blob: 6f06dd2f89cf9c06f033650d3fca51efd7e7416e [file] [log] [blame]
//
// Copyright (C) 2020 The Android Open Source Project
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
//
#include <update_engine/payload_consumer/partition_writer.h>
#include <fcntl.h>
#include <linux/fs.h>
#include <algorithm>
#include <initializer_list>
#include <memory>
#include <utility>
#include <vector>
#include <base/strings/string_number_conversions.h>
#include <bsdiff/bspatch.h>
#include <puffin/puffpatch.h>
#include <bsdiff/file_interface.h>
#include <puffin/stream.h>
#include "update_engine/common/terminator.h"
#include "update_engine/common/utils.h"
#include "update_engine/payload_consumer/bzip_extent_writer.h"
#include "update_engine/payload_consumer/cached_file_descriptor.h"
#include "update_engine/payload_consumer/extent_reader.h"
#include "update_engine/payload_consumer/extent_writer.h"
#include "update_engine/payload_consumer/fec_file_descriptor.h"
#include "update_engine/payload_consumer/file_descriptor_utils.h"
#include "update_engine/payload_consumer/install_plan.h"
#include "update_engine/payload_consumer/mount_history.h"
#include "update_engine/payload_consumer/payload_constants.h"
#include "update_engine/payload_consumer/xz_extent_writer.h"
namespace chromeos_update_engine {
namespace {
constexpr uint64_t kCacheSize = 1024 * 1024; // 1MB
// Discard the tail of the block device referenced by |fd|, from the offset
// |data_size| until the end of the block device. Returns whether the data was
// discarded.
bool DiscardPartitionTail(const FileDescriptorPtr& fd, uint64_t data_size) {
uint64_t part_size = fd->BlockDevSize();
if (!part_size || part_size <= data_size)
return false;
struct blkioctl_request {
int number;
const char* name;
};
const std::initializer_list<blkioctl_request> blkioctl_requests = {
{BLKDISCARD, "BLKDISCARD"},
{BLKSECDISCARD, "BLKSECDISCARD"},
#ifdef BLKZEROOUT
{BLKZEROOUT, "BLKZEROOUT"},
#endif
};
for (const auto& req : blkioctl_requests) {
int error = 0;
if (fd->BlkIoctl(req.number, data_size, part_size - data_size, &error) &&
error == 0) {
return true;
}
LOG(WARNING) << "Error discarding the last "
<< (part_size - data_size) / 1024 << " KiB using ioctl("
<< req.name << ")";
}
return false;
}
} // namespace
// Opens path for read/write. On success returns an open FileDescriptor
// and sets *err to 0. On failure, sets *err to errno and returns nullptr.
FileDescriptorPtr OpenFile(const char* path,
int mode,
bool cache_writes,
int* err) {
// Try to mark the block device read-only based on the mode. Ignore any
// failure since this won't work when passing regular files.
bool read_only = (mode & O_ACCMODE) == O_RDONLY;
utils::SetBlockDeviceReadOnly(path, read_only);
FileDescriptorPtr fd(new EintrSafeFileDescriptor());
if (cache_writes && !read_only) {
fd = FileDescriptorPtr(new CachedFileDescriptor(fd, kCacheSize));
LOG(INFO) << "Caching writes.";
}
if (!fd->Open(path, mode, 000)) {
*err = errno;
PLOG(ERROR) << "Unable to open file " << path;
return nullptr;
}
*err = 0;
return fd;
}
class BsdiffExtentFile : public bsdiff::FileInterface {
public:
BsdiffExtentFile(std::unique_ptr<ExtentReader> reader, size_t size)
: BsdiffExtentFile(std::move(reader), nullptr, size) {}
BsdiffExtentFile(std::unique_ptr<ExtentWriter> writer, size_t size)
: BsdiffExtentFile(nullptr, std::move(writer), size) {}
~BsdiffExtentFile() override = default;
bool Read(void* buf, size_t count, size_t* bytes_read) override {
TEST_AND_RETURN_FALSE(reader_->Read(buf, count));
*bytes_read = count;
offset_ += count;
return true;
}
bool Write(const void* buf, size_t count, size_t* bytes_written) override {
TEST_AND_RETURN_FALSE(writer_->Write(buf, count));
*bytes_written = count;
offset_ += count;
return true;
}
bool Seek(off_t pos) override {
if (reader_ != nullptr) {
TEST_AND_RETURN_FALSE(reader_->Seek(pos));
offset_ = pos;
} else {
// For writes technically there should be no change of position, or it
// should be equivalent of current offset.
