blob: 291a147838544b30434d3cc33bb4b4c35bdba3cd [file] [log] [blame]
// Copyright (c) 2014 The Chromium OS Authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
#include "update_engine/update_manager/chromeos_policy.h"
#include <algorithm>
#include <set>
#include <string>
#include <base/logging.h>
#include <base/strings/string_util.h>
#include <base/time/time.h>
#include "update_engine/error_code.h"
#include "update_engine/update_manager/device_policy_provider.h"
#include "update_engine/update_manager/policy_utils.h"
#include "update_engine/update_manager/shill_provider.h"
#include "update_engine/utils.h"
using base::Time;
using base::TimeDelta;
using chromeos_update_engine::ErrorCode;
using std::get;
using std::max;
using std::min;
using std::set;
using std::string;
namespace {
// Examines |err_code| and decides whether the URL index needs to be advanced,
// the error count for the URL incremented, or none of the above. In the first
// case, returns true; in the second case, increments |*url_num_error_p| and
// returns false; otherwise just returns false.
//
// TODO(garnold) Adapted from PayloadState::UpdateFailed() (to be retired).
bool HandleErrorCode(ErrorCode err_code, int* url_num_error_p) {
err_code = chromeos_update_engine::utils::GetBaseErrorCode(err_code);
switch (err_code) {
// Errors which are good indicators of a problem with a particular URL or
// the protocol used in the URL or entities in the communication channel
// (e.g. proxies). We should try the next available URL in the next update
// check to quickly recover from these errors.
case ErrorCode::kPayloadHashMismatchError:
case ErrorCode::kPayloadSizeMismatchError:
case ErrorCode::kDownloadPayloadVerificationError:
case ErrorCode::kDownloadPayloadPubKeyVerificationError:
case ErrorCode::kSignedDeltaPayloadExpectedError:
case ErrorCode::kDownloadInvalidMetadataMagicString:
case ErrorCode::kDownloadSignatureMissingInManifest:
case ErrorCode::kDownloadManifestParseError:
case ErrorCode::kDownloadMetadataSignatureError:
case ErrorCode::kDownloadMetadataSignatureVerificationError:
case ErrorCode::kDownloadMetadataSignatureMismatch:
case ErrorCode::kDownloadOperationHashVerificationError:
case ErrorCode::kDownloadOperationExecutionError:
case ErrorCode::kDownloadOperationHashMismatch:
case ErrorCode::kDownloadInvalidMetadataSize:
case ErrorCode::kDownloadInvalidMetadataSignature:
case ErrorCode::kDownloadOperationHashMissingError:
case ErrorCode::kDownloadMetadataSignatureMissingError:
case ErrorCode::kPayloadMismatchedType:
case ErrorCode::kUnsupportedMajorPayloadVersion:
case ErrorCode::kUnsupportedMinorPayloadVersion:
LOG(INFO) << "Advancing download URL due to error "
<< chromeos_update_engine::utils::CodeToString(err_code)
<< " (" << static_cast<int>(err_code) << ")";
return true;
// Errors which seem to be just transient network/communication related
// failures and do not indicate any inherent problem with the URL itself.
// So, we should keep the current URL but just increment the
// failure count to give it more chances. This way, while we maximize our
// chances of downloading from the URLs that appear earlier in the response
// (because download from a local server URL that appears earlier in a
// response is preferable than downloading from the next URL which could be
// an Internet URL and thus could be more expensive).
case ErrorCode::kError:
case ErrorCode::kDownloadTransferError:
case ErrorCode::kDownloadWriteError:
case ErrorCode::kDownloadStateInitializationError:
case ErrorCode::kOmahaErrorInHTTPResponse: // Aggregate for HTTP errors.
LOG(INFO) << "Incrementing URL failure count due to error "
<< chromeos_update_engine::utils::CodeToString(err_code)
<< " (" << static_cast<int>(err_code) << ")";
*url_num_error_p += 1;
return false;
// Errors which are not specific to a URL and hence shouldn't result in
// the URL being penalized. This can happen in two cases:
// 1. We haven't started downloading anything: These errors don't cost us
// anything in terms of actual payload bytes, so we should just do the
// regular retries at the next update check.
// 2. We have successfully downloaded the payload: In this case, the
// payload attempt number would have been incremented and would take care
// of the back-off at the next update check.
