| // |
| // Copyright (C) 2014 The Android Open Source Project |
| // |
| // Licensed under the Apache License, Version 2.0 (the "License"); |
| // you may not use this file except in compliance with the License. |
| // You may obtain a copy of the License at |
| // |
| // http://www.apache.org/licenses/LICENSE-2.0 |
| // |
| // Unless required by applicable law or agreed to in writing, software |
| // distributed under the License is distributed on an "AS IS" BASIS, |
| // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. |
| // See the License for the specific language governing permissions and |
| // limitations under the License. |
| // |
| |
| #include "update_engine/payload_consumer/payload_verifier.h" |
| |
| #include <utility> |
| #include <vector> |
| |
| #include <base/logging.h> |
| #include <openssl/pem.h> |
| |
| #include "update_engine/common/constants.h" |
| #include "update_engine/common/hash_calculator.h" |
| #include "update_engine/common/utils.h" |
| #include "update_engine/payload_consumer/certificate_parser_interface.h" |
| #include "update_engine/update_metadata.pb.h" |
| |
| using std::string; |
| |
| namespace chromeos_update_engine { |
| |
| namespace { |
| |
| // The ASN.1 DigestInfo prefix for encoding SHA256 digest. The complete 51-byte |
| // DigestInfo consists of 19-byte SHA256_DIGEST_INFO_PREFIX and 32-byte SHA256 |
| // digest. |
| // |
| // SEQUENCE(2+49) { |
| // SEQUENCE(2+13) { |
| // OBJECT(2+9) id-sha256 |
| // NULL(2+0) |
| // } |
| // OCTET STRING(2+32) <actual signature bytes...> |
| // } |
| const uint8_t kSHA256DigestInfoPrefix[] = { |
| 0x30, 0x31, 0x30, 0x0d, 0x06, 0x09, 0x60, 0x86, 0x48, 0x01, |
| 0x65, 0x03, 0x04, 0x02, 0x01, 0x05, 0x00, 0x04, 0x20, |
| }; |
| |
| } // namespace |
| |
| std::unique_ptr<PayloadVerifier> PayloadVerifier::CreateInstance( |
| const std::string& pem_public_key) { |
| std::unique_ptr<BIO, decltype(&BIO_free)> bp( |
| BIO_new_mem_buf(pem_public_key.data(), pem_public_key.size()), BIO_free); |
| if (!bp) { |
| LOG(ERROR) << "Failed to read " << pem_public_key << " into buffer."; |
| return nullptr; |
| } |
| |
| auto pub_key = std::unique_ptr<EVP_PKEY, decltype(&EVP_PKEY_free)>( |
| PEM_read_bio_PUBKEY(bp.get(), nullptr, nullptr, nullptr), EVP_PKEY_free); |
| if (!pub_key) { |
| LOG(ERROR) << "Failed to parse the public key in: " << pem_public_key; |
| return nullptr; |
| } |
| |
| std::vector<std::unique_ptr<EVP_PKEY, decltype(&EVP_PKEY_free)>> keys; |
| keys.emplace_back(std::move(pub_key)); |
| return std::unique_ptr<PayloadVerifier>(new PayloadVerifier(std::move(keys))); |
| } |
| |
| std::unique_ptr<PayloadVerifier> PayloadVerifier::CreateInstanceFromZipPath( |
| const std::string& certificate_zip_path) { |
| auto parser = CreateCertificateParser(); |
| if (!parser) { |
| LOG(ERROR) << "Failed to create certificate parser from " |
| << certificate_zip_path; |
| return nullptr; |
| } |
| |
| std::vector<std::unique_ptr<EVP_PKEY, decltype(&EVP_PKEY_free)>> public_keys; |
| if (!parser->ReadPublicKeysFromCertificates(certificate_zip_path, |
| &public_keys) || |
| public_keys.empty()) { |
| LOG(ERROR) << "Failed to parse public keys in: " << certificate_zip_path; |
| return nullptr; |
| } |
| |
| return std::unique_ptr<PayloadVerifier>( |
| new PayloadVerifier(std::move(public_keys))); |
| } |
| |
| bool PayloadVerifier::VerifySignature( |
| const string& signature_proto, const brillo::Blob& sha256_hash_data) const { |
| TEST_AND_RETURN_FALSE(!public_keys_.empty()); |
| |
| Signatures signatures; |
| LOG(INFO) << "signature blob size = " << signature_proto.size(); |
| TEST_AND_RETURN_FALSE(signatures.ParseFromString(signature_proto)); |
| |
| if (!signatures.signatures_size()) { |
| LOG(ERROR) << "No signatures stored in the blob."; |
| return false; |
| } |
| |
| std::vector<brillo::Blob> tested_hashes; |
| // Tries every signature in the signature blob. |
| for (int i = 0; i < signatures.signatures_size(); i++) { |
| const Signatures::Signature& signature = signatures.signatures(i); |
| brillo::Blob sig_data; |
| if (signature.has_unpadded_signature_size()) { |
| TEST_AND_RETURN_FALSE(signature.unpadded_signature_size() <= |
| signature.data().size()); |
| LOG(INFO) << "Truncating the signature to its unpadded size: " |
| << signature.unpadded_signature_size() << "."; |
| sig_data.assign( |
| signature.data().begin(), |
| signature.data().begin() + signature.unpadded_signature_size()); |
