blob: dd9a4c727f62b71274cf46bab7933278f3257b25 [file] [log] [blame]
// Copyright (c) 2012 The Chromium OS Authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
#include "update_engine/delta_performer.h"
#include <endian.h>
#include <errno.h>
#include <algorithm>
#include <cstring>
#include <string>
#include <vector>
#include <base/memory/scoped_ptr.h>
#include <base/string_util.h>
#include <base/stringprintf.h>
#include <google/protobuf/repeated_field.h>
#include "update_engine/bzip_extent_writer.h"
#include "update_engine/constants.h"
#include "update_engine/delta_diff_generator.h"
#include "update_engine/extent_ranges.h"
#include "update_engine/extent_writer.h"
#include "update_engine/graph_types.h"
#include "update_engine/payload_signer.h"
#include "update_engine/payload_state_interface.h"
#include "update_engine/prefs_interface.h"
#include "update_engine/subprocess.h"
#include "update_engine/terminator.h"
#include "update_engine/update_attempter.h"
using std::min;
using std::string;
using std::vector;
using google::protobuf::RepeatedPtrField;
namespace chromeos_update_engine {
const uint64_t DeltaPerformer::kDeltaVersionSize = 8;
const uint64_t DeltaPerformer::kDeltaManifestSizeSize = 8;
const char DeltaPerformer::kUpdatePayloadPublicKeyPath[] =
"/usr/share/update_engine/update-payload-key.pub.pem";
const unsigned DeltaPerformer::kProgressLogMaxChunks = 10;
const unsigned DeltaPerformer::kProgressLogTimeoutSeconds = 30;
const unsigned DeltaPerformer::kProgressDownloadWeight = 50;
const unsigned DeltaPerformer::kProgressOperationsWeight = 50;
namespace {
const int kUpdateStateOperationInvalid = -1;
const int kMaxResumedUpdateFailures = 10;
// Opens path for read/write, put the fd into *fd. On success returns true
// and sets *err to 0. On failure, returns false and sets *err to errno.
bool OpenFile(const char* path, int* fd, int* err) {
if (*fd != -1) {
LOG(ERROR) << "Can't open(" << path << "), *fd != -1 (it's " << *fd << ")";
*err = EINVAL;
return false;
}
*fd = open(path, O_RDWR, 000);
if (*fd < 0) {
*err = errno;
PLOG(ERROR) << "Unable to open file " << path;
return false;
}
*err = 0;
return true;
}
} // namespace {}
// Computes the ratio of |part| and |total|, scaled to |norm|, using integer
// arithmetic.
static uint64_t IntRatio(uint64_t part, uint64_t total, uint64_t norm) {
return part * norm / total;
}
void DeltaPerformer::LogProgress(const char* message_prefix) {
// Format operations total count and percentage.
string total_operations_str("?");
string completed_percentage_str("");
if (num_total_operations_) {
total_operations_str = StringPrintf("%zu", num_total_operations_);
// Upcasting to 64-bit to avoid overflow, back to size_t for formatting.
completed_percentage_str =
StringPrintf(" (%llu%%)",
IntRatio(next_operation_num_, num_total_operations_,
100));
}
// Format download total count and percentage.
size_t payload_size = install_plan_->payload_size;
string payload_size_str("?");
string downloaded_percentage_str("");
if (payload_size) {
payload_size_str = StringPrintf("%zu", payload_size);
// Upcasting to 64-bit to avoid overflow, back to size_t for formatting.
downloaded_percentage_str =
StringPrintf(" (%llu%%)",
IntRatio(total_bytes_received_, payload_size, 100));
}
LOG(INFO) << (message_prefix ? message_prefix : "") << next_operation_num_
<< "/" << total_operations_str << " operations"
<< completed_percentage_str << ", " << total_bytes_received_
<< "/" << payload_size_str << " bytes downloaded"
<< downloaded_percentage_str << ", overall progress "
<< overall_progress_ << "%";
}
void DeltaPerformer::UpdateOverallProgress(bool force_log,
const char* message_prefix) {
// Compute our download and overall progress.
unsigned new_overall_progress = 0;
COMPILE_ASSERT(kProgressDownloadWeight + kProgressOperationsWeight == 100,
progress_weight_dont_add_up);
// Only consider download progress if its total size is known; otherwise
// adjust the operations weight to compensate for the absence of download
// progress. Also, make sure to cap the download portion at
// kProgressDownloadWeight, in case we end up downloading more than we
// initially expected (this indicates a problem, but could generally happen).
// TODO(garnold) the correction of operations weight when we do not have the
// total payload size, as well as the conditional guard below, should both be
// eliminated once we ensure that the payload_size in the install plan is
// always given and is non-zero. This currently isn't the case during unit
// tests (see chromium-os:37969).
size_t payload_size = install_plan_->payload_size;
unsigned actual_operations_weight = kProgressOperationsWeight;
if (payload_size)
new_overall_progress += min(
static_cast<unsigned>(IntRatio(total_bytes_received_, payload_size,
kProgressDownloadWeight)),
kProgressDownloadWeight);
else
actual_operations_weight += kProgressDownloadWeight;
// Only add completed operations if their total number is known; we definitely
// expect an update to have at least one operation, so the expectation is that
// this will eventually reach |actual_operations_weight|.
if (num_total_operations_)
new_overall_progress += IntRatio(next_operation_num_, num_total_operations_,
actual_operations_weight);
// Progress ratio cannot recede, unless our assumptions about the total
// payload size, total number of operations, or the monotonicity of progress
// is breached.
if (new_overall_progress < overall_progress_) {
LOG(WARNING) << "progress counter receded from " << overall_progress_
<< "% down to " << new_overall_progress << "%; this is a bug";
force_log = true;
}
overall_progress_ = new_overall_progress;
// Update chunk index, log as needed: if forced by called, or we completed a
// progress chunk, or a timeout has expired.
base::Time curr_time = base::Time::Now();
unsigned curr_progress_chunk =
overall_progress_ * kProgressLogMaxChunks / 100;
if (force_log || curr_progress_chunk > last_progress_chunk_ ||
curr_time > forced_progress_log_time_) {
forced_progress_log_time_ = curr_time + forced_progress_log_wait_;
LogProgress(message_prefix);
}
last_progress_chunk_ = curr_progress_chunk;
}
// Returns true if |op| is idempotent -- i.e., if we can interrupt it and repeat
// it safely. Returns false otherwise.
bool DeltaPerformer::IsIdempotentOperation(
const DeltaArchiveManifest_InstallOperation& op) {
if (op.src_extents_size() == 0) {
return true;
}
// When in doubt, it's safe to declare an op non-idempotent. Note that we
// could detect other types of idempotent operations here such as a MOVE that
// moves blocks onto themselves. However, we rely on the server to not send
// such operations at all.
