blob: 7dbdc2a5aa9c37117723921d7f574a988979459e [file] [log] [blame]
/*
* Copyright (C) 2015 The Android Open Source Project
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#include "Ext4Crypt.h"
#include "KeyStorage.h"
#include "Utils.h"
#include <iomanip>
#include <map>
#include <string>
#include <sstream>
#include <errno.h>
#include <dirent.h>
#include <sys/mount.h>
#include <sys/types.h>
#include <sys/stat.h>
#include <fcntl.h>
#include <cutils/properties.h>
#include <openssl/sha.h>
#include <selinux/android.h>
#include <private/android_filesystem_config.h>
#include "unencrypted_properties.h"
#include "key_control.h"
#include "cryptfs.h"
#include "ext4_crypt_init_extensions.h"
#define LOG_TAG "Ext4Crypt"
#define EMULATED_USES_SELINUX 0
#include <cutils/fs.h>
#include <cutils/log.h>
#include <cutils/klog.h>
#include <android-base/file.h>
#include <android-base/logging.h>
#include <android-base/stringprintf.h>
using android::base::StringPrintf;
static bool e4crypt_is_native() {
char value[PROPERTY_VALUE_MAX];
property_get("ro.crypto.type", value, "none");
return !strcmp(value, "file");
}
static bool e4crypt_is_emulated() {
return property_get_bool("persist.sys.emulate_fbe", false);
}
namespace {
// Key length in bits
const int key_length = 128;
static_assert(key_length % 8 == 0,
"Key length must be multiple of 8 bits");
// How long do we store passwords for?
const int password_max_age_seconds = 60;
const std::string user_key_dir = std::string() + DATA_MNT_POINT + "/misc/vold/user_keys";
// How is device encrypted
struct keys {
std::string master_key;
std::string password;
time_t expiry_time;
};
std::map<std::string, keys> s_key_store;
// Maps the key paths of ephemeral keys to the keys
std::map<std::string, std::string> s_ephemeral_user_keys;
// Map user serial numbers to key references
std::map<int, std::string> s_key_raw_refs;
// ext4enc:TODO get this const from somewhere good
const int EXT4_KEY_DESCRIPTOR_SIZE = 8;
// ext4enc:TODO Include structure from somewhere sensible
// MUST be in sync with ext4_crypto.c in kernel
const int EXT4_MAX_KEY_SIZE = 64;
const int EXT4_ENCRYPTION_MODE_AES_256_XTS = 1;
struct ext4_encryption_key {
uint32_t mode;
char raw[EXT4_MAX_KEY_SIZE];
uint32_t size;
};
namespace tag {
const char* magic = "magic";
const char* major_version = "major_version";
const char* minor_version = "minor_version";
const char* flags = "flags";
const char* crypt_type = "crypt_type";
const char* failed_decrypt_count = "failed_decrypt_count";
const char* crypto_type_name = "crypto_type_name";
const char* master_key = "master_key";
const char* salt = "salt";
const char* kdf_type = "kdf_type";
const char* N_factor = "N_factor";
const char* r_factor = "r_factor";
const char* p_factor = "p_factor";
const char* keymaster_blob = "keymaster_blob";
const char* scrypted_intermediate_key = "scrypted_intermediate_key";
}
}
static std::string e4crypt_install_key(const std::string &key);
static int put_crypt_ftr_and_key(const crypt_mnt_ftr& crypt_ftr,
UnencryptedProperties& props)
{
SLOGI("Putting crypt footer");
bool success = props.Set<int>(tag::magic, crypt_ftr.magic)
&& props.Set<int>(tag::major_version, crypt_ftr.major_version)
&& props.Set<int>(tag::minor_version, crypt_ftr.minor_version)
&& props.Set<int>(tag::flags, crypt_ftr.flags)
&& props.Set<int>(tag::crypt_type, crypt_ftr.crypt_type)
