blob: d0841388ec06b23b11a5f786294ff00d73a513d2 [file] [log] [blame]
// Copyright (c) 2010 The Chromium OS Authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
#include "update_engine/delta_diff_generator.h"
#include <errno.h>
#include <fcntl.h>
#include <inttypes.h>
#include <sys/stat.h>
#include <sys/types.h>
#include <algorithm>
#include <map>
#include <set>
#include <string>
#include <utility>
#include <vector>
#include <base/logging.h>
#include <base/string_util.h>
#include <bzlib.h>
#include "update_engine/bzip.h"
#include "update_engine/cycle_breaker.h"
#include "update_engine/extent_mapper.h"
#include "update_engine/extent_ranges.h"
#include "update_engine/file_writer.h"
#include "update_engine/filesystem_iterator.h"
#include "update_engine/full_update_generator.h"
#include "update_engine/graph_types.h"
#include "update_engine/graph_utils.h"
#include "update_engine/omaha_hash_calculator.h"
#include "update_engine/payload_signer.h"
#include "update_engine/subprocess.h"
#include "update_engine/topological_sort.h"
#include "update_engine/update_metadata.pb.h"
#include "update_engine/utils.h"
using std::make_pair;
using std::map;
using std::max;
using std::min;
using std::pair;
using std::set;
using std::string;
using std::vector;
namespace chromeos_update_engine {
typedef DeltaDiffGenerator::Block Block;
typedef map<const DeltaArchiveManifest_InstallOperation*,
const string*> OperationNameMap;
namespace {
const size_t kBlockSize = 4096; // bytes
const size_t kRootFSPartitionSize = 1 * 1024 * 1024 * 1024; // bytes
const uint64_t kVersionNumber = 1;
const uint64_t kFullUpdateChunkSize = 1024 * 1024; // bytes
static const char* kInstallOperationTypes[] = {
"REPLACE",
"REPLACE_BZ",
"MOVE",
"BSDIFF"
};
// Stores all Extents for a file into 'out'. Returns true on success.
bool GatherExtents(const string& path,
google::protobuf::RepeatedPtrField<Extent>* out) {
vector<Extent> extents;
TEST_AND_RETURN_FALSE(extent_mapper::ExtentsForFileFibmap(path, &extents));
DeltaDiffGenerator::StoreExtents(extents, out);
return true;
}
// Runs the bsdiff tool on two files and returns the resulting delta in
// 'out'. Returns true on success.
bool BsdiffFiles(const string& old_file,
const string& new_file,
vector<char>* out) {
const string kPatchFile = "/tmp/delta.patchXXXXXX";
string patch_file_path;
TEST_AND_RETURN_FALSE(
utils::MakeTempFile(kPatchFile, &patch_file_path, NULL));
vector<string> cmd;
cmd.push_back(kBsdiffPath);
cmd.push_back(old_file);
cmd.push_back(new_file);
cmd.push_back(patch_file_path);
int rc = 1;
vector<char> patch_file;
TEST_AND_RETURN_FALSE(Subprocess::SynchronousExec(cmd, &rc));
TEST_AND_RETURN_FALSE(rc == 0);
TEST_AND_RETURN_FALSE(utils::ReadFile(patch_file_path, out));
unlink(patch_file_path.c_str());
return true;
}
// The blocks vector contains a reader and writer for each block on the
// filesystem that's being in-place updated. We populate the reader/writer
// fields of blocks by calling this function.
// For each block in 'operation' that is read or written, find that block
// in 'blocks' and set the reader/writer field to the vertex passed.
// 'graph' is not strictly necessary, but useful for printing out
// error messages.
bool AddInstallOpToBlocksVector(
const DeltaArchiveManifest_InstallOperation& operation,
vector<Block>* blocks,
const Graph& graph,
Vertex::Index vertex) {
// See if this is already present.
TEST_AND_RETURN_FALSE(operation.dst_extents_size() > 0);
enum BlockField { READER = 0, WRITER, BLOCK_FIELD_COUNT };
for (int field = READER; field < BLOCK_FIELD_COUNT; field++) {
const int extents_size =
(field == READER) ? operation.src_extents_size() :
operation.dst_extents_size();
const char* past_participle = (field == READER) ? "read" : "written";
const google::protobuf::RepeatedPtrField<Extent>& extents =
(field == READER) ? operation.src_extents() : operation.dst_extents();
Vertex::Index Block::*access_type =
(field == READER) ? &Block::reader : &Block::writer;
for (int i = 0; i < extents_size; i++) {
const Extent& extent = extents.Get(i);
if (extent.start_block() == kSparseHole) {
// Hole in sparse file. skip
continue;
}
for (uint64_t block = extent.start_block();
block < (extent.start_block() + extent.num_blocks()); block++) {
if ((*blocks)[block].*access_type != Vertex::kInvalidIndex) {
LOG(FATAL) << "Block " << block << " is already "
<< past_participle << " by "
<< (*blocks)[block].*access_type << "("
<< graph[(*blocks)[block].*access_type].file_name
<< ") and also " << vertex << "("
<< graph[vertex].file_name << ")";
}
(*blocks)[block].*access_type = vertex;
}
}
}
return true;
}
// For a given regular file which must exist at new_root + path, and
// may exist at old_root + path, creates a new InstallOperation and
// adds it to the graph. Also, populates the |blocks| array as
// necessary, if |blocks| is non-NULL. Also, writes the data
// necessary to send the file down to the client into data_fd, which
// has length *data_file_size. *data_file_size is updated
// appropriately. If |existing_vertex| is no kInvalidIndex, use that
// rather than allocating a new vertex. Returns true on success.
bool DeltaReadFile(Graph* graph,
Vertex::Index existing_vertex,
vector<Block>* blocks,
const string& old_root,
const string& new_root,
const string& path, // within new_root
int data_fd,
off_t* data_file_size) {
vector<char> data;
DeltaArchiveManifest_InstallOperation operation;
TEST_AND_RETURN_FALSE(DeltaDiffGenerator::ReadFileToDiff(old_root + path,
new_root + path,
&data,
&operation,
true));
// Write the data
if (operation.type() != DeltaArchiveManifest_InstallOperation_Type_MOVE) {
operation.set_data_offset(*data_file_size);
operation.set_data_length(data.size());
}
TEST_AND_RETURN_FALSE(utils::WriteAll(data_fd, &data[0], data.size()));
*data_file_size += data.size();
// Now, insert into graph and blocks vector
Vertex::Index vertex = existing_vertex;
if (vertex == Vertex::kInvalidIndex) {
graph->resize(graph->size() + 1);
vertex = graph->size() - 1;
}
(*graph)[vertex].op = operation;
CHECK((*graph)[vertex].op.has_type());
(*graph)[vertex].file_name = path;
if (blocks)
TEST_AND_RETURN_FALSE(AddInstallOpToBlocksVector((*graph)[vertex].op,
blocks,
*graph,
vertex));
return true;
}
// For each regular file within new_root, creates a node in the graph,
// determines the best way to compress it (REPLACE, REPLACE_BZ, COPY, BSDIFF),
// and writes any necessary data to the end of data_fd.