ExtentRanges src_ranges;
src_ranges.AddRepeatedExtents(op.src_extents());
const uint64_t block_count = src_ranges.blocks();
src_ranges.SubtractRepeatedExtents(op.dst_extents());
return block_count == src_ranges.blocks();
}
int DeltaPerformer::Open(const char* path, int flags, mode_t mode) {
int err;
if (OpenFile(path, &fd_, &err))
path_ = path;
return -err;
}
bool DeltaPerformer::OpenKernel(const char* kernel_path) {
int err;
bool success = OpenFile(kernel_path, &kernel_fd_, &err);
if (success)
kernel_path_ = kernel_path;
return success;
}
int DeltaPerformer::Close() {
int err = 0;
if (close(kernel_fd_) == -1) {
err = errno;
PLOG(ERROR) << "Unable to close kernel fd:";
}
if (close(fd_) == -1) {
err = errno;
PLOG(ERROR) << "Unable to close rootfs fd:";
}
LOG_IF(ERROR, !hash_calculator_.Finalize()) << "Unable to finalize the hash.";
fd_ = -2; // Set to invalid so that calls to Open() will fail.
path_ = "";
if (!buffer_.empty()) {
LOG(INFO) << "Discarding " << buffer_.size() << " unused downloaded bytes";
if (err >= 0)
err = 1;
}
return -err;
}
namespace {
void LogPartitionInfoHash(const PartitionInfo& info, const string& tag) {
string sha256;
if (OmahaHashCalculator::Base64Encode(info.hash().data(),
info.hash().size(),
&sha256)) {
LOG(INFO) << "PartitionInfo " << tag << " sha256: " << sha256
<< " size: " << info.size();
} else {
LOG(ERROR) << "Base64Encode failed for tag: " << tag;
}
}
void LogPartitionInfo(const DeltaArchiveManifest& manifest) {
if (manifest.has_old_kernel_info())
LogPartitionInfoHash(manifest.old_kernel_info(), "old_kernel_info");
if (manifest.has_old_rootfs_info())
LogPartitionInfoHash(manifest.old_rootfs_info(), "old_rootfs_info");
if (manifest.has_new_kernel_info())
LogPartitionInfoHash(manifest.new_kernel_info(), "new_kernel_info");
if (manifest.has_new_rootfs_info())
LogPartitionInfoHash(manifest.new_rootfs_info(), "new_rootfs_info");
}
} // namespace {}
uint64_t DeltaPerformer::GetManifestSizeOffset() {
// Manifest size is stored right after the magic string and the version.
return strlen(kDeltaMagic) + kDeltaVersionSize;
}
uint64_t DeltaPerformer::GetManifestOffset() {
// Actual manifest begins right after the manifest size field.
return GetManifestSizeOffset() + kDeltaManifestSizeSize;
}
DeltaPerformer::MetadataParseResult DeltaPerformer::ParsePayloadMetadata(
const std::vector<char>& payload,
DeltaArchiveManifest* manifest,
uint64_t* metadata_size,
ErrorCode* error) {
*error = kErrorCodeSuccess;
// manifest_offset is the byte offset where the manifest protobuf begins.
const uint64_t manifest_offset = GetManifestOffset();
if (payload.size() < manifest_offset) {
// Don't have enough bytes to even know the manifest size.
return kMetadataParseInsufficientData;
}
// Validate the magic string.
if (memcmp(payload.data(), kDeltaMagic, strlen(kDeltaMagic)) != 0) {
LOG(ERROR) << "Bad payload format -- invalid delta magic.";
*error = kErrorCodeDownloadInvalidMetadataMagicString;
return kMetadataParseError;
}
// TODO(jaysri): Compare the version number and skip unknown manifest
// versions. We don't check the version at all today.
// Next, parse the manifest size.
uint64_t manifest_size;
COMPILE_ASSERT(sizeof(manifest_size) == kDeltaManifestSizeSize,
manifest_size_size_mismatch);
memcpy(&manifest_size,
&payload[GetManifestSizeOffset()],
kDeltaManifestSizeSize);
manifest_size = be64toh(manifest_size); // switch big endian to host
// Now, check if the metasize we computed matches what was passed in
// through Omaha Response.
*metadata_size = manifest_offset + manifest_size;
// If the metadata size is present in install plan, check for it immediately
// even before waiting for that many number of bytes to be downloaded
// in the payload. This will prevent any attack which relies on us downloading
// data beyond the expected metadata size.
if (install_plan_->hash_checks_mandatory) {
if (install_plan_->metadata_size != *metadata_size) {
LOG(ERROR) << "Mandatory metadata size in Omaha response ("
<< install_plan_->metadata_size << ") is missing/incorrect."
<< ", Actual = " << *metadata_size;
*error = kErrorCodeDownloadInvalidMetadataSize;
return kMetadataParseError;
}
}
// Now that we have validated the metadata size, we should wait for the full
// metadata to be read in before we can parse it.
if (payload.size() < *metadata_size) {
return kMetadataParseInsufficientData;
}
// Log whether we validated the size or simply trusting what's in the payload
// here. This is logged here (after we received the full metadata data) so
// that we just log once (instead of logging n times) if it takes n
// DeltaPerformer::Write calls to download the full manifest.
if (install_plan_->metadata_size == *metadata_size) {
LOG(INFO) << "Manifest size in payload matches expected value from Omaha";
} else {
// For mandatory-cases, we'd have already returned a kMetadataParseError
// above. We'll be here only for non-mandatory cases. Just send a UMA stat.
