blob: 21a6f8e9b036abdb1299adc7f5b6ba1dd7d98ec5 [file] [log] [blame]
// Copyright (c) 2012 The Chromium OS Authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
#include <inttypes.h>
#include <sys/mount.h>
#include <algorithm>
#include <string>
#include <vector>
#include <base/file_util.h>
#include <base/memory/scoped_ptr.h>
#include <base/strings/string_util.h>
#include <base/strings/stringprintf.h>
#include <google/protobuf/repeated_field.h>
#include <gtest/gtest.h>
#include "update_engine/constants.h"
#include "update_engine/delta_performer.h"
#include "update_engine/extent_ranges.h"
#include "update_engine/fake_hardware.h"
#include "update_engine/fake_system_state.h"
#include "update_engine/payload_constants.h"
#include "update_engine/payload_generator/delta_diff_generator.h"
#include "update_engine/payload_signer.h"
#include "update_engine/prefs_mock.h"
#include "update_engine/test_utils.h"
#include "update_engine/update_metadata.pb.h"
#include "update_engine/utils.h"
namespace chromeos_update_engine {
using std::min;
using std::string;
using std::vector;
using testing::Return;
using testing::_;
extern const char* kUnittestPrivateKeyPath;
extern const char* kUnittestPublicKeyPath;
extern const char* kUnittestPrivateKey2Path;
extern const char* kUnittestPublicKey2Path;
static const size_t kBlockSize = 4096;
static const char* kBogusMetadataSignature1 = "awSFIUdUZz2VWFiR+ku0Pj00V7bPQPQFYQSXjEXr3vaw3TE4xHV5CraY3/YrZpBvJ5z4dSBskoeuaO1TNC/S6E05t+yt36tE4Fh79tMnJ/z9fogBDXWgXLEUyG78IEQrYH6/eBsQGT2RJtBgXIXbZ9W+5G9KmGDoPOoiaeNsDuqHiBc/58OFsrxskH8E6vMSBmMGGk82mvgzic7ApcoURbCGey1b3Mwne/hPZ/bb9CIyky8Og9IfFMdL2uAweOIRfjoTeLYZpt+WN65Vu7jJ0cQN8e1y+2yka5112wpRf/LLtPgiAjEZnsoYpLUd7CoVpLRtClp97kN2+tXGNBQqkA==";
static const int kDefaultKernelSize = 4096; // Something small for a test
static const char* kNewDataString = "This is new data.";
namespace {
struct DeltaState {
string a_img;
string b_img;
int image_size;
string delta_path;
uint64_t metadata_size;
string old_kernel;
vector<char> old_kernel_data;
string new_kernel;
vector<char> new_kernel_data;
// The in-memory copy of delta file.
vector<char> delta;
// The mock system state object with which we initialize the
// delta performer.
FakeSystemState fake_system_state;
};
enum SignatureTest {
kSignatureNone, // No payload signing.
kSignatureGenerator, // Sign the payload at generation time.
kSignatureGenerated, // Sign the payload after it's generated.
kSignatureGeneratedPlaceholder, // Insert placeholder signatures, then real.
kSignatureGeneratedPlaceholderMismatch, // Insert a wrong sized placeholder.
kSignatureGeneratedShell, // Sign the generated payload through shell cmds.
kSignatureGeneratedShellBadKey, // Sign with a bad key through shell cmds.
kSignatureGeneratedShellRotateCl1, // Rotate key, test client v1
kSignatureGeneratedShellRotateCl2, // Rotate key, test client v2
};
// Different options that determine what we should fill into the
// install_plan.metadata_signature to simulate the contents received in the
// Omaha response.