&& props.Set<int>(tag::failed_decrypt_count,
crypt_ftr.failed_decrypt_count)
&& props.Set<std::string>(tag::crypto_type_name,
std::string(reinterpret_cast<const char*>(crypt_ftr.crypto_type_name)))
&& props.Set<std::string>(tag::master_key,
std::string((const char*) crypt_ftr.master_key,
crypt_ftr.keysize))
&& props.Set<std::string>(tag::salt,
std::string((const char*) crypt_ftr.salt,
SALT_LEN))
&& props.Set<int>(tag::kdf_type, crypt_ftr.kdf_type)
&& props.Set<int>(tag::N_factor, crypt_ftr.N_factor)
&& props.Set<int>(tag::r_factor, crypt_ftr.r_factor)
&& props.Set<int>(tag::p_factor, crypt_ftr.p_factor)
&& props.Set<std::string>(tag::keymaster_blob,
std::string((const char*) crypt_ftr.keymaster_blob,
crypt_ftr.keymaster_blob_size))
&& props.Set<std::string>(tag::scrypted_intermediate_key,
std::string((const char*) crypt_ftr.scrypted_intermediate_key,
SCRYPT_LEN));
return success ? 0 : -1;
}
static int get_crypt_ftr_and_key(crypt_mnt_ftr& crypt_ftr,
const UnencryptedProperties& props)
{
memset(&crypt_ftr, 0, sizeof(crypt_ftr));
crypt_ftr.magic = props.Get<int>(tag::magic);
crypt_ftr.major_version = props.Get<int>(tag::major_version);
crypt_ftr.minor_version = props.Get<int>(tag::minor_version);
crypt_ftr.ftr_size = sizeof(crypt_ftr);
crypt_ftr.flags = props.Get<int>(tag::flags);
crypt_ftr.crypt_type = props.Get<int>(tag::crypt_type);
crypt_ftr.failed_decrypt_count = props.Get<int>(tag::failed_decrypt_count);
std::string crypto_type_name = props.Get<std::string>(tag::crypto_type_name);
strlcpy(reinterpret_cast<char*>(crypt_ftr.crypto_type_name),
crypto_type_name.c_str(),
sizeof(crypt_ftr.crypto_type_name));
std::string master_key = props.Get<std::string>(tag::master_key);
crypt_ftr.keysize = master_key.size();
if (crypt_ftr.keysize > sizeof(crypt_ftr.master_key)) {
SLOGE("Master key size too long");
return -1;
}
memcpy(crypt_ftr.master_key, &master_key[0], crypt_ftr.keysize);
std::string salt = props.Get<std::string>(tag::salt);
if (salt.size() != SALT_LEN) {
SLOGE("Salt wrong length");
return -1;
}
memcpy(crypt_ftr.salt, &salt[0], SALT_LEN);
crypt_ftr.kdf_type = props.Get<int>(tag::kdf_type);
crypt_ftr.N_factor = props.Get<int>(tag::N_factor);
crypt_ftr.r_factor = props.Get<int>(tag::r_factor);
crypt_ftr.p_factor = props.Get<int>(tag::p_factor);
std::string keymaster_blob = props.Get<std::string>(tag::keymaster_blob);
crypt_ftr.keymaster_blob_size = keymaster_blob.size();
if (crypt_ftr.keymaster_blob_size > sizeof(crypt_ftr.keymaster_blob)) {
SLOGE("Keymaster blob too long");
return -1;
}
memcpy(crypt_ftr.keymaster_blob, &keymaster_blob[0],
crypt_ftr.keymaster_blob_size);
std::string scrypted_intermediate_key = props.Get<std::string>(tag::scrypted_intermediate_key);
if (scrypted_intermediate_key.size() != SCRYPT_LEN) {
SLOGE("scrypted intermediate key wrong length");
return -1;
}
memcpy(crypt_ftr.scrypted_intermediate_key, &scrypted_intermediate_key[0],
SCRYPT_LEN);
return 0;
}
static UnencryptedProperties GetProps(const char* path)
{
return UnencryptedProperties(path);
}
static UnencryptedProperties GetAltProps(const char* path)
{
return UnencryptedProperties((std::string() + path + "/tmp_mnt").c_str());
}
static UnencryptedProperties GetPropsOrAltProps(const char* path)
{
UnencryptedProperties props = GetProps(path);
if (props.OK()) {
return props;
}
return GetAltProps(path);
}
int e4crypt_enable(const char* path)
{
// Already enabled?
