blob: f55932d1b28e461566e7b3a8c5be53055a335d1f [file] [log] [blame]
/*
* Copyright (C) 2016 The Android Open Source Project
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#include "EncryptInplace.h"
#include <ext4_utils/ext4.h>
#include <ext4_utils/ext4_utils.h>
#include <f2fs_sparseblock.h>
#include <fcntl.h>
#include <inttypes.h>
#include <stdint.h>
#include <stdio.h>
#include <sys/stat.h>
#include <sys/types.h>
#include <time.h>
#include <algorithm>
#include <android-base/logging.h>
#include <android-base/properties.h>
// HORRIBLE HACK, FIXME
#include "cryptfs.h"
// FIXME horrible cut-and-paste code
static inline int unix_read(int fd, void* buff, int len) {
return TEMP_FAILURE_RETRY(read(fd, buff, len));
}
static inline int unix_write(int fd, const void* buff, int len) {
return TEMP_FAILURE_RETRY(write(fd, buff, len));
}
#define CRYPT_SECTORS_PER_BUFSIZE (CRYPT_INPLACE_BUFSIZE / CRYPT_SECTOR_SIZE)
/* aligned 32K writes tends to make flash happy.
* SD card association recommends it.
*/
#ifndef CONFIG_HW_DISK_ENCRYPTION
#define BLOCKS_AT_A_TIME 8
#else
#define BLOCKS_AT_A_TIME 1024
#endif
struct encryptGroupsData {
int realfd;
int cryptofd;
off64_t numblocks;
off64_t one_pct, cur_pct, new_pct;
off64_t blocks_already_done, tot_numblocks;
off64_t used_blocks_already_done, tot_used_blocks;
char *real_blkdev, *crypto_blkdev;
int count;
off64_t offset;
char* buffer;
off64_t last_written_sector;
int completed;
time_t time_started;
int remaining_time;
bool set_progress_properties;
};
static void update_progress(struct encryptGroupsData* data, int is_used) {
data->blocks_already_done++;
if (is_used) {
data->used_blocks_already_done++;
}
if (data->tot_used_blocks) {
data->new_pct = data->used_blocks_already_done / data->one_pct;
} else {
data->new_pct = data->blocks_already_done / data->one_pct;
}
if (!data->set_progress_properties) return;
if (data->new_pct > data->cur_pct) {
char buf[8];
data->cur_pct = data->new_pct;
snprintf(buf, sizeof(buf), "%" PRId64, data->cur_pct);
android::base::SetProperty("vold.encrypt_progress", buf);
}
if (data->cur_pct >= 5) {
struct timespec time_now;
if (clock_gettime(CLOCK_MONOTONIC, &time_now)) {
LOG(WARNING) << "Error getting time";
} else {
double elapsed_time = difftime(time_now.tv_sec, data->time_started);
off64_t remaining_blocks = data->tot_used_blocks - data->used_blocks_already_done;
int remaining_time =
(int)(elapsed_time * remaining_blocks / data->used_blocks_already_done);
// Change time only if not yet set, lower, or a lot higher for
// best user experience
if (data->remaining_time == -1 || remaining_time < data->remaining_time ||
remaining_time > data->remaining_time + 60) {
char buf[8];
snprintf(buf, sizeof(buf), "%d", remaining_time);
android::base::SetProperty("vold.encrypt_time_remaining", buf);
data->remaining_time = remaining_time;
}
}
}
}
static void log_progress(struct encryptGroupsData const* data, bool completed) {
// Precondition - if completed data = 0 else data != 0
// Track progress so we can skip logging blocks
static off64_t offset = -1;
// Need to close existing 'Encrypting from' log?
if (completed || (offset != -1 && data->offset != offset)) {
LOG(INFO) << "Encrypted to sector " << offset / info.block_size * CRYPT_SECTOR_SIZE;
offset = -1;
}
// Need to start new 'Encrypting from' log?
