blob: e6204d3b7a01ec17c1ec27eddbf928211352472b [file] [log] [blame]
// Copyright (c) 2012 The Chromium OS Authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
#include <unistd.h>
#include <string>
#include <utility>
#include <vector>
#include <base/logging.h>
#include <base/memory/scoped_ptr.h>
#include <base/string_util.h>
#include <base/stringprintf.h>
#include <base/time.h>
#include <chromeos/dbus/service_constants.h>
#include <glib.h>
#include <gtest/gtest.h>
#include "update_engine/http_common.h"
#include "update_engine/http_fetcher_unittest.h"
#include "update_engine/libcurl_http_fetcher.h"
#include "update_engine/mock_connection_manager.h"
#include "update_engine/mock_http_fetcher.h"
#include "update_engine/mock_system_state.h"
#include "update_engine/multi_range_http_fetcher.h"
#include "update_engine/proxy_resolver.h"
#include "update_engine/utils.h"
using std::make_pair;
using std::pair;
using std::string;
using std::vector;
using base::TimeDelta;
using testing::_;
using testing::SetArgumentPointee;
using testing::DoAll;
using testing::Return;
namespace {
const int kBigLength = 100000;
const int kMediumLength = 1000;
const int kFlakyTruncateLength = 29000;
const int kFlakySleepEvery = 3;
const int kFlakySleepSecs = 10;
} // namespace
namespace chromeos_update_engine {
static const char *kUnusedUrl = "unused://unused";
static inline string LocalServerUrlForPath(const string& path) {
return base::StringPrintf("http://127.0.0.1:%d%s", kServerPort, path.c_str());
}
//
// Class hierarchy for HTTP server implementations.
//
class HttpServer {
public:
// This makes it an abstract class (dirty but works).
virtual ~HttpServer() = 0;
bool started_;
};
HttpServer::~HttpServer() {}
class NullHttpServer : public HttpServer {
public:
NullHttpServer() {
started_ = true;
}
};
class PythonHttpServer : public HttpServer {
public:
PythonHttpServer() {
char *argv[2] = {strdup("./test_http_server"), NULL};
GError *err;
started_ = false;
validate_quit_ = true;
if (!g_spawn_async(NULL,
argv,
NULL,
G_SPAWN_DO_NOT_REAP_CHILD,
NULL,
NULL,
&pid_,
&err)) {
LOG(INFO) << "unable to spawn http server process";
return;
}
LOG(INFO) << "started http server with pid " << pid_;
int rc = 1;
const TimeDelta kMaxSleep = TimeDelta::FromMinutes(60);
TimeDelta timeout = TimeDelta::FromMilliseconds(15);
started_ = true;
while (rc && timeout < kMaxSleep) {
// Wait before the first attempt also as it takes a while for the
// test_http_server to be ready.
LOG(INFO) << "waiting for " << utils::FormatTimeDelta(timeout);
g_usleep(timeout.InMicroseconds());
timeout *= 2;
LOG(INFO) << "running wget to start";
// rc should be 0 if we're able to successfully talk to the server.
rc = system((string("wget --output-document=/dev/null ") +
LocalServerUrlForPath("/test")).c_str());
LOG(INFO) << "done running wget to start, rc = " << rc;
}
if (rc) {
LOG(ERROR) << "Http server is not responding to wget.";
// TODO(jaysri): Currently we're overloading two things in
// started_ flag. One is that the process is running and other
// is that the process is responsive. We should separate these
// two so that we can do cleanup appropriately in each case.
started_ = false;
}
free(argv[0]);
LOG(INFO) << "gdb attach now!";
}
~PythonHttpServer() {
if (!started_) {
LOG(INFO) << "not waiting for http server with pid " << pid_
<< " to terminate, as it's not responding.";
// TODO(jaysri): Kill the process if it's really running but
// wgets or failing for some reason. Or if it's not running,
// add code to get rid of the defunct process.
return;
}
// request that the server exit itself
LOG(INFO) << "running wget to exit";
int rc = system((string("wget -t 1 --output-document=/dev/null ") +
LocalServerUrlForPath("/quitquitquit")).c_str());
LOG(INFO) << "done running wget to exit";
if (validate_quit_)
EXPECT_EQ(0, rc);
LOG(INFO) << "waiting for http server with pid " << pid_ << " to terminate";
int status;
waitpid(pid_, &status, 0);
LOG(INFO) << "http server with pid " << pid_
<< " terminated with status " << status;
}
GPid pid_;
bool validate_quit_;
};
//
// Class hierarchy for HTTP fetcher test wrappers.
//
class AnyHttpFetcherTest {
public:
AnyHttpFetcherTest()
: mock_connection_manager_(&mock_system_state_) {
mock_system_state_.set_connection_manager(&mock_connection_manager_);
}
virtual HttpFetcher* NewLargeFetcher(size_t num_proxies) = 0;
HttpFetcher* NewLargeFetcher() {
return NewLargeFetcher(1);
}
virtual HttpFetcher* NewSmallFetcher(size_t num_proxies) = 0;
HttpFetcher* NewSmallFetcher() {
return NewSmallFetcher(1);
}
virtual string BigUrl() const { return kUnusedUrl; }
virtual string SmallUrl() const { return kUnusedUrl; }
virtual string ErrorUrl() const { return kUnusedUrl; }
virtual bool IsMock() const = 0;
virtual bool IsMulti() const = 0;
virtual void IgnoreServerAborting(HttpServer* server) const {}
virtual HttpServer *CreateServer() = 0;
protected:
DirectProxyResolver proxy_resolver_;
MockSystemState mock_system_state_;
MockConnectionManager mock_connection_manager_;
};
class MockHttpFetcherTest : public AnyHttpFetcherTest {
public:
// Necessary to unhide the definition in the base class.