if (s_key_store.find(path) != s_key_store.end()) {
return 0;
}
// Not an encryptable device?
UnencryptedProperties key_props = GetProps(path).GetChild(properties::key);
if (!key_props.OK()) {
return 0;
}
if (key_props.Get<std::string>(tag::master_key).empty()) {
crypt_mnt_ftr ftr;
if (cryptfs_create_default_ftr(&ftr, key_length)) {
SLOGE("Failed to create crypto footer");
return -1;
}
// Scrub fields not used by ext4enc
ftr.persist_data_offset[0] = 0;
ftr.persist_data_offset[1] = 0;
ftr.persist_data_size = 0;
if (put_crypt_ftr_and_key(ftr, key_props)) {
SLOGE("Failed to write crypto footer");
return -1;
}
crypt_mnt_ftr ftr2;
if (get_crypt_ftr_and_key(ftr2, key_props)) {
SLOGE("Failed to read crypto footer back");
return -1;
}
if (memcmp(&ftr, &ftr2, sizeof(ftr)) != 0) {
SLOGE("Crypto footer not correctly written");
return -1;
}
}
if (!UnencryptedProperties(path).Remove(properties::ref)) {
SLOGE("Failed to remove key ref");
return -1;
}
return e4crypt_check_passwd(path, "");
}
int e4crypt_change_password(const char* path, int crypt_type,
const char* password)
{
SLOGI("e4crypt_change_password");
auto key_props = GetProps(path).GetChild(properties::key);
crypt_mnt_ftr ftr;
if (get_crypt_ftr_and_key(ftr, key_props)) {
SLOGE("Failed to read crypto footer back");
return -1;
}
auto mki = s_key_store.find(path);
if (mki == s_key_store.end()) {
SLOGE("No stored master key - can't change password");
return -1;
}
const unsigned char* master_key_bytes
= reinterpret_cast<const unsigned char*>(&mki->second.master_key[0]);
if (cryptfs_set_password(&ftr, password, master_key_bytes)) {
SLOGE("Failed to set password");
return -1;
}
ftr.crypt_type = crypt_type;
if (put_crypt_ftr_and_key(ftr, key_props)) {
SLOGE("Failed to write crypto footer");
return -1;
}
if (!UnencryptedProperties(path).Set(properties::is_default,
crypt_type == CRYPT_TYPE_DEFAULT)) {
SLOGE("Failed to update default flag");
return -1;
}
return 0;
}
int e4crypt_crypto_complete(const char* path)
{
SLOGI("ext4 crypto complete called on %s", path);
auto key_props = GetPropsOrAltProps(path).GetChild(properties::key);
if (key_props.Get<std::string>(tag::master_key).empty()) {
SLOGI("No master key, so not ext4enc");
return -1;
}
return 0;
}
// Get raw keyref - used to make keyname and to pass to ioctl
static std::string generate_key_ref(const char* key, int length)
{
SHA512_CTX c;
SHA512_Init(&c);
SHA512_Update(&c, key, length);
unsigned char key_ref1[SHA512_DIGEST_LENGTH];
SHA512_Final(key_ref1, &c);
SHA512_Init(&c);
SHA512_Update(&c, key_ref1, SHA512_DIGEST_LENGTH);
unsigned char key_ref2[SHA512_DIGEST_LENGTH];
SHA512_Final(key_ref2, &c);
return std::string((char*)key_ref2, EXT4_KEY_DESCRIPTOR_SIZE);
}
int e4crypt_check_passwd(const char* path, const char* password)
{
SLOGI("e4crypt_check_password");
auto props = GetPropsOrAltProps(path);
auto key_props = props.GetChild(properties::key);
crypt_mnt_ftr ftr;
if (get_crypt_ftr_and_key(ftr, key_props)) {