if (!completed && offset != data->offset) {
LOG(INFO) << "Encrypting from sector " << data->offset / info.block_size * CRYPT_SECTOR_SIZE;
}
// Update offset
if (!completed) {
offset = data->offset + (off64_t)data->count * info.block_size;
}
}
static int flush_outstanding_data(struct encryptGroupsData* data) {
if (data->count == 0) {
return 0;
}
LOG(DEBUG) << "Copying " << data->count << " blocks at offset " << data->offset;
if (pread64(data->realfd, data->buffer, info.block_size * data->count, data->offset) <= 0) {
LOG(ERROR) << "Error reading real_blkdev " << data->real_blkdev << " for inplace encrypt";
return -1;
}
if (pwrite64(data->cryptofd, data->buffer, info.block_size * data->count, data->offset) <= 0) {
LOG(ERROR) << "Error writing crypto_blkdev " << data->crypto_blkdev
<< " for inplace encrypt";
return -1;
} else {
log_progress(data, false);
}
data->count = 0;
data->last_written_sector =
(data->offset + data->count) / info.block_size * CRYPT_SECTOR_SIZE - 1;
return 0;
}
static int encrypt_groups(struct encryptGroupsData* data) {
unsigned int i;
u8* block_bitmap = 0;
unsigned int block;
off64_t ret;
int rc = -1;
data->buffer = (char*)malloc(info.block_size * BLOCKS_AT_A_TIME);
if (!data->buffer) {
LOG(ERROR) << "Failed to allocate crypto buffer";
goto errout;
}
block_bitmap = (u8*)malloc(info.block_size);
if (!block_bitmap) {
LOG(ERROR) << "failed to allocate block bitmap";
goto errout;
}
for (i = 0; i < aux_info.groups; ++i) {
LOG(INFO) << "Encrypting group " << i;
u32 first_block = aux_info.first_data_block + i * info.blocks_per_group;
u32 block_count = std::min(info.blocks_per_group, (u32)(aux_info.len_blocks - first_block));
off64_t offset = (u64)info.block_size * aux_info.bg_desc[i].bg_block_bitmap;
ret = pread64(data->realfd, block_bitmap, info.block_size, offset);
if (ret != (int)info.block_size) {
LOG(ERROR) << "failed to read all of block group bitmap " << i;
goto errout;
}
offset = (u64)info.block_size * first_block;
data->count = 0;
for (block = 0; block < block_count; block++) {
int used = (aux_info.bg_desc[i].bg_flags & EXT4_BG_BLOCK_UNINIT)
? 0
: bitmap_get_bit(block_bitmap, block);
update_progress(data, used);
if (used) {
if (data->count == 0) {
data->offset = offset;
}
data->count++;
} else {
if (flush_outstanding_data(data)) {
goto errout;
}
}
offset += info.block_size;
/* Write data if we are aligned or buffer size reached */
if (offset % (info.block_size * BLOCKS_AT_A_TIME) == 0 ||
data->count == BLOCKS_AT_A_TIME) {
if (flush_outstanding_data(data)) {
goto errout;
}
}
}
if (flush_outstanding_data(data)) {
goto errout;
}
}
data->completed = 1;
rc = 0;
errout:
log_progress(0, true);
free(data->buffer);
free(block_bitmap);
return rc;
}
static int cryptfs_enable_inplace_ext4(char* crypto_blkdev, char* real_blkdev, off64_t size,
off64_t* size_already_done, off64_t tot_size,
off64_t previously_encrypted_upto,
bool set_progress_properties) {
u32 i;
struct encryptGroupsData data;
int rc; // Can't initialize without causing warning -Wclobbered
int retries = RETRY_MOUNT_ATTEMPTS;
struct timespec time_started = {0};
if (previously_encrypted_upto > *size_already_done) {
LOG(DEBUG) << "Not fast encrypting since resuming part way through";
return -1;
}
memset(&data, 0, sizeof(data));
data.real_blkdev = real_blkdev;
data.crypto_blkdev = crypto_blkdev;
data.set_progress_properties = set_progress_properties;
LOG(DEBUG) << "Opening" << real_blkdev;
if ((data.realfd = open(real_blkdev, O_RDWR | O_CLOEXEC)) < 0) {
PLOG(ERROR) << "Error opening real_blkdev " << real_blkdev << " for inplace encrypt";
rc = -1;
goto errout;
}
LOG(DEBUG) << "Opening" << crypto_blkdev;
// Wait until the block device appears. Re-use the mount retry values since it is reasonable.