using AnyHttpFetcherTest::NewLargeFetcher;
virtual HttpFetcher* NewLargeFetcher(size_t num_proxies) {
vector<char> big_data(1000000);
CHECK(num_proxies > 0);
proxy_resolver_.set_num_proxies(num_proxies);
return new MockHttpFetcher(
big_data.data(),
big_data.size(),
reinterpret_cast<ProxyResolver*>(&proxy_resolver_));
}
// Necessary to unhide the definition in the base class.
using AnyHttpFetcherTest::NewSmallFetcher;
virtual HttpFetcher* NewSmallFetcher(size_t num_proxies) {
CHECK(num_proxies > 0);
proxy_resolver_.set_num_proxies(num_proxies);
return new MockHttpFetcher(
"x",
1,
reinterpret_cast<ProxyResolver*>(&proxy_resolver_));
}
virtual bool IsMock() const { return true; }
virtual bool IsMulti() const { return false; }
virtual HttpServer *CreateServer() {
return new NullHttpServer;
}
};
class LibcurlHttpFetcherTest : public AnyHttpFetcherTest {
public:
// Necessary to unhide the definition in the base class.
using AnyHttpFetcherTest::NewLargeFetcher;
virtual HttpFetcher* NewLargeFetcher(size_t num_proxies) {
CHECK(num_proxies > 0);
proxy_resolver_.set_num_proxies(num_proxies);
LibcurlHttpFetcher *ret = new
LibcurlHttpFetcher(reinterpret_cast<ProxyResolver*>(&proxy_resolver_),
&mock_system_state_, false);
// Speed up test execution.
ret->set_idle_seconds(1);
ret->set_retry_seconds(1);
ret->SetBuildType(false);
return ret;
}
// Necessary to unhide the definition in the base class.
using AnyHttpFetcherTest::NewSmallFetcher;
virtual HttpFetcher* NewSmallFetcher(size_t num_proxies) {
return NewLargeFetcher(num_proxies);
}
virtual string BigUrl() const {
return LocalServerUrlForPath(base::StringPrintf("/download/%d",
kBigLength));
}
virtual string SmallUrl() const {
return LocalServerUrlForPath("/foo");
}
virtual string ErrorUrl() const {
return LocalServerUrlForPath("/error");
}
virtual bool IsMock() const { return false; }
virtual bool IsMulti() const { return false; }
virtual void IgnoreServerAborting(HttpServer* server) const {
PythonHttpServer *pyserver = reinterpret_cast<PythonHttpServer*>(server);
pyserver->validate_quit_ = false;
}
virtual HttpServer *CreateServer() {
return new PythonHttpServer;
}
};
class MultiRangeHttpFetcherTest : public LibcurlHttpFetcherTest {
public:
// Necessary to unhide the definition in the base class.
using AnyHttpFetcherTest::NewLargeFetcher;
virtual HttpFetcher* NewLargeFetcher(size_t num_proxies) {
CHECK(num_proxies > 0);
proxy_resolver_.set_num_proxies(num_proxies);
ProxyResolver* resolver =
reinterpret_cast<ProxyResolver*>(&proxy_resolver_);
MultiRangeHttpFetcher *ret =
new MultiRangeHttpFetcher(
new LibcurlHttpFetcher(resolver, &mock_system_state_, false));
ret->ClearRanges();
ret->AddRange(0);
// Speed up test execution.
ret->set_idle_seconds(1);
ret->set_retry_seconds(1);
ret->SetBuildType(false);
return ret;
}
// Necessary to unhide the definition in the base class.
using AnyHttpFetcherTest::NewSmallFetcher;
virtual HttpFetcher* NewSmallFetcher(size_t num_proxies) {
return NewLargeFetcher(num_proxies);
}
virtual bool IsMulti() const { return true; }
};
//
// Infrastructure for type tests of HTTP fetcher.
// See: http://code.google.com/p/googletest/wiki/AdvancedGuide#Typed_Tests
//
// Fixture class template. We use an explicit constraint to guarantee that it
// can only be instantiated with an AnyHttpFetcherTest type, see:
// http://www2.research.att.com/~bs/bs_faq2.html#constraints
template <typename T>
class HttpFetcherTest : public ::testing::Test {
public:
T test_;
private:
static void TypeConstraint(T *a) {
AnyHttpFetcherTest *b = a;
if (b == 0) // Silence compiler warning of unused variable.
