blob: 06e574539f1a514bc20593cc9b5b6ab99db753d0 [file] [log] [blame]
//
// Copyright (C) 2018 The Android Open Source Project
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
//
#include "update_engine/dynamic_partition_control_android.h"
#include <chrono> // NOLINT(build/c++11) - using libsnapshot / liblp API
#include <cstdint>
#include <map>
#include <memory>
#include <set>
#include <string>
#include <string_view>
#include <utility>
#include <vector>
#include <android-base/properties.h>
#include <android-base/strings.h>
#include <base/files/file_util.h>
#include <base/logging.h>
#include <base/strings/string_util.h>
#include <bootloader_message/bootloader_message.h>
#include <fs_mgr.h>
#include <fs_mgr_dm_linear.h>
#include <fs_mgr_overlayfs.h>
#include <libavb/libavb.h>
#include <libdm/dm.h>
#include <liblp/liblp.h>
#include <libsnapshot/cow_writer.h>
#include <libsnapshot/snapshot.h>
#include <libsnapshot/snapshot_stub.h>
#include "update_engine/cleanup_previous_update_action.h"
#include "update_engine/common/boot_control_interface.h"
#include "update_engine/common/utils.h"
#include "update_engine/dynamic_partition_utils.h"
#include "update_engine/payload_consumer/delta_performer.h"
using android::base::GetBoolProperty;
using android::base::GetProperty;
using android::base::Join;
using android::dm::DeviceMapper;
using android::dm::DmDeviceState;
using android::fs_mgr::CreateLogicalPartition;
using android::fs_mgr::CreateLogicalPartitionParams;
using android::fs_mgr::DestroyLogicalPartition;
using android::fs_mgr::Fstab;
using android::fs_mgr::MetadataBuilder;
using android::fs_mgr::Partition;
using android::fs_mgr::PartitionOpener;
using android::fs_mgr::SlotSuffixForSlotNumber;
using android::snapshot::OptimizeSourceCopyOperation;
using android::snapshot::Return;
using android::snapshot::SnapshotManager;
using android::snapshot::SnapshotManagerStub;
using android::snapshot::UpdateState;
namespace chromeos_update_engine {
constexpr char kUseDynamicPartitions[] = "ro.boot.dynamic_partitions";
constexpr char kRetrfoitDynamicPartitions[] =
"ro.boot.dynamic_partitions_retrofit";
constexpr char kVirtualAbEnabled[] = "ro.virtual_ab.enabled";
constexpr char kVirtualAbRetrofit[] = "ro.virtual_ab.retrofit";
constexpr char kVirtualAbCompressionEnabled[] =
"ro.virtual_ab.compression.enabled";
// Currently, android doesn't have a retrofit prop for VAB Compression. However,
// struct FeatureFlag forces us to determine if a feature is 'retrofit'. So this
// is here just to simplify code. Replace it with real retrofit prop name once
// there is one.
constexpr char kVirtualAbCompressionRetrofit[] = "";
constexpr char kPostinstallFstabPrefix[] = "ro.postinstall.fstab.prefix";
// Map timeout for dynamic partitions.
constexpr std::chrono::milliseconds kMapTimeout{1000};
// Map timeout for dynamic partitions with snapshots. Since several devices
// needs to be mapped, this timeout is longer than |kMapTimeout|.
constexpr std::chrono::milliseconds kMapSnapshotTimeout{5000};
DynamicPartitionControlAndroid::~DynamicPartitionControlAndroid() {
Cleanup();
}
static FeatureFlag GetFeatureFlag(const char* enable_prop,
const char* retrofit_prop) {
// Default retrofit to false if retrofit_prop is empty.
bool retrofit = retrofit_prop && retrofit_prop[0] != '\0' &&
GetBoolProperty(retrofit_prop, false);
bool enabled = GetBoolProperty(enable_prop, false);
if (retrofit && !enabled) {
LOG(ERROR) << retrofit_prop << " is true but " << enable_prop
<< " is not. These sysprops are inconsistent. Assume that "
<< enable_prop << " is true from now on.";
}
if (retrofit) {
return FeatureFlag(FeatureFlag::Value::RETROFIT);
}
if (enabled) {
return FeatureFlag(FeatureFlag::Value::LAUNCH);
}
return FeatureFlag(FeatureFlag::Value::NONE);
}
DynamicPartitionControlAndroid::DynamicPartitionControlAndroid()
: dynamic_partitions_(
GetFeatureFlag(kUseDynamicPartitions, kRetrfoitDynamicPartitions)),
virtual_ab_(GetFeatureFlag(kVirtualAbEnabled, kVirtualAbRetrofit)),
virtual_ab_compression_(GetFeatureFlag(kVirtualAbCompressionEnabled,
kVirtualAbCompressionRetrofit)) {
if (GetVirtualAbFeatureFlag().IsEnabled()) {
snapshot_ = SnapshotManager::New();
} else {
snapshot_ = SnapshotManagerStub::New();
}
CHECK(snapshot_ != nullptr) << "Cannot initialize SnapshotManager.";
}
FeatureFlag DynamicPartitionControlAndroid::GetDynamicPartitionsFeatureFlag() {
return dynamic_partitions_;
}
FeatureFlag DynamicPartitionControlAndroid::GetVirtualAbFeatureFlag() {
return virtual_ab_;
}
FeatureFlag
DynamicPartitionControlAndroid::GetVirtualAbCompressionFeatureFlag() {
return virtual_ab_compression_;
}
bool DynamicPartitionControlAndroid::OptimizeOperation(
const std::string& partition_name,
const InstallOperation& operation,
InstallOperation* optimized) {
switch (operation.type()) {
case InstallOperation::SOURCE_COPY:
return target_supports_snapshot_ &&
GetVirtualAbFeatureFlag().IsEnabled() &&
mapped_devices_.count(partition_name +
SlotSuffixForSlotNumber(target_slot_)) > 0 &&
OptimizeSourceCopyOperation(operation, optimized);
break;
default:
break;
}
return false;
}
bool DynamicPartitionControlAndroid::MapPartitionInternal(
const std::string& super_device,
const std::string& target_partition_name,
uint32_t slot,
bool force_writable,
std::string* path) {
CreateLogicalPartitionParams params = {
.block_device = super_device,
.metadata_slot = slot,
.partition_name = target_partition_name,
.force_writable = force_writable,
};
bool success = false;
if (GetVirtualAbFeatureFlag().IsEnabled() && target_supports_snapshot_ &&
force_writable && ExpectMetadataMounted()) {
// Only target partitions are mapped with force_writable. On Virtual
// A/B devices, target partitions may overlap with source partitions, so
// they must be mapped with snapshot.