LOG(WARNING) << "Ignoring missing/incorrect metadata size ("
<< install_plan_->metadata_size
<< ") in Omaha response as validation is not mandatory. "
<< "Trusting metadata size in payload = " << *metadata_size;
SendUmaStat(kErrorCodeDownloadInvalidMetadataSize);
}
// We have the full metadata in |payload|. Verify its integrity
// and authenticity based on the information we have in Omaha response.
*error = ValidateMetadataSignature(&payload[0], *metadata_size);
if (*error != kErrorCodeSuccess) {
if (install_plan_->hash_checks_mandatory) {
LOG(ERROR) << "Mandatory metadata signature validation failed";
return kMetadataParseError;
}
// For non-mandatory cases, just send a UMA stat.
LOG(WARNING) << "Ignoring metadata signature validation failures";
SendUmaStat(*error);
*error = kErrorCodeSuccess;
}
// The metadata in |payload| is deemed valid. So, it's now safe to
// parse the protobuf.
if (!manifest->ParseFromArray(&payload[manifest_offset], manifest_size)) {
LOG(ERROR) << "Unable to parse manifest in update file.";
*error = kErrorCodeDownloadManifestParseError;
return kMetadataParseError;
}
return kMetadataParseSuccess;
}
// Wrapper around write. Returns true if all requested bytes
// were written, or false on any error, regardless of progress
// and stores an action exit code in |error|.
bool DeltaPerformer::Write(const void* bytes, size_t count,
ErrorCode *error) {
*error = kErrorCodeSuccess;
const char* c_bytes = reinterpret_cast<const char*>(bytes);
buffer_.insert(buffer_.end(), c_bytes, c_bytes + count);
system_state_->payload_state()->DownloadProgress(count);
// Update the total byte downloaded count and the progress logs.
total_bytes_received_ += count;
UpdateOverallProgress(false, "Completed ");
if (!manifest_valid_) {
MetadataParseResult result = ParsePayloadMetadata(buffer_,
&manifest_,
&manifest_metadata_size_,
error);
if (result == kMetadataParseError)
return false;
if (result == kMetadataParseInsufficientData)
return true;
// Checks the integrity of the payload manifest.
if ((*error = ValidateManifest()) != kErrorCodeSuccess)
return false;
// Remove protobuf and header info from buffer_, so buffer_ contains
// just data blobs
DiscardBufferHeadBytes(manifest_metadata_size_);
LOG_IF(WARNING, !prefs_->SetInt64(kPrefsManifestMetadataSize,
manifest_metadata_size_))
<< "Unable to save the manifest metadata size.";
manifest_valid_ = true;
LogPartitionInfo(manifest_);
if (!PrimeUpdateState()) {
*error = kErrorCodeDownloadStateInitializationError;
LOG(ERROR) << "Unable to prime the update state.";
return false;
}
num_rootfs_operations_ = manifest_.install_operations_size();
num_total_operations_ =
num_rootfs_operations_ + manifest_.kernel_install_operations_size();
if (next_operation_num_ > 0)
UpdateOverallProgress(true, "Resuming after ");
LOG(INFO) << "Starting to apply update payload operations";
}
while (next_operation_num_ < num_total_operations_) {
// Check if we should cancel the current attempt for any reason.
// In this case, *error will have already been populated with the reason
// why we're cancelling.
if (system_state_->update_attempter()->ShouldCancel(error))
return false;
const bool is_kernel_partition =
(next_operation_num_ >= num_rootfs_operations_);
const DeltaArchiveManifest_InstallOperation &op =
is_kernel_partition ?
manifest_.kernel_install_operations(
next_operation_num_ - num_rootfs_operations_) :
manifest_.install_operations(next_operation_num_);
if (!CanPerformInstallOperation(op)) {
// This means we don't have enough bytes received yet to carry out the
// next operation.
return true;
}
// Validate the operation only if the metadata signature is present.
// Otherwise, keep the old behavior. This serves as a knob to disable
// the validation logic in case we find some regression after rollout.
// NOTE: If hash checks are mandatory and if metadata_signature is empty,
// we would have already failed in ParsePayloadMetadata method and thus not
// even be here. So no need to handle that case again here.
if (!install_plan_->metadata_signature.empty()) {
// Note: Validate must be called only if CanPerformInstallOperation is
// called. Otherwise, we might be failing operations before even if there
// isn't sufficient data to compute the proper hash.
*error = ValidateOperationHash(op);
if (*error != kErrorCodeSuccess) {
if (install_plan_->hash_checks_mandatory) {
LOG(ERROR) << "Mandatory operation hash check failed";
return false;
}
// For non-mandatory cases, just send a UMA stat.
LOG(WARNING) << "Ignoring operation validation errors";
SendUmaStat(*error);
*error = kErrorCodeSuccess;
}
}
// Makes sure we unblock exit when this operation completes.
ScopedTerminatorExitUnblocker exit_unblocker =
ScopedTerminatorExitUnblocker(); // Avoids a compiler unused var bug.