*b = a;
}
};
// Test case types list.
typedef ::testing::Types<LibcurlHttpFetcherTest,
MockHttpFetcherTest,
MultiRangeHttpFetcherTest> HttpFetcherTestTypes;
TYPED_TEST_CASE(HttpFetcherTest, HttpFetcherTestTypes);
namespace {
class HttpFetcherTestDelegate : public HttpFetcherDelegate {
public:
HttpFetcherTestDelegate() :
is_expect_error_(false), times_transfer_complete_called_(0),
times_transfer_terminated_called_(0), times_received_bytes_called_(0) {}
virtual void ReceivedBytes(HttpFetcher* fetcher,
const char* bytes, int length) {
char str[length + 1];
memset(str, 0, length + 1);
memcpy(str, bytes, length);
// Update counters
times_received_bytes_called_++;
}
virtual void TransferComplete(HttpFetcher* fetcher, bool successful) {
if (is_expect_error_)
EXPECT_EQ(kHttpResponseNotFound, fetcher->http_response_code());
else
EXPECT_EQ(kHttpResponseOk, fetcher->http_response_code());
g_main_loop_quit(loop_);
// Update counter
times_transfer_complete_called_++;
}
virtual void TransferTerminated(HttpFetcher* fetcher) {
ADD_FAILURE();
times_transfer_terminated_called_++;
}
GMainLoop* loop_;
// Are we expecting an error response? (default: no)
bool is_expect_error_;
// Counters for callback invocations.
int times_transfer_complete_called_;
int times_transfer_terminated_called_;
int times_received_bytes_called_;
};
struct StartTransferArgs {
HttpFetcher *http_fetcher;
string url;
};
gboolean StartTransfer(gpointer data) {
StartTransferArgs *args = reinterpret_cast<StartTransferArgs*>(data);
args->http_fetcher->BeginTransfer(args->url);
return FALSE;
}
} // namespace {}
TYPED_TEST(HttpFetcherTest, SimpleTest) {
GMainLoop* loop = g_main_loop_new(g_main_context_default(), FALSE);
{
HttpFetcherTestDelegate delegate;
delegate.loop_ = loop;
scoped_ptr<HttpFetcher> fetcher(this->test_.NewSmallFetcher());
fetcher->set_delegate(&delegate);
MockConnectionManager* mock_cm = dynamic_cast<MockConnectionManager*>(
fetcher->GetSystemState()->connection_manager());
EXPECT_CALL(*mock_cm, GetConnectionType(_,_))
.WillRepeatedly(DoAll(SetArgumentPointee<1>(kNetWifi), Return(true)));
EXPECT_CALL(*mock_cm, IsUpdateAllowedOver(kNetWifi))
.WillRepeatedly(Return(true));
EXPECT_CALL(*mock_cm, StringForConnectionType(kNetWifi))
.WillRepeatedly(Return(flimflam::kTypeWifi));
scoped_ptr<HttpServer> server(this->test_.CreateServer());
ASSERT_TRUE(server->started_);
StartTransferArgs start_xfer_args = {fetcher.get(), this->test_.SmallUrl()};
g_timeout_add(0, StartTransfer, &start_xfer_args);
g_main_loop_run(loop);
}
g_main_loop_unref(loop);
}
TYPED_TEST(HttpFetcherTest, SimpleBigTest) {
GMainLoop* loop = g_main_loop_new(g_main_context_default(), FALSE);
{
HttpFetcherTestDelegate delegate;
delegate.loop_ = loop;
scoped_ptr<HttpFetcher> fetcher(this->test_.NewLargeFetcher());
fetcher->set_delegate(&delegate);
MockConnectionManager* mock_cm = dynamic_cast<MockConnectionManager*>(
fetcher->GetSystemState()->connection_manager());
EXPECT_CALL(*mock_cm, GetConnectionType(_,_))
.WillRepeatedly(DoAll(SetArgumentPointee<1>(kNetEthernet), Return(true)));
EXPECT_CALL(*mock_cm, IsUpdateAllowedOver(kNetEthernet))
.WillRepeatedly(Return(true));
EXPECT_CALL(*mock_cm, StringForConnectionType(kNetEthernet))
.WillRepeatedly(Return(flimflam::kTypeEthernet));
scoped_ptr<HttpServer> server(this->test_.CreateServer());
ASSERT_TRUE(server->started_);
StartTransferArgs start_xfer_args = {fetcher.get(), this->test_.BigUrl()};
g_timeout_add(0, StartTransfer, &start_xfer_args);
g_main_loop_run(loop);
}
g_main_loop_unref(loop);
}
// Issue #9648: when server returns an error HTTP response, the fetcher needs to
// terminate transfer prematurely, rather than try to process the error payload.
TYPED_TEST(HttpFetcherTest, ErrorTest) {
if (this->test_.IsMock() || this->test_.IsMulti())
return;
GMainLoop* loop = g_main_loop_new(g_main_context_default(), FALSE);
{
HttpFetcherTestDelegate delegate;
delegate.loop_ = loop;
// Delegate should expect an error response.
delegate.is_expect_error_ = true;
scoped_ptr<HttpFetcher> fetcher(this->test_.NewSmallFetcher());
fetcher->set_delegate(&delegate);
MockConnectionManager* mock_cm = dynamic_cast<MockConnectionManager*>(
fetcher->GetSystemState()->connection_manager());
EXPECT_CALL(*mock_cm, GetConnectionType(_,_))
.WillRepeatedly(DoAll(SetArgumentPointee<1>(kNetWimax), Return(true)));
EXPECT_CALL(*mock_cm, IsUpdateAllowedOver(kNetWimax))
.WillRepeatedly(Return(true));
EXPECT_CALL(*mock_cm, StringForConnectionType(kNetWimax))
.WillRepeatedly(Return(flimflam::kTypeWimax));
scoped_ptr<HttpServer> server(this->test_.CreateServer());
ASSERT_TRUE(server->started_);
StartTransferArgs start_xfer_args = {
fetcher.get(),
this->test_.ErrorUrl()
};
g_timeout_add(0, StartTransfer, &start_xfer_args);
g_main_loop_run(loop);
// Make sure that no bytes were received.