enum MetadataSignatureTest {
kEmptyMetadataSignature,
kInvalidMetadataSignature,
kValidMetadataSignature,
};
enum OperationHashTest {
kInvalidOperationData,
kValidOperationData,
};
} // namespace {}
static void CompareFilesByBlock(const string& a_file, const string& b_file) {
vector<char> a_data, b_data;
EXPECT_TRUE(utils::ReadFile(a_file, &a_data)) << "file failed: " << a_file;
EXPECT_TRUE(utils::ReadFile(b_file, &b_data)) << "file failed: " << b_file;
EXPECT_EQ(a_data.size(), b_data.size());
EXPECT_EQ(0, a_data.size() % kBlockSize);
for (size_t i = 0; i < a_data.size(); i += kBlockSize) {
EXPECT_EQ(0, i % kBlockSize);
vector<char> a_sub(&a_data[i], &a_data[i + kBlockSize]);
vector<char> b_sub(&b_data[i], &b_data[i + kBlockSize]);
EXPECT_TRUE(a_sub == b_sub) << "Block " << (i/kBlockSize) << " differs";
}
}
static bool WriteSparseFile(const string& path, off_t size) {
int fd = open(path.c_str(), O_CREAT | O_TRUNC | O_WRONLY, 0644);
TEST_AND_RETURN_FALSE_ERRNO(fd >= 0);
ScopedFdCloser fd_closer(&fd);
off_t rc = lseek(fd, size + 1, SEEK_SET);
TEST_AND_RETURN_FALSE_ERRNO(rc != static_cast<off_t>(-1));
int return_code = ftruncate(fd, size);
TEST_AND_RETURN_FALSE_ERRNO(return_code == 0);
return true;
}
static size_t GetSignatureSize(const string& private_key_path) {
const vector<char> data(1, 'x');
vector<char> hash;
EXPECT_TRUE(OmahaHashCalculator::RawHashOfData(data, &hash));
vector<char> signature;
EXPECT_TRUE(PayloadSigner::SignHash(hash,
private_key_path,
&signature));
return signature.size();
}
static bool InsertSignaturePlaceholder(int signature_size,
const string& payload_path,
uint64_t* out_metadata_size) {
vector<vector<char> > signatures;
signatures.push_back(vector<char>(signature_size, 0));
return PayloadSigner::AddSignatureToPayload(
payload_path,
signatures,
payload_path,
out_metadata_size);
}
static void SignGeneratedPayload(const string& payload_path,
uint64_t* out_metadata_size) {
int signature_size = GetSignatureSize(kUnittestPrivateKeyPath);
vector<char> hash;
ASSERT_TRUE(PayloadSigner::HashPayloadForSigning(
payload_path,
vector<int>(1, signature_size),
&hash));
vector<char> signature;
ASSERT_TRUE(PayloadSigner::SignHash(hash,
kUnittestPrivateKeyPath,
&signature));
ASSERT_TRUE(PayloadSigner::AddSignatureToPayload(
payload_path,
vector<vector<char> >(1, signature),
payload_path,
out_metadata_size));
EXPECT_TRUE(PayloadSigner::VerifySignedPayload(
payload_path,
kUnittestPublicKeyPath,
kSignatureMessageOriginalVersion));
}
static void SignGeneratedShellPayload(SignatureTest signature_test,
const string& payload_path) {
string private_key_path = kUnittestPrivateKeyPath;
if (signature_test == kSignatureGeneratedShellBadKey) {
ASSERT_TRUE(utils::MakeTempFile("key.XXXXXX",
&private_key_path,
NULL));
} else {
ASSERT_TRUE(signature_test == kSignatureGeneratedShell ||
signature_test == kSignatureGeneratedShellRotateCl1 ||
signature_test == kSignatureGeneratedShellRotateCl2);
}
ScopedPathUnlinker key_unlinker(private_key_path);
key_unlinker.set_should_remove(signature_test ==
kSignatureGeneratedShellBadKey);
// Generates a new private key that will not match the public key.