// Log every thousandth operation, and also the first and last ones
if (op.type() == DeltaArchiveManifest_InstallOperation_Type_REPLACE ||
op.type() == DeltaArchiveManifest_InstallOperation_Type_REPLACE_BZ) {
if (!PerformReplaceOperation(op, is_kernel_partition)) {
LOG(ERROR) << "Failed to perform replace operation "
<< next_operation_num_;
*error = kErrorCodeDownloadOperationExecutionError;
return false;
}
} else if (op.type() == DeltaArchiveManifest_InstallOperation_Type_MOVE) {
if (!PerformMoveOperation(op, is_kernel_partition)) {
LOG(ERROR) << "Failed to perform move operation "
<< next_operation_num_;
*error = kErrorCodeDownloadOperationExecutionError;
return false;
}
} else if (op.type() == DeltaArchiveManifest_InstallOperation_Type_BSDIFF) {
if (!PerformBsdiffOperation(op, is_kernel_partition)) {
LOG(ERROR) << "Failed to perform bsdiff operation "
<< next_operation_num_;
*error = kErrorCodeDownloadOperationExecutionError;
return false;
}
}
next_operation_num_++;
UpdateOverallProgress(false, "Completed ");
CheckpointUpdateProgress();
}
return true;
}
bool DeltaPerformer::CanPerformInstallOperation(
const chromeos_update_engine::DeltaArchiveManifest_InstallOperation&
operation) {
// Move operations don't require any data blob, so they can always
// be performed
if (operation.type() == DeltaArchiveManifest_InstallOperation_Type_MOVE)
return true;
// See if we have the entire data blob in the buffer
if (operation.data_offset() < buffer_offset_) {
LOG(ERROR) << "we threw away data it seems?";
return false;
}
return (operation.data_offset() + operation.data_length()) <=
(buffer_offset_ + buffer_.size());
}
bool DeltaPerformer::PerformReplaceOperation(
const DeltaArchiveManifest_InstallOperation& operation,
bool is_kernel_partition) {
CHECK(operation.type() == \
DeltaArchiveManifest_InstallOperation_Type_REPLACE || \
operation.type() == \
DeltaArchiveManifest_InstallOperation_Type_REPLACE_BZ);
// Since we delete data off the beginning of the buffer as we use it,
// the data we need should be exactly at the beginning of the buffer.
TEST_AND_RETURN_FALSE(buffer_offset_ == operation.data_offset());
TEST_AND_RETURN_FALSE(buffer_.size() >= operation.data_length());
// Extract the signature message if it's in this operation.
ExtractSignatureMessage(operation);
DirectExtentWriter direct_writer;
ZeroPadExtentWriter zero_pad_writer(&direct_writer);
scoped_ptr<BzipExtentWriter> bzip_writer;
// Since bzip decompression is optional, we have a variable writer that will
// point to one of the ExtentWriter objects above.
ExtentWriter* writer = NULL;
if (operation.type() == DeltaArchiveManifest_InstallOperation_Type_REPLACE) {
writer = &zero_pad_writer;
} else if (operation.type() ==
DeltaArchiveManifest_InstallOperation_Type_REPLACE_BZ) {
bzip_writer.reset(new BzipExtentWriter(&zero_pad_writer));
writer = bzip_writer.get();
} else {
NOTREACHED();
}
// Create a vector of extents to pass to the ExtentWriter.
vector<Extent> extents;
for (int i = 0; i < operation.dst_extents_size(); i++) {
extents.push_back(operation.dst_extents(i));
}
int fd = is_kernel_partition ? kernel_fd_ : fd_;
TEST_AND_RETURN_FALSE(writer->Init(fd, extents, block_size_));
TEST_AND_RETURN_FALSE(writer->Write(&buffer_[0], operation.data_length()));
TEST_AND_RETURN_FALSE(writer->End());
// Update buffer
buffer_offset_ += operation.data_length();
DiscardBufferHeadBytes(operation.data_length());
return true;
}
bool DeltaPerformer::PerformMoveOperation(
const DeltaArchiveManifest_InstallOperation& operation,
bool is_kernel_partition) {
// Calculate buffer size. Note, this function doesn't do a sliding
// window to copy in case the source and destination blocks overlap.
// If we wanted to do a sliding window, we could program the server
// to generate deltas that effectively did a sliding window.
uint64_t blocks_to_read = 0;
for (int i = 0; i < operation.src_extents_size(); i++)
blocks_to_read += operation.src_extents(i).num_blocks();
uint64_t blocks_to_write = 0;
for (int i = 0; i < operation.dst_extents_size(); i++)
blocks_to_write += operation.dst_extents(i).num_blocks();
DCHECK_EQ(blocks_to_write, blocks_to_read);
vector<char> buf(blocks_to_write * block_size_);
int fd = is_kernel_partition ? kernel_fd_ : fd_;
// Read in bytes.
ssize_t bytes_read = 0;
for (int i = 0; i < operation.src_extents_size(); i++) {
ssize_t bytes_read_this_iteration = 0;
const Extent& extent = operation.src_extents(i);
const size_t bytes = extent.num_blocks() * block_size_;
if (extent.start_block() == kSparseHole) {
bytes_read_this_iteration = bytes;
memset(&buf[bytes_read], 0, bytes);
} else {
TEST_AND_RETURN_FALSE(utils::PReadAll(fd,
&buf[bytes_read],
bytes,
extent.start_block() * block_size_,
&bytes_read_this_iteration));
}
TEST_AND_RETURN_FALSE(
bytes_read_this_iteration == static_cast<ssize_t>(bytes));
bytes_read += bytes_read_this_iteration;
}
// If this is a non-idempotent operation, request a delayed exit and clear the
// update state in case the operation gets interrupted. Do this as late as
// possible.
if (!IsIdempotentOperation(operation)) {
Terminator::set_exit_blocked(true);
ResetUpdateProgress(prefs_, true);
}
// Write bytes out.
ssize_t bytes_written = 0;
for (int i = 0; i < operation.dst_extents_size(); i++) {
const Extent& extent = operation.dst_extents(i);
const size_t bytes = extent.num_blocks() * block_size_;
if (extent.start_block() == kSparseHole) {
DCHECK(buf.begin() + bytes_written ==
std::search_n(buf.begin() + bytes_written,
buf.begin() + bytes_written + bytes,
bytes, 0));
} else {
TEST_AND_RETURN_FALSE(
utils::PWriteAll(fd,
&buf[bytes_written],
bytes,
extent.start_block() * block_size_));
}
bytes_written += bytes;
}
DCHECK_EQ(bytes_written, bytes_read);
DCHECK_EQ(bytes_written, static_cast<ssize_t>(buf.size()));
return true;
}
bool DeltaPerformer::ExtentsToBsdiffPositionsString(
const RepeatedPtrField<Extent>& extents,
uint64_t block_size,
uint64_t full_length,
string* positions_string) {
string ret;
uint64_t length = 0;
for (int i = 0; i < extents.size(); i++) {
Extent extent = extents.Get(i);
int64_t start = extent.start_block();
uint64_t this_length = min(full_length - length,
extent.num_blocks() * block_size);
if (start == static_cast<int64_t>(kSparseHole))
start = -1;
else
start *= block_size;
ret += StringPrintf("%" PRIi64 ":%" PRIu64 ",", start, this_length);
length += this_length;
}
TEST_AND_RETURN_FALSE(length == full_length);
if (!ret.empty())
ret.resize(ret.size() - 1); // Strip trailing comma off
*positions_string = ret;
return true;
}
bool DeltaPerformer::PerformBsdiffOperation(
const DeltaArchiveManifest_InstallOperation& operation,
bool is_kernel_partition) {
// Since we delete data off the beginning of the buffer as we use it,
// the data we need should be exactly at the beginning of the buffer.