CHECK_EQ(delegate.times_received_bytes_called_, 0);
CHECK_EQ(fetcher->GetBytesDownloaded(), static_cast<size_t>(0));
// Make sure that transfer completion was signaled once, and no termination
// was signaled.
CHECK_EQ(delegate.times_transfer_complete_called_, 1);
CHECK_EQ(delegate.times_transfer_terminated_called_, 0);
}
g_main_loop_unref(loop);
}
namespace {
class PausingHttpFetcherTestDelegate : public HttpFetcherDelegate {
public:
virtual void ReceivedBytes(HttpFetcher* fetcher,
const char* bytes, int length) {
char str[length + 1];
memset(str, 0, length + 1);
memcpy(str, bytes, length);
CHECK(!paused_);
paused_ = true;
fetcher->Pause();
}
virtual void TransferComplete(HttpFetcher* fetcher, bool successful) {
g_main_loop_quit(loop_);
}
virtual void TransferTerminated(HttpFetcher* fetcher) {
ADD_FAILURE();
}
void Unpause() {
CHECK(paused_);
paused_ = false;
fetcher_->Unpause();
}
bool paused_;
HttpFetcher* fetcher_;
GMainLoop* loop_;
};
gboolean UnpausingTimeoutCallback(gpointer data) {
PausingHttpFetcherTestDelegate *delegate =
reinterpret_cast<PausingHttpFetcherTestDelegate*>(data);
if (delegate->paused_)
delegate->Unpause();
return TRUE;
}
} // namespace {}
TYPED_TEST(HttpFetcherTest, PauseTest) {
GMainLoop* loop = g_main_loop_new(g_main_context_default(), FALSE);
{
PausingHttpFetcherTestDelegate delegate;
scoped_ptr<HttpFetcher> fetcher(this->test_.NewLargeFetcher());
delegate.paused_ = false;
delegate.loop_ = loop;
delegate.fetcher_ = fetcher.get();
fetcher->set_delegate(&delegate);
MockConnectionManager* mock_cm = dynamic_cast<MockConnectionManager*>(
fetcher->GetSystemState()->connection_manager());
EXPECT_CALL(*mock_cm, GetConnectionType(_,_))
.WillRepeatedly(DoAll(SetArgumentPointee<1>(kNetCellular), Return(true)));
EXPECT_CALL(*mock_cm, IsUpdateAllowedOver(kNetCellular))
.WillRepeatedly(Return(true));
EXPECT_CALL(*mock_cm, StringForConnectionType(kNetCellular))
.WillRepeatedly(Return(flimflam::kTypeCellular));
scoped_ptr<HttpServer> server(this->test_.CreateServer());
ASSERT_TRUE(server->started_);
guint callback_id = g_timeout_add(kHttpResponseInternalServerError,
UnpausingTimeoutCallback, &delegate);
fetcher->BeginTransfer(this->test_.BigUrl());
g_main_loop_run(loop);
g_source_remove(callback_id);
}
g_main_loop_unref(loop);
}
namespace {
class AbortingHttpFetcherTestDelegate : public HttpFetcherDelegate {
public:
virtual void ReceivedBytes(HttpFetcher* fetcher,
const char* bytes, int length) {}
virtual void TransferComplete(HttpFetcher* fetcher, bool successful) {
ADD_FAILURE(); // We should never get here
g_main_loop_quit(loop_);
}
virtual void TransferTerminated(HttpFetcher* fetcher) {
EXPECT_EQ(fetcher, fetcher_.get());
EXPECT_FALSE(once_);
EXPECT_TRUE(callback_once_);
callback_once_ = false;
// |fetcher| can be destroyed during this callback.
