blob: 359b6b8866a6fee79b5f242f91d4ea4720ce2d17 [file] [log] [blame]
// Copyright (c) 2009 The Chromium OS Authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
#include "update_engine/utils.h"
#include <sys/mount.h>
#include <sys/resource.h>
#include <sys/stat.h>
#include <sys/types.h>
#include <dirent.h>
#include <errno.h>
#include <fcntl.h>
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <unistd.h>
#include <algorithm>
#include <base/eintr_wrapper.h>
#include <base/file_path.h>
#include <base/file_util.h>
#include <base/rand_util.h>
#include <base/string_util.h>
#include <base/logging.h>
#include <rootdev/rootdev.h>
#include "update_engine/file_writer.h"
#include "update_engine/omaha_request_params.h"
#include "update_engine/subprocess.h"
using std::min;
using std::string;
using std::vector;
namespace chromeos_update_engine {
namespace utils {
static const char kOOBECompletedMarker[] = "/home/chronos/.oobe_completed";
static const char kDevImageMarker[] = "/root/.dev_mode";
bool IsOfficialBuild() {
return !file_util::PathExists(FilePath(kDevImageMarker));
}
bool IsOOBEComplete() {
return file_util::PathExists(FilePath(kOOBECompletedMarker));
}
bool WriteFile(const char* path, const char* data, int data_len) {
DirectFileWriter writer;
TEST_AND_RETURN_FALSE_ERRNO(0 == writer.Open(path,
O_WRONLY | O_CREAT | O_TRUNC,
0600));
ScopedFileWriterCloser closer(&writer);
TEST_AND_RETURN_FALSE_ERRNO(data_len == writer.Write(data, data_len));
return true;
}
bool WriteAll(int fd, const void* buf, size_t count) {
const char* c_buf = static_cast<const char*>(buf);
ssize_t bytes_written = 0;
while (bytes_written < static_cast<ssize_t>(count)) {
ssize_t rc = write(fd, c_buf + bytes_written, count - bytes_written);
TEST_AND_RETURN_FALSE_ERRNO(rc >= 0);
bytes_written += rc;
}
return true;
}
bool PWriteAll(int fd, const void* buf, size_t count, off_t offset) {
const char* c_buf = static_cast<const char*>(buf);
ssize_t bytes_written = 0;
while (bytes_written < static_cast<ssize_t>(count)) {
ssize_t rc = pwrite(fd, c_buf + bytes_written, count - bytes_written,
offset + bytes_written);
TEST_AND_RETURN_FALSE_ERRNO(rc >= 0);
bytes_written += rc;
}
return true;
}
bool PReadAll(int fd, void* buf, size_t count, off_t offset,
ssize_t* out_bytes_read) {
char* c_buf = static_cast<char*>(buf);
ssize_t bytes_read = 0;
while (bytes_read < static_cast<ssize_t>(count)) {
ssize_t rc = pread(fd, c_buf + bytes_read, count - bytes_read,
offset + bytes_read);
TEST_AND_RETURN_FALSE_ERRNO(rc >= 0);
if (rc == 0) {
break;
}
bytes_read += rc;
}
*out_bytes_read = bytes_read;
return true;
}
bool ReadFile(const std::string& path, std::vector<char>* out) {
CHECK(out);
FILE* fp = fopen(path.c_str(), "r");
if (!fp)
return false;
const size_t kChunkSize = 1024;
size_t read_size;
do {
char buf[kChunkSize];
read_size = fread(buf, 1, kChunkSize, fp);
if (read_size == 0)
break;
out->insert(out->end(), buf, buf + read_size);
} while (read_size == kChunkSize);
bool success = !ferror(fp);