bool DeltaReadFiles(Graph* graph,
vector<Block>* blocks,
const string& old_root,
const string& new_root,
int data_fd,
off_t* data_file_size) {
set<ino_t> visited_inodes;
for (FilesystemIterator fs_iter(new_root,
utils::SetWithValue<string>("/lost+found"));
!fs_iter.IsEnd(); fs_iter.Increment()) {
if (!S_ISREG(fs_iter.GetStat().st_mode))
continue;
// Make sure we visit each inode only once.
if (utils::SetContainsKey(visited_inodes, fs_iter.GetStat().st_ino))
continue;
visited_inodes.insert(fs_iter.GetStat().st_ino);
if (fs_iter.GetStat().st_size == 0)
continue;
LOG(INFO) << "Encoding file " << fs_iter.GetPartialPath();
TEST_AND_RETURN_FALSE(DeltaReadFile(graph,
Vertex::kInvalidIndex,
blocks,
old_root,
new_root,
fs_iter.GetPartialPath(),
data_fd,
data_file_size));
}
return true;
}
// This class allocates non-existent temp blocks, starting from
// kTempBlockStart. Other code is responsible for converting these
// temp blocks into real blocks, as the client can't read or write to
// these blocks.
class DummyExtentAllocator {
public:
explicit DummyExtentAllocator()
: next_block_(kTempBlockStart) {}
vector<Extent> Allocate(const uint64_t block_count) {
vector<Extent> ret(1);
ret[0].set_start_block(next_block_);
ret[0].set_num_blocks(block_count);
next_block_ += block_count;
return ret;
}
private:
uint64_t next_block_;
};
// Reads blocks from image_path that are not yet marked as being written
// in the blocks array. These blocks that remain are non-file-data blocks.
// In the future we might consider intelligent diffing between this data
// and data in the previous image, but for now we just bzip2 compress it
// and include it in the update.
// Creates a new node in the graph to write these blocks and writes the
// appropriate blob to blobs_fd. Reads and updates blobs_length;
bool ReadUnwrittenBlocks(const vector<Block>& blocks,
int blobs_fd,
off_t* blobs_length,
const string& image_path,
Vertex* vertex) {
vertex->file_name = "<rootfs-non-file-data>";
DeltaArchiveManifest_InstallOperation* out_op = &vertex->op;
int image_fd = open(image_path.c_str(), O_RDONLY, 000);
TEST_AND_RETURN_FALSE_ERRNO(image_fd >= 0);
ScopedFdCloser image_fd_closer(&image_fd);
string temp_file_path;
TEST_AND_RETURN_FALSE(utils::MakeTempFile("/tmp/CrAU_temp_data.XXXXXX",
&temp_file_path,
NULL));
FILE* file = fopen(temp_file_path.c_str(), "w");
TEST_AND_RETURN_FALSE(file);
int err = BZ_OK;
BZFILE* bz_file = BZ2_bzWriteOpen(&err,
file,
9, // max compression
0, // verbosity
0); // default work factor
TEST_AND_RETURN_FALSE(err == BZ_OK);
vector<Extent> extents;
vector<Block>::size_type block_count = 0;
LOG(INFO) << "Appending left over blocks to extents";
for (vector<Block>::size_type i = 0; i < blocks.size(); i++) {
if (blocks[i].writer != Vertex::kInvalidIndex)
continue;
if (blocks[i].reader != Vertex::kInvalidIndex) {
graph_utils::AddReadBeforeDep(vertex, blocks[i].reader, i);
}
graph_utils::AppendBlockToExtents(&extents, i);
block_count++;
}
// Code will handle 'buf' at any size that's a multiple of kBlockSize,
// so we arbitrarily set it to 1024 * kBlockSize.
vector<char> buf(1024 * kBlockSize);
LOG(INFO) << "Reading left over blocks";
vector<Block>::size_type blocks_copied_count = 0;
// For each extent in extents, write the data into BZ2_bzWrite which
// sends it to an output file.
// We use the temporary buffer 'buf' to hold the data, which may be
// smaller than the extent, so in that case we have to loop to get
// the extent's data (that's the inner while loop).
for (vector<Extent>::const_iterator it = extents.begin();
it != extents.end(); ++it) {
vector<Block>::size_type blocks_read = 0;
float printed_progress = -1;
while (blocks_read < it->num_blocks()) {
const int copy_block_cnt =
min(buf.size() / kBlockSize,
static_cast<vector<char>::size_type>(
it->num_blocks() - blocks_read));
ssize_t rc = pread(image_fd,
&buf[0],
copy_block_cnt * kBlockSize,
(it->start_block() + blocks_read) * kBlockSize);
TEST_AND_RETURN_FALSE_ERRNO(rc >= 0);
TEST_AND_RETURN_FALSE(static_cast<size_t>(rc) ==
copy_block_cnt * kBlockSize);
BZ2_bzWrite(&err, bz_file, &buf[0], copy_block_cnt * kBlockSize);
TEST_AND_RETURN_FALSE(err == BZ_OK);
blocks_read += copy_block_cnt;
blocks_copied_count += copy_block_cnt;
float current_progress =
static_cast<float>(blocks_copied_count) / block_count;
if (printed_progress + 0.1 < current_progress ||
blocks_copied_count == block_count) {
LOG(INFO) << "progress: " << current_progress;
printed_progress = current_progress;
}
}
}
BZ2_bzWriteClose(&err, bz_file, 0, NULL, NULL);
TEST_AND_RETURN_FALSE(err == BZ_OK);
bz_file = NULL;
TEST_AND_RETURN_FALSE_ERRNO(0 == fclose(file));
file = NULL;
vector<char> compressed_data;
LOG(INFO) << "Reading compressed data off disk";
TEST_AND_RETURN_FALSE(utils::ReadFile(temp_file_path, &compressed_data));
TEST_AND_RETURN_FALSE(unlink(temp_file_path.c_str()) == 0);
// Add node to graph to write these blocks
out_op->set_type(DeltaArchiveManifest_InstallOperation_Type_REPLACE_BZ);
out_op->set_data_offset(*blobs_length);
out_op->set_data_length(compressed_data.size());
LOG(INFO) << "Rootfs non-data blocks compressed take up "
<< compressed_data.size();
*blobs_length += compressed_data.size();
out_op->set_dst_length(kBlockSize * block_count);
DeltaDiffGenerator::StoreExtents(extents, out_op->mutable_dst_extents());
TEST_AND_RETURN_FALSE(utils::WriteAll(blobs_fd,
&compressed_data[0],
compressed_data.size()));
LOG(INFO) << "done with extra blocks";
return true;
}
// Writes the uint64_t passed in in host-endian to the file as big-endian.