TEST_AND_RETURN_FALSE(offset_ == static_cast<uint64_t>(pos));
}
return true;
}
bool Close() override { return true; }
bool GetSize(uint64_t* size) override {
*size = size_;
return true;
}
private:
BsdiffExtentFile(std::unique_ptr<ExtentReader> reader,
std::unique_ptr<ExtentWriter> writer,
size_t size)
: reader_(std::move(reader)),
writer_(std::move(writer)),
size_(size),
offset_(0) {}
std::unique_ptr<ExtentReader> reader_;
std::unique_ptr<ExtentWriter> writer_;
uint64_t size_;
uint64_t offset_;
DISALLOW_COPY_AND_ASSIGN(BsdiffExtentFile);
};
// A class to be passed to |puffpatch| for reading from |source_fd_| and writing
// into |target_fd_|.
class PuffinExtentStream : public puffin::StreamInterface {
public:
// Constructor for creating a stream for reading from an |ExtentReader|.
PuffinExtentStream(std::unique_ptr<ExtentReader> reader, uint64_t size)
: PuffinExtentStream(std::move(reader), nullptr, size) {}
// Constructor for creating a stream for writing to an |ExtentWriter|.
PuffinExtentStream(std::unique_ptr<ExtentWriter> writer, uint64_t size)
: PuffinExtentStream(nullptr, std::move(writer), size) {}
~PuffinExtentStream() override = default;
bool GetSize(uint64_t* size) const override {
*size = size_;
return true;
}
bool GetOffset(uint64_t* offset) const override {
*offset = offset_;
return true;
}
bool Seek(uint64_t offset) override {
if (is_read_) {
TEST_AND_RETURN_FALSE(reader_->Seek(offset));
offset_ = offset;
} else {
// For writes technically there should be no change of position, or it
// should equivalent of current offset.
TEST_AND_RETURN_FALSE(offset_ == offset);
}
return true;
}
bool Read(void* buffer, size_t count) override {
TEST_AND_RETURN_FALSE(is_read_);
TEST_AND_RETURN_FALSE(reader_->Read(buffer, count));
offset_ += count;
return true;
}
bool Write(const void* buffer, size_t count) override {
TEST_AND_RETURN_FALSE(!is_read_);
TEST_AND_RETURN_FALSE(writer_->Write(buffer, count));
offset_ += count;
return true;
}
bool Close() override { return true; }
private:
PuffinExtentStream(std::unique_ptr<ExtentReader> reader,
std::unique_ptr<ExtentWriter> writer,
uint64_t size)
: reader_(std::move(reader)),
writer_(std::move(writer)),
size_(size),
offset_(0),
is_read_(reader_ ? true : false) {}
std::unique_ptr<ExtentReader> reader_;
std::unique_ptr<ExtentWriter> writer_;
uint64_t size_;
uint64_t offset_;
bool is_read_;
DISALLOW_COPY_AND_ASSIGN(PuffinExtentStream);
};
PartitionWriter::PartitionWriter(
const PartitionUpdate& partition_update,
const InstallPlan::Partition& install_part,
DynamicPartitionControlInterface* dynamic_control,
size_t block_size,
bool is_interactive)
: partition_update_(partition_update),
install_part_(install_part),
dynamic_control_(dynamic_control),
interactive_(is_interactive),
block_size_(block_size) {}
PartitionWriter::~PartitionWriter() {
Close();
}
bool PartitionWriter::OpenSourcePartition(uint32_t source_slot,
bool source_may_exist) {
source_path_.clear();
if (!source_may_exist) {
return true;
}
if (install_part_.source_size > 0 && !install_part_.source_path.empty()) {
source_path_ = install_part_.source_path;
int err;
source_fd_ = OpenFile(source_path_.c_str(), O_RDONLY, false, &err);
if (source_fd_ == nullptr) {
LOG(ERROR) << "Unable to open source partition " << install_part_.name
<< " on slot " << BootControlInterface::SlotName(source_slot)
<< ", file " << source_path_;
return false;
}
}
return true;
}
bool PartitionWriter::Init(const InstallPlan* install_plan,
bool source_may_exist,
size_t next_op_index) {
const PartitionUpdate& partition = partition_update_;
uint32_t source_slot = install_plan->source_slot;
uint32_t target_slot = install_plan->target_slot;
TEST_AND_RETURN_FALSE(OpenSourcePartition(source_slot, source_may_exist));
// We shouldn't open the source partition in certain cases, e.g. some dynamic
// partitions in delta payload, partitions included in the full payload for
// partial updates. Use the source size as the indicator.
