blob: 3c05b1d9f62dc44c14d04e21dc5fdba2d8b8b07f [file] [log] [blame]
// Copyright (c) 2009 The Chromium OS Authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
#include <sys/mount.h>
#include <inttypes.h>
#include <algorithm>
#include <string>
#include <vector>
#include <base/file_util.h>
#include <base/scoped_ptr.h>
#include <base/string_util.h>
#include <google/protobuf/repeated_field.h>
#include <gtest/gtest.h>
#include "update_engine/delta_diff_generator.h"
#include "update_engine/delta_performer.h"
#include "update_engine/extent_ranges.h"
#include "update_engine/graph_types.h"
#include "update_engine/payload_signer.h"
#include "update_engine/prefs_mock.h"
#include "update_engine/test_utils.h"
#include "update_engine/update_metadata.pb.h"
#include "update_engine/utils.h"
namespace chromeos_update_engine {
using std::min;
using std::string;
using std::vector;
using testing::_;
using testing::Return;
extern const char* kUnittestPrivateKeyPath;
extern const char* kUnittestPublicKeyPath;
namespace {
const size_t kBlockSize = 4096;
} // namespace {}
class DeltaPerformerTest : public ::testing::Test { };
TEST(DeltaPerformerTest, ExtentsToByteStringTest) {
uint64_t test[] = {1, 1, 4, 2, kSparseHole, 1, 0, 1};
COMPILE_ASSERT(arraysize(test) % 2 == 0, array_size_uneven);
const uint64_t block_size = 4096;
const uint64_t file_length = 5 * block_size - 13;
google::protobuf::RepeatedPtrField<Extent> extents;
for (size_t i = 0; i < arraysize(test); i += 2) {
Extent* extent = extents.Add();
extent->set_start_block(test[i]);
extent->set_num_blocks(test[i + 1]);
}
string expected_output = "4096:4096,16384:8192,-1:4096,0:4083";
string actual_output;
EXPECT_TRUE(DeltaPerformer::ExtentsToBsdiffPositionsString(extents,
block_size,
file_length,
&actual_output));
EXPECT_EQ(expected_output, actual_output);
}
class ScopedLoopMounter {
public:
explicit ScopedLoopMounter(const string& file_path, string* mnt_path,
unsigned long flags) {
EXPECT_TRUE(utils::MakeTempDirectory("/tmp/mnt.XXXXXX", mnt_path));
dir_remover_.reset(new ScopedDirRemover(*mnt_path));
string loop_dev = GetUnusedLoopDevice();
EXPECT_EQ(0, system(StringPrintf("losetup %s %s", loop_dev.c_str(),
file_path.c_str()).c_str()));
loop_releaser_.reset(new ScopedLoopbackDeviceReleaser(loop_dev));
EXPECT_TRUE(utils::MountFilesystem(loop_dev, *mnt_path, flags));
unmounter_.reset(new ScopedFilesystemUnmounter(*mnt_path));
}
private:
scoped_ptr<ScopedDirRemover> dir_remover_;
scoped_ptr<ScopedLoopbackDeviceReleaser> loop_releaser_;
scoped_ptr<ScopedFilesystemUnmounter> unmounter_;