// Returns true on success.
bool WriteUint64AsBigEndian(FileWriter* writer, const uint64_t value) {
uint64_t value_be = htobe64(value);
TEST_AND_RETURN_FALSE(writer->Write(&value_be, sizeof(value_be)) ==
sizeof(value_be));
return true;
}
// Adds each operation from |graph| to |out_manifest| in the order specified by
// |order| while building |out_op_name_map| with operation to name
// mappings. Adds all |kernel_ops| to |out_manifest|. Filters out no-op
// operations.
void InstallOperationsToManifest(
const Graph& graph,
const vector<Vertex::Index>& order,
const vector<DeltaArchiveManifest_InstallOperation>& kernel_ops,
DeltaArchiveManifest* out_manifest,
OperationNameMap* out_op_name_map) {
for (vector<Vertex::Index>::const_iterator it = order.begin();
it != order.end(); ++it) {
const Vertex& vertex = graph[*it];
const DeltaArchiveManifest_InstallOperation& add_op = vertex.op;
if (DeltaDiffGenerator::IsNoopOperation(add_op)) {
continue;
}
DeltaArchiveManifest_InstallOperation* op =
out_manifest->add_install_operations();
*op = add_op;
(*out_op_name_map)[op] = &vertex.file_name;
}
for (vector<DeltaArchiveManifest_InstallOperation>::const_iterator it =
kernel_ops.begin(); it != kernel_ops.end(); ++it) {
const DeltaArchiveManifest_InstallOperation& add_op = *it;
if (DeltaDiffGenerator::IsNoopOperation(add_op)) {
continue;
}
DeltaArchiveManifest_InstallOperation* op =
out_manifest->add_kernel_install_operations();
*op = add_op;
}
}
void CheckGraph(const Graph& graph) {
for (Graph::const_iterator it = graph.begin(); it != graph.end(); ++it) {
CHECK(it->op.has_type());
}
}
// Delta compresses a kernel partition |new_kernel_part| with knowledge of the
// old kernel partition |old_kernel_part|. If |old_kernel_part| is an empty
// string, generates a full update of the partition.
bool DeltaCompressKernelPartition(
const string& old_kernel_part,
const string& new_kernel_part,
vector<DeltaArchiveManifest_InstallOperation>* ops,
int blobs_fd,
off_t* blobs_length) {
LOG(INFO) << "Delta compressing kernel partition...";
LOG_IF(INFO, old_kernel_part.empty()) << "Generating full kernel update...";
// Add a new install operation
ops->resize(1);
DeltaArchiveManifest_InstallOperation* op = &(*ops)[0];
vector<char> data;
TEST_AND_RETURN_FALSE(DeltaDiffGenerator::ReadFileToDiff(old_kernel_part,
new_kernel_part,
&data,
op,
false));
// Write the data
if (op->type() != DeltaArchiveManifest_InstallOperation_Type_MOVE) {
op->set_data_offset(*blobs_length);
op->set_data_length(data.size());
}
TEST_AND_RETURN_FALSE(utils::WriteAll(blobs_fd, &data[0], data.size()));
*blobs_length += data.size();
LOG(INFO) << "Done delta compressing kernel partition: "
<< kInstallOperationTypes[op->type()];
return true;
}
struct DeltaObject {
DeltaObject(const string& in_name, const int in_type, const off_t in_size)
: name(in_name),
type(in_type),
size(in_size) {}
bool operator <(const DeltaObject& object) const {
return (size != object.size) ? (size < object.size) : (name < object.name);
}
string name;
int type;
off_t size;
};
void ReportPayloadUsage(const DeltaArchiveManifest& manifest,
const int64_t manifest_metadata_size,
const OperationNameMap& op_name_map) {
vector<DeltaObject> objects;
off_t total_size = 0;
// Rootfs install operations.
for (int i = 0; i < manifest.install_operations_size(); ++i) {
const DeltaArchiveManifest_InstallOperation& op =
manifest.install_operations(i);
objects.push_back(DeltaObject(*op_name_map.find(&op)->second,
op.type(),
op.data_length()));
total_size += op.data_length();
}
// Kernel install operations.
for (int i = 0; i < manifest.kernel_install_operations_size(); ++i) {
const DeltaArchiveManifest_InstallOperation& op =
manifest.kernel_install_operations(i);
objects.push_back(DeltaObject(StringPrintf("<kernel-operation-%d>", i),
op.type(),
op.data_length()));
total_size += op.data_length();
}
objects.push_back(DeltaObject("<manifest-metadata>",
-1,
manifest_metadata_size));
total_size += manifest_metadata_size;
std::sort(objects.begin(), objects.end());
static const char kFormatString[] = "%6.2f%% %10llu %-10s %s\n";
for (vector<DeltaObject>::const_iterator it = objects.begin();
it != objects.end(); ++it) {
const DeltaObject& object = *it;
fprintf(stderr, kFormatString,
object.size * 100.0 / total_size,
object.size,
object.type >= 0 ? kInstallOperationTypes[object.type] : "-",
object.name.c_str());
}
fprintf(stderr, kFormatString, 100.0, total_size, "", "<total>");
}
} // namespace {}
bool DeltaDiffGenerator::ReadFileToDiff(
const string& old_filename,
const string& new_filename,
vector<char>* out_data,
DeltaArchiveManifest_InstallOperation* out_op,
bool gather_extents) {
// Read new data in
vector<char> new_data;
TEST_AND_RETURN_FALSE(utils::ReadFile(new_filename, &new_data));
TEST_AND_RETURN_FALSE(!new_data.empty());
vector<char> new_data_bz;
TEST_AND_RETURN_FALSE(BzipCompress(new_data, &new_data_bz));
CHECK(!new_data_bz.empty());
vector<char> data; // Data blob that will be written to delta file.
DeltaArchiveManifest_InstallOperation operation;
size_t current_best_size = 0;
if (new_data.size() <= new_data_bz.size()) {
operation.set_type(DeltaArchiveManifest_InstallOperation_Type_REPLACE);
current_best_size = new_data.size();
data = new_data;
} else {
operation.set_type(DeltaArchiveManifest_InstallOperation_Type_REPLACE_BZ);
current_best_size = new_data_bz.size();
data = new_data_bz;
}
// Do we have an original file to consider?
struct stat old_stbuf;
bool no_original = old_filename.empty();
if (!no_original && 0 != stat(old_filename.c_str(), &old_stbuf)) {
// If stat-ing the old file fails, it should be because it doesn't exist.
TEST_AND_RETURN_FALSE(errno == ENOTDIR || errno == ENOENT);
no_original = true;
}
if (!no_original) {
// Read old data
vector<char> old_data;
TEST_AND_RETURN_FALSE(utils::ReadFile(old_filename, &old_data));
if (old_data == new_data) {
// No change in data.