// In either case, there's no need to update URL index or failure count.
case ErrorCode::kOmahaRequestError:
case ErrorCode::kOmahaResponseHandlerError:
case ErrorCode::kPostinstallRunnerError:
case ErrorCode::kFilesystemCopierError:
case ErrorCode::kInstallDeviceOpenError:
case ErrorCode::kKernelDeviceOpenError:
case ErrorCode::kDownloadNewPartitionInfoError:
case ErrorCode::kNewRootfsVerificationError:
case ErrorCode::kNewKernelVerificationError:
case ErrorCode::kPostinstallBootedFromFirmwareB:
case ErrorCode::kPostinstallFirmwareRONotUpdatable:
case ErrorCode::kOmahaRequestEmptyResponseError:
case ErrorCode::kOmahaRequestXMLParseError:
case ErrorCode::kOmahaResponseInvalid:
case ErrorCode::kOmahaUpdateIgnoredPerPolicy:
case ErrorCode::kOmahaUpdateDeferredPerPolicy:
case ErrorCode::kOmahaUpdateDeferredForBackoff:
case ErrorCode::kPostinstallPowerwashError:
case ErrorCode::kUpdateCanceledByChannelChange:
case ErrorCode::kOmahaRequestXMLHasEntityDecl:
LOG(INFO) << "Not changing URL index or failure count due to error "
<< chromeos_update_engine::utils::CodeToString(err_code)
<< " (" << static_cast<int>(err_code) << ")";
return false;
case ErrorCode::kSuccess: // success code
case ErrorCode::kUmaReportedMax: // not an error code
case ErrorCode::kOmahaRequestHTTPResponseBase: // aggregated already
case ErrorCode::kDevModeFlag: // not an error code
case ErrorCode::kResumedFlag: // not an error code
case ErrorCode::kTestImageFlag: // not an error code
case ErrorCode::kTestOmahaUrlFlag: // not an error code
case ErrorCode::kSpecialFlags: // not an error code
// These shouldn't happen. Enumerating these explicitly here so that we
// can let the compiler warn about new error codes that are added to
// action_processor.h but not added here.
LOG(WARNING) << "Unexpected error "
<< chromeos_update_engine::utils::CodeToString(err_code)
<< " (" << static_cast<int>(err_code) << ")";
// Note: Not adding a default here so as to let the compiler warn us of
// any new enums that were added in the .h but not listed in this switch.
}
return false;
}
// Checks whether |url| can be used under given download restrictions.
bool IsUrlUsable(const string& url, bool http_allowed) {
return http_allowed || !StartsWithASCII(url, "http://", false);
}
} // namespace
namespace chromeos_update_manager {
const int ChromeOSPolicy::kTimeoutInitialInterval = 7 * 60;
const int ChromeOSPolicy::kTimeoutPeriodicInterval = 45 * 60;
const int ChromeOSPolicy::kTimeoutMaxBackoffInterval = 4 * 60 * 60;
const int ChromeOSPolicy::kTimeoutRegularFuzz = 10 * 60;
const int ChromeOSPolicy::kAttemptBackoffMaxIntervalInDays = 16;
const int ChromeOSPolicy::kAttemptBackoffFuzzInHours = 12;
EvalStatus ChromeOSPolicy::UpdateCheckAllowed(
EvaluationContext* ec, State* state, string* error,
UpdateCheckParams* result) const {
// Set the default return values.
result->updates_enabled = true;
result->target_channel.clear();
result->target_version_prefix.clear();
result->is_interactive = false;
DevicePolicyProvider* const dp_provider = state->device_policy_provider();
UpdaterProvider* const updater_provider = state->updater_provider();
SystemProvider* const system_provider = state->system_provider();
// Do not perform any updates if booted from removable device. This decision
// is final.
const bool* is_boot_device_removable_p = ec->GetValue(
system_provider->var_is_boot_device_removable());
if (is_boot_device_removable_p && *is_boot_device_removable_p) {
LOG(INFO) << "Booted from removable device, disabling update checks.";
result->updates_enabled = false;
return EvalStatus::kSucceeded;
}
const bool* device_policy_is_loaded_p = ec->GetValue(
dp_provider->var_device_policy_is_loaded());
if (device_policy_is_loaded_p && *device_policy_is_loaded_p) {
// Check whether updates are disabled by policy.