SLOGE("Failed to read crypto footer back");
return -1;
}
unsigned char master_key_bytes[key_length / 8];
if (cryptfs_get_master_key (&ftr, password, master_key_bytes)){
SLOGI("Incorrect password");
ftr.failed_decrypt_count++;
if (put_crypt_ftr_and_key(ftr, key_props)) {
SLOGW("Failed to update failed_decrypt_count");
}
return ftr.failed_decrypt_count;
}
if (ftr.failed_decrypt_count) {
ftr.failed_decrypt_count = 0;
if (put_crypt_ftr_and_key(ftr, key_props)) {
SLOGW("Failed to reset failed_decrypt_count");
}
}
std::string master_key(reinterpret_cast<char*>(master_key_bytes),
sizeof(master_key_bytes));
struct timespec now;
clock_gettime(CLOCK_BOOTTIME, &now);
s_key_store[path] = keys{master_key, password,
now.tv_sec + password_max_age_seconds};
auto raw_ref = e4crypt_install_key(master_key);
if (raw_ref.empty()) {
return -1;
}
// Save reference to key so we can set policy later
if (!props.Set(properties::ref, raw_ref)) {
SLOGE("Cannot save key reference");
return -1;
}
return 0;
}
static ext4_encryption_key fill_key(const std::string &key)
{
// ext4enc:TODO Currently raw key is required to be of length
// sizeof(ext4_key.raw) == EXT4_MAX_KEY_SIZE, so zero pad to
// this length. Change when kernel bug is fixed.
ext4_encryption_key ext4_key = {EXT4_ENCRYPTION_MODE_AES_256_XTS,
{0},
sizeof(ext4_key.raw)};
memset(ext4_key.raw, 0, sizeof(ext4_key.raw));
static_assert(key_length / 8 <= sizeof(ext4_key.raw),
"Key too long!");
memcpy(ext4_key.raw, &key[0], key.size());
return ext4_key;
}
static std::string keyname(const std::string &raw_ref)
{
std::ostringstream o;
o << "ext4:";
for (auto i = raw_ref.begin(); i != raw_ref.end(); ++i) {
o << std::hex << std::setw(2) << std::setfill('0') << (int)*i;
}
return o.str();
}
// Get the keyring we store all keys in
static key_serial_t e4crypt_keyring()
{
return keyctl_search(KEY_SPEC_SESSION_KEYRING, "keyring", "e4crypt", 0);
}
static int e4crypt_install_key(const ext4_encryption_key &ext4_key, const std::string &ref)
{
key_serial_t device_keyring = e4crypt_keyring();
key_serial_t key_id = add_key("logon", ref.c_str(),
(void*)&ext4_key, sizeof(ext4_key),
device_keyring);
if (key_id == -1) {
PLOG(ERROR) << "Failed to insert key into keyring " << device_keyring;
return -1;
}
LOG(INFO) << "Added key " << key_id << " (" << ref << ") to keyring "
<< device_keyring << " in process " << getpid();
return 0;
}
// Install password into global keyring
// Return raw key reference for use in policy
static std::string e4crypt_install_key(const std::string &key)
{
auto ext4_key = fill_key(key);
auto raw_ref = generate_key_ref(ext4_key.raw, ext4_key.size);
auto ref = keyname(raw_ref);
if (e4crypt_install_key(ext4_key, ref) == -1) {
return "";
}
return raw_ref;
}
int e4crypt_restart(const char* path)
{
SLOGI("e4crypt_restart");
int rc = 0;
SLOGI("ext4 restart called on %s", path);
property_set("vold.decrypt", "trigger_reset_main");