| } else { |
| sig_data.assign(signature.data().begin(), signature.data().end()); |
| } |
| |
| brillo::Blob sig_hash_data; |
| if (VerifyRawSignature(sig_data, sha256_hash_data, &sig_hash_data)) { |
| LOG(INFO) << "Verified correct signature " << i + 1 << " out of " |
| << signatures.signatures_size() << " signatures."; |
| return true; |
| } |
| if (!sig_hash_data.empty()) { |
| tested_hashes.push_back(sig_hash_data); |
| } |
| } |
| LOG(ERROR) << "None of the " << signatures.signatures_size() |
| << " signatures is correct. Expected hash before padding:"; |
| utils::HexDumpVector(sha256_hash_data); |
| LOG(ERROR) << "But found RSA decrypted hashes:"; |
| for (const auto& sig_hash_data : tested_hashes) { |
| utils::HexDumpVector(sig_hash_data); |
| } |
| return false; |
| } |
| |
| bool PayloadVerifier::VerifyRawSignature( |
| const brillo::Blob& sig_data, |
| const brillo::Blob& sha256_hash_data, |
| brillo::Blob* decrypted_sig_data) const { |
| TEST_AND_RETURN_FALSE(!public_keys_.empty()); |
| |
| for (const auto& public_key : public_keys_) { |
| int key_type = EVP_PKEY_id(public_key.get()); |
| if (key_type == EVP_PKEY_RSA) { |
| brillo::Blob sig_hash_data; |
| if (!GetRawHashFromSignature( |
| sig_data, public_key.get(), &sig_hash_data)) { |
| LOG(WARNING) |
| << "Failed to get the raw hash with RSA key. Trying other keys."; |
| continue; |
| } |
| |
| if (decrypted_sig_data != nullptr) { |
| *decrypted_sig_data = sig_hash_data; |
| } |
| |
| brillo::Blob padded_hash_data = sha256_hash_data; |
| TEST_AND_RETURN_FALSE( |
| PadRSASHA256Hash(&padded_hash_data, sig_hash_data.size())); |
| |
| if (padded_hash_data == sig_hash_data) { |
| return true; |
| } |
| } else if (key_type == EVP_PKEY_EC) { |
| EC_KEY* ec_key = EVP_PKEY_get0_EC_KEY(public_key.get()); |
| TEST_AND_RETURN_FALSE(ec_key != nullptr); |
| if (ECDSA_verify(0, |
| sha256_hash_data.data(), |
| sha256_hash_data.size(), |
| sig_data.data(), |
| sig_data.size(), |
| ec_key) == 1) { |
| return true; |
| } |
| } else { |
| LOG(ERROR) << "Unsupported key type " << key_type; |
| return false; |
| } |
| } |
| LOG(INFO) << "Failed to verify the signature with " << public_keys_.size() |
| << " keys."; |
| return false; |
| } |
| |
| bool PayloadVerifier::GetRawHashFromSignature( |
| const brillo::Blob& sig_data, |
| const EVP_PKEY* public_key, |
| brillo::Blob* out_hash_data) const { |
| // The code below executes the equivalent of: |
| // |
| // openssl rsautl -verify -pubin -inkey <(echo pem_public_key) |
| // -in |sig_data| -out |out_hash_data| |
| RSA* rsa = EVP_PKEY_get0_RSA(const_cast<EVP_PKEY*>(public_key)); |
| |
| TEST_AND_RETURN_FALSE(rsa != nullptr); |
| unsigned int keysize = RSA_size(rsa); |
| if (sig_data.size() > 2 * keysize) { |
| LOG(ERROR) << "Signature size is too big for public key size."; |
| return false; |
| } |
| |
| // Decrypts the signature. |
| brillo::Blob hash_data(keysize); |
| int decrypt_size = RSA_public_decrypt( |
| sig_data.size(), sig_data.data(), hash_data.data(), rsa, RSA_NO_PADDING); |
| TEST_AND_RETURN_FALSE(decrypt_size > 0 && |
| decrypt_size <= static_cast<int>(hash_data.size())); |
| hash_data.resize(decrypt_size); |
| out_hash_data->swap(hash_data); |
| return true; |
| } |
| |
| bool PayloadVerifier::PadRSASHA256Hash(brillo::Blob* hash, size_t rsa_size) { |
| TEST_AND_RETURN_FALSE(hash->size() == kSHA256Size); |
| TEST_AND_RETURN_FALSE(rsa_size == 256 || rsa_size == 512); |
| |
| // The following is a standard PKCS1-v1_5 padding for SHA256 signatures, as |
| // defined in RFC3447 section 9.2. It is prepended to the actual signature |
| // (32 bytes) to form a sequence of 256|512 bytes (2048|4096 bits) that is |
| // amenable to RSA signing. The padded hash will look as follows: |
| // |
| // 0x00 0x01 0xff ... 0xff 0x00 ASN1HEADER SHA256HASH |
| // |-----------205|461----------||----19----||----32----| |
| size_t padding_string_size = |
| rsa_size - hash->size() - sizeof(kSHA256DigestInfoPrefix) - 3; |
| brillo::Blob padded_result = brillo::CombineBlobs({ |
| {0x00, 0x01}, |
| brillo::Blob(padding_string_size, 0xff), |
| {0x00}, |
| brillo::Blob(kSHA256DigestInfoPrefix, |
| kSHA256DigestInfoPrefix + sizeof(kSHA256DigestInfoPrefix)), |
| *hash, |
| }); |
| |
| *hash = std::move(padded_result); |
| TEST_AND_RETURN_FALSE(hash->size() == rsa_size); |
| return true; |
| } |
| |
| } // namespace chromeos_update_engine |