fetcher_.reset(NULL);
}
void TerminateTransfer() {
CHECK(once_);
once_ = false;
fetcher_->TerminateTransfer();
}
void EndLoop() {
g_main_loop_quit(loop_);
}
bool once_;
bool callback_once_;
scoped_ptr<HttpFetcher> fetcher_;
GMainLoop* loop_;
};
gboolean AbortingTimeoutCallback(gpointer data) {
AbortingHttpFetcherTestDelegate *delegate =
reinterpret_cast<AbortingHttpFetcherTestDelegate*>(data);
if (delegate->once_) {
delegate->TerminateTransfer();
return TRUE;
} else {
delegate->EndLoop();
return FALSE;
}
}
} // namespace {}
TYPED_TEST(HttpFetcherTest, AbortTest) {
GMainLoop* loop = g_main_loop_new(g_main_context_default(), FALSE);
{
AbortingHttpFetcherTestDelegate delegate;
delegate.fetcher_.reset(this->test_.NewLargeFetcher());
delegate.once_ = true;
delegate.callback_once_ = true;
delegate.loop_ = loop;
delegate.fetcher_->set_delegate(&delegate);
MockConnectionManager* mock_cm = dynamic_cast<MockConnectionManager*>(
delegate.fetcher_->GetSystemState()->connection_manager());
EXPECT_CALL(*mock_cm, GetConnectionType(_,_))
.WillRepeatedly(DoAll(SetArgumentPointee<1>(kNetWifi), Return(true)));
EXPECT_CALL(*mock_cm, IsUpdateAllowedOver(kNetWifi))
.WillRepeatedly(Return(true));
EXPECT_CALL(*mock_cm, StringForConnectionType(kNetWifi))
.WillRepeatedly(Return(flimflam::kTypeWifi));
scoped_ptr<HttpServer> server(this->test_.CreateServer());
this->test_.IgnoreServerAborting(server.get());
ASSERT_TRUE(server->started_);
GSource* timeout_source_;
timeout_source_ = g_timeout_source_new(0); // ms
g_source_set_callback(timeout_source_, AbortingTimeoutCallback, &delegate,
NULL);
g_source_attach(timeout_source_, NULL);
delegate.fetcher_->BeginTransfer(this->test_.BigUrl());
g_main_loop_run(loop);
CHECK(!delegate.once_);
CHECK(!delegate.callback_once_);
g_source_destroy(timeout_source_);
}
g_main_loop_unref(loop);
}
namespace {
class FlakyHttpFetcherTestDelegate : public HttpFetcherDelegate {
public:
virtual void ReceivedBytes(HttpFetcher* fetcher,
const char* bytes, int length) {
data.append(bytes, length);
}
virtual void TransferComplete(HttpFetcher* fetcher, bool successful) {
EXPECT_TRUE(successful);
EXPECT_EQ(kHttpResponsePartialContent, fetcher->http_response_code());
g_main_loop_quit(loop_);
}
virtual void TransferTerminated(HttpFetcher* fetcher) {
ADD_FAILURE();
}
string data;
GMainLoop* loop_;
};
} // namespace {}
TYPED_TEST(HttpFetcherTest, FlakyTest) {
if (this->test_.IsMock())
return;
GMainLoop* loop = g_main_loop_new(g_main_context_default(), FALSE);
{
FlakyHttpFetcherTestDelegate delegate;
delegate.loop_ = loop;
scoped_ptr<HttpFetcher> fetcher(this->test_.NewSmallFetcher());
fetcher->set_delegate(&delegate);
MockConnectionManager* mock_cm = dynamic_cast<MockConnectionManager*>(
fetcher->GetSystemState()->connection_manager());
EXPECT_CALL(*mock_cm, GetConnectionType(_,_))
.WillRepeatedly(DoAll(SetArgumentPointee<1>(kNetWifi), Return(true)));
EXPECT_CALL(*mock_cm, IsUpdateAllowedOver(kNetWifi))
.WillRepeatedly(Return(true));
EXPECT_CALL(*mock_cm, StringForConnectionType(kNetWifi))
.WillRepeatedly(Return(flimflam::kTypeWifi));
scoped_ptr<HttpServer> server(this->test_.CreateServer());
ASSERT_TRUE(server->started_);
StartTransferArgs start_xfer_args = {
fetcher.get(),
LocalServerUrlForPath(StringPrintf("/flaky/%d/%d/%d/%d", kBigLength,
kFlakyTruncateLength,
kFlakySleepEvery,
kFlakySleepSecs))
};
g_timeout_add(0, StartTransfer, &start_xfer_args);
g_main_loop_run(loop);
// verify the data we get back
ASSERT_EQ(kBigLength, delegate.data.size());
for (int i = 0; i < kBigLength; i += 10) {
// Assert so that we don't flood the screen w/ EXPECT errors on failure.
ASSERT_EQ(delegate.data.substr(i, 10), "abcdefghij");
}
}
g_main_loop_unref(loop);
}
namespace {
class FailureHttpFetcherTestDelegate : public HttpFetcherDelegate {
public:
FailureHttpFetcherTestDelegate(PythonHttpServer* server)
: loop_(NULL),
server_(server) {}
virtual ~FailureHttpFetcherTestDelegate() {
if (server_) {
LOG(INFO) << "Stopping server in destructor";
delete server_;
LOG(INFO) << "server stopped";
}
}
virtual void ReceivedBytes(HttpFetcher* fetcher,
const char* bytes, int length) {
if (server_) {
LOG(INFO) << "Stopping server in ReceivedBytes";
delete server_;