TEST_AND_RETURN_FALSE(buffer_offset_ == operation.data_offset());
TEST_AND_RETURN_FALSE(buffer_.size() >= operation.data_length());
string input_positions;
TEST_AND_RETURN_FALSE(ExtentsToBsdiffPositionsString(operation.src_extents(),
block_size_,
operation.src_length(),
&input_positions));
string output_positions;
TEST_AND_RETURN_FALSE(ExtentsToBsdiffPositionsString(operation.dst_extents(),
block_size_,
operation.dst_length(),
&output_positions));
string temp_filename;
TEST_AND_RETURN_FALSE(utils::MakeTempFile("/tmp/au_patch.XXXXXX",
&temp_filename,
NULL));
ScopedPathUnlinker path_unlinker(temp_filename);
{
int fd = open(temp_filename.c_str(), O_WRONLY | O_CREAT | O_TRUNC, 0644);
ScopedFdCloser fd_closer(&fd);
TEST_AND_RETURN_FALSE(
utils::WriteAll(fd, &buffer_[0], operation.data_length()));
}
// Update the buffer to release the patch data memory as soon as the patch
// file is written out.
buffer_offset_ += operation.data_length();
DiscardBufferHeadBytes(operation.data_length());
int fd = is_kernel_partition ? kernel_fd_ : fd_;
const string path = StringPrintf("/dev/fd/%d", fd);
// If this is a non-idempotent operation, request a delayed exit and clear the
// update state in case the operation gets interrupted. Do this as late as
// possible.
if (!IsIdempotentOperation(operation)) {
Terminator::set_exit_blocked(true);
ResetUpdateProgress(prefs_, true);
}
vector<string> cmd;
cmd.push_back(kBspatchPath);
cmd.push_back(path);
cmd.push_back(path);
cmd.push_back(temp_filename);
cmd.push_back(input_positions);
cmd.push_back(output_positions);
int return_code = 0;
TEST_AND_RETURN_FALSE(
Subprocess::SynchronousExecFlags(cmd,
G_SPAWN_LEAVE_DESCRIPTORS_OPEN,
&return_code,
NULL));
TEST_AND_RETURN_FALSE(return_code == 0);
if (operation.dst_length() % block_size_) {
// Zero out rest of final block.
// TODO(adlr): build this into bspatch; it's more efficient that way.
const Extent& last_extent =
operation.dst_extents(operation.dst_extents_size() - 1);
const uint64_t end_byte =
(last_extent.start_block() + last_extent.num_blocks()) * block_size_;
const uint64_t begin_byte =
end_byte - (block_size_ - operation.dst_length() % block_size_);
vector<char> zeros(end_byte - begin_byte);
TEST_AND_RETURN_FALSE(
utils::PWriteAll(fd, &zeros[0], end_byte - begin_byte, begin_byte));
}
return true;
}
bool DeltaPerformer::ExtractSignatureMessage(
const DeltaArchiveManifest_InstallOperation& operation) {
if (operation.type() != DeltaArchiveManifest_InstallOperation_Type_REPLACE ||
!manifest_.has_signatures_offset() ||
manifest_.signatures_offset() != operation.data_offset()) {
return false;
}
TEST_AND_RETURN_FALSE(manifest_.has_signatures_size() &&
manifest_.signatures_size() == operation.data_length());
TEST_AND_RETURN_FALSE(signatures_message_data_.empty());
TEST_AND_RETURN_FALSE(buffer_offset_ == manifest_.signatures_offset());
TEST_AND_RETURN_FALSE(buffer_.size() >= manifest_.signatures_size());
signatures_message_data_.assign(
buffer_.begin(),
buffer_.begin() + manifest_.signatures_size());
// Save the signature blob because if the update is interrupted after the
// download phase we don't go through this path anymore. Some alternatives to
// consider:
//
// 1. On resume, re-download the signature blob from the server and re-verify
// it.
//
// 2. Verify the signature as soon as it's received and don't checkpoint the
// blob and the signed sha-256 context.
LOG_IF(WARNING, !prefs_->SetString(kPrefsUpdateStateSignatureBlob,
string(&signatures_message_data_[0],
signatures_message_data_.size())))
<< "Unable to store the signature blob.";
// The hash of all data consumed so far should be verified against the signed
// hash.
signed_hash_context_ = hash_calculator_.GetContext();
LOG_IF(WARNING, !prefs_->SetString(kPrefsUpdateStateSignedSHA256Context,
signed_hash_context_))
<< "Unable to store the signed hash context.";
LOG(INFO) << "Extracted signature data of size "
<< manifest_.signatures_size() << " at "
<< manifest_.signatures_offset();
return true;
}
ErrorCode DeltaPerformer::ValidateMetadataSignature(
const char* metadata, uint64_t metadata_size) {
if (install_plan_->metadata_signature.empty()) {
if (install_plan_->hash_checks_mandatory) {
LOG(ERROR) << "Missing mandatory metadata signature in Omaha response";
return kErrorCodeDownloadMetadataSignatureMissingError;
}
// For non-mandatory cases, just send a UMA stat.