operation.set_type(DeltaArchiveManifest_InstallOperation_Type_MOVE);
current_best_size = 0;
data.clear();
} else {
// Try bsdiff of old to new data
vector<char> bsdiff_delta;
TEST_AND_RETURN_FALSE(
BsdiffFiles(old_filename, new_filename, &bsdiff_delta));
CHECK_GT(bsdiff_delta.size(), 0);
if (bsdiff_delta.size() < current_best_size) {
operation.set_type(DeltaArchiveManifest_InstallOperation_Type_BSDIFF);
current_best_size = bsdiff_delta.size();
data = bsdiff_delta;
}
}
}
// Set parameters of the operations
CHECK_EQ(data.size(), current_best_size);
if (operation.type() == DeltaArchiveManifest_InstallOperation_Type_MOVE ||
operation.type() == DeltaArchiveManifest_InstallOperation_Type_BSDIFF) {
if (gather_extents) {
TEST_AND_RETURN_FALSE(
GatherExtents(old_filename, operation.mutable_src_extents()));
} else {
Extent* src_extent = operation.add_src_extents();
src_extent->set_start_block(0);
src_extent->set_num_blocks(
(old_stbuf.st_size + kBlockSize - 1) / kBlockSize);
}
operation.set_src_length(old_stbuf.st_size);
}
if (gather_extents) {
TEST_AND_RETURN_FALSE(
GatherExtents(new_filename, operation.mutable_dst_extents()));
} else {
Extent* dst_extent = operation.add_dst_extents();
dst_extent->set_start_block(0);
dst_extent->set_num_blocks((new_data.size() + kBlockSize - 1) / kBlockSize);
}
operation.set_dst_length(new_data.size());
out_data->swap(data);
*out_op = operation;
return true;
}
bool DeltaDiffGenerator::InitializePartitionInfo(bool is_kernel,
const string& partition,
PartitionInfo* info) {
int64_t size = 0;
if (is_kernel) {
size = utils::FileSize(partition);
} else {
int block_count = 0, block_size = 0;
TEST_AND_RETURN_FALSE(utils::GetFilesystemSize(partition,
&block_count,
&block_size));
size = static_cast<int64_t>(block_count) * block_size;
}
TEST_AND_RETURN_FALSE(size > 0);
info->set_size(size);
OmahaHashCalculator hasher;
TEST_AND_RETURN_FALSE(hasher.UpdateFile(partition, size) == size);
TEST_AND_RETURN_FALSE(hasher.Finalize());
const vector<char>& hash = hasher.raw_hash();
info->set_hash(hash.data(), hash.size());
LOG(INFO) << partition << ": size=" << size << " hash=" << hasher.hash();
return true;
}
bool InitializePartitionInfos(const string& old_kernel,
const string& new_kernel,
const string& old_rootfs,
const string& new_rootfs,
DeltaArchiveManifest* manifest) {
if (!old_kernel.empty()) {
TEST_AND_RETURN_FALSE(DeltaDiffGenerator::InitializePartitionInfo(
true,
old_kernel,
manifest->mutable_old_kernel_info()));
}
TEST_AND_RETURN_FALSE(DeltaDiffGenerator::InitializePartitionInfo(
true,
new_kernel,
manifest->mutable_new_kernel_info()));
if (!old_rootfs.empty()) {
TEST_AND_RETURN_FALSE(DeltaDiffGenerator::InitializePartitionInfo(
false,
old_rootfs,
manifest->mutable_old_rootfs_info()));
}
TEST_AND_RETURN_FALSE(DeltaDiffGenerator::InitializePartitionInfo(
false,
new_rootfs,
manifest->mutable_new_rootfs_info()));
return true;
}
namespace {
// Takes a collection (vector or RepeatedPtrField) of Extent and
// returns a vector of the blocks referenced, in order.
template<typename T>
vector<uint64_t> ExpandExtents(const T& extents) {
vector<uint64_t> ret;
for (size_t i = 0, e = static_cast<size_t>(extents.size()); i != e; ++i) {
const Extent extent = graph_utils::GetElement(extents, i);
if (extent.start_block() == kSparseHole) {
ret.resize(ret.size() + extent.num_blocks(), kSparseHole);
} else {
for (uint64_t block = extent.start_block();
block < (extent.start_block() + extent.num_blocks()); block++) {
ret.push_back(block);
}
}
}
return ret;
}
// Takes a vector of blocks and returns an equivalent vector of Extent
// objects.
vector<Extent> CompressExtents(const vector<uint64_t>& blocks) {
vector<Extent> new_extents;
for (vector<uint64_t>::const_iterator it = blocks.begin(), e = blocks.end();
it != e; ++it) {
graph_utils::AppendBlockToExtents(&new_extents, *it);
}
return new_extents;
}
} // namespace {}
void DeltaDiffGenerator::SubstituteBlocks(
Vertex* vertex,
const vector<Extent>& remove_extents,
const vector<Extent>& replace_extents) {
// First, expand out the blocks that op reads from
vector<uint64_t> read_blocks = ExpandExtents(vertex->op.src_extents());
{
// Expand remove_extents and replace_extents
vector<uint64_t> remove_extents_expanded =
ExpandExtents(remove_extents);
vector<uint64_t> replace_extents_expanded =
ExpandExtents(replace_extents);
CHECK_EQ(remove_extents_expanded.size(), replace_extents_expanded.size());
map<uint64_t, uint64_t> conversion;
for (vector<uint64_t>::size_type i = 0;
i < replace_extents_expanded.size(); i++) {
conversion[remove_extents_expanded[i]] = replace_extents_expanded[i];
}
utils::ApplyMap(&read_blocks, conversion);
for (Vertex::EdgeMap::iterator it = vertex->out_edges.begin(),
e = vertex->out_edges.end(); it != e; ++it) {
vector<uint64_t> write_before_deps_expanded =
ExpandExtents(it->second.write_extents);
utils::ApplyMap(&write_before_deps_expanded, conversion);
it->second.write_extents = CompressExtents(write_before_deps_expanded);
}
}
// Convert read_blocks back to extents
vertex->op.clear_src_extents();
vector<Extent> new_extents = CompressExtents(read_blocks);
DeltaDiffGenerator::StoreExtents(new_extents,
vertex->op.mutable_src_extents());
}
bool DeltaDiffGenerator::CutEdges(Graph* graph,
const set<Edge>& edges,
vector<CutEdgeVertexes>* out_cuts) {
DummyExtentAllocator scratch_allocator;
vector<CutEdgeVertexes> cuts;
cuts.reserve(edges.size());
uint64_t scratch_blocks_used = 0;
for (set<Edge>::const_iterator it = edges.begin();
it != edges.end(); ++it) {
cuts.resize(cuts.size() + 1);
vector<Extent> old_extents =
(*graph)[it->first].out_edges[it->second].extents;
// Choose some scratch space
scratch_blocks_used += graph_utils::EdgeWeight(*graph, *it);
cuts.back().tmp_extents =
scratch_allocator.Allocate(graph_utils::EdgeWeight(*graph, *it));
// create vertex to copy original->scratch
cuts.back().new_vertex = graph->size();
graph->resize(graph->size() + 1);
cuts.back().old_src = it->first;
cuts.back().old_dst = it->second;
EdgeProperties& cut_edge_properties =
(*graph)[it->first].out_edges.find(it->second)->second;
// This should never happen, as we should only be cutting edges between
// real file nodes, and write-before relationships are created from
// a real file node to a temp copy node:
CHECK(cut_edge_properties.write_extents.empty())
<< "Can't cut edge that has write-before relationship.";
// make node depend on the copy operation
(*graph)[it->first].out_edges.insert(make_pair(graph->size() - 1,
cut_edge_properties));
// Set src/dst extents and other proto variables for copy operation
graph->back().op.set_type(DeltaArchiveManifest_InstallOperation_Type_MOVE);
DeltaDiffGenerator::StoreExtents(
cut_edge_properties.extents,
graph->back().op.mutable_src_extents());
DeltaDiffGenerator::StoreExtents(cuts.back().tmp_extents,
graph->back().op.mutable_dst_extents());
graph->back().op.set_src_length(
graph_utils::EdgeWeight(*graph, *it) * kBlockSize);
graph->back().op.set_dst_length(graph->back().op.src_length());
// make the dest node read from the scratch space
DeltaDiffGenerator::SubstituteBlocks(
&((*graph)[it->second]),
(*graph)[it->first].out_edges[it->second].extents,
cuts.back().tmp_extents);
// delete the old edge
CHECK_EQ(1, (*graph)[it->first].out_edges.erase(it->second));
// Add an edge from dst to copy operation
EdgeProperties write_before_edge_properties;
write_before_edge_properties.write_extents = cuts.back().tmp_extents;
(*graph)[it->second].out_edges.insert(
make_pair(graph->size() - 1, write_before_edge_properties));
}
out_cuts->swap(cuts);
return true;
}
// Stores all Extents in 'extents' into 'out'.