};
void CompareFilesByBlock(const string& a_file, const string& b_file) {
vector<char> a_data, b_data;
EXPECT_TRUE(utils::ReadFile(a_file, &a_data)) << "file failed: " << a_file;
EXPECT_TRUE(utils::ReadFile(b_file, &b_data)) << "file failed: " << b_file;
EXPECT_EQ(a_data.size(), b_data.size());
EXPECT_EQ(0, a_data.size() % kBlockSize);
for (size_t i = 0; i < a_data.size(); i += kBlockSize) {
EXPECT_EQ(0, i % kBlockSize);
vector<char> a_sub(&a_data[i], &a_data[i + kBlockSize]);
vector<char> b_sub(&b_data[i], &b_data[i + kBlockSize]);
EXPECT_TRUE(a_sub == b_sub) << "Block " << (i/kBlockSize) << " differs";
}
}
namespace {
bool WriteSparseFile(const string& path, off_t size) {
int fd = open(path.c_str(), O_CREAT | O_TRUNC | O_WRONLY, 0644);
TEST_AND_RETURN_FALSE_ERRNO(fd >= 0);
ScopedFdCloser fd_closer(&fd);
off_t rc = lseek(fd, size + 1, SEEK_SET);
TEST_AND_RETURN_FALSE_ERRNO(rc != static_cast<off_t>(-1));
int return_code = ftruncate(fd, size);
TEST_AND_RETURN_FALSE_ERRNO(return_code == 0);
return true;
}
void DoSmallImageTest(bool full_kernel, bool noop) {
string a_img, b_img;
EXPECT_TRUE(utils::MakeTempFile("/tmp/a_img.XXXXXX", &a_img, NULL));
ScopedPathUnlinker a_img_unlinker(a_img);
EXPECT_TRUE(utils::MakeTempFile("/tmp/b_img.XXXXXX", &b_img, NULL));
ScopedPathUnlinker b_img_unlinker(b_img);
CreateExtImageAtPath(a_img, NULL);
int image_size = static_cast<int>(utils::FileSize(a_img));
// Extend the "partitions" holding the file system a bit.
EXPECT_EQ(0, System(base::StringPrintf(
"dd if=/dev/zero of=%s seek=%d bs=1 count=1",
a_img.c_str(),
image_size + 1024 * 1024 - 1)));
EXPECT_EQ(image_size + 1024 * 1024, utils::FileSize(a_img));
// Make some changes to the A image.
{
string a_mnt;
ScopedLoopMounter b_mounter(a_img, &a_mnt, 0);
EXPECT_TRUE(utils::WriteFile(StringPrintf("%s/hardtocompress",
a_mnt.c_str()).c_str(),
reinterpret_cast<const char*>(kRandomString),
sizeof(kRandomString) - 1));
// Write 1 MiB of 0xff to try to catch the case where writing a bsdiff
// patch fails to zero out the final block.
vector<char> ones(1024 * 1024, 0xff);
EXPECT_TRUE(utils::WriteFile(StringPrintf("%s/ones",
a_mnt.c_str()).c_str(),
&ones[0],
ones.size()));
}
if (noop) {
EXPECT_TRUE(file_util::CopyFile(FilePath(a_img), FilePath(b_img)));
} else {
CreateExtImageAtPath(b_img, NULL);
EXPECT_EQ(0, System(base::StringPrintf(
"dd if=/dev/zero of=%s seek=%d bs=1 count=1",
b_img.c_str(),
image_size + 1024 * 1024 - 1)));
EXPECT_EQ(image_size + 1024 * 1024, utils::FileSize(b_img));
// Make some changes to the B image.