if (signature_test == kSignatureGeneratedShellBadKey) {
LOG(INFO) << "Generating a mismatched private key.";
ASSERT_EQ(0,
System(base::StringPrintf("openssl genrsa -out %s 2048",
private_key_path.c_str())));
}
int signature_size = GetSignatureSize(private_key_path);
string hash_file;
ASSERT_TRUE(utils::MakeTempFile("hash.XXXXXX", &hash_file, NULL));
ScopedPathUnlinker hash_unlinker(hash_file);
string signature_size_string;
if (signature_test == kSignatureGeneratedShellRotateCl1 ||
signature_test == kSignatureGeneratedShellRotateCl2)
signature_size_string = base::StringPrintf("%d:%d",
signature_size, signature_size);
else
signature_size_string = base::StringPrintf("%d", signature_size);
ASSERT_EQ(0,
System(base::StringPrintf(
"./delta_generator -in_file %s -signature_size %s "
"-out_hash_file %s",
payload_path.c_str(),
signature_size_string.c_str(),
hash_file.c_str())));
// Pad the hash
vector<char> hash;
ASSERT_TRUE(utils::ReadFile(hash_file, &hash));
ASSERT_TRUE(PayloadSigner::PadRSA2048SHA256Hash(&hash));
ASSERT_TRUE(WriteFileVector(hash_file, hash));
string sig_file;
ASSERT_TRUE(utils::MakeTempFile("signature.XXXXXX", &sig_file, NULL));
ScopedPathUnlinker sig_unlinker(sig_file);
ASSERT_EQ(0,
System(base::StringPrintf(
"openssl rsautl -raw -sign -inkey %s -in %s -out %s",
private_key_path.c_str(),
hash_file.c_str(),
sig_file.c_str())));
string sig_file2;
ASSERT_TRUE(utils::MakeTempFile("signature.XXXXXX", &sig_file2, NULL));
ScopedPathUnlinker sig2_unlinker(sig_file2);
if (signature_test == kSignatureGeneratedShellRotateCl1 ||
signature_test == kSignatureGeneratedShellRotateCl2) {
ASSERT_EQ(0,
System(base::StringPrintf(
"openssl rsautl -raw -sign -inkey %s -in %s -out %s",
kUnittestPrivateKey2Path,
hash_file.c_str(),
sig_file2.c_str())));
// Append second sig file to first path
sig_file += ":" + sig_file2;
}
ASSERT_EQ(0,
System(base::StringPrintf(
"./delta_generator -in_file %s -signature_file %s "
"-out_file %s",
payload_path.c_str(),
sig_file.c_str(),
payload_path.c_str())));
int verify_result =
System(base::StringPrintf(
"./delta_generator -in_file %s -public_key %s -public_key_version %d",
payload_path.c_str(),
signature_test == kSignatureGeneratedShellRotateCl2 ?
kUnittestPublicKey2Path : kUnittestPublicKeyPath,
signature_test == kSignatureGeneratedShellRotateCl2 ? 2 : 1));
if (signature_test == kSignatureGeneratedShellBadKey) {
ASSERT_NE(0, verify_result);
} else {
ASSERT_EQ(0, verify_result);
}
}
static void GenerateDeltaFile(bool full_kernel,
bool full_rootfs,
bool noop,
off_t chunk_size,
SignatureTest signature_test,
DeltaState *state) {
EXPECT_TRUE(utils::MakeTempFile("a_img.XXXXXX", &state->a_img, NULL));
EXPECT_TRUE(utils::MakeTempFile("b_img.XXXXXX", &state->b_img, NULL));
CreateExtImageAtPath(state->a_img, NULL);
state->image_size = static_cast<int>(utils::FileSize(state->a_img));
// Extend the "partitions" holding the file system a bit.