void DeltaDiffGenerator::StoreExtents(
const vector<Extent>& extents,
google::protobuf::RepeatedPtrField<Extent>* out) {
for (vector<Extent>::const_iterator it = extents.begin();
it != extents.end(); ++it) {
Extent* new_extent = out->Add();
*new_extent = *it;
}
}
// Creates all the edges for the graph. Writers of a block point to
// readers of the same block. This is because for an edge A->B, B
// must complete before A executes.
void DeltaDiffGenerator::CreateEdges(Graph* graph,
const vector<Block>& blocks) {
for (vector<Block>::size_type i = 0; i < blocks.size(); i++) {
// Blocks with both a reader and writer get an edge
if (blocks[i].reader == Vertex::kInvalidIndex ||
blocks[i].writer == Vertex::kInvalidIndex)
continue;
// Don't have a node depend on itself
if (blocks[i].reader == blocks[i].writer)
continue;
// See if there's already an edge we can add onto
Vertex::EdgeMap::iterator edge_it =
(*graph)[blocks[i].writer].out_edges.find(blocks[i].reader);
if (edge_it == (*graph)[blocks[i].writer].out_edges.end()) {
// No existing edge. Create one
(*graph)[blocks[i].writer].out_edges.insert(
make_pair(blocks[i].reader, EdgeProperties()));
edge_it = (*graph)[blocks[i].writer].out_edges.find(blocks[i].reader);
CHECK(edge_it != (*graph)[blocks[i].writer].out_edges.end());
}
graph_utils::AppendBlockToExtents(&edge_it->second.extents, i);
}
}
namespace {
class SortCutsByTopoOrderLess {
public:
SortCutsByTopoOrderLess(vector<vector<Vertex::Index>::size_type>& table)
: table_(table) {}
bool operator()(const CutEdgeVertexes& a, const CutEdgeVertexes& b) {
return table_[a.old_dst] < table_[b.old_dst];
}
private:
vector<vector<Vertex::Index>::size_type>& table_;
};
} // namespace {}
void DeltaDiffGenerator::GenerateReverseTopoOrderMap(
vector<Vertex::Index>& op_indexes,
vector<vector<Vertex::Index>::size_type>* reverse_op_indexes) {
vector<vector<Vertex::Index>::size_type> table(op_indexes.size());
for (vector<Vertex::Index>::size_type i = 0, e = op_indexes.size();
i != e; ++i) {
Vertex::Index node = op_indexes[i];
if (table.size() < (node + 1)) {
table.resize(node + 1);
}
table[node] = i;
}
reverse_op_indexes->swap(table);
}
void DeltaDiffGenerator::SortCutsByTopoOrder(vector<Vertex::Index>& op_indexes,
vector<CutEdgeVertexes>* cuts) {
// first, make a reverse lookup table.
vector<vector<Vertex::Index>::size_type> table;
GenerateReverseTopoOrderMap(op_indexes, &table);
SortCutsByTopoOrderLess less(table);
sort(cuts->begin(), cuts->end(), less);
}
void DeltaDiffGenerator::MoveFullOpsToBack(Graph* graph,
vector<Vertex::Index>* op_indexes) {
vector<Vertex::Index> ret;
vector<Vertex::Index> full_ops;
ret.reserve(op_indexes->size());
for (vector<Vertex::Index>::size_type i = 0, e = op_indexes->size(); i != e;
++i) {
DeltaArchiveManifest_InstallOperation_Type type =
(*graph)[(*op_indexes)[i]].op.type();
if (type == DeltaArchiveManifest_InstallOperation_Type_REPLACE ||
type == DeltaArchiveManifest_InstallOperation_Type_REPLACE_BZ) {
full_ops.push_back((*op_indexes)[i]);
} else {
ret.push_back((*op_indexes)[i]);
}
}
LOG(INFO) << "Stats: " << full_ops.size() << " full ops out of "
<< (full_ops.size() + ret.size()) << " total ops.";
ret.insert(ret.end(), full_ops.begin(), full_ops.end());
op_indexes->swap(ret);
}
namespace {
template<typename T>
bool TempBlocksExistInExtents(const T& extents) {
for (int i = 0, e = extents.size(); i < e; ++i) {
Extent extent = graph_utils::GetElement(extents, i);
uint64_t start = extent.start_block();
uint64_t num = extent.num_blocks();
if (start == kSparseHole)
continue;
if (start >= kTempBlockStart ||
(start + num) >= kTempBlockStart) {
LOG(ERROR) << "temp block!";
LOG(ERROR) << "start: " << start << ", num: " << num;
LOG(ERROR) << "kTempBlockStart: " << kTempBlockStart;
LOG(ERROR) << "returning true";
return true;
}
// check for wrap-around, which would be a bug:
CHECK(start <= (start + num));
}
return false;
}
// Convertes the cuts, which must all have the same |old_dst| member,
// to full. It does this by converting the |old_dst| to REPLACE or
// REPLACE_BZ, dropping all incoming edges to |old_dst|, and marking
// all temp nodes invalid.
bool ConvertCutsToFull(
Graph* graph,
const string& new_root,
int data_fd,
off_t* data_file_size,
vector<Vertex::Index>* op_indexes,
vector<vector<Vertex::Index>::size_type>* reverse_op_indexes,
const vector<CutEdgeVertexes>& cuts) {
CHECK(!cuts.empty());
set<Vertex::Index> deleted_nodes;
for (vector<CutEdgeVertexes>::const_iterator it = cuts.begin(),
e = cuts.end(); it != e; ++it) {
TEST_AND_RETURN_FALSE(DeltaDiffGenerator::ConvertCutToFullOp(
graph,
*it,
new_root,
data_fd,
data_file_size));
deleted_nodes.insert(it->new_vertex);
}
deleted_nodes.insert(cuts[0].old_dst);
vector<Vertex::Index> new_op_indexes;
new_op_indexes.reserve(op_indexes->size());
for (vector<Vertex::Index>::iterator it = op_indexes->begin(),
e = op_indexes->end(); it != e; ++it) {
if (utils::SetContainsKey(deleted_nodes, *it))
continue;
new_op_indexes.push_back(*it);
}
new_op_indexes.push_back(cuts[0].old_dst);
op_indexes->swap(new_op_indexes);
DeltaDiffGenerator::GenerateReverseTopoOrderMap(*op_indexes,
reverse_op_indexes);
return true;
}
// Tries to assign temp blocks for a collection of cuts, all of which share
// the same old_dst member. If temp blocks can't be found, old_dst will be
// converted to a REPLACE or REPLACE_BZ operation. Returns true on success,
// which can happen even if blocks are converted to full. Returns false
// on exceptional error cases.