SLOGI("Just asked init to shut down class main");
sleep(2);
std::string tmp_path = std::string() + path + "/tmp_mnt";
rc = wait_and_unmount(tmp_path.c_str(), true);
if (rc) {
SLOGE("umount %s failed with rc %d, msg %s",
tmp_path.c_str(), rc, strerror(errno));
return rc;
}
rc = wait_and_unmount(path, true);
if (rc) {
SLOGE("umount %s failed with rc %d, msg %s",
path, rc, strerror(errno));
return rc;
}
return 0;
}
int e4crypt_get_password_type(const char* path)
{
SLOGI("e4crypt_get_password_type");
return GetPropsOrAltProps(path).GetChild(properties::key)
.Get<int>(tag::crypt_type, CRYPT_TYPE_DEFAULT);
}
const char* e4crypt_get_password(const char* path)
{
SLOGI("e4crypt_get_password");
auto i = s_key_store.find(path);
if (i == s_key_store.end()) {
return 0;
}
struct timespec now;
clock_gettime(CLOCK_BOOTTIME, &now);
if (i->second.expiry_time < now.tv_sec) {
e4crypt_clear_password(path);
return 0;
}
return i->second.password.c_str();
}
void e4crypt_clear_password(const char* path)
{
SLOGI("e4crypt_clear_password");
auto i = s_key_store.find(path);
if (i == s_key_store.end()) {
return;
}
memset(&i->second.password[0], 0, i->second.password.size());
i->second.password = std::string();
}
int e4crypt_get_field(const char* path, const char* fieldname,
char* value, size_t len)
{
auto v = GetPropsOrAltProps(path).GetChild(properties::props)
.Get<std::string>(fieldname);
if (v == "") {
return CRYPTO_GETFIELD_ERROR_NO_FIELD;
}
if (v.length() >= len) {
return CRYPTO_GETFIELD_ERROR_BUF_TOO_SMALL;
}
strlcpy(value, v.c_str(), len);
return 0;
}
int e4crypt_set_field(const char* path, const char* fieldname,
const char* value)
{
return GetPropsOrAltProps(path).GetChild(properties::props)
.Set(fieldname, std::string(value)) ? 0 : -1;
}
static std::string get_key_path(userid_t user_id) {
return StringPrintf("%s/user_%d/current", user_key_dir.c_str(), user_id);
}
static bool e4crypt_is_key_ephemeral(const std::string &key_path) {
return s_ephemeral_user_keys.find(key_path) != s_ephemeral_user_keys.end();
}
static bool read_user_key(userid_t user_id, std::string &key)
{
const auto key_path = get_key_path(user_id);
const auto ephemeral_key_it = s_ephemeral_user_keys.find(key_path);
if (ephemeral_key_it != s_ephemeral_user_keys.end()) {
key = ephemeral_key_it->second;
return true;
}
if (!android::vold::retrieveKey(key_path, key)) return false;
if (key.size() != key_length/8) {
LOG(ERROR) << "Wrong size key " << key.size() << " in " << key_path;
return false;
}
return true;
}
static bool prepare_dir(const std::string &dir, mode_t mode, uid_t uid, gid_t gid) {
if (fs_prepare_dir(dir.c_str(), mode, uid, gid) != 0) {
PLOG(ERROR) << "Failed to prepare " << dir;
return false;
}
return true;
}
static bool create_user_key(userid_t user_id, bool create_ephemeral) {
const auto key_path = get_key_path(user_id);
std::string key;
if (android::vold::ReadRandomBytes(key_length / 8, key) != 0) {
// TODO status_t plays badly with PLOG, fix it.