target_path_ = install_part_.target_path;
int err;
int flags = O_RDWR;
if (!interactive_)
flags |= O_DSYNC;
LOG(INFO) << "Opening " << target_path_ << " partition with"
<< (interactive_ ? "out" : "") << " O_DSYNC";
target_fd_ = OpenFile(target_path_.c_str(), flags, true, &err);
if (!target_fd_) {
LOG(ERROR) << "Unable to open target partition "
<< partition.partition_name() << " on slot "
<< BootControlInterface::SlotName(target_slot) << ", file "
<< target_path_;
return false;
}
LOG(INFO) << "Applying " << partition.operations().size()
<< " operations to partition \"" << partition.partition_name()
<< "\"";
// Discard the end of the partition, but ignore failures.
DiscardPartitionTail(target_fd_, install_part_.target_size);
return true;
}
bool PartitionWriter::PerformReplaceOperation(const InstallOperation& operation,
const void* data,
size_t count) {
// Setup the ExtentWriter stack based on the operation type.
std::unique_ptr<ExtentWriter> writer = CreateBaseExtentWriter();
if (operation.type() == InstallOperation::REPLACE_BZ) {
writer.reset(new BzipExtentWriter(std::move(writer)));
} else if (operation.type() == InstallOperation::REPLACE_XZ) {
writer.reset(new XzExtentWriter(std::move(writer)));
}
TEST_AND_RETURN_FALSE(
writer->Init(target_fd_, operation.dst_extents(), block_size_));
TEST_AND_RETURN_FALSE(writer->Write(data, operation.data_length()));
return true;
}
bool PartitionWriter::PerformZeroOrDiscardOperation(
const InstallOperation& operation) {
#ifdef BLKZEROOUT
bool attempt_ioctl = true;
int request =
(operation.type() == InstallOperation::ZERO ? BLKZEROOUT : BLKDISCARD);
#else // !defined(BLKZEROOUT)
bool attempt_ioctl = false;
int request = 0;
#endif // !defined(BLKZEROOUT)
brillo::Blob zeros;
for (const Extent& extent : operation.dst_extents()) {
const uint64_t start = extent.start_block() * block_size_;
const uint64_t length = extent.num_blocks() * block_size_;
if (attempt_ioctl) {
int result = 0;
if (target_fd_->BlkIoctl(request, start, length, &result) && result == 0)
continue;
attempt_ioctl = false;
}
// In case of failure, we fall back to writing 0 to the selected region.
zeros.resize(16 * block_size_);
for (uint64_t offset = 0; offset < length; offset += zeros.size()) {
uint64_t chunk_length =
std::min(length - offset, static_cast<uint64_t>(zeros.size()));
TEST_AND_RETURN_FALSE(utils::WriteAll(
target_fd_, zeros.data(), chunk_length, start + offset));
}
}
return true;
}
bool PartitionWriter::PerformSourceCopyOperation(
const InstallOperation& operation, ErrorCode* error) {
TEST_AND_RETURN_FALSE(source_fd_ != nullptr);
// The device may optimize the SOURCE_COPY operation.
// Being this a device-specific optimization let DynamicPartitionController
// decide it the operation should be skipped.
const PartitionUpdate& partition = partition_update_;
const auto& partition_control = dynamic_control_;
InstallOperation buf;
bool should_optimize = partition_control->OptimizeOperation(
partition.partition_name(), operation, &buf);
const InstallOperation& optimized = should_optimize ? buf : operation;
if (operation.has_src_sha256_hash()) {
bool read_ok;
brillo::Blob source_hash;
brillo::Blob expected_source_hash(operation.src_sha256_hash().begin(),
operation.src_sha256_hash().end());
// We fall back to use the error corrected device if the hash of the raw
// device doesn't match or there was an error reading the source partition.