LOG(INFO) << "server stopped";
server_ = NULL;
}
}
virtual void TransferComplete(HttpFetcher* fetcher, bool successful) {
EXPECT_FALSE(successful);
EXPECT_EQ(0, fetcher->http_response_code());
g_main_loop_quit(loop_);
}
virtual void TransferTerminated(HttpFetcher* fetcher) {
ADD_FAILURE();
}
GMainLoop* loop_;
PythonHttpServer* server_;
};
} // namespace {}
TYPED_TEST(HttpFetcherTest, FailureTest) {
if (this->test_.IsMock())
return;
GMainLoop* loop = g_main_loop_new(g_main_context_default(), FALSE);
{
FailureHttpFetcherTestDelegate delegate(NULL);
delegate.loop_ = loop;
scoped_ptr<HttpFetcher> fetcher(this->test_.NewSmallFetcher());
fetcher->set_delegate(&delegate);
MockConnectionManager* mock_cm = dynamic_cast<MockConnectionManager*>(
fetcher->GetSystemState()->connection_manager());
EXPECT_CALL(*mock_cm, GetConnectionType(_,_))
.WillRepeatedly(DoAll(SetArgumentPointee<1>(kNetEthernet), Return(true)));
EXPECT_CALL(*mock_cm, IsUpdateAllowedOver(kNetEthernet))
.WillRepeatedly(Return(true));
EXPECT_CALL(*mock_cm, StringForConnectionType(kNetEthernet))
.WillRepeatedly(Return(flimflam::kTypeEthernet));
StartTransferArgs start_xfer_args = {
fetcher.get(),
LocalServerUrlForPath(this->test_.SmallUrl())
};
g_timeout_add(0, StartTransfer, &start_xfer_args);
g_main_loop_run(loop);
// Exiting and testing happens in the delegate
}
g_main_loop_unref(loop);
}
TYPED_TEST(HttpFetcherTest, ServerDiesTest) {
if (this->test_.IsMock())
return;
GMainLoop* loop = g_main_loop_new(g_main_context_default(), FALSE);
{
FailureHttpFetcherTestDelegate delegate(new PythonHttpServer);
delegate.loop_ = loop;
scoped_ptr<HttpFetcher> fetcher(this->test_.NewSmallFetcher());
fetcher->set_delegate(&delegate);
StartTransferArgs start_xfer_args = {
fetcher.get(),
LocalServerUrlForPath(StringPrintf("/flaky/%d/%d/%d/%d", kBigLength,
kFlakyTruncateLength,
kFlakySleepEvery,
kFlakySleepSecs))
};
g_timeout_add(0, StartTransfer, &start_xfer_args);
g_main_loop_run(loop);
// Exiting and testing happens in the delegate
}
g_main_loop_unref(loop);
}
namespace {
const HttpResponseCode kRedirectCodes[] = {
kHttpResponseMovedPermanently, kHttpResponseFound, kHttpResponseSeeOther,
kHttpResponseTempRedirect
};
class RedirectHttpFetcherTestDelegate : public HttpFetcherDelegate {
public:
RedirectHttpFetcherTestDelegate(bool expected_successful)
: expected_successful_(expected_successful) {}
virtual void ReceivedBytes(HttpFetcher* fetcher,
const char* bytes, int length) {
data.append(bytes, length);
}
virtual void TransferComplete(HttpFetcher* fetcher, bool successful) {
EXPECT_EQ(expected_successful_, successful);
if (expected_successful_)
EXPECT_EQ(kHttpResponseOk, fetcher->http_response_code());
else {
EXPECT_GE(fetcher->http_response_code(), kHttpResponseMovedPermanently);
EXPECT_LE(fetcher->http_response_code(), kHttpResponseTempRedirect);
}
g_main_loop_quit(loop_);
}
virtual void TransferTerminated(HttpFetcher* fetcher) {
ADD_FAILURE();
}
bool expected_successful_;
string data;
GMainLoop* loop_;
};
// RedirectTest takes ownership of |http_fetcher|.
void RedirectTest(bool expected_successful,
const string& url,
HttpFetcher* http_fetcher) {
GMainLoop* loop = g_main_loop_new(g_main_context_default(), FALSE);
{
RedirectHttpFetcherTestDelegate delegate(expected_successful);
delegate.loop_ = loop;
scoped_ptr<HttpFetcher> fetcher(http_fetcher);
fetcher->set_delegate(&delegate);
MockConnectionManager* mock_cm = dynamic_cast<MockConnectionManager*>(
fetcher->GetSystemState()->connection_manager());
EXPECT_CALL(*mock_cm, GetConnectionType(_,_))
.WillRepeatedly(DoAll(SetArgumentPointee<1>(kNetEthernet), Return(true)));
EXPECT_CALL(*mock_cm, IsUpdateAllowedOver(kNetEthernet))
.WillRepeatedly(Return(true));
EXPECT_CALL(*mock_cm, StringForConnectionType(kNetEthernet))
.WillRepeatedly(Return(flimflam::kTypeEthernet));
StartTransferArgs start_xfer_args =
{ fetcher.get(), LocalServerUrlForPath(url) };
g_timeout_add(0, StartTransfer, &start_xfer_args);
g_main_loop_run(loop);
if (expected_successful) {
// verify the data we get back
ASSERT_EQ(kMediumLength, delegate.data.size());
for (int i = 0; i < kMediumLength; i += 10) {
// Assert so that we don't flood the screen w/ EXPECT errors on failure.