EXPECT_EQ(0, System(base::StringPrintf(
"dd if=/dev/zero of=%s seek=%d bs=1 count=1",
state->a_img.c_str(),
state->image_size + 1024 * 1024 - 1)));
EXPECT_EQ(state->image_size + 1024 * 1024, utils::FileSize(state->a_img));
// Create ImageInfo A & B
ImageInfo old_image_info;
ImageInfo new_image_info;
if (!full_rootfs) {
old_image_info.set_channel("src-channel");
old_image_info.set_board("src-board");
old_image_info.set_version("src-version");
old_image_info.set_key("src-key");
old_image_info.set_build_channel("src-build-channel");
old_image_info.set_build_version("src-build-version");
}
new_image_info.set_channel("test-channel");
new_image_info.set_board("test-board");
new_image_info.set_version("test-version");
new_image_info.set_key("test-key");
new_image_info.set_build_channel("test-build-channel");
new_image_info.set_build_version("test-build-version");
// Make some changes to the A image.
{
string a_mnt;
ScopedLoopMounter b_mounter(state->a_img, &a_mnt, 0);
vector<char> hardtocompress;
while (hardtocompress.size() < 3 * kBlockSize) {
hardtocompress.insert(hardtocompress.end(),
kRandomString,
kRandomString + sizeof(kRandomString) - 1);
}
EXPECT_TRUE(utils::WriteFile(base::StringPrintf("%s/hardtocompress",
a_mnt.c_str()).c_str(),
hardtocompress.data(),
hardtocompress.size()));
vector<char> zeros(16 * 1024, 0);
EXPECT_EQ(zeros.size(),
file_util::WriteFile(
base::FilePath(base::StringPrintf("%s/move-to-sparse",
a_mnt.c_str())),
zeros.data(), zeros.size()));
EXPECT_TRUE(
WriteSparseFile(base::StringPrintf("%s/move-from-sparse",
a_mnt.c_str()), 16 * 1024));
EXPECT_EQ(0,
system(base::StringPrintf("dd if=/dev/zero of=%s/move-semi-sparse"
" bs=1 seek=4096 count=1",
a_mnt.c_str()).c_str()));
// Write 1 MiB of 0xff to try to catch the case where writing a bsdiff
// patch fails to zero out the final block.
vector<char> ones(1024 * 1024, 0xff);
EXPECT_TRUE(utils::WriteFile(base::StringPrintf("%s/ones",
a_mnt.c_str()).c_str(),
ones.data(),
ones.size()));
}
if (noop) {
EXPECT_TRUE(base::CopyFile(base::FilePath(state->a_img),
base::FilePath(state->b_img)));
old_image_info = new_image_info;
} else {
CreateExtImageAtPath(state->b_img, NULL);
EXPECT_EQ(0, System(base::StringPrintf(
"dd if=/dev/zero of=%s seek=%d bs=1 count=1",
state->b_img.c_str(),
state->image_size + 1024 * 1024 - 1)));
EXPECT_EQ(state->image_size + 1024 * 1024, utils::FileSize(state->b_img));
// Make some changes to the B image.