// Note that this code will also fall back if writing the target partition
// fails.
if (should_optimize) {
// Hash operation.src_extents(), then copy optimized.src_extents to
// optimized.dst_extents.
read_ok =
fd_utils::ReadAndHashExtents(
source_fd_, operation.src_extents(), block_size_, &source_hash) &&
fd_utils::CopyAndHashExtents(source_fd_,
optimized.src_extents(),
target_fd_,
optimized.dst_extents(),
block_size_,
nullptr /* skip hashing */);
} else {
read_ok = fd_utils::CopyAndHashExtents(source_fd_,
operation.src_extents(),
target_fd_,
operation.dst_extents(),
block_size_,
&source_hash);
}
if (read_ok && expected_source_hash == source_hash)
return true;
LOG(WARNING) << "Source hash from RAW device mismatched, attempting to "
"correct using ECC";
if (!OpenCurrentECCPartition()) {
// The following function call will return false since the source hash
// mismatches, but we still want to call it so it prints the appropriate
// log message.
return ValidateSourceHash(source_hash, operation, source_fd_, error);
}
LOG(WARNING) << "Source hash from RAW device mismatched: found "
<< base::HexEncode(source_hash.data(), source_hash.size())
<< ", expected "
<< base::HexEncode(expected_source_hash.data(),
expected_source_hash.size());
if (should_optimize) {
TEST_AND_RETURN_FALSE(fd_utils::ReadAndHashExtents(
source_ecc_fd_, operation.src_extents(), block_size_, &source_hash));
TEST_AND_RETURN_FALSE(
fd_utils::CopyAndHashExtents(source_ecc_fd_,
optimized.src_extents(),
target_fd_,
optimized.dst_extents(),
block_size_,
nullptr /* skip hashing */));
} else {
TEST_AND_RETURN_FALSE(
fd_utils::CopyAndHashExtents(source_ecc_fd_,
operation.src_extents(),
target_fd_,
operation.dst_extents(),
block_size_,
&source_hash));
}
TEST_AND_RETURN_FALSE(
ValidateSourceHash(source_hash, operation, source_ecc_fd_, error));
// At this point reading from the error corrected device worked, but
// reading from the raw device failed, so this is considered a recovered
// failure.
source_ecc_recovered_failures_++;
} else {
// When the operation doesn't include a source hash, we attempt the error
// corrected device first since we can't verify the block in the raw device
// at this point, but we fall back to the raw device since the error
// corrected device can be shorter or not available.
if (OpenCurrentECCPartition() &&
fd_utils::CopyAndHashExtents(source_ecc_fd_,
optimized.src_extents(),
target_fd_,
optimized.dst_extents(),
block_size_,
nullptr)) {
return true;
}
TEST_AND_RETURN_FALSE(fd_utils::CopyAndHashExtents(source_fd_,
optimized.src_extents(),
target_fd_,
optimized.dst_extents(),
block_size_,
nullptr));
}
return true;
}
bool PartitionWriter::PerformSourceBsdiffOperation(
const InstallOperation& operation,
ErrorCode* error,
const void* data,
size_t count) {
FileDescriptorPtr source_fd = ChooseSourceFD(operation, error);
TEST_AND_RETURN_FALSE(source_fd != nullptr);
auto reader = std::make_unique<DirectExtentReader>();
TEST_AND_RETURN_FALSE(
reader->Init(source_fd, operation.src_extents(), block_size_));
auto src_file = std::make_unique<BsdiffExtentFile>(
std::move(reader),
utils::BlocksInExtents(operation.src_extents()) * block_size_);
auto writer = CreateBaseExtentWriter();
TEST_AND_RETURN_FALSE(
writer->Init(target_fd_, operation.dst_extents(), block_size_));
auto dst_file = std::make_unique<BsdiffExtentFile>(
std::move(writer),
utils::BlocksInExtents(operation.dst_extents()) * block_size_);
TEST_AND_RETURN_FALSE(bsdiff::bspatch(std::move(src_file),
std::move(dst_file),
reinterpret_cast<const uint8_t*>(data),
count) == 0);
return true;
}
bool PartitionWriter::PerformPuffDiffOperation(
const InstallOperation& operation,
ErrorCode* error,
const void* data,
size_t count) {
FileDescriptorPtr source_fd = ChooseSourceFD(operation, error);
TEST_AND_RETURN_FALSE(source_fd != nullptr);
auto reader = std::make_unique<DirectExtentReader>();
TEST_AND_RETURN_FALSE(
reader->Init(source_fd, operation.src_extents(), block_size_));
puffin::UniqueStreamPtr src_stream(new PuffinExtentStream(
std::move(reader),
utils::BlocksInExtents(operation.src_extents()) * block_size_));
auto writer = CreateBaseExtentWriter();
TEST_AND_RETURN_FALSE(
writer->Init(target_fd_, operation.dst_extents(), block_size_));
puffin::UniqueStreamPtr dst_stream(new PuffinExtentStream(
std::move(writer),
utils::BlocksInExtents(operation.dst_extents()) * block_size_));
constexpr size_t kMaxCacheSize = 5 * 1024 * 1024; // Total 5MB cache.