while ((data.cryptofd = open(crypto_blkdev, O_WRONLY | O_CLOEXEC)) < 0) {
if (--retries) {
PLOG(ERROR) << "Error opening crypto_blkdev " << crypto_blkdev
<< " for ext4 inplace encrypt, retrying";
sleep(RETRY_MOUNT_DELAY_SECONDS);
} else {
PLOG(ERROR) << "Error opening crypto_blkdev " << crypto_blkdev
<< " for ext4 inplace encrypt";
rc = ENABLE_INPLACE_ERR_DEV;
goto errout;
}
}
if (setjmp(setjmp_env)) { // NOLINT
LOG(ERROR) << "Reading ext4 extent caused an exception";
rc = -1;
goto errout;
}
if (read_ext(data.realfd, 0) != 0) {
LOG(ERROR) << "Failed to read ext4 extent";
rc = -1;
goto errout;
}
data.numblocks = size / CRYPT_SECTORS_PER_BUFSIZE;
data.tot_numblocks = tot_size / CRYPT_SECTORS_PER_BUFSIZE;
data.blocks_already_done = *size_already_done / CRYPT_SECTORS_PER_BUFSIZE;
LOG(INFO) << "Encrypting ext4 filesystem in place...";
data.tot_used_blocks = data.numblocks;
for (i = 0; i < aux_info.groups; ++i) {
data.tot_used_blocks -= aux_info.bg_desc[i].bg_free_blocks_count;
}
data.one_pct = data.tot_used_blocks / 100;
data.cur_pct = 0;
if (clock_gettime(CLOCK_MONOTONIC, &time_started)) {
LOG(WARNING) << "Error getting time at start";
// Note - continue anyway - we'll run with 0
}
data.time_started = time_started.tv_sec;
data.remaining_time = -1;
rc = encrypt_groups(&data);
if (rc) {
LOG(ERROR) << "Error encrypting groups";
goto errout;
}
*size_already_done += data.completed ? size : data.last_written_sector;
rc = 0;
errout:
close(data.realfd);
close(data.cryptofd);
return rc;
}
static void log_progress_f2fs(u64 block, bool completed) {
// Precondition - if completed data = 0 else data != 0
// Track progress so we can skip logging blocks
static u64 last_block = (u64)-1;
// Need to close existing 'Encrypting from' log?
if (completed || (last_block != (u64)-1 && block != last_block + 1)) {
LOG(INFO) << "Encrypted to block " << last_block;
last_block = -1;
}
// Need to start new 'Encrypting from' log?
if (!completed && (last_block == (u64)-1 || block != last_block + 1)) {
LOG(INFO) << "Encrypting from block " << block;
}
// Update offset
if (!completed) {
last_block = block;
}
}
static int encrypt_one_block_f2fs(u64 pos, void* data) {
struct encryptGroupsData* priv_dat = (struct encryptGroupsData*)data;
priv_dat->blocks_already_done = pos - 1;
update_progress(priv_dat, 1);
off64_t offset = pos * CRYPT_INPLACE_BUFSIZE;
if (pread64(priv_dat->realfd, priv_dat->buffer, CRYPT_INPLACE_BUFSIZE, offset) <= 0) {
LOG(ERROR) << "Error reading real_blkdev " << priv_dat->crypto_blkdev
<< " for f2fs inplace encrypt";
return -1;
}
if (pwrite64(priv_dat->cryptofd, priv_dat->buffer, CRYPT_INPLACE_BUFSIZE, offset) <= 0) {
LOG(ERROR) << "Error writing crypto_blkdev " << priv_dat->crypto_blkdev
<< " for f2fs inplace encrypt";
return -1;
} else {
log_progress_f2fs(pos, false);
}
return 0;
}
static int cryptfs_enable_inplace_f2fs(char* crypto_blkdev, char* real_blkdev, off64_t size,
off64_t* size_already_done, off64_t tot_size,
off64_t previously_encrypted_upto,
bool set_progress_properties) {
struct encryptGroupsData data;
struct f2fs_info* f2fs_info = NULL;
int rc = ENABLE_INPLACE_ERR_OTHER;
if (previously_encrypted_upto > *size_already_done) {
LOG(DEBUG) << "Not fast encrypting since resuming part way through";
return ENABLE_INPLACE_ERR_OTHER;
}
memset(&data, 0, sizeof(data));
data.real_blkdev = real_blkdev;
data.crypto_blkdev = crypto_blkdev;
data.set_progress_properties = set_progress_properties;
data.realfd = -1;
data.cryptofd = -1;
if ((data.realfd = open64(real_blkdev, O_RDWR | O_CLOEXEC)) < 0) {