TEST_AND_RETURN_FALSE_ERRNO(fclose(fp) == 0);
return success;
}
bool ReadFileToString(const std::string& path, std::string* out) {
vector<char> data;
bool success = ReadFile(path, &data);
if (!success) {
return false;
}
(*out) = string(&data[0], data.size());
return true;
}
off_t FileSize(const string& path) {
struct stat stbuf;
int rc = stat(path.c_str(), &stbuf);
CHECK_EQ(rc, 0);
if (rc < 0)
return rc;
return stbuf.st_size;
}
void HexDumpArray(const unsigned char* const arr, const size_t length) {
const unsigned char* const char_arr =
reinterpret_cast<const unsigned char* const>(arr);
LOG(INFO) << "Logging array of length: " << length;
const unsigned int bytes_per_line = 16;
for (uint32_t i = 0; i < length; i += bytes_per_line) {
const unsigned int bytes_remaining = length - i;
const unsigned int bytes_per_this_line = min(bytes_per_line,
bytes_remaining);
char header[100];
int r = snprintf(header, sizeof(header), "0x%08x : ", i);
TEST_AND_RETURN(r == 13);
string line = header;
for (unsigned int j = 0; j < bytes_per_this_line; j++) {
char buf[20];
unsigned char c = char_arr[i + j];
r = snprintf(buf, sizeof(buf), "%02x ", static_cast<unsigned int>(c));
TEST_AND_RETURN(r == 3);
line += buf;
}
LOG(INFO) << line;
}
}
namespace {
class ScopedDirCloser {
public:
explicit ScopedDirCloser(DIR** dir) : dir_(dir) {}
~ScopedDirCloser() {
if (dir_ && *dir_) {
int r = closedir(*dir_);
TEST_AND_RETURN_ERRNO(r == 0);
*dir_ = NULL;
dir_ = NULL;
}
}
private:
DIR** dir_;
};
} // namespace {}
bool RecursiveUnlinkDir(const std::string& path) {
struct stat stbuf;
int r = lstat(path.c_str(), &stbuf);
TEST_AND_RETURN_FALSE_ERRNO((r == 0) || (errno == ENOENT));
if ((r < 0) && (errno == ENOENT))
// path request is missing. that's fine.
return true;
if (!S_ISDIR(stbuf.st_mode)) {
TEST_AND_RETURN_FALSE_ERRNO((unlink(path.c_str()) == 0) ||
(errno == ENOENT));
// success or path disappeared before we could unlink.
return true;
}
{
// We have a dir, unlink all children, then delete dir
DIR *dir = opendir(path.c_str());
TEST_AND_RETURN_FALSE_ERRNO(dir);
ScopedDirCloser dir_closer(&dir);
struct dirent dir_entry;
struct dirent *dir_entry_p;
int err = 0;
while ((err = readdir_r(dir, &dir_entry, &dir_entry_p)) == 0) {
if (dir_entry_p == NULL) {
// end of stream reached
break;
}
// Skip . and ..
if (!strcmp(dir_entry_p->d_name, ".") ||
!strcmp(dir_entry_p->d_name, ".."))
continue;
TEST_AND_RETURN_FALSE(RecursiveUnlinkDir(path + "/" +
dir_entry_p->d_name));
}
TEST_AND_RETURN_FALSE(err == 0);
}
// unlink dir
TEST_AND_RETURN_FALSE_ERRNO((rmdir(path.c_str()) == 0) || (errno == ENOENT));
return true;
}
string RootDevice(const string& partition_device) {
FilePath device_path(partition_device);
if (device_path.DirName().value() != "/dev") {
return "";
}
string::const_iterator it = --partition_device.end();
for (; it >= partition_device.begin(); --it) {
if (!isdigit(*it))
break;
}
// Some devices contain a p before the partitions. For example:
// /dev/mmc0p4 should be shortened to /dev/mmc0.