const bool* update_disabled_p = ec->GetValue(
dp_provider->var_update_disabled());
if (update_disabled_p && *update_disabled_p) {
LOG(INFO) << "Updates disabled by policy, blocking update checks.";
return EvalStatus::kAskMeAgainLater;
}
// Determine whether a target version prefix is dictated by policy.
const string* target_version_prefix_p = ec->GetValue(
dp_provider->var_target_version_prefix());
if (target_version_prefix_p)
result->target_version_prefix = *target_version_prefix_p;
// Determine whether a target channel is dictated by policy.
const bool* release_channel_delegated_p = ec->GetValue(
dp_provider->var_release_channel_delegated());
if (release_channel_delegated_p && !(*release_channel_delegated_p)) {
const string* release_channel_p = ec->GetValue(
dp_provider->var_release_channel());
if (release_channel_p)
result->target_channel = *release_channel_p;
}
}
// First, check to see if an interactive update was requested.
const UpdateRequestStatus* forced_update_requested_p = ec->GetValue(
updater_provider->var_forced_update_requested());
if (forced_update_requested_p &&
*forced_update_requested_p != UpdateRequestStatus::kNone) {
result->is_interactive =
(*forced_update_requested_p == UpdateRequestStatus::kInteractive);
LOG(INFO) << "Forced update signaled ("
<< (result->is_interactive ? "interactive" : "periodic")
<< "), allowing update check.";
return EvalStatus::kSucceeded;
}
// The logic thereafter applies to periodic updates. Bear in mind that we
// should not return a final "no" if any of these criteria are not satisfied,
// because the system may still update due to an interactive update request.
// Unofficial builds should not perform periodic update checks.
const bool* is_official_build_p = ec->GetValue(
system_provider->var_is_official_build());
if (is_official_build_p && !(*is_official_build_p)) {
LOG(INFO) << "Unofficial build, blocking periodic update checks.";
return EvalStatus::kAskMeAgainLater;
}
// If OOBE is enabled, wait until it is completed.
const bool* is_oobe_enabled_p = ec->GetValue(
state->config_provider()->var_is_oobe_enabled());
if (is_oobe_enabled_p && *is_oobe_enabled_p) {
const bool* is_oobe_complete_p = ec->GetValue(
system_provider->var_is_oobe_complete());
if (is_oobe_complete_p && !(*is_oobe_complete_p)) {
LOG(INFO) << "OOBE not completed, blocking update checks.";
return EvalStatus::kAskMeAgainLater;
}
}
// Ensure that periodic update checks are timed properly.
Time next_update_check;
if (NextUpdateCheckTime(ec, state, error, &next_update_check) !=
EvalStatus::kSucceeded) {
return EvalStatus::kFailed;
}
if (!ec->IsWallclockTimeGreaterThan(next_update_check)) {
LOG(INFO) << "Periodic check interval not satisfied, blocking until "
<< chromeos_update_engine::utils::ToString(next_update_check);
return EvalStatus::kAskMeAgainLater;
}
// It is time to check for an update.
LOG(INFO) << "Allowing update check.";
return EvalStatus::kSucceeded;
}
EvalStatus ChromeOSPolicy::UpdateCanStart(
EvaluationContext* ec,
State* state,
string* error,
UpdateDownloadParams* result,
const UpdateState update_state) const {
// Set the default return values. Note that we set persisted values (backoff,
// scattering) to the same values presented in the update state. The reason is
// that preemptive returns, such as the case where an update check is due,
// should not clear off the said values; rather, it is the deliberate
// inference of new values that should cause them to be reset.
result->update_can_start = true;
result->cannot_start_reason = UpdateCannotStartReason::kUndefined;
result->download_url_idx = -1;
result->p2p_allowed = false;
result->do_increment_failures = false;
result->backoff_expiry = update_state.backoff_expiry;
result->scatter_wait_period = update_state.scatter_wait_period;
result->scatter_check_threshold = update_state.scatter_check_threshold;
// Make sure that we're not due for an update check.
UpdateCheckParams check_result;
EvalStatus check_status = UpdateCheckAllowed(ec, state, error, &check_result);
if (check_status == EvalStatus::kFailed)
return EvalStatus::kFailed;
if (check_status == EvalStatus::kSucceeded &&
check_result.updates_enabled == true) {
result->update_can_start = false;
result->cannot_start_reason = UpdateCannotStartReason::kCheckDue;
return EvalStatus::kSucceeded;
}
// Check whether backoff applies, and if not then which URL can be used for
// downloading. These require scanning the download error log, and so they are
// done together.