PLOG(ERROR) << "Error opening real_blkdev " << real_blkdev << " for f2fs inplace encrypt";
goto errout;
}
if ((data.cryptofd = open64(crypto_blkdev, O_WRONLY | O_CLOEXEC)) < 0) {
PLOG(ERROR) << "Error opening crypto_blkdev " << crypto_blkdev
<< " for f2fs inplace encrypt";
rc = ENABLE_INPLACE_ERR_DEV;
goto errout;
}
f2fs_info = generate_f2fs_info(data.realfd);
if (!f2fs_info) goto errout;
data.numblocks = size / CRYPT_SECTORS_PER_BUFSIZE;
data.tot_numblocks = tot_size / CRYPT_SECTORS_PER_BUFSIZE;
data.blocks_already_done = *size_already_done / CRYPT_SECTORS_PER_BUFSIZE;
data.tot_used_blocks = get_num_blocks_used(f2fs_info);
data.one_pct = data.tot_used_blocks / 100;
data.cur_pct = 0;
data.time_started = time(NULL);
data.remaining_time = -1;
data.buffer = (char*)malloc(f2fs_info->block_size);
if (!data.buffer) {
LOG(ERROR) << "Failed to allocate crypto buffer";
goto errout;
}
data.count = 0;
/* Currently, this either runs to completion, or hits a nonrecoverable error */
rc = run_on_used_blocks(data.blocks_already_done, f2fs_info, &encrypt_one_block_f2fs, &data);
if (rc) {
LOG(ERROR) << "Error in running over f2fs blocks";
rc = ENABLE_INPLACE_ERR_OTHER;
goto errout;
}
*size_already_done += size;
rc = 0;
errout:
if (rc) LOG(ERROR) << "Failed to encrypt f2fs filesystem on " << real_blkdev;
log_progress_f2fs(0, true);
free(f2fs_info);
free(data.buffer);
close(data.realfd);
close(data.cryptofd);
return rc;
}
static int cryptfs_enable_inplace_full(char* crypto_blkdev, char* real_blkdev, off64_t size,
off64_t* size_already_done, off64_t tot_size,
off64_t previously_encrypted_upto,
bool set_progress_properties) {
int realfd, cryptofd;
char* buf[CRYPT_INPLACE_BUFSIZE];
int rc = ENABLE_INPLACE_ERR_OTHER;
off64_t numblocks, i, remainder;
off64_t one_pct, cur_pct, new_pct;
off64_t blocks_already_done, tot_numblocks;
if ((realfd = open(real_blkdev, O_RDONLY | O_CLOEXEC)) < 0) {
PLOG(ERROR) << "Error opening real_blkdev " << real_blkdev << " for inplace encrypt";
return ENABLE_INPLACE_ERR_OTHER;
}
if ((cryptofd = open(crypto_blkdev, O_WRONLY | O_CLOEXEC)) < 0) {
PLOG(ERROR) << "Error opening crypto_blkdev " << crypto_blkdev << " for inplace encrypt";
close(realfd);
return ENABLE_INPLACE_ERR_DEV;
}
/* This is pretty much a simple loop of reading 4K, and writing 4K.
* The size passed in is the number of 512 byte sectors in the filesystem.
* So compute the number of whole 4K blocks we should read/write,
* and the remainder.
*/
numblocks = size / CRYPT_SECTORS_PER_BUFSIZE;
remainder = size % CRYPT_SECTORS_PER_BUFSIZE;
tot_numblocks = tot_size / CRYPT_SECTORS_PER_BUFSIZE;
blocks_already_done = *size_already_done / CRYPT_SECTORS_PER_BUFSIZE;
LOG(ERROR) << "Encrypting filesystem in place...";
i = previously_encrypted_upto + 1 - *size_already_done;
if (lseek64(realfd, i * CRYPT_SECTOR_SIZE, SEEK_SET) < 0) {
PLOG(ERROR) << "Cannot seek to previously encrypted point on " << real_blkdev;
goto errout;
}
if (lseek64(cryptofd, i * CRYPT_SECTOR_SIZE, SEEK_SET) < 0) {
PLOG(ERROR) << "Cannot seek to previously encrypted point on " << crypto_blkdev;
goto errout;
}
for (; i < size && i % CRYPT_SECTORS_PER_BUFSIZE != 0; ++i) {
if (unix_read(realfd, buf, CRYPT_SECTOR_SIZE) <= 0) {
PLOG(ERROR) << "Error reading initial sectors from real_blkdev " << real_blkdev
<< " for inplace encrypt";
goto errout;
}
if (unix_write(cryptofd, buf, CRYPT_SECTOR_SIZE) <= 0) {
PLOG(ERROR) << "Error writing initial sectors to crypto_blkdev " << crypto_blkdev
<< " for inplace encrypt";