// One exception is when /metadata is not mounted. Fallback to
// CreateLogicalPartition as snapshots are not created in the first place.
params.timeout_ms = kMapSnapshotTimeout;
success = snapshot_->MapUpdateSnapshot(params, path);
} else {
params.timeout_ms = kMapTimeout;
success = CreateLogicalPartition(params, path);
}
if (!success) {
LOG(ERROR) << "Cannot map " << target_partition_name << " in "
<< super_device << " on device mapper.";
return false;
}
LOG(INFO) << "Succesfully mapped " << target_partition_name
<< " to device mapper (force_writable = " << force_writable
<< "); device path at " << *path;
mapped_devices_.insert(target_partition_name);
return true;
}
bool DynamicPartitionControlAndroid::MapPartitionOnDeviceMapper(
const std::string& super_device,
const std::string& target_partition_name,
uint32_t slot,
bool force_writable,
std::string* path) {
DmDeviceState state = GetState(target_partition_name);
if (state == DmDeviceState::ACTIVE) {
if (mapped_devices_.find(target_partition_name) != mapped_devices_.end()) {
if (GetDmDevicePathByName(target_partition_name, path)) {
LOG(INFO) << target_partition_name
<< " is mapped on device mapper: " << *path;
return true;
}
LOG(ERROR) << target_partition_name << " is mapped but path is unknown.";
return false;
}
// If target_partition_name is not in mapped_devices_ but state is ACTIVE,
// the device might be mapped incorrectly before. Attempt to unmap it.
// Note that for source partitions, if GetState() == ACTIVE, callers (e.g.
// BootControlAndroid) should not call MapPartitionOnDeviceMapper, but
// should directly call GetDmDevicePathByName.
if (!UnmapPartitionOnDeviceMapper(target_partition_name)) {
LOG(ERROR) << target_partition_name
<< " is mapped before the update, and it cannot be unmapped.";
return false;
}
state = GetState(target_partition_name);
if (state != DmDeviceState::INVALID) {
LOG(ERROR) << target_partition_name << " is unmapped but state is "
<< static_cast<std::underlying_type_t<DmDeviceState>>(state);
return false;
}
}
if (state == DmDeviceState::INVALID) {
return MapPartitionInternal(
super_device, target_partition_name, slot, force_writable, path);
}
LOG(ERROR) << target_partition_name
<< " is mapped on device mapper but state is unknown: "
<< static_cast<std::underlying_type_t<DmDeviceState>>(state);
return false;
}
bool DynamicPartitionControlAndroid::UnmapPartitionOnDeviceMapper(
const std::string& target_partition_name) {
if (DeviceMapper::Instance().GetState(target_partition_name) !=
DmDeviceState::INVALID) {
// Partitions at target slot on non-Virtual A/B devices are mapped as
// dm-linear. Also, on Virtual A/B devices, system_other may be mapped for
// preopt apps as dm-linear.
// Call DestroyLogicalPartition to handle these cases.
bool success = DestroyLogicalPartition(target_partition_name);
// On a Virtual A/B device, |target_partition_name| may be a leftover from
// a paused update. Clean up any underlying devices.
if (ExpectMetadataMounted()) {
success &= snapshot_->UnmapUpdateSnapshot(target_partition_name);
} else {
LOG(INFO) << "Skip UnmapUpdateSnapshot(" << target_partition_name
<< ") because metadata is not mounted";
}
if (!success) {
LOG(ERROR) << "Cannot unmap " << target_partition_name
<< " from device mapper.";
return false;
}
LOG(INFO) << "Successfully unmapped " << target_partition_name
<< " from device mapper.";
}
mapped_devices_.erase(target_partition_name);
return true;
}
void DynamicPartitionControlAndroid::UnmapAllPartitions() {
if (mapped_devices_.empty()) {
return;
}
// UnmapPartitionOnDeviceMapper removes objects from mapped_devices_, hence
// a copy is needed for the loop.