LOG(WARNING) << "Cannot validate metadata as the signature is empty";
SendUmaStat(kErrorCodeDownloadMetadataSignatureMissingError);
return kErrorCodeSuccess;
}
// Convert base64-encoded signature to raw bytes.
vector<char> metadata_signature;
if (!OmahaHashCalculator::Base64Decode(install_plan_->metadata_signature,
&metadata_signature)) {
LOG(ERROR) << "Unable to decode base64 metadata signature: "
<< install_plan_->metadata_signature;
return kErrorCodeDownloadMetadataSignatureError;
}
vector<char> expected_metadata_hash;
if (!PayloadSigner::GetRawHashFromSignature(metadata_signature,
public_key_path_,
&expected_metadata_hash)) {
LOG(ERROR) << "Unable to compute expected hash from metadata signature";
return kErrorCodeDownloadMetadataSignatureError;
}
OmahaHashCalculator metadata_hasher;
metadata_hasher.Update(metadata, metadata_size);
if (!metadata_hasher.Finalize()) {
LOG(ERROR) << "Unable to compute actual hash of manifest";
return kErrorCodeDownloadMetadataSignatureVerificationError;
}
vector<char> calculated_metadata_hash = metadata_hasher.raw_hash();
PayloadSigner::PadRSA2048SHA256Hash(&calculated_metadata_hash);
if (calculated_metadata_hash.empty()) {
LOG(ERROR) << "Computed actual hash of metadata is empty.";
return kErrorCodeDownloadMetadataSignatureVerificationError;
}
if (calculated_metadata_hash != expected_metadata_hash) {
LOG(ERROR) << "Manifest hash verification failed. Expected hash = ";
utils::HexDumpVector(expected_metadata_hash);
LOG(ERROR) << "Calculated hash = ";
utils::HexDumpVector(calculated_metadata_hash);
return kErrorCodeDownloadMetadataSignatureMismatch;
}
LOG(INFO) << "Manifest signature matches expected value in Omaha response";
return kErrorCodeSuccess;
}
ErrorCode DeltaPerformer::ValidateManifest() {
// Ensure that a full update does not contain old partition hashes, which is
// indicative of a delta.
//
// TODO(garnold) in general, the presence of an old partition hash should be
// the sole indicator for a delta update, as we would generally like update
// payloads to be self contained and not assume an Omaha response to tell us
// that. However, since this requires some massive reengineering of the update
// flow (making filesystem copying happen conditionally only *after*
// downloading and parsing of the update manifest) we'll put it off for now.
// See chromium-os:7597 for further discussion.
if (install_plan_->is_full_update &&
(manifest_.has_old_kernel_info() || manifest_.has_old_rootfs_info())) {
LOG(ERROR) << "Purported full payload contains old partition "
"hash(es), aborting update";
return kErrorCodePayloadMismatchedType;
}
// TODO(garnold) we should be adding more and more manifest checks, such as
// partition boundaries etc (see chromium-os:37661).
return kErrorCodeSuccess;
}
ErrorCode DeltaPerformer::ValidateOperationHash(
const DeltaArchiveManifest_InstallOperation& operation) {
if (!operation.data_sha256_hash().size()) {
if (!operation.data_length()) {
// Operations that do not have any data blob won't have any operation hash
// either. So, these operations are always considered validated since the
// metadata that contains all the non-data-blob portions of the operation
// has already been validated. This is true for both HTTP and HTTPS cases.
return kErrorCodeSuccess;
}
// No hash is present for an operation that has data blobs. This shouldn't
// happen normally for any client that has this code, because the
// corresponding update should have been produced with the operation
// hashes. So if it happens it means either we've turned operation hash
// generation off in DeltaDiffGenerator or it's a regression of some sort.
// One caveat though: The last operation is a dummy signature operation
// that doesn't have a hash at the time the manifest is created. So we
// should not complaint about that operation. This operation can be
// recognized by the fact that it's offset is mentioned in the manifest.
if (manifest_.signatures_offset() &&
manifest_.signatures_offset() == operation.data_offset()) {
LOG(INFO) << "Skipping hash verification for signature operation "
<< next_operation_num_ + 1;
} else {
if (install_plan_->hash_checks_mandatory) {
LOG(ERROR) << "Missing mandatory operation hash for operation "
<< next_operation_num_ + 1;
return kErrorCodeDownloadOperationHashMissingError;
}
// For non-mandatory cases, just send a UMA stat.
LOG(WARNING) << "Cannot validate operation " << next_operation_num_ + 1
<< " as there's no operation hash in manifest";
SendUmaStat(kErrorCodeDownloadOperationHashMissingError);
}
return kErrorCodeSuccess;
}
vector<char> expected_op_hash;
expected_op_hash.assign(operation.data_sha256_hash().data(),
(operation.data_sha256_hash().data() +
operation.data_sha256_hash().size()));
OmahaHashCalculator operation_hasher;
operation_hasher.Update(&buffer_[0], operation.data_length());
if (!operation_hasher.Finalize()) {
LOG(ERROR) << "Unable to compute actual hash of operation "
<< next_operation_num_;
return kErrorCodeDownloadOperationHashVerificationError;
}
vector<char> calculated_op_hash = operation_hasher.raw_hash();
if (calculated_op_hash != expected_op_hash) {
LOG(ERROR) << "Hash verification failed for operation "
<< next_operation_num_ << ". Expected hash = ";
utils::HexDumpVector(expected_op_hash);
LOG(ERROR) << "Calculated hash over " << operation.data_length()
<< " bytes at offset: " << operation.data_offset() << " = ";
utils::HexDumpVector(calculated_op_hash);
return kErrorCodeDownloadOperationHashMismatch;
}
return kErrorCodeSuccess;
}
#define TEST_AND_RETURN_VAL(_retval, _condition) \
do { \
if (!(_condition)) { \
LOG(ERROR) << "VerifyPayload failure: " << #_condition; \
return _retval; \
} \
} while (0);
ErrorCode DeltaPerformer::VerifyPayload(
const std::string& update_check_response_hash,
const uint64_t update_check_response_size) {
LOG(INFO) << "Verifying delta payload using public key: " << public_key_path_;
// Verifies the download size.