ASSERT_EQ(delegate.data.substr(i, 10), "abcdefghij");
}
}
}
g_main_loop_unref(loop);
}
} // namespace {}
TYPED_TEST(HttpFetcherTest, SimpleRedirectTest) {
if (this->test_.IsMock())
return;
scoped_ptr<HttpServer> server(this->test_.CreateServer());
ASSERT_TRUE(server->started_);
for (size_t c = 0; c < arraysize(kRedirectCodes); ++c) {
const string url = base::StringPrintf("/redirect/%d/download/%d",
kRedirectCodes[c],
kMediumLength);
RedirectTest(true, url, this->test_.NewLargeFetcher());
}
}
TYPED_TEST(HttpFetcherTest, MaxRedirectTest) {
if (this->test_.IsMock())
return;
scoped_ptr<HttpServer> server(this->test_.CreateServer());
ASSERT_TRUE(server->started_);
string url;
for (int r = 0; r < LibcurlHttpFetcher::kMaxRedirects; r++) {
url += base::StringPrintf("/redirect/%d",
kRedirectCodes[r % arraysize(kRedirectCodes)]);
}
url += base::StringPrintf("/download/%d", kMediumLength);
RedirectTest(true, url, this->test_.NewLargeFetcher());
}
TYPED_TEST(HttpFetcherTest, BeyondMaxRedirectTest) {
if (this->test_.IsMock())
return;
scoped_ptr<HttpServer> server(this->test_.CreateServer());
ASSERT_TRUE(server->started_);
string url;
for (int r = 0; r < LibcurlHttpFetcher::kMaxRedirects + 1; r++) {
url += base::StringPrintf("/redirect/%d",
kRedirectCodes[r % arraysize(kRedirectCodes)]);
}
url += base::StringPrintf("/download/%d", kMediumLength);
RedirectTest(false, url, this->test_.NewLargeFetcher());
}
namespace {
class MultiHttpFetcherTestDelegate : public HttpFetcherDelegate {
public:
MultiHttpFetcherTestDelegate(int expected_response_code)
: expected_response_code_(expected_response_code) {}
virtual void ReceivedBytes(HttpFetcher* fetcher,
const char* bytes, int length) {
EXPECT_EQ(fetcher, fetcher_.get());
data.append(bytes, length);
}
virtual void TransferComplete(HttpFetcher* fetcher, bool successful) {
EXPECT_EQ(fetcher, fetcher_.get());
EXPECT_EQ(expected_response_code_ != kHttpResponseUndefined, successful);
if (expected_response_code_ != 0)
EXPECT_EQ(expected_response_code_, fetcher->http_response_code());
// Destroy the fetcher (because we're allowed to).
fetcher_.reset(NULL);
g_main_loop_quit(loop_);
}
virtual void TransferTerminated(HttpFetcher* fetcher) {
ADD_FAILURE();
}
scoped_ptr<HttpFetcher> fetcher_;
int expected_response_code_;
string data;
GMainLoop* loop_;
};
void MultiTest(HttpFetcher* fetcher_in,
const string& url,
const vector<pair<off_t, off_t> >& ranges,
const string& expected_prefix,
off_t expected_size,
HttpResponseCode expected_response_code) {
GMainLoop* loop = g_main_loop_new(g_main_context_default(), FALSE);
{
MultiHttpFetcherTestDelegate delegate(expected_response_code);
delegate.loop_ = loop;
delegate.fetcher_.reset(fetcher_in);
MockConnectionManager* mock_cm = dynamic_cast<MockConnectionManager*>(
fetcher_in->GetSystemState()->connection_manager());
EXPECT_CALL(*mock_cm, GetConnectionType(_,_))
.WillRepeatedly(DoAll(SetArgumentPointee<1>(kNetWifi), Return(true)));
EXPECT_CALL(*mock_cm, IsUpdateAllowedOver(kNetWifi))
.WillRepeatedly(Return(true));
EXPECT_CALL(*mock_cm, StringForConnectionType(kNetWifi))
.WillRepeatedly(Return(flimflam::kTypeWifi));
MultiRangeHttpFetcher* multi_fetcher =
dynamic_cast<MultiRangeHttpFetcher*>(fetcher_in);
ASSERT_TRUE(multi_fetcher);
multi_fetcher->ClearRanges();
for (vector<pair<off_t, off_t> >::const_iterator it = ranges.begin(),
e = ranges.end(); it != e; ++it) {
std::string tmp_str = StringPrintf("%jd+", it->first);
if (it->second > 0) {
base::StringAppendF(&tmp_str, "%jd", it->second);
multi_fetcher->AddRange(it->first, it->second);
} else {
base::StringAppendF(&tmp_str, "?");
multi_fetcher->AddRange(it->first);
}
LOG(INFO) << "added range: " << tmp_str;
}
multi_fetcher->SetBuildType(false);
multi_fetcher->set_delegate(&delegate);
StartTransferArgs start_xfer_args = {multi_fetcher, url};
g_timeout_add(0, StartTransfer, &start_xfer_args);
g_main_loop_run(loop);
EXPECT_EQ(expected_size, delegate.data.size());
EXPECT_EQ(expected_prefix,
string(delegate.data.data(), expected_prefix.size()));
}
g_main_loop_unref(loop);
}
} // namespace {}
TYPED_TEST(HttpFetcherTest, MultiHttpFetcherSimpleTest) {
if (!this->test_.IsMulti())
return;
scoped_ptr<HttpServer> server(this->test_.CreateServer());
ASSERT_TRUE(server->started_);
vector<pair<off_t, off_t> > ranges;
ranges.push_back(make_pair(0, 25));
ranges.push_back(make_pair(99, 0));
MultiTest(this->test_.NewLargeFetcher(),
this->test_.BigUrl(),
ranges,
"abcdefghijabcdefghijabcdejabcdefghijabcdef",
kBigLength - (99 - 25),
kHttpResponsePartialContent);
}
TYPED_TEST(HttpFetcherTest, MultiHttpFetcherLengthLimitTest) {
if (!this->test_.IsMulti())
return;
scoped_ptr<HttpServer> server(this->test_.CreateServer());
ASSERT_TRUE(server->started_);
vector<pair<off_t, off_t> > ranges;
ranges.push_back(make_pair(0, 24));
MultiTest(this->test_.NewLargeFetcher(),
this->test_.BigUrl(),
ranges,
"abcdefghijabcdefghijabcd",
24,
kHttpResponsePartialContent);
}
TYPED_TEST(HttpFetcherTest, MultiHttpFetcherMultiEndTest) {
if (!this->test_.IsMulti())
return;
scoped_ptr<HttpServer> server(this->test_.CreateServer());
ASSERT_TRUE(server->started_);
vector<pair<off_t, off_t> > ranges;
ranges.push_back(make_pair(kBigLength - 2, 0));
ranges.push_back(make_pair(kBigLength - 3, 0));
MultiTest(this->test_.NewLargeFetcher(),
this->test_.BigUrl(),
ranges,
"ijhij",
5,
kHttpResponsePartialContent);
}
TYPED_TEST(HttpFetcherTest, MultiHttpFetcherInsufficientTest) {
if (!this->test_.IsMulti())
return;
scoped_ptr<HttpServer> server(this->test_.CreateServer());
ASSERT_TRUE(server->started_);
vector<pair<off_t, off_t> > ranges;
ranges.push_back(make_pair(kBigLength - 2, 4));
for (int i = 0; i < 2; ++i) {
LOG(INFO) << "i = " << i;
MultiTest(this->test_.NewLargeFetcher(),
this->test_.BigUrl(),
ranges,
"ij",
2,
kHttpResponseUndefined);
ranges.push_back(make_pair(0, 5));
}
}
// Issue #18143: when a fetch of a secondary chunk out of a chain, then it
// should retry with other proxies listed before giving up.