std::set<std::string> mapped = mapped_devices_;
LOG(INFO) << "Destroying [" << Join(mapped, ", ") << "] from device mapper";
for (const auto& partition_name : mapped) {
ignore_result(UnmapPartitionOnDeviceMapper(partition_name));
}
}
void DynamicPartitionControlAndroid::Cleanup() {
UnmapAllPartitions();
metadata_device_.reset();
}
bool DynamicPartitionControlAndroid::DeviceExists(const std::string& path) {
return base::PathExists(base::FilePath(path));
}
android::dm::DmDeviceState DynamicPartitionControlAndroid::GetState(
const std::string& name) {
return DeviceMapper::Instance().GetState(name);
}
bool DynamicPartitionControlAndroid::GetDmDevicePathByName(
const std::string& name, std::string* path) {
return DeviceMapper::Instance().GetDmDevicePathByName(name, path);
}
std::unique_ptr<MetadataBuilder>
DynamicPartitionControlAndroid::LoadMetadataBuilder(
const std::string& super_device, uint32_t slot) {
auto builder = MetadataBuilder::New(PartitionOpener(), super_device, slot);
if (builder == nullptr) {
LOG(WARNING) << "No metadata slot " << BootControlInterface::SlotName(slot)
<< " in " << super_device;
return nullptr;
}
LOG(INFO) << "Loaded metadata from slot "
<< BootControlInterface::SlotName(slot) << " in " << super_device;
return builder;
}
std::unique_ptr<MetadataBuilder>
DynamicPartitionControlAndroid::LoadMetadataBuilder(
const std::string& super_device,
uint32_t source_slot,
uint32_t target_slot) {
bool always_keep_source_slot = !target_supports_snapshot_;
auto builder = MetadataBuilder::NewForUpdate(PartitionOpener(),
super_device,
source_slot,
target_slot,
always_keep_source_slot);
if (builder == nullptr) {
LOG(WARNING) << "No metadata slot "
<< BootControlInterface::SlotName(source_slot) << " in "
<< super_device;
return nullptr;
}
LOG(INFO) << "Created metadata for new update from slot "
<< BootControlInterface::SlotName(source_slot) << " in "
<< super_device;
return builder;
}
bool DynamicPartitionControlAndroid::StoreMetadata(
const std::string& super_device,
MetadataBuilder* builder,
uint32_t target_slot) {
auto metadata = builder->Export();
if (metadata == nullptr) {
LOG(ERROR) << "Cannot export metadata to slot "
<< BootControlInterface::SlotName(target_slot) << " in "
<< super_device;
return false;
}
if (GetDynamicPartitionsFeatureFlag().IsRetrofit()) {
if (!FlashPartitionTable(super_device, *metadata)) {
LOG(ERROR) << "Cannot write metadata to " << super_device;
return false;
}
LOG(INFO) << "Written metadata to " << super_device;
} else {
if (!UpdatePartitionTable(super_device, *metadata, target_slot)) {
LOG(ERROR) << "Cannot write metadata to slot "
<< BootControlInterface::SlotName(target_slot) << " in "
<< super_device;
return false;
}
LOG(INFO) << "Copied metadata to slot "
<< BootControlInterface::SlotName(target_slot) << " in "
<< super_device;
}
return true;
}
bool DynamicPartitionControlAndroid::GetDeviceDir(std::string* out) {
// We can't use fs_mgr to look up |partition_name| because fstab
// doesn't list every slot partition (it uses the slotselect option
// to mask the suffix).
//
// We can however assume that there's an entry for the /misc mount
// point and use that to get the device file for the misc
// partition. This helps us locate the disk that |partition_name|
// resides on. From there we'll assume that a by-name scheme is used
// so we can just replace the trailing "misc" by the given
// |partition_name| and suffix corresponding to |slot|, e.g.
//
// /dev/block/platform/soc.0/7824900.sdhci/by-name/misc ->
// /dev/block/platform/soc.0/7824900.sdhci/by-name/boot_a
//
// If needed, it's possible to relax the by-name assumption in the
// future by trawling /sys/block looking for the appropriate sibling
// of misc and then finding an entry in /dev matching the sysfs
// entry.
std::string err, misc_device = get_bootloader_message_blk_device(&err);
if (misc_device.empty()) {
LOG(ERROR) << "Unable to get misc block device: " << err;
return false;
}
if (!utils::IsSymlink(misc_device.c_str())) {
LOG(ERROR) << "Device file " << misc_device << " for /misc "
<< "is not a symlink.";
return false;
}
*out = base::FilePath(misc_device).DirName().value();
return true;
}
bool DynamicPartitionControlAndroid::PreparePartitionsForUpdate(
uint32_t source_slot,
uint32_t target_slot,
const DeltaArchiveManifest& manifest,
bool update,
uint64_t* required_size) {
source_slot_ = source_slot;
target_slot_ = target_slot;
if (required_size != nullptr) {
*required_size = 0;
}
if (fs_mgr_overlayfs_is_setup()) {
// Non DAP devices can use overlayfs as well.
LOG(WARNING)
<< "overlayfs overrides are active and can interfere with our "
"resources.\n"
<< "run adb enable-verity to deactivate if required and try again.";
}
// If metadata is erased but not formatted, it is possible to not mount
// it in recovery. It is acceptable to skip mounting and choose fallback path
// (PrepareDynamicPartitionsForUpdate) when sideloading full OTAs.
TEST_AND_RETURN_FALSE(EnsureMetadataMounted() || IsRecovery());
if (update) {
TEST_AND_RETURN_FALSE(EraseSystemOtherAvbFooter(source_slot, target_slot));
}
if (!GetDynamicPartitionsFeatureFlag().IsEnabled()) {
return true;
}
if (target_slot == source_slot) {
LOG(ERROR) << "Cannot call PreparePartitionsForUpdate on current slot.";
return false;
}
if (!SetTargetBuildVars(manifest)) {
return false;
}
// Although the current build supports dynamic partitions, the given payload
// doesn't use it for target partitions. This could happen when applying a
// retrofit update. Skip updating the partition metadata for the target slot.
if (!is_target_dynamic_) {
return true;
}
if (!update)
return true;
bool delete_source = false;
if (GetVirtualAbFeatureFlag().IsEnabled()) {
// On Virtual A/B device, either CancelUpdate() or BeginUpdate() must be
// called before calling UnmapUpdateSnapshot.