TEST_AND_RETURN_VAL(kErrorCodePayloadSizeMismatchError,
update_check_response_size ==
manifest_metadata_size_ + buffer_offset_);
// Verifies the payload hash.
const string& payload_hash_data = hash_calculator_.hash();
TEST_AND_RETURN_VAL(kErrorCodeDownloadPayloadVerificationError,
!payload_hash_data.empty());
TEST_AND_RETURN_VAL(kErrorCodePayloadHashMismatchError,
payload_hash_data == update_check_response_hash);
// Verifies the signed payload hash.
if (!utils::FileExists(public_key_path_.c_str())) {
LOG(WARNING) << "Not verifying signed delta payload -- missing public key.";
return kErrorCodeSuccess;
}
TEST_AND_RETURN_VAL(kErrorCodeSignedDeltaPayloadExpectedError,
!signatures_message_data_.empty());
vector<char> signed_hash_data;
TEST_AND_RETURN_VAL(kErrorCodeDownloadPayloadPubKeyVerificationError,
PayloadSigner::VerifySignature(
signatures_message_data_,
public_key_path_,
&signed_hash_data));
OmahaHashCalculator signed_hasher;
TEST_AND_RETURN_VAL(kErrorCodeDownloadPayloadPubKeyVerificationError,
signed_hasher.SetContext(signed_hash_context_));
TEST_AND_RETURN_VAL(kErrorCodeDownloadPayloadPubKeyVerificationError,
signed_hasher.Finalize());
vector<char> hash_data = signed_hasher.raw_hash();
PayloadSigner::PadRSA2048SHA256Hash(&hash_data);
TEST_AND_RETURN_VAL(kErrorCodeDownloadPayloadPubKeyVerificationError,
!hash_data.empty());
if (hash_data != signed_hash_data) {
LOG(ERROR) << "Public key verification failed, thus update failed. "
"Attached Signature:";
utils::HexDumpVector(signed_hash_data);
LOG(ERROR) << "Computed Signature:";
utils::HexDumpVector(hash_data);
return kErrorCodeDownloadPayloadPubKeyVerificationError;
}
// At this point, we are guaranteed to have downloaded a full payload, i.e
// the one whose size matches the size mentioned in Omaha response. If any
// errors happen after this, it's likely a problem with the payload itself or
// the state of the system and not a problem with the URL or network. So,
// indicate that to the payload state so that AU can backoff appropriately.
system_state_->payload_state()->DownloadComplete();
return kErrorCodeSuccess;
}
bool DeltaPerformer::GetNewPartitionInfo(uint64_t* kernel_size,
vector<char>* kernel_hash,
uint64_t* rootfs_size,
vector<char>* rootfs_hash) {
TEST_AND_RETURN_FALSE(manifest_valid_ &&
manifest_.has_new_kernel_info() &&
manifest_.has_new_rootfs_info());
*kernel_size = manifest_.new_kernel_info().size();
*rootfs_size = manifest_.new_rootfs_info().size();
vector<char> new_kernel_hash(manifest_.new_kernel_info().hash().begin(),
manifest_.new_kernel_info().hash().end());
vector<char> new_rootfs_hash(manifest_.new_rootfs_info().hash().begin(),
manifest_.new_rootfs_info().hash().end());
kernel_hash->swap(new_kernel_hash);
rootfs_hash->swap(new_rootfs_hash);
return true;
}
namespace {
void LogVerifyError(bool is_kern,
const string& local_hash,
const string& expected_hash) {
const char* type = is_kern ? "kernel" : "rootfs";
LOG(ERROR) << "This is a server-side error due to "
<< "mismatched delta update image!";
LOG(ERROR) << "The delta I've been given contains a " << type << " delta "
<< "update that must be applied over a " << type << " with "
<< "a specific checksum, but the " << type << " we're starting "
<< "with doesn't have that checksum! This means that "
<< "the delta I've been given doesn't match my existing "
<< "system. The " << type << " partition I have has hash: "
<< local_hash << " but the update expected me to have "
<< expected_hash << " .";
if (is_kern) {
LOG(INFO) << "To get the checksum of a kernel partition on a "
<< "booted machine, run this command (change /dev/sda2 "
<< "as needed): dd if=/dev/sda2 bs=1M 2>/dev/null | "
<< "openssl dgst -sha256 -binary | openssl base64";
} else {
LOG(INFO) << "To get the checksum of a rootfs partition on a "
<< "booted machine, run this command (change /dev/sda3 "
<< "as needed): dd if=/dev/sda3 bs=1M count=$(( "
<< "$(dumpe2fs /dev/sda3 2>/dev/null | grep 'Block count' "
<< "| sed 's/[^0-9]*//') / 256 )) | "
<< "openssl dgst -sha256 -binary | openssl base64";
}
LOG(INFO) << "To get the checksum of partitions in a bin file, "
<< "run: .../src/scripts/sha256_partitions.sh .../file.bin";
}
string StringForHashBytes(const void* bytes, size_t size) {
string ret;
if (!OmahaHashCalculator::Base64Encode(bytes, size, &ret)) {
ret = "<unknown>";
}
return ret;
}
} // namespace
bool DeltaPerformer::VerifySourcePartitions() {
LOG(INFO) << "Verifying source partitions.";
CHECK(manifest_valid_);
CHECK(install_plan_);
if (manifest_.has_old_kernel_info()) {
const PartitionInfo& info = manifest_.old_kernel_info();
bool valid =
!install_plan_->kernel_hash.empty() &&
install_plan_->kernel_hash.size() == info.hash().size() &&
memcmp(install_plan_->kernel_hash.data(),
info.hash().data(),
install_plan_->kernel_hash.size()) == 0;
if (!valid) {
LogVerifyError(true,
StringForHashBytes(install_plan_->kernel_hash.data(),
install_plan_->kernel_hash.size()),
StringForHashBytes(info.hash().data(),
info.hash().size()));
}
TEST_AND_RETURN_FALSE(valid);
}
if (manifest_.has_old_rootfs_info()) {
const PartitionInfo& info = manifest_.old_rootfs_info();
bool valid =
!install_plan_->rootfs_hash.empty() &&
install_plan_->rootfs_hash.size() == info.hash().size() &&
memcmp(install_plan_->rootfs_hash.data(),
info.hash().data(),
install_plan_->rootfs_hash.size()) == 0;
if (!valid) {
LogVerifyError(false,
StringForHashBytes(install_plan_->rootfs_hash.data(),
install_plan_->rootfs_hash.size()),
StringForHashBytes(info.hash().data(),
info.hash().size()));
}
TEST_AND_RETURN_FALSE(valid);
}
return true;
}
void DeltaPerformer::DiscardBufferHeadBytes(size_t count) {
hash_calculator_.Update(&buffer_[0], count);
// Copy the remainder data into a temporary vector first to ensure that any
// unused memory in the updated |buffer_| will be released.