UpdateBackoffAndDownloadUrlResult backoff_url_result;
EvalStatus backoff_url_status = UpdateBackoffAndDownloadUrl(
ec, state, error, &backoff_url_result, update_state);
if (backoff_url_status != EvalStatus::kFailed) {
result->download_url_idx = backoff_url_result.url_idx;
result->download_url_num_errors = backoff_url_result.url_num_errors;
result->do_increment_failures = backoff_url_result.do_increment_failures;
result->backoff_expiry = backoff_url_result.backoff_expiry;
}
if (backoff_url_status != EvalStatus::kSucceeded ||
!backoff_url_result.backoff_expiry.is_null()) {
if (backoff_url_status != EvalStatus::kFailed) {
result->update_can_start = false;
result->cannot_start_reason = UpdateCannotStartReason::kBackoff;
}
return backoff_url_status;
}
DevicePolicyProvider* const dp_provider = state->device_policy_provider();
const bool* device_policy_is_loaded_p = ec->GetValue(
dp_provider->var_device_policy_is_loaded());
if (device_policy_is_loaded_p && *device_policy_is_loaded_p) {
// Check whether scattering applies to this update attempt. We should not be
// scattering if this is an interactive update check, or if OOBE is enabled
// but not completed.
//
// Note: current code further suppresses scattering if a "deadline"
// attribute is found in the Omaha response. However, it appears that the
// presence of this attribute is merely indicative of an OOBE update, during
// which we suppress scattering anyway.
bool scattering_applies = false;
result->scatter_wait_period = kZeroInterval;
result->scatter_check_threshold = 0;
if (!update_state.is_interactive) {
const bool* is_oobe_enabled_p = ec->GetValue(
state->config_provider()->var_is_oobe_enabled());
if (is_oobe_enabled_p && !(*is_oobe_enabled_p)) {
scattering_applies = true;
} else {
const bool* is_oobe_complete_p = ec->GetValue(
state->system_provider()->var_is_oobe_complete());
scattering_applies = (is_oobe_complete_p && *is_oobe_complete_p);
}
}
// Compute scattering values.
if (scattering_applies) {
UpdateScatteringResult scatter_result;
EvalStatus scattering_status = UpdateScattering(
ec, state, error, &scatter_result, update_state);
if (scattering_status != EvalStatus::kSucceeded ||
scatter_result.is_scattering) {
if (scattering_status != EvalStatus::kFailed) {
result->update_can_start = false;
result->cannot_start_reason = UpdateCannotStartReason::kScattering;
result->scatter_wait_period = scatter_result.wait_period;
result->scatter_check_threshold = scatter_result.check_threshold;
}
return scattering_status;
}
}
// Determine whether use of P2P is allowed by policy. Even if P2P is not
// explicitly allowed, we allow it if the device is enterprise enrolled
// (that is, missing or empty owner string).
const bool* policy_au_p2p_enabled_p = ec->GetValue(
dp_provider->var_au_p2p_enabled());
if (policy_au_p2p_enabled_p) {
result->p2p_allowed = *policy_au_p2p_enabled_p;
} else {
const string* policy_owner_p = ec->GetValue(dp_provider->var_owner());
if (!policy_owner_p || policy_owner_p->empty())
result->p2p_allowed = true;
}
}
// Enable P2P, if so mandated by the updater configuration. This is additive
// to whether or not P2P is allowed per device policy (see above).
if (!result->p2p_allowed) {
const bool* updater_p2p_enabled_p = ec->GetValue(
state->updater_provider()->var_p2p_enabled());
result->p2p_allowed = updater_p2p_enabled_p && *updater_p2p_enabled_p;
}
// Store the download URL and failure increment flag. Note that no URL will
// only terminate evaluation if no other means of download (such as P2P) are
// enabled.
if (result->download_url_idx < 0 && !result->p2p_allowed) {
result->update_can_start = false;
result->cannot_start_reason = UpdateCannotStartReason::kCannotDownload;
}
return EvalStatus::kSucceeded;
}
// TODO(garnold) Logic in this method is based on
// ConnectionManager::IsUpdateAllowedOver(); be sure to deprecate the latter.
//
// TODO(garnold) The current logic generally treats the list of allowed
// connections coming from the device policy as a whitelist, meaning that it
// can only be used for enabling connections, but not disable them. Further,
// certain connection types (like Bluetooth) cannot be enabled even by policy.