LOG(ERROR) << "Random read failed";
return false;
}
if (create_ephemeral) {
// If the key should be created as ephemeral, store it in memory only.
s_ephemeral_user_keys[key_path] = key;
} else {
if (!prepare_dir(user_key_dir, 0700, AID_ROOT, AID_ROOT)) return false;
if (!prepare_dir(user_key_dir + "/user_" + std::to_string(user_id),
0700, AID_ROOT, AID_ROOT)) return false;
if (!android::vold::storeKey(key_path, key)) return false;
}
LOG(DEBUG) << "Created key " << key_path;
return true;
}
static int e4crypt_set_user_policy(userid_t user_id, int serial, std::string& path) {
LOG(DEBUG) << "e4crypt_set_user_policy for " << user_id << " serial " << serial;
if (s_key_raw_refs.count(serial) != 1) {
LOG(ERROR) << "Key unknown, can't e4crypt_set_user_policy for "
<< user_id << " serial " << serial;
return -1;
}
auto raw_ref = s_key_raw_refs[serial];
return do_policy_set(path.c_str(), raw_ref.data(), raw_ref.size());
}
int e4crypt_vold_create_user_key(userid_t user_id, int serial, bool ephemeral) {
LOG(DEBUG) << "e4crypt_vold_create_user_key for " << user_id << " serial " << serial;
std::string key;
if (read_user_key(user_id, key)) {
LOG(ERROR) << "Already exists, can't e4crypt_vold_create_user_key for "
<< user_id << " serial " << serial;
// FIXME should we fail the command?
return 0;
}
if (!create_user_key(user_id, ephemeral)) {
return -1;
}
if (e4crypt_unlock_user_key(user_id, serial, nullptr) != 0) {
return -1;
}
// TODO: create second key for user_de data
return 0;
}
static bool evict_user_key(userid_t user_id) {
auto key_path = get_key_path(user_id);
std::string key;
if (!read_user_key(user_id, key)) return false;
auto ext4_key = fill_key(key);
auto ref = keyname(generate_key_ref(ext4_key.raw, ext4_key.size));
auto key_serial = keyctl_search(e4crypt_keyring(), "logon", ref.c_str(), 0);
if (keyctl_revoke(key_serial) != 0) {
PLOG(ERROR) << "Failed to revoke key with serial " << key_serial << " ref " << ref;
return false;
}
LOG(DEBUG) << "Revoked key with serial " << key_serial << " ref " << ref;
return true;
}
int e4crypt_destroy_user_key(userid_t user_id) {
LOG(DEBUG) << "e4crypt_destroy_user_key(" << user_id << ")";
// TODO: destroy second key for user_de data
bool evict_success = evict_user_key(user_id);
auto key_path = get_key_path(user_id);
if (e4crypt_is_key_ephemeral(key_path)) {
s_ephemeral_user_keys.erase(key_path);
} else {
if (!android::vold::destroyKey(key_path)) {
return -1;
}
}
return evict_success ? 0 : -1;
}
static int emulated_lock(const std::string& path) {
if (chmod(path.c_str(), 0000) != 0) {
PLOG(ERROR) << "Failed to chmod " << path;
return -1;
}
#if EMULATED_USES_SELINUX
if (setfilecon(path.c_str(), "u:object_r:storage_stub_file:s0") != 0) {
PLOG(WARNING) << "Failed to setfilecon " << path;
return -1;
}
#endif
return 0;
}
static int emulated_unlock(const std::string& path, mode_t mode) {
if (chmod(path.c_str(), mode) != 0) {
PLOG(ERROR) << "Failed to chmod " << path;
// FIXME temporary workaround for b/26713622
if (e4crypt_is_emulated()) return -1;
}
#if EMULATED_USES_SELINUX
if (selinux_android_restorecon(path.c_str(), SELINUX_ANDROID_RESTORECON_FORCE) != 0) {
PLOG(WARNING) << "Failed to restorecon " << path;
// FIXME temporary workaround for b/26713622
if (e4crypt_is_emulated()) return -1;
}
#endif
return 0;
}
int e4crypt_unlock_user_key(userid_t user_id, int serial, const char* token) {
LOG(DEBUG) << "e4crypt_unlock_user_key " << user_id << " " << (token != nullptr);
if (e4crypt_is_native()) {
std::string user_key;
if (!read_user_key(user_id, user_key)) {
// FIXME special case for user 0
if (user_id != 0) {
LOG(ERROR) << "Couldn't read key for " << user_id;
return -1;
}
// FIXME if the key exists and we just failed to read it, this destroys it.