bool AssignBlockForAdjoiningCuts(
Graph* graph,
const string& new_root,
int data_fd,
off_t* data_file_size,
vector<Vertex::Index>* op_indexes,
vector<vector<Vertex::Index>::size_type>* reverse_op_indexes,
const vector<CutEdgeVertexes>& cuts) {
CHECK(!cuts.empty());
const Vertex::Index old_dst = cuts[0].old_dst;
// Calculate # of blocks needed
uint64_t blocks_needed = 0;
map<const CutEdgeVertexes*, uint64_t> cuts_blocks_needed;
for (vector<CutEdgeVertexes>::const_iterator it = cuts.begin(),
e = cuts.end(); it != e; ++it) {
uint64_t cut_blocks_needed = 0;
for (vector<Extent>::const_iterator jt = it->tmp_extents.begin(),
je = it->tmp_extents.end(); jt != je; ++jt) {
cut_blocks_needed += jt->num_blocks();
}
blocks_needed += cut_blocks_needed;
cuts_blocks_needed[&*it] = cut_blocks_needed;
}
// Find enough blocks
ExtentRanges scratch_ranges;
// Each block that's supplying temp blocks and the corresponding blocks:
typedef vector<pair<Vertex::Index, ExtentRanges> > SupplierVector;
SupplierVector block_suppliers;
uint64_t scratch_blocks_found = 0;
for (vector<Vertex::Index>::size_type i = (*reverse_op_indexes)[old_dst] + 1,
e = op_indexes->size(); i < e; ++i) {
Vertex::Index test_node = (*op_indexes)[i];
if (!(*graph)[test_node].valid)
continue;
// See if this node has sufficient blocks
ExtentRanges ranges;
ranges.AddRepeatedExtents((*graph)[test_node].op.dst_extents());
ranges.SubtractExtent(ExtentForRange(
kTempBlockStart, kSparseHole - kTempBlockStart));
ranges.SubtractRepeatedExtents((*graph)[test_node].op.src_extents());
// For now, for simplicity, subtract out all blocks in read-before
// dependencies.
for (Vertex::EdgeMap::const_iterator edge_i =
(*graph)[test_node].out_edges.begin(),
edge_e = (*graph)[test_node].out_edges.end();
edge_i != edge_e; ++edge_i) {
ranges.SubtractExtents(edge_i->second.extents);
}
if (ranges.blocks() == 0)
continue;
if (ranges.blocks() + scratch_blocks_found > blocks_needed) {
// trim down ranges
vector<Extent> new_ranges = ranges.GetExtentsForBlockCount(
blocks_needed - scratch_blocks_found);
ranges = ExtentRanges();
ranges.AddExtents(new_ranges);
}
scratch_ranges.AddRanges(ranges);
block_suppliers.push_back(make_pair(test_node, ranges));
scratch_blocks_found += ranges.blocks();
if (scratch_ranges.blocks() >= blocks_needed)
break;
}
if (scratch_ranges.blocks() < blocks_needed) {
LOG(INFO) << "Unable to find sufficient scratch";
TEST_AND_RETURN_FALSE(ConvertCutsToFull(graph,
new_root,
data_fd,
data_file_size,
op_indexes,
reverse_op_indexes,
cuts));
return true;
}
// Use the scratch we found
TEST_AND_RETURN_FALSE(scratch_ranges.blocks() == scratch_blocks_found);
// Make all the suppliers depend on this node
for (SupplierVector::iterator it = block_suppliers.begin(),
e = block_suppliers.end(); it != e; ++it) {
graph_utils::AddReadBeforeDepExtents(
&(*graph)[it->first],
old_dst,
it->second.GetExtentsForBlockCount(it->second.blocks()));
}
// Replace temp blocks in each cut
for (vector<CutEdgeVertexes>::const_iterator it = cuts.begin(),
e = cuts.end(); it != e; ++it) {
vector<Extent> real_extents =
scratch_ranges.GetExtentsForBlockCount(cuts_blocks_needed[&*it]);
scratch_ranges.SubtractExtents(real_extents);
// Fix the old dest node w/ the real blocks
DeltaDiffGenerator::SubstituteBlocks(&(*graph)[old_dst],
it->tmp_extents,
real_extents);
// Fix the new node w/ the real blocks. Since the new node is just a
// copy operation, we can replace all the dest extents w/ the real
// blocks.
DeltaArchiveManifest_InstallOperation *op =
&(*graph)[it->new_vertex].op;
op->clear_dst_extents();
DeltaDiffGenerator::StoreExtents(real_extents, op->mutable_dst_extents());
}
return true;
}
} // namespace {}
// Returns true if |op| is a no-op operation that doesn't do any useful work
// (e.g., a move operation that copies blocks onto themselves).
bool DeltaDiffGenerator::IsNoopOperation(
const DeltaArchiveManifest_InstallOperation& op) {
return (op.type() == DeltaArchiveManifest_InstallOperation_Type_MOVE &&
ExpandExtents(op.src_extents()) == ExpandExtents(op.dst_extents()));
}
bool DeltaDiffGenerator::AssignTempBlocks(
Graph* graph,
const string& new_root,
int data_fd,
off_t* data_file_size,
vector<Vertex::Index>* op_indexes,
vector<vector<Vertex::Index>::size_type>* reverse_op_indexes,
const vector<CutEdgeVertexes>& cuts) {
CHECK(!cuts.empty());
// group of cuts w/ the same old_dst:
vector<CutEdgeVertexes> cuts_group;
for (vector<CutEdgeVertexes>::size_type i = cuts.size() - 1, e = 0;
true ; --i) {
LOG(INFO) << "Fixing temp blocks in cut " << i
<< ": old dst: " << cuts[i].old_dst << " new vertex: "
<< cuts[i].new_vertex << " path: "
<< (*graph)[cuts[i].old_dst].file_name;
if (cuts_group.empty() || (cuts_group[0].old_dst == cuts[i].old_dst)) {
cuts_group.push_back(cuts[i]);
} else {
CHECK(!cuts_group.empty());
TEST_AND_RETURN_FALSE(AssignBlockForAdjoiningCuts(graph,
new_root,
data_fd,
data_file_size,
op_indexes,
reverse_op_indexes,
cuts_group));
cuts_group.clear();
cuts_group.push_back(cuts[i]);
}
if (i == e) {
// break out of for() loop
break;
}
}
CHECK(!cuts_group.empty());
TEST_AND_RETURN_FALSE(AssignBlockForAdjoiningCuts(graph,
new_root,
data_fd,
data_file_size,
op_indexes,
reverse_op_indexes,
cuts_group));
return true;
}
bool DeltaDiffGenerator::NoTempBlocksRemain(const Graph& graph) {
size_t idx = 0;
for (Graph::const_iterator it = graph.begin(), e = graph.end(); it != e;
++it, ++idx) {
if (!it->valid)
continue;
const DeltaArchiveManifest_InstallOperation& op = it->op;
if (TempBlocksExistInExtents(op.dst_extents()) ||
TempBlocksExistInExtents(op.src_extents())) {
LOG(INFO) << "bad extents in node " << idx;
LOG(INFO) << "so yeah";
return false;
}
// Check out-edges:
for (Vertex::EdgeMap::const_iterator jt = it->out_edges.begin(),
je = it->out_edges.end(); jt != je; ++jt) {
if (TempBlocksExistInExtents(jt->second.extents) ||
TempBlocksExistInExtents(jt->second.write_extents)) {
LOG(INFO) << "bad out edge in node " << idx;
LOG(INFO) << "so yeah";
return false;
}
}
}
return true;
}
bool DeltaDiffGenerator::ReorderDataBlobs(
DeltaArchiveManifest* manifest,
const std::string& data_blobs_path,
const std::string& new_data_blobs_path) {
int in_fd = open(data_blobs_path.c_str(), O_RDONLY, 0);
TEST_AND_RETURN_FALSE_ERRNO(in_fd >= 0);
ScopedFdCloser in_fd_closer(&in_fd);
DirectFileWriter writer;
TEST_AND_RETURN_FALSE(
writer.Open(new_data_blobs_path.c_str(),
O_WRONLY | O_TRUNC | O_CREAT,
0644) == 0);
ScopedFileWriterCloser writer_closer(&writer);
uint64_t out_file_size = 0;
for (int i = 0; i < (manifest->install_operations_size() +
manifest->kernel_install_operations_size()); i++) {
DeltaArchiveManifest_InstallOperation* op = NULL;
if (i < manifest->install_operations_size()) {
op = manifest->mutable_install_operations(i);
} else {
op = manifest->mutable_kernel_install_operations(
i - manifest->install_operations_size());
}
if (!op->has_data_offset())
continue;
CHECK(op->has_data_length());
vector<char> buf(op->data_length());
ssize_t rc = pread(in_fd, &buf[0], buf.size(), op->data_offset());
TEST_AND_RETURN_FALSE(rc == static_cast<ssize_t>(buf.size()));
op->set_data_offset(out_file_size);
TEST_AND_RETURN_FALSE(writer.Write(&buf[0], buf.size()) ==
static_cast<ssize_t>(buf.size()));
out_file_size += buf.size();
}
return true;
}
bool DeltaDiffGenerator::ConvertCutToFullOp(Graph* graph,
const CutEdgeVertexes& cut,
const string& new_root,
int data_fd,
off_t* data_file_size) {
// Drop all incoming edges, keep all outgoing edges
// Keep all outgoing edges
if ((*graph)[cut.old_dst].op.type() !=
DeltaArchiveManifest_InstallOperation_Type_REPLACE_BZ &&
(*graph)[cut.old_dst].op.type() !=
DeltaArchiveManifest_InstallOperation_Type_REPLACE) {
Vertex::EdgeMap out_edges = (*graph)[cut.old_dst].out_edges;
graph_utils::DropWriteBeforeDeps(&out_edges);
TEST_AND_RETURN_FALSE(DeltaReadFile(graph,
cut.old_dst,
NULL,
"/-!@:&*nonexistent_path",
new_root,
(*graph)[cut.old_dst].file_name,
data_fd,
data_file_size));
(*graph)[cut.old_dst].out_edges = out_edges;
// Right now we don't have doubly-linked edges, so we have to scan
// the whole graph.
graph_utils::DropIncomingEdgesTo(graph, cut.old_dst);
}
// Delete temp node
(*graph)[cut.old_src].out_edges.erase(cut.new_vertex);
CHECK((*graph)[cut.old_dst].out_edges.find(cut.new_vertex) ==
(*graph)[cut.old_dst].out_edges.end());
(*graph)[cut.new_vertex].valid = false;
LOG(INFO) << "marked node invalid: " << cut.new_vertex;
return true;
}
bool DeltaDiffGenerator::ConvertGraphToDag(Graph* graph,
const string& new_root,
int fd,
off_t* data_file_size,
vector<Vertex::Index>* final_order) {
CycleBreaker cycle_breaker;
LOG(INFO) << "Finding cycles...";
set<Edge> cut_edges;
cycle_breaker.BreakCycles(*graph, &cut_edges);
LOG(INFO) << "done finding cycles";
CheckGraph(*graph);
// Calculate number of scratch blocks needed
LOG(INFO) << "Cutting cycles...";
vector<CutEdgeVertexes> cuts;
TEST_AND_RETURN_FALSE(CutEdges(graph, cut_edges, &cuts));
LOG(INFO) << "done cutting cycles";
LOG(INFO) << "There are " << cuts.size() << " cuts.";
CheckGraph(*graph);
LOG(INFO) << "Creating initial topological order...";
TopologicalSort(*graph, final_order);
LOG(INFO) << "done with initial topo order";
CheckGraph(*graph);
LOG(INFO) << "Moving full ops to the back";
MoveFullOpsToBack(graph, final_order);
LOG(INFO) << "done moving full ops to back";
vector<vector<Vertex::Index>::size_type> inverse_final_order;
GenerateReverseTopoOrderMap(*final_order, &inverse_final_order);
SortCutsByTopoOrder(*final_order, &cuts);
if (!cuts.empty())
TEST_AND_RETURN_FALSE(AssignTempBlocks(graph,
new_root,
fd,
data_file_size,
final_order,
&inverse_final_order,
cuts));
LOG(INFO) << "Making sure all temp blocks have been allocated";
graph_utils::DumpGraph(*graph);
CHECK(NoTempBlocksRemain(*graph));
LOG(INFO) << "done making sure all temp blocks are allocated";
return true;
}
bool DeltaDiffGenerator::GenerateDeltaUpdateFile(
const string& old_root,
const string& old_image,
const string& new_root,
const string& new_image,
const string& old_kernel_part,
const string& new_kernel_part,
const string& output_path,
const string& private_key_path) {
int old_image_block_count = 0, old_image_block_size = 0;
int new_image_block_count = 0, new_image_block_size = 0;
TEST_AND_RETURN_FALSE(utils::GetFilesystemSize(new_image,
&new_image_block_count,
&new_image_block_size));
if (!old_image.empty()) {
TEST_AND_RETURN_FALSE(utils::GetFilesystemSize(old_image,
&old_image_block_count,
&old_image_block_size));
TEST_AND_RETURN_FALSE(old_image_block_size == new_image_block_size);
LOG_IF(WARNING, old_image_block_count != new_image_block_count)
<< "Old and new images have different block counts.";
}
// Sanity check kernel partition arg
TEST_AND_RETURN_FALSE(utils::FileSize(new_kernel_part) >= 0);
vector<Block> blocks(max(old_image_block_count, new_image_block_count));
LOG(INFO) << "Invalid block index: " << Vertex::kInvalidIndex;
LOG(INFO) << "Block count: " << blocks.size();
for (vector<Block>::size_type i = 0; i < blocks.size(); i++) {
CHECK(blocks[i].reader == Vertex::kInvalidIndex);
CHECK(blocks[i].writer == Vertex::kInvalidIndex);
}
Graph graph;
CheckGraph(graph);
const string kTempFileTemplate("/tmp/CrAU_temp_data.XXXXXX");
string temp_file_path;
off_t data_file_size = 0;
LOG(INFO) << "Reading files...";
vector<DeltaArchiveManifest_InstallOperation> kernel_ops;
vector<Vertex::Index> final_order;
{
int fd;