if (*it == 'p')
--it;
return string(partition_device.begin(), it + 1);
}
string PartitionNumber(const string& partition_device) {
CHECK(!partition_device.empty());
string::const_iterator it = --partition_device.end();
for (; it >= partition_device.begin(); --it) {
if (!isdigit(*it))
break;
}
return string(it + 1, partition_device.end());
}
string SysfsBlockDevice(const string& device) {
FilePath device_path(device);
if (device_path.DirName().value() != "/dev") {
return "";
}
return FilePath("/sys/block").Append(device_path.BaseName()).value();
}
bool IsRemovableDevice(const std::string& device) {
string sysfs_block = SysfsBlockDevice(device);
string removable;
if (sysfs_block.empty() ||
!file_util::ReadFileToString(FilePath(sysfs_block).Append("removable"),
&removable)) {
return false;
}
TrimWhitespaceASCII(removable, TRIM_ALL, &removable);
return removable == "1";
}
std::string ErrnoNumberAsString(int err) {
char buf[100];
buf[0] = '\0';
return strerror_r(err, buf, sizeof(buf));
}
std::string NormalizePath(const std::string& path, bool strip_trailing_slash) {
string ret;
bool last_insert_was_slash = false;
for (string::const_iterator it = path.begin(); it != path.end(); ++it) {
if (*it == '/') {
if (last_insert_was_slash)
continue;
last_insert_was_slash = true;
} else {
last_insert_was_slash = false;
}
ret.push_back(*it);
}
if (strip_trailing_slash && last_insert_was_slash) {
string::size_type last_non_slash = ret.find_last_not_of('/');
if (last_non_slash != string::npos) {
ret.resize(last_non_slash + 1);
} else {
ret = "";
}
}
return ret;
}
bool FileExists(const char* path) {
struct stat stbuf;
return 0 == lstat(path, &stbuf);
}
bool IsSymlink(const char* path) {
struct stat stbuf;
return lstat(path, &stbuf) == 0 && S_ISLNK(stbuf.st_mode) != 0;
}
std::string TempFilename(string path) {
static const string suffix("XXXXXX");
CHECK(StringHasSuffix(path, suffix));
do {
string new_suffix;
for (unsigned int i = 0; i < suffix.size(); i++) {
int r = rand() % (26 * 2 + 10); // [a-zA-Z0-9]
if (r < 26)
new_suffix.append(1, 'a' + r);
else if (r < (26 * 2))
new_suffix.append(1, 'A' + r - 26);
else
new_suffix.append(1, '0' + r - (26 * 2));
}
CHECK_EQ(new_suffix.size(), suffix.size());
path.resize(path.size() - new_suffix.size());
path.append(new_suffix);
} while (FileExists(path.c_str()));
return path;
}
bool MakeTempFile(const std::string& filename_template,
std::string* filename,
int* fd) {
DCHECK(filename || fd);
vector<char> buf(filename_template.size() + 1);
memcpy(&buf[0], filename_template.data(), filename_template.size());
buf[filename_template.size()] = '\0';
int mkstemp_fd = mkstemp(&buf[0]);
TEST_AND_RETURN_FALSE_ERRNO(mkstemp_fd >= 0);
if (filename) {
*filename = &buf[0];
}
if (fd) {
*fd = mkstemp_fd;
} else {
close(mkstemp_fd);
}
return true;
}
bool MakeTempDirectory(const std::string& dirname_template,
std::string* dirname) {
DCHECK(dirname);
vector<char> buf(dirname_template.size() + 1);
memcpy(&buf[0], dirname_template.data(), dirname_template.size());
buf[dirname_template.size()] = '\0';
char* return_code = mkdtemp(&buf[0]);
TEST_AND_RETURN_FALSE_ERRNO(return_code != NULL);
*dirname = &buf[0];
return true;
}
bool StringHasSuffix(const std::string& str, const std::string& suffix) {
if (suffix.size() > str.size())
return false;
return 0 == str.compare(str.size() - suffix.size(), suffix.size(), suffix);
}
bool StringHasPrefix(const std::string& str, const std::string& prefix) {
if (prefix.size() > str.size())
return false;
return 0 == str.compare(0, prefix.size(), prefix);
}
const std::string BootDevice() {
char boot_path[PATH_MAX];
// Resolve the boot device path fully, including dereferencing
// through dm-verity.
int ret = rootdev(boot_path, sizeof(boot_path), true, false);
if (ret < 0) {
LOG(ERROR) << "rootdev failed to find the root device";
return "";
}
LOG_IF(WARNING, ret > 0) << "rootdev found a device name with no device node";
// This local variable is used to construct the return string and is not
// passed around after use.
return boot_path;
}
const string BootKernelDevice(const std::string& boot_device) {
// Currntly this assumes the last digit of the boot device is
// 3, 5, or 7, and changes it to 2, 4, or 6, respectively, to
// get the kernel device.