goto errout;
} else {
LOG(INFO) << "Encrypted 1 block at " << i;
}
}
one_pct = tot_numblocks / 100;
cur_pct = 0;
/* process the majority of the filesystem in blocks */
for (i /= CRYPT_SECTORS_PER_BUFSIZE; i < numblocks; i++) {
new_pct = (i + blocks_already_done) / one_pct;
if (set_progress_properties && new_pct > cur_pct) {
char property_buf[8];
cur_pct = new_pct;
snprintf(property_buf, sizeof(property_buf), "%" PRId64, cur_pct);
android::base::SetProperty("vold.encrypt_progress", property_buf);
}
if (unix_read(realfd, buf, CRYPT_INPLACE_BUFSIZE) <= 0) {
PLOG(ERROR) << "Error reading real_blkdev " << real_blkdev << " for inplace encrypt";
goto errout;
}
if (unix_write(cryptofd, buf, CRYPT_INPLACE_BUFSIZE) <= 0) {
PLOG(ERROR) << "Error writing crypto_blkdev " << crypto_blkdev << " for inplace encrypt";
goto errout;
} else {
LOG(DEBUG) << "Encrypted " << CRYPT_SECTORS_PER_BUFSIZE << " block at "
<< i * CRYPT_SECTORS_PER_BUFSIZE;
}
}
/* Do any remaining sectors */
for (i = 0; i < remainder; i++) {
if (unix_read(realfd, buf, CRYPT_SECTOR_SIZE) <= 0) {
LOG(ERROR) << "Error reading final sectors from real_blkdev " << real_blkdev
<< " for inplace encrypt";
goto errout;
}
if (unix_write(cryptofd, buf, CRYPT_SECTOR_SIZE) <= 0) {
LOG(ERROR) << "Error writing final sectors to crypto_blkdev " << crypto_blkdev
<< " for inplace encrypt";
goto errout;
} else {
LOG(INFO) << "Encrypted 1 block at next location";
}
}
*size_already_done += size;
rc = 0;
errout:
close(realfd);
close(cryptofd);
return rc;
}
/* returns on of the ENABLE_INPLACE_* return codes */
int cryptfs_enable_inplace(char* crypto_blkdev, char* real_blkdev, off64_t size,
off64_t* size_already_done, off64_t tot_size,
off64_t previously_encrypted_upto, bool set_progress_properties) {
int rc_ext4, rc_f2fs, rc_full;
LOG(DEBUG) << "cryptfs_enable_inplace(" << crypto_blkdev << ", " << real_blkdev << ", " << size
<< ", " << size_already_done << ", " << tot_size << ", " << previously_encrypted_upto
<< ", " << set_progress_properties << ")";
if (previously_encrypted_upto) {
LOG(DEBUG) << "Continuing encryption from " << previously_encrypted_upto;
}
if (*size_already_done + size < previously_encrypted_upto) {
LOG(DEBUG) << "cryptfs_enable_inplace already done";
*size_already_done += size;
return 0;
}
/* TODO: identify filesystem type.
* As is, cryptfs_enable_inplace_ext4 will fail on an f2fs partition, and
* then we will drop down to cryptfs_enable_inplace_f2fs.
* */
if ((rc_ext4 = cryptfs_enable_inplace_ext4(crypto_blkdev, real_blkdev, size, size_already_done,
tot_size, previously_encrypted_upto,
set_progress_properties)) == 0) {
LOG(DEBUG) << "cryptfs_enable_inplace_ext4 success";
return 0;
}
LOG(DEBUG) << "cryptfs_enable_inplace_ext4()=" << rc_ext4;
if ((rc_f2fs = cryptfs_enable_inplace_f2fs(crypto_blkdev, real_blkdev, size, size_already_done,
tot_size, previously_encrypted_upto,
set_progress_properties)) == 0) {
LOG(DEBUG) << "cryptfs_enable_inplace_f2fs success";
return 0;
}
LOG(DEBUG) << "cryptfs_enable_inplace_f2fs()=" << rc_f2fs;
rc_full =
cryptfs_enable_inplace_full(crypto_blkdev, real_blkdev, size, size_already_done, tot_size,
previously_encrypted_upto, set_progress_properties);
LOG(DEBUG) << "cryptfs_enable_inplace_full()=" << rc_full;
/* Hack for b/17898962, the following is the symptom... */
if (rc_ext4 == ENABLE_INPLACE_ERR_DEV && rc_f2fs == ENABLE_INPLACE_ERR_DEV &&
rc_full == ENABLE_INPLACE_ERR_DEV) {
LOG(DEBUG) << "ENABLE_INPLACE_ERR_DEV";
return ENABLE_INPLACE_ERR_DEV;
}
return rc_full;
}