string b_mnt;
ScopedLoopMounter b_mounter(b_img, &b_mnt, 0);
EXPECT_EQ(0, system(StringPrintf("cp %s/hello %s/hello2", b_mnt.c_str(),
b_mnt.c_str()).c_str()));
EXPECT_EQ(0, system(StringPrintf("rm %s/hello", b_mnt.c_str()).c_str()));
EXPECT_EQ(0, system(StringPrintf("mv %s/hello2 %s/hello", b_mnt.c_str(),
b_mnt.c_str()).c_str()));
EXPECT_EQ(0, system(StringPrintf("echo foo > %s/foo",
b_mnt.c_str()).c_str()));
EXPECT_EQ(0, system(StringPrintf("touch %s/emptyfile",
b_mnt.c_str()).c_str()));
EXPECT_TRUE(WriteSparseFile(StringPrintf("%s/fullsparse", b_mnt.c_str()),
1024 * 1024));
EXPECT_EQ(0, system(StringPrintf("dd if=/dev/zero of=%s/partsparese bs=1 "
"seek=4096 count=1",
b_mnt.c_str()).c_str()));
EXPECT_TRUE(utils::WriteFile(StringPrintf("%s/hardtocompress",
b_mnt.c_str()).c_str(),
reinterpret_cast<const char*>(kRandomString),
sizeof(kRandomString)));
}
string old_kernel;
EXPECT_TRUE(utils::MakeTempFile("/tmp/old_kernel.XXXXXX", &old_kernel, NULL));
ScopedPathUnlinker old_kernel_unlinker(old_kernel);
string new_kernel;
EXPECT_TRUE(utils::MakeTempFile("/tmp/new_kernel.XXXXXX", &new_kernel, NULL));
ScopedPathUnlinker new_kernel_unlinker(new_kernel);
vector<char> old_kernel_data(4096); // Something small for a test
vector<char> new_kernel_data(old_kernel_data.size());
FillWithData(&old_kernel_data);
FillWithData(&new_kernel_data);
// change the new kernel data
const char* new_data_string = "This is new data.";
strcpy(&new_kernel_data[0], new_data_string);
if (noop) {
old_kernel_data = new_kernel_data;
}
// Write kernels to disk
EXPECT_TRUE(utils::WriteFile(
old_kernel.c_str(), &old_kernel_data[0], old_kernel_data.size()));
EXPECT_TRUE(utils::WriteFile(
new_kernel.c_str(), &new_kernel_data[0], new_kernel_data.size()));
string delta_path;
EXPECT_TRUE(utils::MakeTempFile("/tmp/delta.XXXXXX", &delta_path, NULL));
LOG(INFO) << "delta path: " << delta_path;
ScopedPathUnlinker delta_path_unlinker(delta_path);
{
string a_mnt, b_mnt;
ScopedLoopMounter a_mounter(a_img, &a_mnt, MS_RDONLY);
ScopedLoopMounter b_mounter(b_img, &b_mnt, MS_RDONLY);
EXPECT_TRUE(
DeltaDiffGenerator::GenerateDeltaUpdateFile(
a_mnt,
a_img,
b_mnt,
b_img,
full_kernel ? "" : old_kernel,
new_kernel,
delta_path,
kUnittestPrivateKeyPath));
}
// Read delta into memory.
vector<char> delta;
EXPECT_TRUE(utils::ReadFile(delta_path, &delta));
uint64_t manifest_metadata_size;
// Check the metadata.
{
LOG(INFO) << "delta size: " << delta.size();
DeltaArchiveManifest manifest;
const int kManifestSizeOffset = 12;
const int kManifestOffset = 20;
uint64_t manifest_size = 0;
memcpy(&manifest_size, &delta[kManifestSizeOffset], sizeof(manifest_size));
manifest_size = be64toh(manifest_size);
LOG(INFO) << "manifest size: " << manifest_size;
EXPECT_TRUE(manifest.ParseFromArray(&delta[kManifestOffset],
manifest_size));
EXPECT_TRUE(manifest.has_signatures_offset());
manifest_metadata_size = kManifestOffset + manifest_size;
Signatures sigs_message;
EXPECT_TRUE(sigs_message.ParseFromArray(
&delta[manifest_metadata_size + manifest.signatures_offset()],
manifest.signatures_size()));
EXPECT_EQ(1, sigs_message.signatures_size());
const Signatures_Signature& signature = sigs_message.signatures(0);
EXPECT_EQ(1, signature.version());
uint64_t expected_sig_data_length = 0;
EXPECT_TRUE(PayloadSigner::SignatureBlobLength(kUnittestPrivateKeyPath,