// In effect, the only thing that device policy can change is to enable
// updates over a cellular network (disabled by default). We may want to
// revisit this semantics, allowing greater flexibility in defining specific
// permissions over all types of networks.
EvalStatus ChromeOSPolicy::UpdateDownloadAllowed(
EvaluationContext* ec,
State* state,
string* error,
bool* result) const {
// Get the current connection type.
ShillProvider* const shill_provider = state->shill_provider();
const ConnectionType* conn_type_p = ec->GetValue(
shill_provider->var_conn_type());
POLICY_CHECK_VALUE_AND_FAIL(conn_type_p, error);
ConnectionType conn_type = *conn_type_p;
// If we're tethering, treat it as a cellular connection.
if (conn_type != ConnectionType::kCellular) {
const ConnectionTethering* conn_tethering_p = ec->GetValue(
shill_provider->var_conn_tethering());
POLICY_CHECK_VALUE_AND_FAIL(conn_tethering_p, error);
if (*conn_tethering_p == ConnectionTethering::kConfirmed)
conn_type = ConnectionType::kCellular;
}
// By default, we allow updates for all connection types, with exceptions as
// noted below. This also determines whether a device policy can override the
// default.
*result = true;
bool device_policy_can_override = false;
switch (conn_type) {
case ConnectionType::kBluetooth:
*result = false;
break;
case ConnectionType::kCellular:
*result = false;
device_policy_can_override = true;
break;
case ConnectionType::kUnknown:
if (error)
*error = "Unknown connection type";
return EvalStatus::kFailed;
default:
break; // Nothing to do.
}
// If update is allowed, we're done.
if (*result)
return EvalStatus::kSucceeded;
// Check whether the device policy specifically allows this connection.
if (device_policy_can_override) {
DevicePolicyProvider* const dp_provider = state->device_policy_provider();
const bool* device_policy_is_loaded_p = ec->GetValue(
dp_provider->var_device_policy_is_loaded());
if (device_policy_is_loaded_p && *device_policy_is_loaded_p) {
const set<ConnectionType>* allowed_conn_types_p = ec->GetValue(
dp_provider->var_allowed_connection_types_for_update());
if (allowed_conn_types_p) {
if (allowed_conn_types_p->count(conn_type)) {
*result = true;
return EvalStatus::kSucceeded;
}
} else if (conn_type == ConnectionType::kCellular) {
// Local user settings can allow updates over cellular iff a policy was
// loaded but no allowed connections were specified in it.
const bool* update_over_cellular_allowed_p = ec->GetValue(
state->updater_provider()->var_cellular_enabled());
if (update_over_cellular_allowed_p && *update_over_cellular_allowed_p)
*result = true;
}
}
}
return (*result ? EvalStatus::kSucceeded : EvalStatus::kAskMeAgainLater);
}
EvalStatus ChromeOSPolicy::NextUpdateCheckTime(EvaluationContext* ec,
State* state, string* error,
Time* next_update_check) const {
UpdaterProvider* const updater_provider = state->updater_provider();
// Don't check for updates too often. We limit the update checks to once every
// some interval. The interval is kTimeoutInitialInterval the first time and
// kTimeoutPeriodicInterval for the subsequent update checks. If the update
// check fails, we increase the interval between the update checks
// exponentially until kTimeoutMaxBackoffInterval. Finally, to avoid having
// many chromebooks running update checks at the exact same time, we add some
// fuzz to the interval.
const Time* updater_started_time =
ec->GetValue(updater_provider->var_updater_started_time());
POLICY_CHECK_VALUE_AND_FAIL(updater_started_time, error);
const base::Time* last_checked_time =
ec->GetValue(updater_provider->var_last_checked_time());
const uint64_t* seed = ec->GetValue(state->random_provider()->var_seed());
POLICY_CHECK_VALUE_AND_FAIL(seed, error);
PRNG prng(*seed);
// If this is the first attempt, compute and return an initial value.
if (!last_checked_time || *last_checked_time < *updater_started_time) {
*next_update_check = *updater_started_time + FuzzedInterval(
&prng, kTimeoutInitialInterval, kTimeoutRegularFuzz);
return EvalStatus::kSucceeded;
}
// Check whether the server is enforcing a poll interval; if not, this value
// will be zero.