TEST_AND_RETURN_FALSE(
utils::MakeTempFile(kTempFileTemplate, &temp_file_path, &fd));
TEST_AND_RETURN_FALSE(fd >= 0);
ScopedFdCloser fd_closer(&fd);
if (!old_image.empty()) {
// Delta update
TEST_AND_RETURN_FALSE(DeltaReadFiles(&graph,
&blocks,
old_root,
new_root,
fd,
&data_file_size));
LOG(INFO) << "done reading normal files";
CheckGraph(graph);
graph.resize(graph.size() + 1);
TEST_AND_RETURN_FALSE(ReadUnwrittenBlocks(blocks,
fd,
&data_file_size,
new_image,
&graph.back()));
// Read kernel partition
TEST_AND_RETURN_FALSE(DeltaCompressKernelPartition(old_kernel_part,
new_kernel_part,
&kernel_ops,
fd,
&data_file_size));
LOG(INFO) << "done reading kernel";
CheckGraph(graph);
LOG(INFO) << "Creating edges...";
CreateEdges(&graph, blocks);
LOG(INFO) << "Done creating edges";
CheckGraph(graph);
TEST_AND_RETURN_FALSE(ConvertGraphToDag(&graph,
new_root,
fd,
&data_file_size,
&final_order));
} else {
// Full update
off_t new_image_size =
static_cast<off_t>(new_image_block_count) * new_image_block_size;
TEST_AND_RETURN_FALSE(FullUpdateGenerator::Run(&graph,
new_kernel_part,
new_image,
new_image_size,
fd,
&data_file_size,
kFullUpdateChunkSize,
kBlockSize,
&kernel_ops,
&final_order));
}
}
// Convert to protobuf Manifest object
DeltaArchiveManifest manifest;
OperationNameMap op_name_map;
CheckGraph(graph);
InstallOperationsToManifest(graph,
final_order,
kernel_ops,
&manifest,
&op_name_map);
CheckGraph(graph);
manifest.set_block_size(kBlockSize);
// Reorder the data blobs with the newly ordered manifest
string ordered_blobs_path;
TEST_AND_RETURN_FALSE(utils::MakeTempFile(
"/tmp/CrAU_temp_data.ordered.XXXXXX",
&ordered_blobs_path,
false));
TEST_AND_RETURN_FALSE(ReorderDataBlobs(&manifest,
temp_file_path,
ordered_blobs_path));
// Check that install op blobs are in order.
uint64_t next_blob_offset = 0;
{
for (int i = 0; i < (manifest.install_operations_size() +
manifest.kernel_install_operations_size()); i++) {
DeltaArchiveManifest_InstallOperation* op =
i < manifest.install_operations_size() ?
manifest.mutable_install_operations(i) :
manifest.mutable_kernel_install_operations(
i - manifest.install_operations_size());
if (op->has_data_offset()) {
if (op->data_offset() != next_blob_offset) {
LOG(FATAL) << "bad blob offset! " << op->data_offset() << " != "
<< next_blob_offset;
}
next_blob_offset += op->data_length();
}
}
}
// Signatures appear at the end of the blobs. Note the offset in the
// manifest
if (!private_key_path.empty()) {
LOG(INFO) << "Making room for signature in file";
manifest.set_signatures_offset(next_blob_offset);
LOG(INFO) << "set? " << manifest.has_signatures_offset();
// Add a dummy op at the end to appease older clients
DeltaArchiveManifest_InstallOperation* dummy_op =
manifest.add_kernel_install_operations();
dummy_op->set_type(DeltaArchiveManifest_InstallOperation_Type_REPLACE);
dummy_op->set_data_offset(next_blob_offset);
manifest.set_signatures_offset(next_blob_offset);
uint64_t signature_blob_length = 0;
TEST_AND_RETURN_FALSE(
PayloadSigner::SignatureBlobLength(private_key_path,
&signature_blob_length));
dummy_op->set_data_length(signature_blob_length);
manifest.set_signatures_size(signature_blob_length);
Extent* dummy_extent = dummy_op->add_dst_extents();
// Tell the dummy op to write this data to a big sparse hole
dummy_extent->set_start_block(kSparseHole);
dummy_extent->set_num_blocks((signature_blob_length + kBlockSize - 1) /
kBlockSize);
}
TEST_AND_RETURN_FALSE(InitializePartitionInfos(old_kernel_part,
new_kernel_part,
old_image,
new_image,
&manifest));
// Serialize protobuf
string serialized_manifest;
CheckGraph(graph);
TEST_AND_RETURN_FALSE(manifest.AppendToString(&serialized_manifest));
CheckGraph(graph);
LOG(INFO) << "Writing final delta file header...";
DirectFileWriter writer;
TEST_AND_RETURN_FALSE_ERRNO(writer.Open(output_path.c_str(),
O_WRONLY | O_CREAT | O_TRUNC,
0644) == 0);
ScopedFileWriterCloser writer_closer(&writer);
// Write header
TEST_AND_RETURN_FALSE(writer.Write(kDeltaMagic, strlen(kDeltaMagic)) ==
static_cast<ssize_t>(strlen(kDeltaMagic)));
// Write version number
TEST_AND_RETURN_FALSE(WriteUint64AsBigEndian(&writer, kVersionNumber));
// Write protobuf length
TEST_AND_RETURN_FALSE(WriteUint64AsBigEndian(&writer,
serialized_manifest.size()));
// Write protobuf
LOG(INFO) << "Writing final delta file protobuf... "
<< serialized_manifest.size();
TEST_AND_RETURN_FALSE(writer.Write(serialized_manifest.data(),
serialized_manifest.size()) ==
static_cast<ssize_t>(serialized_manifest.size()));
// Append the data blobs
LOG(INFO) << "Writing final delta file data blobs...";
int blobs_fd = open(ordered_blobs_path.c_str(), O_RDONLY, 0);
ScopedFdCloser blobs_fd_closer(&blobs_fd);
TEST_AND_RETURN_FALSE(blobs_fd >= 0);
for (;;) {
char buf[kBlockSize];
ssize_t rc = read(blobs_fd, buf, sizeof(buf));
if (0 == rc) {
// EOF
break;
}
TEST_AND_RETURN_FALSE_ERRNO(rc > 0);
TEST_AND_RETURN_FALSE(writer.Write(buf, rc) == rc);
}
// Write signature blob.
if (!private_key_path.empty()) {
LOG(INFO) << "Signing the update...";
vector<char> signature_blob;
TEST_AND_RETURN_FALSE(PayloadSigner::SignPayload(output_path,
private_key_path,
&signature_blob));
TEST_AND_RETURN_FALSE(writer.Write(&signature_blob[0],
signature_blob.size()) ==
static_cast<ssize_t>(signature_blob.size()));
}
int64_t manifest_metadata_size =
strlen(kDeltaMagic) + 2 * sizeof(uint64_t) + serialized_manifest.size();
ReportPayloadUsage(manifest, manifest_metadata_size, op_name_map);
LOG(INFO) << "All done. Successfully created delta file.";
return true;
}
const char* const kBsdiffPath = "bsdiff";
const char* const kBspatchPath = "bspatch";
const char* const kDeltaMagic = "CrAU";
}; // namespace chromeos_update_engine