// - If target_supports_snapshot_, PrepareSnapshotPartitionsForUpdate()
// calls BeginUpdate() which resets update state
// - If !target_supports_snapshot_ or PrepareSnapshotPartitionsForUpdate
// failed in recovery, explicitly CancelUpdate().
if (target_supports_snapshot_) {
if (PrepareSnapshotPartitionsForUpdate(
source_slot, target_slot, manifest, required_size)) {
return true;
}
// Virtual A/B device doing Virtual A/B update in Android mode must use
// snapshots.
if (!IsRecovery()) {
LOG(ERROR) << "PrepareSnapshotPartitionsForUpdate failed in Android "
<< "mode";
return false;
}
delete_source = true;
LOG(INFO) << "PrepareSnapshotPartitionsForUpdate failed in recovery. "
<< "Attempt to overwrite existing partitions if possible";
} else {
// Downgrading to an non-Virtual A/B build or is secondary OTA.
LOG(INFO) << "Using regular A/B on Virtual A/B because package disabled "
<< "snapshots.";
}
// In recovery, if /metadata is not mounted, it is likely that metadata
// partition is erased and not formatted yet. After sideloading, when
// rebooting into the new version, init will erase metadata partition,
// hence the failure of CancelUpdate() can be ignored here.
// However, if metadata is mounted and CancelUpdate fails, sideloading
// should not proceed because during next boot, snapshots will overlay on
// the devices incorrectly.
if (ExpectMetadataMounted()) {
TEST_AND_RETURN_FALSE(snapshot_->CancelUpdate());
} else {
LOG(INFO) << "Skip canceling previous update because metadata is not "
<< "mounted";
}
}
// TODO(xunchang) support partial update on non VAB enabled devices.
TEST_AND_RETURN_FALSE(PrepareDynamicPartitionsForUpdate(
source_slot, target_slot, manifest, delete_source));
if (required_size != nullptr) {
*required_size = 0;
}
return true;
}
bool DynamicPartitionControlAndroid::SetTargetBuildVars(
const DeltaArchiveManifest& manifest) {
// Precondition: current build supports dynamic partition.
CHECK(GetDynamicPartitionsFeatureFlag().IsEnabled());
bool is_target_dynamic =
!manifest.dynamic_partition_metadata().groups().empty();
bool target_supports_snapshot =
manifest.dynamic_partition_metadata().snapshot_enabled();
if (manifest.partial_update()) {
// Partial updates requires DAP. On partial updates that does not involve
// dynamic partitions, groups() can be empty, so also assume
// is_target_dynamic in this case. This assumption should be safe because we
// also check target_supports_snapshot below, which presumably also implies
// target build supports dynamic partition.
if (!is_target_dynamic) {
LOG(INFO) << "Assuming target build supports dynamic partitions for "
"partial updates.";
is_target_dynamic = true;
}
// Partial updates requires Virtual A/B. Double check that both current
// build and target build supports Virtual A/B.
if (!GetVirtualAbFeatureFlag().IsEnabled()) {
LOG(ERROR) << "Partial update cannot be applied on a device that does "
"not support snapshots.";
return false;
}
if (!target_supports_snapshot) {
LOG(ERROR) << "Cannot apply partial update to a build that does not "
"support snapshots.";
return false;
}
}
// Store the flags.
is_target_dynamic_ = is_target_dynamic;
// If !is_target_dynamic_, leave target_supports_snapshot_ unset because
// snapshots would not work without dynamic partition.
if (is_target_dynamic_) {
target_supports_snapshot_ = target_supports_snapshot;
}
return true;
}
namespace {
// Try our best to erase AVB footer.
class AvbFooterEraser {
public:
explicit AvbFooterEraser(const std::string& path) : path_(path) {}
bool Erase() {
// Try to mark the block device read-only. Ignore any
// failure since this won't work when passing regular files.
ignore_result(utils::SetBlockDeviceReadOnly(path_, false /* readonly */));
fd_.reset(new EintrSafeFileDescriptor());
int flags = O_WRONLY | O_TRUNC | O_CLOEXEC | O_SYNC;
TEST_AND_RETURN_FALSE(fd_->Open(path_.c_str(), flags));
// Need to write end-AVB_FOOTER_SIZE to end.
static_assert(AVB_FOOTER_SIZE > 0);
off64_t offset = fd_->Seek(-AVB_FOOTER_SIZE, SEEK_END);
TEST_AND_RETURN_FALSE_ERRNO(offset >= 0);
uint64_t write_size = AVB_FOOTER_SIZE;
LOG(INFO) << "Zeroing " << path_ << " @ [" << offset << ", "
<< (offset + write_size) << "] (" << write_size << " bytes)";
brillo::Blob zeros(write_size);
TEST_AND_RETURN_FALSE(utils::WriteAll(fd_, zeros.data(), zeros.size()));
return true;
}
~AvbFooterEraser() {
TEST_AND_RETURN(fd_ != nullptr && fd_->IsOpen());
if (!fd_->Close()) {
LOG(WARNING) << "Failed to close fd for " << path_;
}
}
private:
std::string path_;
FileDescriptorPtr fd_;
};
} // namespace
std::optional<bool>
DynamicPartitionControlAndroid::IsAvbEnabledOnSystemOther() {
auto prefix = GetProperty(kPostinstallFstabPrefix, "");
if (prefix.empty()) {
LOG(WARNING) << "Cannot get " << kPostinstallFstabPrefix;
return std::nullopt;
}
auto path = base::FilePath(prefix).Append("etc/fstab.postinstall").value();
return IsAvbEnabledInFstab(path);
}
std::optional<bool> DynamicPartitionControlAndroid::IsAvbEnabledInFstab(
const std::string& path) {
Fstab fstab;
if (!ReadFstabFromFile(path, &fstab)) {
PLOG(WARNING) << "Cannot read fstab from " << path;
if (errno == ENOENT) {
return false;
}
return std::nullopt;
}
for (const auto& entry : fstab) {
if (!entry.avb_keys.empty()) {
return true;
}
}
return false;
}
bool DynamicPartitionControlAndroid::GetSystemOtherPath(
uint32_t source_slot,
uint32_t target_slot,
const std::string& partition_name_suffix,
std::string* path,
bool* should_unmap) {
path->clear();
*should_unmap = false;
// Check that AVB is enabled on system_other before erasing.