const unsigned int* server_dictated_poll_interval = ec->GetValue(
updater_provider->var_server_dictated_poll_interval());
POLICY_CHECK_VALUE_AND_FAIL(server_dictated_poll_interval, error);
int interval = *server_dictated_poll_interval;
int fuzz = 0;
// If no poll interval was dictated by server compute a back-off period,
// starting from a predetermined base periodic interval and increasing
// exponentially by the number of consecutive failed attempts.
if (interval == 0) {
const unsigned int* consecutive_failed_update_checks = ec->GetValue(
updater_provider->var_consecutive_failed_update_checks());
POLICY_CHECK_VALUE_AND_FAIL(consecutive_failed_update_checks, error);
interval = kTimeoutPeriodicInterval;
unsigned int num_failures = *consecutive_failed_update_checks;
while (interval < kTimeoutMaxBackoffInterval && num_failures) {
interval *= 2;
num_failures--;
}
}
// We cannot back off longer than the predetermined maximum interval.
if (interval > kTimeoutMaxBackoffInterval)
interval = kTimeoutMaxBackoffInterval;
// We cannot back off shorter than the predetermined periodic interval. Also,
// in this case set the fuzz to a predetermined regular value.
if (interval <= kTimeoutPeriodicInterval) {
interval = kTimeoutPeriodicInterval;
fuzz = kTimeoutRegularFuzz;
}
// If not otherwise determined, defer to a fuzz of +/-(interval / 2).
if (fuzz == 0)
fuzz = interval;
*next_update_check = *last_checked_time + FuzzedInterval(
&prng, interval, fuzz);
return EvalStatus::kSucceeded;
}
TimeDelta ChromeOSPolicy::FuzzedInterval(PRNG* prng, int interval, int fuzz) {
DCHECK_GE(interval, 0);
DCHECK_GE(fuzz, 0);
int half_fuzz = fuzz / 2;
// This guarantees the output interval is non negative.
int interval_min = max(interval - half_fuzz, 0);
int interval_max = interval + half_fuzz;
return TimeDelta::FromSeconds(prng->RandMinMax(interval_min, interval_max));
}
EvalStatus ChromeOSPolicy::UpdateBackoffAndDownloadUrl(
EvaluationContext* ec, State* state, std::string* error,
UpdateBackoffAndDownloadUrlResult* result,
const UpdateState& update_state) const {
// Sanity checks.
DCHECK_GE(update_state.download_errors_max, 0);
// Set default result values.
result->do_increment_failures = false;
result->backoff_expiry = update_state.backoff_expiry;
result->url_idx = -1;
result->url_num_errors = 0;
const bool* is_official_build_p = ec->GetValue(
state->system_provider()->var_is_official_build());
bool is_official_build = (is_official_build_p ? *is_official_build_p : true);
// Check whether backoff is enabled.
bool may_backoff = false;
if (update_state.is_backoff_disabled) {
LOG(INFO) << "Backoff disabled by Omaha.";
} else if (update_state.is_interactive) {
LOG(INFO) << "No backoff for interactive updates.";
} else if (update_state.is_delta_payload) {
LOG(INFO) << "No backoff for delta payloads.";
} else if (!is_official_build) {
LOG(INFO) << "No backoff for unofficial builds.";
} else {
may_backoff = true;
}
// If previous backoff still in effect, block.
if (may_backoff && !update_state.backoff_expiry.is_null() &&
!ec->IsWallclockTimeGreaterThan(update_state.backoff_expiry)) {
LOG(INFO) << "Previous backoff has not expired, waiting.";
return EvalStatus::kAskMeAgainLater;
}
// Determine whether HTTP downloads are forbidden by policy. This only
// applies to official system builds; otherwise, HTTP is always enabled.
bool http_allowed = true;
if (is_official_build) {
DevicePolicyProvider* const dp_provider = state->device_policy_provider();
const bool* device_policy_is_loaded_p = ec->GetValue(
dp_provider->var_device_policy_is_loaded());
if (device_policy_is_loaded_p && *device_policy_is_loaded_p) {
const bool* policy_http_downloads_enabled_p = ec->GetValue(
dp_provider->var_http_downloads_enabled());
http_allowed = (!policy_http_downloads_enabled_p ||
*policy_http_downloads_enabled_p);
}
}
int url_idx = update_state.last_download_url_idx;
if (url_idx < 0)
url_idx = -1;
bool do_advance_url = false;
bool is_failure_occurred = false;
Time err_time;
// Scan the relevant part of the download error log, tracking which URLs are
// being used, and accounting the number of errors for each URL. Note that
// this process may not traverse all errors provided, as it may decide to bail
// out midway depending on the particular errors exhibited, the number of
// failures allowed, etc. When this ends, |url_idx| will point to the last URL
// used (-1 if starting fresh), |do_advance_url| will determine whether the
// URL needs to be advanced, and |err_time| the point in time when the last
// reported error occurred. Additionally, if the error log indicates that an
// update attempt has failed (abnormal), then |is_failure_occurred| will be
// set to true.