string ret = boot_device;
if (ret.empty())
return ret;
char last_char = ret[ret.size() - 1];
if (last_char == '3' || last_char == '5' || last_char == '7') {
ret[ret.size() - 1] = last_char - 1;
return ret;
}
return "";
}
bool MountFilesystem(const string& device,
const string& mountpoint,
unsigned long mountflags) {
int rc = mount(device.c_str(), mountpoint.c_str(), "ext3", mountflags, NULL);
if (rc < 0) {
string msg = ErrnoNumberAsString(errno);
LOG(ERROR) << "Unable to mount destination device: " << msg << ". "
<< device << " on " << mountpoint;
return false;
}
return true;
}
bool UnmountFilesystem(const string& mountpoint) {
TEST_AND_RETURN_FALSE_ERRNO(umount(mountpoint.c_str()) == 0);
return true;
}
bool GetFilesystemSize(const std::string& device,
int* out_block_count,
int* out_block_size) {
int fd = HANDLE_EINTR(open(device.c_str(), O_RDONLY));
TEST_AND_RETURN_FALSE(fd >= 0);
ScopedFdCloser fd_closer(&fd);
return GetFilesystemSizeFromFD(fd, out_block_count, out_block_size);
}
bool GetFilesystemSizeFromFD(int fd,
int* out_block_count,
int* out_block_size) {
TEST_AND_RETURN_FALSE(fd >= 0);
// Determine the ext3 filesystem size by directly reading the block count and
// block size information from the superblock. See include/linux/ext3_fs.h for
// more details on the structure.
ssize_t kBufferSize = 16 * sizeof(uint32_t);
char buffer[kBufferSize];
const int kSuperblockOffset = 1024;
if (HANDLE_EINTR(pread(fd, buffer, kBufferSize, kSuperblockOffset)) !=
kBufferSize) {
PLOG(ERROR) << "Unable to determine file system size:";
return false;
}
uint32_t block_count; // ext3_fs.h: ext3_super_block.s_blocks_count
uint32_t log_block_size; // ext3_fs.h: ext3_super_block.s_log_block_size
uint16_t magic; // ext3_fs.h: ext3_super_block.s_magic
memcpy(&block_count, &buffer[1 * sizeof(int32_t)], sizeof(block_count));
memcpy(&log_block_size, &buffer[6 * sizeof(int32_t)], sizeof(log_block_size));
memcpy(&magic, &buffer[14 * sizeof(int32_t)], sizeof(magic));
block_count = le32toh(block_count);
const int kExt3MinBlockLogSize = 10; // ext3_fs.h: EXT3_MIN_BLOCK_LOG_SIZE
log_block_size = le32toh(log_block_size) + kExt3MinBlockLogSize;
magic = le16toh(magic);
// Sanity check the parameters.
const uint16_t kExt3SuperMagic = 0xef53; // ext3_fs.h: EXT3_SUPER_MAGIC
TEST_AND_RETURN_FALSE(magic == kExt3SuperMagic);
const int kExt3MinBlockSize = 1024; // ext3_fs.h: EXT3_MIN_BLOCK_SIZE
const int kExt3MaxBlockSize = 4096; // ext3_fs.h: EXT3_MAX_BLOCK_SIZE
int block_size = 1 << log_block_size;
TEST_AND_RETURN_FALSE(block_size >= kExt3MinBlockSize &&
block_size <= kExt3MaxBlockSize);
TEST_AND_RETURN_FALSE(block_count > 0);
if (out_block_count) {
*out_block_count = block_count;
}
if (out_block_size) {
*out_block_size = block_size;
}
return true;
}
bool GetBootloader(BootLoader* out_bootloader) {
// For now, hardcode to syslinux.
*out_bootloader = BootLoader_SYSLINUX;
return true;
}
const char* GetGErrorMessage(const GError* error) {
if (!error)
return "Unknown error.";
return error->message;
}
bool Reboot() {
vector<string> command;
command.push_back("/sbin/shutdown");
command.push_back("-r");
command.push_back("now");
int rc = 0;
Subprocess::SynchronousExec(command, &rc);
TEST_AND_RETURN_FALSE(rc == 0);
return true;
}
bool SetProcessPriority(ProcessPriority priority) {
int prio = static_cast<int>(priority);
LOG(INFO) << "Setting process priority to " << prio;
TEST_AND_RETURN_FALSE(setpriority(PRIO_PROCESS, 0, prio) == 0);
return true;
}
int ComparePriorities(ProcessPriority priority_lhs,
ProcessPriority priority_rhs) {
return static_cast<int>(priority_rhs) - static_cast<int>(priority_lhs);
}
int FuzzInt(int value, unsigned int range) {
int min = value - range / 2;
int max = value + range - range / 2;
return base::RandInt(min, max);
}
const char* const kStatefulPartition = "/mnt/stateful_partition";
} // namespace utils
} // namespace chromeos_update_engine