auto has_avb = IsAvbEnabledOnSystemOther();
TEST_AND_RETURN_FALSE(has_avb.has_value());
if (!has_avb.value()) {
LOG(INFO) << "AVB is not enabled on system_other. Skip erasing.";
return true;
}
if (!IsRecovery()) {
// Found unexpected avb_keys for system_other on devices retrofitting
// dynamic partitions. Previous crash in update_engine may leave logical
// partitions mapped on physical system_other partition. It is difficult to
// handle these cases. Just fail.
if (GetDynamicPartitionsFeatureFlag().IsRetrofit()) {
LOG(ERROR) << "Cannot erase AVB footer on system_other on devices with "
<< "retrofit dynamic partitions. They should not have AVB "
<< "enabled on system_other.";
return false;
}
}
std::string device_dir_str;
TEST_AND_RETURN_FALSE(GetDeviceDir(&device_dir_str));
base::FilePath device_dir(device_dir_str);
// On devices without dynamic partition, search for static partitions.
if (!GetDynamicPartitionsFeatureFlag().IsEnabled()) {
*path = device_dir.Append(partition_name_suffix).value();
TEST_AND_RETURN_FALSE(DeviceExists(*path));
return true;
}
auto source_super_device =
device_dir.Append(GetSuperPartitionName(source_slot)).value();
auto builder = LoadMetadataBuilder(source_super_device, source_slot);
if (builder == nullptr) {
if (IsRecovery()) {
// It might be corrupted for some reason. It should still be able to
// sideload.
LOG(WARNING) << "Super partition metadata cannot be read from the source "
<< "slot, skip erasing.";
return true;
} else {
// Device has booted into Android mode, indicating that the super
// partition metadata should be there.
LOG(ERROR) << "Super partition metadata cannot be read from the source "
<< "slot. This is unexpected on devices with dynamic "
<< "partitions enabled.";
return false;
}
}
auto p = builder->FindPartition(partition_name_suffix);
if (p == nullptr) {
// If the source slot is flashed without system_other, it does not exist
// in super partition metadata at source slot. It is safe to skip it.
LOG(INFO) << "Can't find " << partition_name_suffix
<< " in metadata source slot, skip erasing.";
return true;
}
// System_other created by flashing tools should be erased.
// If partition is created by update_engine (via NewForUpdate), it is a
// left-over partition from the previous update and does not contain
// system_other, hence there is no need to erase.
// Note the reverse is not necessary true. If the flag is not set, we don't
// know if the partition is created by update_engine or by flashing tools
// because older versions of super partition metadata does not contain this
// flag. It is okay to erase the AVB footer anyways.
if (p->attributes() & LP_PARTITION_ATTR_UPDATED) {
LOG(INFO) << partition_name_suffix
<< " does not contain system_other, skip erasing.";
return true;
}
if (p->size() < AVB_FOOTER_SIZE) {
LOG(INFO) << partition_name_suffix << " has length " << p->size()
<< "( < AVB_FOOTER_SIZE " << AVB_FOOTER_SIZE
<< "), skip erasing.";
return true;
}
// Delete any pre-existing device with name |partition_name_suffix| and
// also remove it from |mapped_devices_|.
// In recovery, metadata might not be mounted, and
// UnmapPartitionOnDeviceMapper might fail. However,
// it is unusual that system_other has already been mapped. Hence, just skip.
TEST_AND_RETURN_FALSE(UnmapPartitionOnDeviceMapper(partition_name_suffix));
// Use CreateLogicalPartition directly to avoid mapping with existing
// snapshots.
CreateLogicalPartitionParams params = {
.block_device = source_super_device,
.metadata_slot = source_slot,
.partition_name = partition_name_suffix,
.force_writable = true,
.timeout_ms = kMapTimeout,
};
TEST_AND_RETURN_FALSE(CreateLogicalPartition(params, path));
*should_unmap = true;
return true;
}
bool DynamicPartitionControlAndroid::EraseSystemOtherAvbFooter(
uint32_t source_slot, uint32_t target_slot) {
LOG(INFO) << "Erasing AVB footer of system_other partition before update.";
const std::string target_suffix = SlotSuffixForSlotNumber(target_slot);
const std::string partition_name_suffix = "system" + target_suffix;
std::string path;
bool should_unmap = false;
TEST_AND_RETURN_FALSE(GetSystemOtherPath(
source_slot, target_slot, partition_name_suffix, &path, &should_unmap));
if (path.empty()) {
return true;
}
bool ret = AvbFooterEraser(path).Erase();
// Delete |partition_name_suffix| from device mapper and from
// |mapped_devices_| again so that it does not interfere with update process.