const int num_urls = update_state.download_urls.size();
int prev_url_idx = -1;
int url_num_errors = update_state.last_download_url_num_errors;
Time prev_err_time;
bool is_first = true;
for (const auto& err_tuple : update_state.download_errors) {
// Do some sanity checks.
int used_url_idx = get<0>(err_tuple);
if (is_first && url_idx >= 0 && used_url_idx != url_idx) {
LOG(WARNING) << "First URL in error log (" << used_url_idx
<< ") not as expected (" << url_idx << ")";
}
is_first = false;
url_idx = used_url_idx;
if (url_idx < 0 || url_idx >= num_urls) {
LOG(ERROR) << "Download error log contains an invalid URL index ("
<< url_idx << ")";
return EvalStatus::kFailed;
}
err_time = get<2>(err_tuple);
if (!(prev_err_time.is_null() || err_time >= prev_err_time)) {
// TODO(garnold) Monotonicity cannot really be assumed when dealing with
// wallclock-based timestamps. However, we're making a simplifying
// assumption so as to keep the policy implementation straightforward, for
// now. In general, we should convert all timestamp handling in the
// UpdateManager to use monotonic time (instead of wallclock), including
// the computation of various expiration times (backoff, scattering, etc).
// The client will do whatever conversions necessary when
// persisting/retrieving these values across reboots. See chromium:408794.
LOG(ERROR) << "Download error timestamps not monotonically increasing.";
return EvalStatus::kFailed;
}
prev_err_time = err_time;
// Ignore errors that happened before the last known failed attempt.
if (!update_state.failures_last_updated.is_null() &&
err_time <= update_state.failures_last_updated)
continue;
if (prev_url_idx >= 0) {
if (url_idx < prev_url_idx) {
LOG(ERROR) << "The URLs in the download error log have wrapped around ("
<< prev_url_idx << "->" << url_idx
<< "). This should not have happened and means that there's "
"a bug. To be conservative, we record a failed attempt "
"(invalidating the rest of the error log) and resume "
"download from the first usable URL.";
url_idx = -1;
is_failure_occurred = true;
break;
}
if (url_idx > prev_url_idx) {
url_num_errors = 0;
do_advance_url = false;
}
}
if (HandleErrorCode(get<1>(err_tuple), &url_num_errors) ||
url_num_errors > update_state.download_errors_max)
do_advance_url = true;
prev_url_idx = url_idx;
}
// If required, advance to the next usable URL. If the URLs wraparound, we
// mark an update attempt failure. Also be sure to set the download error
// count to zero.
if (url_idx < 0 || do_advance_url) {
url_num_errors = 0;
int start_url_idx = -1;
do {
if (++url_idx == num_urls) {
url_idx = 0;
// We only mark failure if an actual advancing of a URL was required.
if (do_advance_url)
is_failure_occurred = true;
}
if (start_url_idx < 0)
start_url_idx = url_idx;
else if (url_idx == start_url_idx)
url_idx = -1; // No usable URL.
} while (url_idx >= 0 &&
!IsUrlUsable(update_state.download_urls[url_idx], http_allowed));
}
// If we have a download URL but a failure was observed, compute a new backoff
// expiry (if allowed). The backoff period is generally 2 ^ (num_failures - 1)
// days, bounded by the size of int and kAttemptBackoffMaxIntervalInDays, and
// fuzzed by kAttemptBackoffFuzzInHours hours. Backoff expiry is computed from
// the latest recorded time of error.