string b_mnt;
ScopedLoopMounter b_mounter(state->b_img, &b_mnt, 0);
EXPECT_EQ(0, system(base::StringPrintf("cp %s/hello %s/hello2",
b_mnt.c_str(),
b_mnt.c_str()).c_str()));
EXPECT_EQ(0, system(base::StringPrintf("rm %s/hello",
b_mnt.c_str()).c_str()));
EXPECT_EQ(0, system(base::StringPrintf("mv %s/hello2 %s/hello",
b_mnt.c_str(),
b_mnt.c_str()).c_str()));
EXPECT_EQ(0, system(base::StringPrintf("echo foo > %s/foo",
b_mnt.c_str()).c_str()));
EXPECT_EQ(0, system(base::StringPrintf("touch %s/emptyfile",
b_mnt.c_str()).c_str()));
EXPECT_TRUE(WriteSparseFile(base::StringPrintf("%s/fullsparse",
b_mnt.c_str()),
1024 * 1024));
EXPECT_TRUE(
WriteSparseFile(base::StringPrintf("%s/move-to-sparse", b_mnt.c_str()),
16 * 1024));
vector<char> zeros(16 * 1024, 0);
EXPECT_EQ(zeros.size(),
file_util::WriteFile(
base::FilePath(base::StringPrintf("%s/move-from-sparse",
b_mnt.c_str())),
zeros.data(), zeros.size()));
EXPECT_EQ(0, system(base::StringPrintf("dd if=/dev/zero "
"of=%s/move-semi-sparse "
"bs=1 seek=4096 count=1",
b_mnt.c_str()).c_str()));
EXPECT_EQ(0, system(base::StringPrintf("dd if=/dev/zero "
"of=%s/partsparse bs=1 "
"seek=4096 count=1",
b_mnt.c_str()).c_str()));
EXPECT_EQ(0, system(base::StringPrintf("cp %s/srchardlink0 %s/tmp && "
"mv %s/tmp %s/srchardlink1",
b_mnt.c_str(),
b_mnt.c_str(),
b_mnt.c_str(),
b_mnt.c_str()).c_str()));
EXPECT_EQ(0, system(base::StringPrintf("rm %s/boguslink && "
"echo foobar > %s/boguslink",
b_mnt.c_str(), b_mnt.c_str()).c_str()));
vector<char> hardtocompress;
while (hardtocompress.size() < 3 * kBlockSize) {
hardtocompress.insert(hardtocompress.end(),
kRandomString,
kRandomString + sizeof(kRandomString));
}
EXPECT_TRUE(utils::WriteFile(base::StringPrintf("%s/hardtocompress",
b_mnt.c_str()).c_str(),
hardtocompress.data(),
hardtocompress.size()));
}
string old_kernel;
EXPECT_TRUE(utils::MakeTempFile("old_kernel.XXXXXX",
&state->old_kernel,
NULL));
string new_kernel;
EXPECT_TRUE(utils::MakeTempFile("new_kernel.XXXXXX",
&state->new_kernel,
NULL));
state->old_kernel_data.resize(kDefaultKernelSize);
state->new_kernel_data.resize(state->old_kernel_data.size());
FillWithData(&state->old_kernel_data);
FillWithData(&state->new_kernel_data);
// change the new kernel data
strcpy(&state->new_kernel_data[0], kNewDataString);
if (noop) {
state->old_kernel_data = state->new_kernel_data;
}
// Write kernels to disk
EXPECT_TRUE(utils::WriteFile(state->old_kernel.c_str(),
state->old_kernel_data.data(),
state->old_kernel_data.size()));
EXPECT_TRUE(utils::WriteFile(state->new_kernel.c_str(),
state->new_kernel_data.data(),
state->new_kernel_data.size()));
EXPECT_TRUE(utils::MakeTempFile("delta.XXXXXX",
&state->delta_path,
NULL));
LOG(INFO) << "delta path: " << state->delta_path;
{
string a_mnt, b_mnt;
ScopedLoopMounter a_mounter(state->a_img, &a_mnt, MS_RDONLY);
ScopedLoopMounter b_mounter(state->b_img, &b_mnt, MS_RDONLY);
const string private_key =
signature_test == kSignatureGenerator ? kUnittestPrivateKeyPath : "";
EXPECT_TRUE(
DeltaDiffGenerator::GenerateDeltaUpdateFile(
full_rootfs ? "" : a_mnt,
full_rootfs ? "" : state->a_img,
b_mnt,
state->b_img,
full_kernel ? "" : state->old_kernel,
state->new_kernel,
state->delta_path,
private_key,
chunk_size,
kRootFSPartitionSize,
full_rootfs ? NULL : &old_image_info,
&new_image_info,
&state->metadata_size));
}
if (signature_test == kSignatureGeneratedPlaceholder ||
signature_test == kSignatureGeneratedPlaceholderMismatch) {
int signature_size = GetSignatureSize(kUnittestPrivateKeyPath);
LOG(INFO) << "Inserting placeholder signature.";
ASSERT_TRUE(InsertSignaturePlaceholder(signature_size, state->delta_path,
&state->metadata_size));
if (signature_test == kSignatureGeneratedPlaceholderMismatch) {
signature_size -= 1;
LOG(INFO) << "Inserting mismatched placeholder signature.";
ASSERT_FALSE(InsertSignaturePlaceholder(signature_size, state->delta_path,
&state->metadata_size));
return;
}
}
if (signature_test == kSignatureGenerated ||
signature_test == kSignatureGeneratedPlaceholder ||
signature_test == kSignatureGeneratedPlaceholderMismatch) {
// Generate the signed payload and update the metadata size in state to
// reflect the new size after adding the signature operation to the
// manifest.