TEST_AND_RETURN_FALSE(
puffin::PuffPatch(std::move(src_stream),
std::move(dst_stream),
reinterpret_cast<const uint8_t*>(data),
count,
kMaxCacheSize));
return true;
}
FileDescriptorPtr PartitionWriter::ChooseSourceFD(
const InstallOperation& operation, ErrorCode* error) {
if (source_fd_ == nullptr) {
LOG(ERROR) << "ChooseSourceFD fail: source_fd_ == nullptr";
return nullptr;
}
if (!operation.has_src_sha256_hash()) {
// When the operation doesn't include a source hash, we attempt the error
// corrected device first since we can't verify the block in the raw device
// at this point, but we first need to make sure all extents are readable
// since the error corrected device can be shorter or not available.
if (OpenCurrentECCPartition() &&
fd_utils::ReadAndHashExtents(
source_ecc_fd_, operation.src_extents(), block_size_, nullptr)) {
return source_ecc_fd_;
}
return source_fd_;
}
brillo::Blob source_hash;
brillo::Blob expected_source_hash(operation.src_sha256_hash().begin(),
operation.src_sha256_hash().end());
if (fd_utils::ReadAndHashExtents(
source_fd_, operation.src_extents(), block_size_, &source_hash) &&
source_hash == expected_source_hash) {
return source_fd_;
}
// We fall back to use the error corrected device if the hash of the raw
// device doesn't match or there was an error reading the source partition.
if (!OpenCurrentECCPartition()) {
// The following function call will return false since the source hash
// mismatches, but we still want to call it so it prints the appropriate
// log message.
ValidateSourceHash(source_hash, operation, source_fd_, error);
return nullptr;
}
LOG(WARNING) << "Source hash from RAW device mismatched: found "
<< base::HexEncode(source_hash.data(), source_hash.size())
<< ", expected "
<< base::HexEncode(expected_source_hash.data(),
expected_source_hash.size());
if (fd_utils::ReadAndHashExtents(
source_ecc_fd_, operation.src_extents(), block_size_, &source_hash) &&
ValidateSourceHash(source_hash, operation, source_ecc_fd_, error)) {
// At this point reading from the error corrected device worked, but
// reading from the raw device failed, so this is considered a recovered
// failure.
source_ecc_recovered_failures_++;
return source_ecc_fd_;
}
return nullptr;
}
bool PartitionWriter::OpenCurrentECCPartition() {
// No support for ECC for full payloads.
// Full payload should not have any opeartion that requires ECC partitions.
if (source_ecc_fd_)
return true;
if (source_ecc_open_failure_)
return false;
#if USE_FEC
const PartitionUpdate& partition = partition_update_;
const InstallPlan::Partition& install_part = install_part_;
std::string path = install_part.source_path;
FileDescriptorPtr fd(new FecFileDescriptor());
if (!fd->Open(path.c_str(), O_RDONLY, 0)) {
PLOG(ERROR) << "Unable to open ECC source partition "
<< partition.partition_name() << ", file " << path;
source_ecc_open_failure_ = true;
return false;
}
source_ecc_fd_ = fd;
#else
// No support for ECC compiled.
source_ecc_open_failure_ = true;
#endif // USE_FEC
return !source_ecc_open_failure_;
}
int PartitionWriter::Close() {
int err = 0;
if (source_fd_ && !source_fd_->Close()) {
err = errno;
PLOG(ERROR) << "Error closing source partition";
if (!err)
err = 1;
}
source_fd_.reset();
source_path_.clear();
if (target_fd_ && !target_fd_->Close()) {
err = errno;
PLOG(ERROR) << "Error closing target partition";
if (!err)
err = 1;
}
target_fd_.reset();
target_path_.clear();
if (source_ecc_fd_ && !source_ecc_fd_->Close()) {
err = errno;
PLOG(ERROR) << "Error closing ECC source partition";
if (!err)
err = 1;
}
source_ecc_fd_.reset();
source_ecc_open_failure_ = false;
return -err;
}
void PartitionWriter::CheckpointUpdateProgress(size_t next_op_index) {
target_fd_->Flush();
}
std::unique_ptr<ExtentWriter> PartitionWriter::CreateBaseExtentWriter() {
return std::make_unique<DirectExtentWriter>();
}
} // namespace chromeos_update_engine