Time backoff_expiry;
if (url_idx >= 0 && is_failure_occurred && may_backoff) {
CHECK(!err_time.is_null())
<< "We must have an error timestamp if a failure occurred!";
const uint64_t* seed = ec->GetValue(state->random_provider()->var_seed());
POLICY_CHECK_VALUE_AND_FAIL(seed, error);
PRNG prng(*seed);
int exp = std::min(update_state.num_failures,
static_cast<int>(sizeof(int)) * 8 - 2);
TimeDelta backoff_interval = TimeDelta::FromDays(
std::min(1 << exp, kAttemptBackoffMaxIntervalInDays));
TimeDelta backoff_fuzz = TimeDelta::FromHours(kAttemptBackoffFuzzInHours);
TimeDelta wait_period = FuzzedInterval(&prng, backoff_interval.InSeconds(),
backoff_fuzz.InSeconds());
backoff_expiry = err_time + wait_period;
// If the newly computed backoff already expired, nullify it.
if (ec->IsWallclockTimeGreaterThan(backoff_expiry))
backoff_expiry = Time();
}
result->do_increment_failures = is_failure_occurred;
result->backoff_expiry = backoff_expiry;
result->url_idx = url_idx;
result->url_num_errors = url_num_errors;
return EvalStatus::kSucceeded;
}
EvalStatus ChromeOSPolicy::UpdateScattering(
EvaluationContext* ec,
State* state,
string* error,
UpdateScatteringResult* result,
const UpdateState& update_state) const {
// Preconditions. These stem from the postconditions and usage contract.
DCHECK(update_state.scatter_wait_period >= kZeroInterval);
DCHECK_GE(update_state.scatter_check_threshold, 0);
// Set default result values.
result->is_scattering = false;
result->wait_period = kZeroInterval;
result->check_threshold = 0;
DevicePolicyProvider* const dp_provider = state->device_policy_provider();
// Ensure that a device policy is loaded.
const bool* device_policy_is_loaded_p = ec->GetValue(
dp_provider->var_device_policy_is_loaded());
if (!(device_policy_is_loaded_p && *device_policy_is_loaded_p))
return EvalStatus::kSucceeded;
// Is scattering enabled by policy?
const TimeDelta* scatter_factor_p = ec->GetValue(
dp_provider->var_scatter_factor());
if (!scatter_factor_p || *scatter_factor_p == kZeroInterval)
return EvalStatus::kSucceeded;
// Obtain a pseudo-random number generator.
const uint64_t* seed = ec->GetValue(state->random_provider()->var_seed());
POLICY_CHECK_VALUE_AND_FAIL(seed, error);
PRNG prng(*seed);
// Step 1: Maintain the scattering wait period.
//
// If no wait period was previously determined, or it no longer fits in the
// scatter factor, then generate a new one. Otherwise, keep the one we have.
TimeDelta wait_period = update_state.scatter_wait_period;
if (wait_period == kZeroInterval || wait_period > *scatter_factor_p) {
wait_period = TimeDelta::FromSeconds(
prng.RandMinMax(1, scatter_factor_p->InSeconds()));
}
// If we surpassed the wait period or the max scatter period associated with
// the update, then no wait is needed.
Time wait_expires = (update_state.first_seen +
min(wait_period, update_state.scatter_wait_period_max));
if (ec->IsWallclockTimeGreaterThan(wait_expires))
wait_period = kZeroInterval;
// Step 2: Maintain the update check threshold count.
//
// If an update check threshold is not specified then generate a new
// one.
int check_threshold = update_state.scatter_check_threshold;
if (check_threshold == 0) {
check_threshold = prng.RandMinMax(
update_state.scatter_check_threshold_min,
update_state.scatter_check_threshold_max);
}
// If the update check threshold is not within allowed range then nullify it.
// TODO(garnold) This is compliant with current logic found in
// OmahaRequestAction::IsUpdateCheckCountBasedWaitingSatisfied(). We may want
// to change it so that it behaves similarly to the wait period case, namely
// if the current value exceeds the maximum, we set a new one within range.
if (check_threshold > update_state.scatter_check_threshold_max)
check_threshold = 0;
// If the update check threshold is non-zero and satisfied, then nullify it.
if (check_threshold > 0 && update_state.num_checks >= check_threshold)
check_threshold = 0;
bool is_scattering = (wait_period != kZeroInterval || check_threshold);
EvalStatus ret = EvalStatus::kSucceeded;
if (is_scattering && wait_period == update_state.scatter_wait_period &&
check_threshold == update_state.scatter_check_threshold)
ret = EvalStatus::kAskMeAgainLater;
result->is_scattering = is_scattering;
result->wait_period = wait_period;
result->check_threshold = check_threshold;
return ret;
}
} // namespace chromeos_update_manager