LOG(INFO) << "Signing payload.";
SignGeneratedPayload(state->delta_path, &state->metadata_size);
} else if (signature_test == kSignatureGeneratedShell ||
signature_test == kSignatureGeneratedShellBadKey ||
signature_test == kSignatureGeneratedShellRotateCl1 ||
signature_test == kSignatureGeneratedShellRotateCl2) {
SignGeneratedShellPayload(signature_test, state->delta_path);
}
}
static void ApplyDeltaFile(bool full_kernel, bool full_rootfs, bool noop,
SignatureTest signature_test, DeltaState* state,
bool hash_checks_mandatory,
OperationHashTest op_hash_test,
DeltaPerformer** performer) {
// Check the metadata.
{
DeltaArchiveManifest manifest;
EXPECT_TRUE(PayloadSigner::LoadPayload(state->delta_path,
&state->delta,
&manifest,
&state->metadata_size));
LOG(INFO) << "Metadata size: " << state->metadata_size;
if (signature_test == kSignatureNone) {
EXPECT_FALSE(manifest.has_signatures_offset());
EXPECT_FALSE(manifest.has_signatures_size());
} else {
EXPECT_TRUE(manifest.has_signatures_offset());
EXPECT_TRUE(manifest.has_signatures_size());
Signatures sigs_message;
EXPECT_TRUE(sigs_message.ParseFromArray(
&state->delta[state->metadata_size + manifest.signatures_offset()],
manifest.signatures_size()));
if (signature_test == kSignatureGeneratedShellRotateCl1 ||
signature_test == kSignatureGeneratedShellRotateCl2)
EXPECT_EQ(2, sigs_message.signatures_size());
else
EXPECT_EQ(1, sigs_message.signatures_size());
const Signatures_Signature& signature = sigs_message.signatures(0);
EXPECT_EQ(1, signature.version());
uint64_t expected_sig_data_length = 0;
vector<string> key_paths (1, kUnittestPrivateKeyPath);
if (signature_test == kSignatureGeneratedShellRotateCl1 ||
signature_test == kSignatureGeneratedShellRotateCl2) {
key_paths.push_back(kUnittestPrivateKey2Path);
}
EXPECT_TRUE(PayloadSigner::SignatureBlobLength(
key_paths,
&expected_sig_data_length));
EXPECT_EQ(expected_sig_data_length, manifest.signatures_size());
EXPECT_FALSE(signature.data().empty());
}
if (noop) {
EXPECT_EQ(1, manifest.install_operations_size());
EXPECT_EQ(1, manifest.kernel_install_operations_size());
}
if (full_kernel) {
EXPECT_FALSE(manifest.has_old_kernel_info());
} else {
EXPECT_EQ(state->old_kernel_data.size(),
manifest.old_kernel_info().size());
EXPECT_FALSE(manifest.old_kernel_info().hash().empty());
}
EXPECT_EQ(manifest.new_image_info().channel(), "test-channel");
EXPECT_EQ(manifest.new_image_info().board(), "test-board");
EXPECT_EQ(manifest.new_image_info().version(), "test-version");
EXPECT_EQ(manifest.new_image_info().key(), "test-key");
EXPECT_EQ(manifest.new_image_info().build_channel(), "test-build-channel");
EXPECT_EQ(manifest.new_image_info().build_version(), "test-build-version");
if (!full_rootfs) {
if (noop) {
EXPECT_EQ(manifest.old_image_info().channel(), "test-channel");