// In recovery, metadata might not be mounted, and
// UnmapPartitionOnDeviceMapper might fail. However, DestroyLogicalPartition
// should be called. If DestroyLogicalPartition does fail, it is still okay
// to skip the error here and let Prepare*() fail later.
if (should_unmap) {
TEST_AND_RETURN_FALSE(UnmapPartitionOnDeviceMapper(partition_name_suffix));
}
return ret;
}
bool DynamicPartitionControlAndroid::PrepareDynamicPartitionsForUpdate(
uint32_t source_slot,
uint32_t target_slot,
const DeltaArchiveManifest& manifest,
bool delete_source) {
const std::string target_suffix = SlotSuffixForSlotNumber(target_slot);
// Unmap all the target dynamic partitions because they would become
// inconsistent with the new metadata.
for (const auto& group : manifest.dynamic_partition_metadata().groups()) {
for (const auto& partition_name : group.partition_names()) {
if (!UnmapPartitionOnDeviceMapper(partition_name + target_suffix)) {
return false;
}
}
}
std::string device_dir_str;
if (!GetDeviceDir(&device_dir_str)) {
return false;
}
base::FilePath device_dir(device_dir_str);
auto source_device =
device_dir.Append(GetSuperPartitionName(source_slot)).value();
auto builder = LoadMetadataBuilder(source_device, source_slot, target_slot);
if (builder == nullptr) {
LOG(ERROR) << "No metadata at "
<< BootControlInterface::SlotName(source_slot);
return false;
}
if (delete_source) {
TEST_AND_RETURN_FALSE(
DeleteSourcePartitions(builder.get(), source_slot, manifest));
}
if (!UpdatePartitionMetadata(builder.get(), target_slot, manifest)) {
return false;
}
auto target_device =
device_dir.Append(GetSuperPartitionName(target_slot)).value();
return StoreMetadata(target_device, builder.get(), target_slot);
}
bool DynamicPartitionControlAndroid::PrepareSnapshotPartitionsForUpdate(
uint32_t source_slot,
uint32_t target_slot,
const DeltaArchiveManifest& manifest,
uint64_t* required_size) {
TEST_AND_RETURN_FALSE(ExpectMetadataMounted());
if (!snapshot_->BeginUpdate()) {
LOG(ERROR) << "Cannot begin new update.";
return false;
}
auto ret = snapshot_->CreateUpdateSnapshots(manifest);
if (!ret) {
LOG(ERROR) << "Cannot create update snapshots: " << ret.string();
if (required_size != nullptr &&
ret.error_code() == Return::ErrorCode::NO_SPACE) {
*required_size = ret.required_size();
}
return false;
}
return true;
}
std::string DynamicPartitionControlAndroid::GetSuperPartitionName(
uint32_t slot) {
return fs_mgr_get_super_partition_name(slot);
}
bool DynamicPartitionControlAndroid::UpdatePartitionMetadata(
MetadataBuilder* builder,
uint32_t target_slot,
const DeltaArchiveManifest& manifest) {
// Check preconditions.
CHECK(!GetVirtualAbFeatureFlag().IsEnabled() || IsRecovery())
<< "UpdatePartitionMetadata is called on a Virtual A/B device "
"but source partitions is not deleted. This is not allowed.";
// If applying downgrade from Virtual A/B to non-Virtual A/B, the left-over
// COW group needs to be deleted to ensure there are enough space to create
// target partitions.
builder->RemoveGroupAndPartitions(android::snapshot::kCowGroupName);
const std::string target_suffix = SlotSuffixForSlotNumber(target_slot);
DeleteGroupsWithSuffix(builder, target_suffix);
uint64_t total_size = 0;
for (const auto& group : manifest.dynamic_partition_metadata().groups()) {
total_size += group.size();
}
std::string expr;
uint64_t allocatable_space = builder->AllocatableSpace();
// On device retrofitting dynamic partitions, allocatable_space = super.
// On device launching dynamic partitions w/o VAB,
// allocatable_space = super / 2.
// On device launching dynamic partitions with VAB, allocatable_space = super.
if (!GetDynamicPartitionsFeatureFlag().IsRetrofit() &&
!GetVirtualAbFeatureFlag().IsEnabled()) {
allocatable_space /= 2;
expr = "half of ";
}
if (total_size > allocatable_space) {
LOG(ERROR) << "The maximum size of all groups with suffix " << target_suffix
<< " (" << total_size << ") has exceeded " << expr
<< "allocatable space for dynamic partitions "
<< allocatable_space << ".";
return false;
}
// name of partition(e.g. "system") -> size in bytes
std::map<std::string, uint64_t> partition_sizes;
for (const auto& partition : manifest.partitions()) {
partition_sizes.emplace(partition.partition_name(),
partition.new_partition_info().size());
}
for (const auto& group : manifest.dynamic_partition_metadata().groups()) {
auto group_name_suffix = group.name() + target_suffix;
if (!builder->AddGroup(group_name_suffix, group.size())) {
LOG(ERROR) << "Cannot add group " << group_name_suffix << " with size "
<< group.size();
return false;
}
LOG(INFO) << "Added group " << group_name_suffix << " with size "
<< group.size();
for (const auto& partition_name : group.partition_names()) {
auto partition_sizes_it = partition_sizes.find(partition_name);
if (partition_sizes_it == partition_sizes.end()) {
// TODO(tbao): Support auto-filling partition info for framework-only
// OTA.
LOG(ERROR) << "dynamic_partition_metadata contains partition "
<< partition_name << " but it is not part of the manifest. "
<< "This is not supported.";
return false;
}
uint64_t partition_size = partition_sizes_it->second;
auto partition_name_suffix = partition_name + target_suffix;
Partition* p = builder->AddPartition(
partition_name_suffix, group_name_suffix, LP_PARTITION_ATTR_READONLY);
if (!p) {
LOG(ERROR) << "Cannot add partition " << partition_name_suffix
<< " to group " << group_name_suffix;
return false;
}
if (!builder->ResizePartition(p, partition_size)) {
LOG(ERROR) << "Cannot resize partition " << partition_name_suffix
<< " to size " << partition_size << ". Not enough space?";
return false;
}
LOG(INFO) << "Added partition " << partition_name_suffix << " to group "
<< group_name_suffix << " with size " << partition_size;
}
}
return true;
}
bool DynamicPartitionControlAndroid::FinishUpdate(bool powerwash_required) {
if (ExpectMetadataMounted()) {
if (snapshot_->GetUpdateState() == UpdateState::Initiated) {
LOG(INFO) << "Snapshot writes are done.";
return snapshot_->FinishedSnapshotWrites(powerwash_required);
}
} else {
LOG(INFO) << "Skip FinishedSnapshotWrites() because /metadata is not "
<< "mounted";
}
return true;
}
bool DynamicPartitionControlAndroid::GetPartitionDevice(
const std::string& partition_name,
uint32_t slot,
uint32_t current_slot,
bool not_in_payload,
std::string* device,
bool* is_dynamic) {
const auto& partition_name_suffix =
partition_name + SlotSuffixForSlotNumber(slot);
std::string device_dir_str;
TEST_AND_RETURN_FALSE(GetDeviceDir(&device_dir_str));
base::FilePath device_dir(device_dir_str);
if (is_dynamic) {
*is_dynamic = false;
}
// When looking up target partition devices, treat them as static if the
// current payload doesn't encode them as dynamic partitions. This may happen
// when applying a retrofit update on top of a dynamic-partitions-enabled
// build.