&expected_sig_data_length));
EXPECT_EQ(expected_sig_data_length, manifest.signatures_size());
EXPECT_FALSE(signature.data().empty());
if (noop) {
EXPECT_EQ(1, manifest.install_operations_size());
EXPECT_EQ(1, manifest.kernel_install_operations_size());
}
if (full_kernel) {
EXPECT_FALSE(manifest.has_old_kernel_info());
} else {
EXPECT_EQ(old_kernel_data.size(), manifest.old_kernel_info().size());
EXPECT_FALSE(manifest.old_kernel_info().hash().empty());
}
EXPECT_EQ(new_kernel_data.size(), manifest.new_kernel_info().size());
EXPECT_EQ(image_size, manifest.old_rootfs_info().size());
EXPECT_EQ(image_size, manifest.new_rootfs_info().size());
EXPECT_FALSE(manifest.new_kernel_info().hash().empty());
EXPECT_FALSE(manifest.old_rootfs_info().hash().empty());
EXPECT_FALSE(manifest.new_rootfs_info().hash().empty());
}
PrefsMock prefs;
EXPECT_CALL(prefs, SetInt64(kPrefsManifestMetadataSize,
manifest_metadata_size)).WillOnce(Return(true));
EXPECT_CALL(prefs, SetInt64(kPrefsUpdateStateNextOperation, _))
.WillRepeatedly(Return(true));
EXPECT_CALL(prefs, GetInt64(kPrefsUpdateStateNextOperation, _))
.WillOnce(Return(false));
EXPECT_CALL(prefs, SetInt64(kPrefsUpdateStateNextDataOffset, _))
.WillRepeatedly(Return(true));
EXPECT_CALL(prefs, SetString(kPrefsUpdateStateSHA256Context, _))
.WillRepeatedly(Return(true));
EXPECT_CALL(prefs, SetString(kPrefsUpdateStateSignedSHA256Context, _))
.WillOnce(Return(true));
// Update the A image in place.
DeltaPerformer performer(&prefs);
vector<char> rootfs_hash;
EXPECT_EQ(image_size,
OmahaHashCalculator::RawHashOfFile(a_img,
image_size,
&rootfs_hash));
performer.set_current_rootfs_hash(&rootfs_hash);
vector<char> kernel_hash;
EXPECT_TRUE(OmahaHashCalculator::RawHashOfData(old_kernel_data,
&kernel_hash));
performer.set_current_kernel_hash(&kernel_hash);
EXPECT_EQ(0, performer.Open(a_img.c_str(), 0, 0));
EXPECT_TRUE(performer.OpenKernel(old_kernel.c_str()));
// Write at some number of bytes per operation. Arbitrarily chose 5.
const size_t kBytesPerWrite = 5;
for (size_t i = 0; i < delta.size(); i += kBytesPerWrite) {
size_t count = min(delta.size() - i, kBytesPerWrite);
EXPECT_EQ(count, performer.Write(&delta[i], count));
}
// Wrapper around close. Returns 0 on success or -errno on error.
EXPECT_EQ(0, performer.Close());
CompareFilesByBlock(old_kernel, new_kernel);
CompareFilesByBlock(a_img, b_img);
vector<char> updated_kernel_partition;
EXPECT_TRUE(utils::ReadFile(old_kernel, &updated_kernel_partition));
EXPECT_EQ(0, strncmp(&updated_kernel_partition[0], new_data_string,
strlen(new_data_string)));
EXPECT_TRUE(utils::FileExists(kUnittestPublicKeyPath));
EXPECT_TRUE(performer.VerifyPayload(
kUnittestPublicKeyPath,
OmahaHashCalculator::OmahaHashOfData(delta),
delta.size()));
EXPECT_TRUE(performer.VerifyAppliedUpdate(a_img, old_kernel));
}
}
TEST(DeltaPerformerTest, RunAsRootSmallImageTest) {
DoSmallImageTest(false, false);
}
TEST(DeltaPerformerTest, RunAsRootFullKernelSmallImageTest) {
DoSmallImageTest(true, false);
}
TEST(DeltaPerformerTest, RunAsRootNoopSmallImageTest) {
DoSmallImageTest(false, true);
}
TEST(DeltaPerformerTest, NewFullUpdateTest) {
vector<char> new_root(20 * 1024 * 1024);
vector<char> new_kern(16 * 1024 * 1024);
const off_t kChunkSize = 128 * 1024;
FillWithData(&new_root);
FillWithData(&new_kern);
// Assume hashes take 2 MiB beyond the rootfs.