if (!create_user_key(user_id, false)) {
return -1;
}
if (!read_user_key(user_id, user_key)) {
LOG(ERROR) << "Couldn't read just-created key for " << user_id;
return -1;
}
}
auto raw_ref = e4crypt_install_key(user_key);
if (raw_ref.empty()) {
return -1;
}
s_key_raw_refs[serial] = raw_ref;
if (user_id == 0) {
// FIXME special case for user 0
// prepare their storage here
e4crypt_prepare_user_storage(nullptr, 0, 0, false);
}
return 0;
} else {
// When in emulation mode, we just use chmod. However, we also
// unlock directories when not in emulation mode, to bring devices
// back into a known-good state.
if (emulated_unlock(android::vold::BuildDataSystemCePath(user_id), 0771) ||
emulated_unlock(android::vold::BuildDataMediaPath(nullptr, user_id), 0770) ||
emulated_unlock(android::vold::BuildDataUserPath(nullptr, user_id), 0771)) {
LOG(ERROR) << "Failed to unlock user " << user_id;
return -1;
}
}
return 0;
}
int e4crypt_lock_user_key(userid_t user_id) {
if (e4crypt_is_native()) {
// TODO: remove from kernel keyring
} else if (e4crypt_is_emulated()) {
// When in emulation mode, we just use chmod
if (emulated_lock(android::vold::BuildDataSystemCePath(user_id)) ||
emulated_lock(android::vold::BuildDataMediaPath(nullptr, user_id)) ||
emulated_lock(android::vold::BuildDataUserPath(nullptr, user_id))) {
PLOG(ERROR) << "Failed to lock user " << user_id;
return -1;
}
}
return 0;
}
int e4crypt_prepare_user_storage(const char* volume_uuid,
userid_t user_id,
int serial,
bool ephemeral) {
if (volume_uuid) {
LOG(DEBUG) << "e4crypt_prepare_user_storage " << volume_uuid << " " << user_id;
} else {
LOG(DEBUG) << "e4crypt_prepare_user_storage, null volume " << user_id;
}
auto system_ce_path = android::vold::BuildDataSystemCePath(user_id);
auto media_ce_path = android::vold::BuildDataMediaPath(volume_uuid, user_id);
auto user_ce_path = android::vold::BuildDataUserPath(volume_uuid, user_id);
auto user_de_path = android::vold::BuildDataUserDePath(volume_uuid, user_id);
if (!prepare_dir(system_ce_path, 0700, AID_SYSTEM, AID_SYSTEM)) return -1;
if (!prepare_dir(media_ce_path, 0770, AID_MEDIA_RW, AID_MEDIA_RW)) return -1;
if (!prepare_dir(user_ce_path, 0771, AID_SYSTEM, AID_SYSTEM)) return -1;
if (!prepare_dir(user_de_path, 0771, AID_SYSTEM, AID_SYSTEM)) return -1;
if (e4crypt_crypto_complete(DATA_MNT_POINT) == 0) {
if (e4crypt_set_user_policy(user_id, serial, system_ce_path)
|| e4crypt_set_user_policy(user_id, serial, media_ce_path)
|| e4crypt_set_user_policy(user_id, serial, user_ce_path)) {
return -1;
}
}
return 0;
}