if (GetDynamicPartitionsFeatureFlag().IsEnabled() &&
(slot == current_slot || is_target_dynamic_)) {
switch (GetDynamicPartitionDevice(device_dir,
partition_name_suffix,
slot,
current_slot,
not_in_payload,
device)) {
case DynamicPartitionDeviceStatus::SUCCESS:
if (is_dynamic) {
*is_dynamic = true;
}
return true;
case DynamicPartitionDeviceStatus::TRY_STATIC:
break;
case DynamicPartitionDeviceStatus::ERROR: // fallthrough
default:
return false;
}
}
base::FilePath path = device_dir.Append(partition_name_suffix);
if (!DeviceExists(path.value())) {
LOG(ERROR) << "Device file " << path.value() << " does not exist.";
return false;
}
*device = path.value();
return true;
}
bool DynamicPartitionControlAndroid::GetPartitionDevice(
const std::string& partition_name,
uint32_t slot,
uint32_t current_slot,
std::string* device) {
return GetPartitionDevice(
partition_name, slot, current_slot, false, device, nullptr);
}
bool DynamicPartitionControlAndroid::IsSuperBlockDevice(
const base::FilePath& device_dir,
uint32_t current_slot,
const std::string& partition_name_suffix) {
std::string source_device =
device_dir.Append(GetSuperPartitionName(current_slot)).value();
auto source_metadata = LoadMetadataBuilder(source_device, current_slot);
return source_metadata->HasBlockDevice(partition_name_suffix);
}
DynamicPartitionControlAndroid::DynamicPartitionDeviceStatus
DynamicPartitionControlAndroid::GetDynamicPartitionDevice(
const base::FilePath& device_dir,
const std::string& partition_name_suffix,
uint32_t slot,
uint32_t current_slot,
bool not_in_payload,
std::string* device) {
std::string super_device =
device_dir.Append(GetSuperPartitionName(slot)).value();
auto builder = LoadMetadataBuilder(super_device, slot);
if (builder == nullptr) {
LOG(ERROR) << "No metadata in slot "
<< BootControlInterface::SlotName(slot);
return DynamicPartitionDeviceStatus::ERROR;
}
if (builder->FindPartition(partition_name_suffix) == nullptr) {
LOG(INFO) << partition_name_suffix
<< " is not in super partition metadata.";
if (IsSuperBlockDevice(device_dir, current_slot, partition_name_suffix)) {
LOG(ERROR) << "The static partition " << partition_name_suffix
<< " is a block device for current metadata."
<< "It cannot be used as a logical partition.";
return DynamicPartitionDeviceStatus::ERROR;
}
return DynamicPartitionDeviceStatus::TRY_STATIC;
}
if (slot == current_slot) {
if (GetState(partition_name_suffix) != DmDeviceState::ACTIVE) {
LOG(WARNING) << partition_name_suffix << " is at current slot but it is "
<< "not mapped. Now try to map it.";
} else {
if (GetDmDevicePathByName(partition_name_suffix, device)) {
LOG(INFO) << partition_name_suffix
<< " is mapped on device mapper: " << *device;
return DynamicPartitionDeviceStatus::SUCCESS;
}
LOG(ERROR) << partition_name_suffix << "is mapped but path is unknown.";
return DynamicPartitionDeviceStatus::ERROR;
}
}
bool force_writable = (slot != current_slot) && !not_in_payload;
if (MapPartitionOnDeviceMapper(
super_device, partition_name_suffix, slot, force_writable, device)) {
return DynamicPartitionDeviceStatus::SUCCESS;
}
return DynamicPartitionDeviceStatus::ERROR;
}
void DynamicPartitionControlAndroid::set_fake_mapped_devices(
const std::set<std::string>& fake) {
mapped_devices_ = fake;
}
bool DynamicPartitionControlAndroid::IsRecovery() {
return constants::kIsRecovery;
}
static bool IsIncrementalUpdate(const DeltaArchiveManifest& manifest) {
const auto& partitions = manifest.partitions();
return std::any_of(partitions.begin(), partitions.end(), [](const auto& p) {
return p.has_old_partition_info();
});
}
bool DynamicPartitionControlAndroid::DeleteSourcePartitions(
MetadataBuilder* builder,
uint32_t source_slot,
const DeltaArchiveManifest& manifest) {
TEST_AND_RETURN_FALSE(IsRecovery());
if (IsIncrementalUpdate(manifest)) {
LOG(ERROR) << "Cannot sideload incremental OTA because snapshots cannot "
<< "be created.";
if (GetVirtualAbFeatureFlag().IsLaunch()) {
LOG(ERROR) << "Sideloading incremental updates on devices launches "
<< " Virtual A/B is not supported.";
}
return false;
}
LOG(INFO) << "Will overwrite existing partitions. Slot "
<< BootControlInterface::SlotName(source_slot)
<< "may be unbootable until update finishes!";
const std::string source_suffix = SlotSuffixForSlotNumber(source_slot);
DeleteGroupsWithSuffix(builder, source_suffix);
return true;
}
std::unique_ptr<AbstractAction>
DynamicPartitionControlAndroid::GetCleanupPreviousUpdateAction(
BootControlInterface* boot_control,
PrefsInterface* prefs,
CleanupPreviousUpdateActionDelegateInterface* delegate) {
if (!GetVirtualAbFeatureFlag().IsEnabled()) {
return std::make_unique<NoOpAction>();
}
return std::make_unique<CleanupPreviousUpdateAction>(
prefs, boot_control, snapshot_.get(), delegate);
}
bool DynamicPartitionControlAndroid::ResetUpdate(PrefsInterface* prefs) {
if (!GetVirtualAbFeatureFlag().IsEnabled()) {
return true;
}
LOG(INFO) << __func__ << " resetting update state and deleting snapshots.";
TEST_AND_RETURN_FALSE(prefs != nullptr);
// If the device has already booted into the target slot,
// ResetUpdateProgress may pass but CancelUpdate fails.