//
// (1) successful recovery: The offset fetch will fail twice but succeed with
// the third proxy.
TYPED_TEST(HttpFetcherTest, MultiHttpFetcherErrorIfOffsetRecoverableTest) {
if (!this->test_.IsMulti())
return;
scoped_ptr<HttpServer> server(this->test_.CreateServer());
ASSERT_TRUE(server->started_);
vector<pair<off_t, off_t> > ranges;
ranges.push_back(make_pair(0, 25));
ranges.push_back(make_pair(99, 0));
MultiTest(this->test_.NewLargeFetcher(3),
LocalServerUrlForPath(base::StringPrintf("/error-if-offset/%d/2",
kBigLength)),
ranges,
"abcdefghijabcdefghijabcdejabcdefghijabcdef",
kBigLength - (99 - 25),
kHttpResponsePartialContent);
}
// (2) unsuccessful recovery: The offset fetch will fail repeatedly. The
// fetcher will signal a (failed) completed transfer to the delegate.
TYPED_TEST(HttpFetcherTest, MultiHttpFetcherErrorIfOffsetUnrecoverableTest) {
if (!this->test_.IsMulti())
return;
scoped_ptr<HttpServer> server(this->test_.CreateServer());
ASSERT_TRUE(server->started_);
vector<pair<off_t, off_t> > ranges;
ranges.push_back(make_pair(0, 25));
ranges.push_back(make_pair(99, 0));
MultiTest(this->test_.NewLargeFetcher(2),
LocalServerUrlForPath(base::StringPrintf("/error-if-offset/%d/3",
kBigLength)),
ranges,
"abcdefghijabcdefghijabcde", // only received the first chunk
25,
kHttpResponseUndefined);
}
namespace {
class BlockedTransferTestDelegate : public HttpFetcherDelegate {
public:
virtual void ReceivedBytes(HttpFetcher* fetcher,
const char* bytes, int length) {
ADD_FAILURE();
}
virtual void TransferComplete(HttpFetcher* fetcher, bool successful) {
EXPECT_FALSE(successful);
g_main_loop_quit(loop_);
}
virtual void TransferTerminated(HttpFetcher* fetcher) {
ADD_FAILURE();
}
GMainLoop* loop_;
};
} // namespace
TYPED_TEST(HttpFetcherTest, BlockedTransferTest) {
if (this->test_.IsMock() || this->test_.IsMulti())
return;
for (int i = 0; i < 2; i++) {
scoped_ptr<HttpServer> server(this->test_.CreateServer());
ASSERT_TRUE(server->started_);
GMainLoop* loop = g_main_loop_new(g_main_context_default(), FALSE);
{
BlockedTransferTestDelegate delegate;
delegate.loop_ = loop;
bool is_allowed = (i != 0);
scoped_ptr<HttpFetcher> fetcher(this->test_.NewLargeFetcher());
MockConnectionManager* mock_cm = dynamic_cast<MockConnectionManager*>(
fetcher->GetSystemState()->connection_manager());
EXPECT_CALL(*mock_cm, GetConnectionType(_,_))
.WillRepeatedly(DoAll(SetArgumentPointee<1>(kNetWifi), Return(true)));
EXPECT_CALL(*mock_cm, IsUpdateAllowedOver(kNetWifi))
.WillRepeatedly(Return(is_allowed));
EXPECT_CALL(*mock_cm, StringForConnectionType(kNetWifi))
.WillRepeatedly(Return(flimflam::kTypeWifi));
bool is_official_build = (i == 1);
LOG(INFO) << "is_update_allowed_over_connection: " << is_allowed;
LOG(INFO) << "is_official_build: " << is_official_build;
fetcher->SetBuildType(is_official_build);
fetcher->set_delegate(&delegate);
StartTransferArgs start_xfer_args =
{ fetcher.get(), LocalServerUrlForPath(this->test_.SmallUrl()) };
g_timeout_add(0, StartTransfer, &start_xfer_args);
g_main_loop_run(loop);
}
g_main_loop_unref(loop);
}
}
} // namespace chromeos_update_engine