vector<char> temp(buffer_.begin() + count, buffer_.end());
buffer_.swap(temp);
}
bool DeltaPerformer::CanResumeUpdate(PrefsInterface* prefs,
string update_check_response_hash) {
int64_t next_operation = kUpdateStateOperationInvalid;
TEST_AND_RETURN_FALSE(prefs->GetInt64(kPrefsUpdateStateNextOperation,
&next_operation) &&
next_operation != kUpdateStateOperationInvalid &&
next_operation > 0);
string interrupted_hash;
TEST_AND_RETURN_FALSE(prefs->GetString(kPrefsUpdateCheckResponseHash,
&interrupted_hash) &&
!interrupted_hash.empty() &&
interrupted_hash == update_check_response_hash);
int64_t resumed_update_failures;
TEST_AND_RETURN_FALSE(!prefs->GetInt64(kPrefsResumedUpdateFailures,
&resumed_update_failures) ||
resumed_update_failures <= kMaxResumedUpdateFailures);
// Sanity check the rest.
int64_t next_data_offset = -1;
TEST_AND_RETURN_FALSE(prefs->GetInt64(kPrefsUpdateStateNextDataOffset,
&next_data_offset) &&
next_data_offset >= 0);
string sha256_context;
TEST_AND_RETURN_FALSE(
prefs->GetString(kPrefsUpdateStateSHA256Context, &sha256_context) &&
!sha256_context.empty());
int64_t manifest_metadata_size = 0;
TEST_AND_RETURN_FALSE(prefs->GetInt64(kPrefsManifestMetadataSize,
&manifest_metadata_size) &&
manifest_metadata_size > 0);
return true;
}
bool DeltaPerformer::ResetUpdateProgress(PrefsInterface* prefs, bool quick) {
TEST_AND_RETURN_FALSE(prefs->SetInt64(kPrefsUpdateStateNextOperation,
kUpdateStateOperationInvalid));
if (!quick) {
prefs->SetString(kPrefsUpdateCheckResponseHash, "");
prefs->SetInt64(kPrefsUpdateStateNextDataOffset, -1);
prefs->SetString(kPrefsUpdateStateSHA256Context, "");
prefs->SetString(kPrefsUpdateStateSignedSHA256Context, "");
prefs->SetString(kPrefsUpdateStateSignatureBlob, "");
prefs->SetInt64(kPrefsManifestMetadataSize, -1);
prefs->SetInt64(kPrefsResumedUpdateFailures, 0);
}
return true;
}
bool DeltaPerformer::CheckpointUpdateProgress() {
Terminator::set_exit_blocked(true);
if (last_updated_buffer_offset_ != buffer_offset_) {
// Resets the progress in case we die in the middle of the state update.
ResetUpdateProgress(prefs_, true);
TEST_AND_RETURN_FALSE(
prefs_->SetString(kPrefsUpdateStateSHA256Context,
hash_calculator_.GetContext()));
TEST_AND_RETURN_FALSE(prefs_->SetInt64(kPrefsUpdateStateNextDataOffset,
buffer_offset_));
last_updated_buffer_offset_ = buffer_offset_;
}
TEST_AND_RETURN_FALSE(prefs_->SetInt64(kPrefsUpdateStateNextOperation,
next_operation_num_));
return true;
}
bool DeltaPerformer::PrimeUpdateState() {
CHECK(manifest_valid_);
block_size_ = manifest_.block_size();
int64_t next_operation = kUpdateStateOperationInvalid;
if (!prefs_->GetInt64(kPrefsUpdateStateNextOperation, &next_operation) ||
next_operation == kUpdateStateOperationInvalid ||
next_operation <= 0) {
// Initiating a new update, no more state needs to be initialized.
TEST_AND_RETURN_FALSE(VerifySourcePartitions());
return true;
}
next_operation_num_ = next_operation;
// Resuming an update -- load the rest of the update state.
int64_t next_data_offset = -1;
TEST_AND_RETURN_FALSE(prefs_->GetInt64(kPrefsUpdateStateNextDataOffset,
&next_data_offset) &&
next_data_offset >= 0);
buffer_offset_ = next_data_offset;
// The signed hash context and the signature blob may be empty if the
// interrupted update didn't reach the signature.
prefs_->GetString(kPrefsUpdateStateSignedSHA256Context,
&signed_hash_context_);
string signature_blob;
if (prefs_->GetString(kPrefsUpdateStateSignatureBlob, &signature_blob)) {
signatures_message_data_.assign(signature_blob.begin(),
signature_blob.end());
}
string hash_context;
TEST_AND_RETURN_FALSE(prefs_->GetString(kPrefsUpdateStateSHA256Context,
&hash_context) &&
hash_calculator_.SetContext(hash_context));
int64_t manifest_metadata_size = 0;
TEST_AND_RETURN_FALSE(prefs_->GetInt64(kPrefsManifestMetadataSize,
&manifest_metadata_size) &&
manifest_metadata_size > 0);
manifest_metadata_size_ = manifest_metadata_size;
// Advance the download progress to reflect what doesn't need to be
// re-downloaded.
total_bytes_received_ += buffer_offset_;
// Speculatively count the resume as a failure.
int64_t resumed_update_failures;
if (prefs_->GetInt64(kPrefsResumedUpdateFailures, &resumed_update_failures)) {
resumed_update_failures++;
} else {
resumed_update_failures = 1;
}
prefs_->SetInt64(kPrefsResumedUpdateFailures, resumed_update_failures);
return true;
}
void DeltaPerformer::SendUmaStat(ErrorCode code) {
utils::SendErrorCodeToUma(system_state_, code);
}
} // namespace chromeos_update_engine