// This is expected. A scheduled CleanupPreviousUpdateAction should free
// space when it is done.
TEST_AND_RETURN_FALSE(DeltaPerformer::ResetUpdateProgress(
prefs, false /* quick */, false /* skip dynamic partitions metadata */));
if (ExpectMetadataMounted()) {
TEST_AND_RETURN_FALSE(snapshot_->CancelUpdate());
} else {
LOG(INFO) << "Skip cancelling update in ResetUpdate because /metadata is "
<< "not mounted";
}
return true;
}
bool DynamicPartitionControlAndroid::ListDynamicPartitionsForSlot(
uint32_t current_slot, std::vector<std::string>* partitions) {
if (!GetDynamicPartitionsFeatureFlag().IsEnabled()) {
LOG(ERROR) << "Dynamic partition is not enabled";
return false;
}
std::string device_dir_str;
TEST_AND_RETURN_FALSE(GetDeviceDir(&device_dir_str));
base::FilePath device_dir(device_dir_str);
auto super_device =
device_dir.Append(GetSuperPartitionName(current_slot)).value();
auto builder = LoadMetadataBuilder(super_device, current_slot);
TEST_AND_RETURN_FALSE(builder != nullptr);
std::vector<std::string> result;
auto suffix = SlotSuffixForSlotNumber(current_slot);
for (const auto& group : builder->ListGroups()) {
for (const auto& partition : builder->ListPartitionsInGroup(group)) {
std::string_view partition_name = partition->name();
if (!android::base::ConsumeSuffix(&partition_name, suffix)) {
continue;
}
result.emplace_back(partition_name);
}
}
*partitions = std::move(result);
return true;
}
bool DynamicPartitionControlAndroid::VerifyExtentsForUntouchedPartitions(
uint32_t source_slot,
uint32_t target_slot,
const std::vector<std::string>& partitions) {
std::string device_dir_str;
TEST_AND_RETURN_FALSE(GetDeviceDir(&device_dir_str));
base::FilePath device_dir(device_dir_str);
auto source_super_device =
device_dir.Append(GetSuperPartitionName(source_slot)).value();
auto source_builder = LoadMetadataBuilder(source_super_device, source_slot);
TEST_AND_RETURN_FALSE(source_builder != nullptr);
auto target_super_device =
device_dir.Append(GetSuperPartitionName(target_slot)).value();
auto target_builder = LoadMetadataBuilder(target_super_device, target_slot);
TEST_AND_RETURN_FALSE(target_builder != nullptr);
return MetadataBuilder::VerifyExtentsAgainstSourceMetadata(
*source_builder, source_slot, *target_builder, target_slot, partitions);
}
bool DynamicPartitionControlAndroid::ExpectMetadataMounted() {
// No need to mount metadata for non-Virtual A/B devices.
if (!GetVirtualAbFeatureFlag().IsEnabled()) {
return false;
}
// Intentionally not checking |metadata_device_| in Android mode.
// /metadata should always be mounted in Android mode. If it isn't, let caller
// fails when calling into SnapshotManager.
if (!IsRecovery()) {
return true;
}
// In recovery mode, explicitly check |metadata_device_|.
return metadata_device_ != nullptr;
}
bool DynamicPartitionControlAndroid::EnsureMetadataMounted() {
// No need to mount metadata for non-Virtual A/B devices.
if (!GetVirtualAbFeatureFlag().IsEnabled()) {
return true;
}
if (metadata_device_ == nullptr) {
metadata_device_ = snapshot_->EnsureMetadataMounted();
}
return metadata_device_ != nullptr;
}
std::unique_ptr<android::snapshot::ISnapshotWriter>
DynamicPartitionControlAndroid::OpenCowWriter(
const std::string& partition_name,
const std::optional<std::string>& source_path,
bool is_append) {
auto suffix = SlotSuffixForSlotNumber(target_slot_);
std::string device_dir_str;
if (!GetDeviceDir(&device_dir_str)) {
LOG(ERROR) << "Failed to get device dir!";
return nullptr;
}
base::FilePath device_dir(device_dir_str);
auto super_device =
device_dir.Append(GetSuperPartitionName(target_slot_)).value();
CreateLogicalPartitionParams params = {
.block_device = super_device,
.metadata_slot = target_slot_,
.partition_name = partition_name + suffix,
.force_writable = true,
};
// TODO(zhangkelvin) Open an APPEND mode CowWriter once there's an API to do
// it.
return snapshot_->OpenSnapshotWriter(params, std::move(source_path));
}
} // namespace chromeos_update_engine