE_MAX - 1); |
| } |
| |
| max_keylen = strlen(fieldname); |
| if (num_entries > 1) { |
| // Need an extra "_%d" suffix. |
| max_keylen += 1 + log10(num_entries); |
| } |
| if (max_keylen > PROPERTY_KEY_MAX - 1) { |
| rc = CRYPTO_SETFIELD_ERROR_FIELD_TOO_LONG; |
| goto out; |
| } |
| |
| // Make sure we have enough space to write the new value |
| if (persist_data->persist_valid_entries + num_entries - persist_count_keys(fieldname) > |
| persist_get_max_entries(encrypted)) { |
| rc = CRYPTO_SETFIELD_ERROR_VALUE_TOO_LONG; |
| goto out; |
| } |
| |
| // Now that we know persist_data has enough space for value, let's delete the old field first |
| // to make up space. |
| persist_del_keys(fieldname, 0); |
| |
| if (persist_set_key(fieldname, value, encrypted)) { |
| // fail to set key, should not happen as we have already checked the available space |
| SLOGE("persist_set_key() error during setfield()"); |
| goto out; |
| } |
| |
| for (field_id = 1; field_id < num_entries; field_id++) { |
| snprintf(temp_field, sizeof(temp_field), "%s_%d", fieldname, field_id); |
| |
| if (persist_set_key(temp_field, value + field_id * (PROPERTY_VALUE_MAX - 1), encrypted)) { |
| // fail to set key, should not happen as we have already checked the available space. |
| SLOGE("persist_set_key() error during setfield()"); |
| goto out; |
| } |
| } |
| |
| /* If we are running encrypted, save the persistent data now */ |
| if (encrypted) { |
| if (save_persistent_data()) { |
| SLOGE("Setfield error, cannot save persistent data"); |
| goto out; |
| } |
| } |
| |
| rc = CRYPTO_SETFIELD_OK; |
| |
| out: |
| return rc; |
| } |
| |
| /* Checks userdata. Attempt to mount the volume if default- |
| * encrypted. |
| * On success trigger next init phase and return 0. |
| * Currently do not handle failure - see TODO below. |
| */ |
| int cryptfs_mount_default_encrypted(void) |
| { |
| char decrypt_state[PROPERTY_VALUE_MAX]; |
| property_get("vold.decrypt", decrypt_state, "0"); |
| if (!strcmp(decrypt_state, "0")) { |
| SLOGE("Not encrypted - should not call here"); |
| } else { |
| int crypt_type = cryptfs_get_password_type(); |
| if (crypt_type < 0 || crypt_type > CRYPT_TYPE_MAX_TYPE) { |
| SLOGE("Bad crypt type - error"); |
| } else if (crypt_type != CRYPT_TYPE_DEFAULT) { |
| SLOGD("Password is not default - " |
| "starting min framework to prompt"); |
| property_set("vold.decrypt", "trigger_restart_min_framework"); |
| return 0; |
| } else if (cryptfs_check_passwd(DEFAULT_PASSWORD) == 0) { |
| SLOGD("Password is default - restarting filesystem"); |
| cryptfs_restart_internal(0); |
| return 0; |
| } else { |
| SLOGE("Encrypted, default crypt type but can't decrypt"); |
| } |
| } |
| |
| /** Corrupt. Allow us to boot into framework, which will detect bad |
| crypto when it calls do_crypto_complete, then do a factory reset |
| */ |
| property_set("vold.decrypt", "trigger_restart_min_framework"); |
| return 0; |
| } |
| |
| /* Returns type of the password, default, pattern, pin or password. |
| */ |
| int cryptfs_get_password_type(void) |
| { |
| if (e4crypt_crypto_complete(DATA_MNT_POINT) == 0) { |
| return e4crypt_get_password_type(DATA_MNT_POINT); |
| } |
| |
| struct crypt_mnt_ftr crypt_ftr; |
| |
| if (get_crypt_ftr_and_key(&crypt_ftr)) { |
| SLOGE("Error getting crypt footer and key\n"); |
| return -1; |
| } |
| |
| if (crypt_ftr.flags & CRYPT_INCONSISTENT_STATE) { |
| return -1; |
| } |
| |
| return crypt_ftr.crypt_type; |
| } |
| |
| const char* cryptfs_get_password() |
| { |
| if (e4crypt_crypto_complete(DATA_MNT_POINT) == 0) { |
| return e4crypt_get_password(DATA_MNT_POINT); |
| } |
| |
| struct timespec now; |
| clock_gettime(CLOCK_BOOTTIME, &now); |
| if (now.tv_sec < password_expiry_time) { |
| return password; |
| } else { |
| cryptfs_clear_password(); |
| return 0; |
| } |
| } |
| |
| void cryptfs_clear_password() |
| { |
| if (password) { |
| size_t len = strlen(password); |
| memset(password, 0, len); |
| free(password); |
| password = 0; |
| password_expiry_time = 0; |
| } |
| } |
| |
| int cryptfs_enable_file() |
| { |
| return e4crypt_enable(DATA_MNT_POINT); |
| } |
| |
| int cryptfs_create_default_ftr(struct crypt_mnt_ftr* crypt_ftr, __attribute__((unused))int key_length) |
| { |
| if (cryptfs_init_crypt_mnt_ftr(crypt_ftr)) { |
| SLOGE("Failed to initialize crypt_ftr"); |
| return -1; |
| } |
| |
| if (create_encrypted_random_key(DEFAULT_PASSWORD, crypt_ftr->master_key, |
| crypt_ftr->salt, crypt_ftr)) { |
| SLOGE("Cannot create encrypted master key\n"); |
| return -1; |
| } |
| |
| //crypt_ftr->keysize = key_length / 8; |
| return 0; |
| } |
| |
| int cryptfs_get_master_key(struct crypt_mnt_ftr* ftr, const char* password, |
| unsigned char* master_key) |
| { |
| int rc; |
| |
| unsigned char* intermediate_key = 0; |
| size_t intermediate_key_size = 0; |
| |
| if (password == 0 || *password == 0) { |
| password = DEFAULT_PASSWORD; |
| } |
| |
| rc = decrypt_master_key(password, master_key, ftr, &intermediate_key, |
| &intermediate_key_size); |
| |
| int N = 1 << ftr->N_factor; |
| int r = 1 << ftr->r_factor; |
| int p = 1 << ftr->p_factor; |
| |
| unsigned char scrypted_intermediate_key[sizeof(ftr->scrypted_intermediate_key)]; |
| |
| rc = crypto_scrypt(intermediate_key, intermediate_key_size, |
| ftr->salt, sizeof(ftr->salt), N, r, p, |
| scrypted_intermediate_key, |
| sizeof(scrypted_intermediate_key)); |
| |
| free(intermediate_key); |
| |
| if (rc) { |
| SLOGE("Can't calculate intermediate key"); |
| return rc; |
| } |
| |
| return memcmp(scrypted_intermediate_key, ftr->scrypted_intermediate_key, |
| intermediate_key_size); |
| } |
| |
| int cryptfs_set_password(struct crypt_mnt_ftr* ftr, const char* password, |
| const unsigned char* master_key) |
| { |
| return encrypt_master_key(password, ftr->salt, master_key, ftr->master_key, |
| ftr); |
| } |