off_t new_rootfs_size = new_root.size() - 2 * 1024 * 1024;
string new_root_path;
EXPECT_TRUE(utils::MakeTempFile("/tmp/NewFullUpdateTest_R.XXXXXX",
&new_root_path,
NULL));
ScopedPathUnlinker new_root_path_unlinker(new_root_path);
EXPECT_TRUE(WriteFileVector(new_root_path, new_root));
string new_kern_path;
EXPECT_TRUE(utils::MakeTempFile("/tmp/NewFullUpdateTest_K.XXXXXX",
&new_kern_path,
NULL));
ScopedPathUnlinker new_kern_path_unlinker(new_kern_path);
EXPECT_TRUE(WriteFileVector(new_kern_path, new_kern));
string out_blobs_path;
int out_blobs_fd;
EXPECT_TRUE(utils::MakeTempFile("/tmp/NewFullUpdateTest_D.XXXXXX",
&out_blobs_path,
&out_blobs_fd));
ScopedPathUnlinker out_blobs_path_unlinker(out_blobs_path);
ScopedFdCloser out_blobs_fd_closer(&out_blobs_fd);
off_t out_blobs_length = 0;
Graph graph;
vector<DeltaArchiveManifest_InstallOperation> kernel_ops;
vector<Vertex::Index> final_order;
EXPECT_TRUE(DeltaDiffGenerator::ReadFullUpdateFromDisk(&graph,
new_kern_path,
new_root_path,
new_rootfs_size,
out_blobs_fd,
&out_blobs_length,
kChunkSize,
&kernel_ops,
&final_order));
EXPECT_EQ(new_rootfs_size / kChunkSize, graph.size());
EXPECT_EQ(new_rootfs_size / kChunkSize, final_order.size());
EXPECT_EQ(new_kern.size() / kChunkSize, kernel_ops.size());
for (off_t i = 0; i < (new_rootfs_size / kChunkSize); ++i) {
EXPECT_EQ(i, final_order[i]);
EXPECT_EQ(1, graph[i].op.dst_extents_size());
EXPECT_EQ(i * kChunkSize / kBlockSize,
graph[i].op.dst_extents(0).start_block()) << "i = " << i;
EXPECT_EQ(kChunkSize / kBlockSize,
graph[i].op.dst_extents(0).num_blocks());
if (graph[i].op.type() !=
DeltaArchiveManifest_InstallOperation_Type_REPLACE) {
EXPECT_EQ(DeltaArchiveManifest_InstallOperation_Type_REPLACE_BZ,
graph[i].op.type());
}
}
}
TEST(DeltaPerformerTest, IsIdempotentOperationTest) {
DeltaArchiveManifest_InstallOperation op;
EXPECT_TRUE(DeltaPerformer::IsIdempotentOperation(op));
*(op.add_dst_extents()) = ExtentForRange(0, 5);
EXPECT_TRUE(DeltaPerformer::IsIdempotentOperation(op));
*(op.add_src_extents()) = ExtentForRange(4, 1);
EXPECT_FALSE(DeltaPerformer::IsIdempotentOperation(op));
op.clear_src_extents();
*(op.add_src_extents()) = ExtentForRange(5, 3);
EXPECT_TRUE(DeltaPerformer::IsIdempotentOperation(op));
*(op.add_dst_extents()) = ExtentForRange(20, 6);
EXPECT_TRUE(DeltaPerformer::IsIdempotentOperation(op));
*(op.add_src_extents()) = ExtentForRange(19, 2);
EXPECT_FALSE(DeltaPerformer::IsIdempotentOperation(op));
}
} // namespace chromeos_update_engine