EXPECT_EQ(manifest.old_image_info().board(), "test-board");
EXPECT_EQ(manifest.old_image_info().version(), "test-version");
EXPECT_EQ(manifest.old_image_info().key(), "test-key");
EXPECT_EQ(manifest.old_image_info().build_channel(),
"test-build-channel");
EXPECT_EQ(manifest.old_image_info().build_version(),
"test-build-version");
} else {
EXPECT_EQ(manifest.old_image_info().channel(), "src-channel");
EXPECT_EQ(manifest.old_image_info().board(), "src-board");
EXPECT_EQ(manifest.old_image_info().version(), "src-version");
EXPECT_EQ(manifest.old_image_info().key(), "src-key");
EXPECT_EQ(manifest.old_image_info().build_channel(),
"src-build-channel");
EXPECT_EQ(manifest.old_image_info().build_version(),
"src-build-version");
}
}
if (full_rootfs) {
EXPECT_FALSE(manifest.has_old_rootfs_info());
EXPECT_FALSE(manifest.has_old_image_info());
EXPECT_TRUE(manifest.has_new_image_info());
} else {
EXPECT_EQ(state->image_size, manifest.old_rootfs_info().size());
EXPECT_FALSE(manifest.old_rootfs_info().hash().empty());
}
EXPECT_EQ(state->new_kernel_data.size(), manifest.new_kernel_info().size());
EXPECT_EQ(state->image_size, manifest.new_rootfs_info().size());
EXPECT_FALSE(manifest.new_kernel_info().hash().empty());
EXPECT_FALSE(manifest.new_rootfs_info().hash().empty());
}
PrefsMock prefs;
EXPECT_CALL(prefs, SetInt64(kPrefsManifestMetadataSize,
state->metadata_size)).WillOnce(Return(true));
EXPECT_CALL(prefs, SetInt64(kPrefsUpdateStateNextOperation, _))
.WillRepeatedly(Return(true));
EXPECT_CALL(prefs, GetInt64(kPrefsUpdateStateNextOperation, _))
.WillOnce(Return(false));
EXPECT_CALL(prefs, SetInt64(kPrefsUpdateStateNextDataOffset, _))
.WillRepeatedly(Return(true));
EXPECT_CALL(prefs, SetInt64(kPrefsUpdateStateNextDataLength, _))
.WillRepeatedly(Return(true));
EXPECT_CALL(prefs, SetString(kPrefsUpdateStateSHA256Context, _))
.WillRepeatedly(Return(true));
if (op_hash_test == kValidOperationData && signature_test != kSignatureNone) {
EXPECT_CALL(prefs, SetString(kPrefsUpdateStateSignedSHA256Context, _))
.WillOnce(Return(true));
EXPECT_CALL(prefs, SetString(kPrefsUpdateStateSignatureBlob, _))
.WillOnce(Return(true));
}
// Update the A image in place.
InstallPlan install_plan;
install_plan.hash_checks_mandatory = hash_checks_mandatory;
install_plan.metadata_size = state->metadata_size;
install_plan.is_full_update = full_kernel && full_rootfs;
LOG(INFO) << "Setting payload metadata size in Omaha = "
<< state->metadata_size;
ASSERT_TRUE(PayloadSigner::GetMetadataSignature(
state->delta.data(),
state->metadata_size,
kUnittestPrivateKeyPath,
&install_plan.metadata_signature));
EXPECT_FALSE(install_plan.metadata_signature.empty());
*performer = new DeltaPerformer(&prefs,
&state->fake_system_state,
&install_plan);
EXPECT_TRUE(utils::FileExists(kUnittestPublicKeyPath));
(*performer)->set_public_key_path(kUnittestPublicKeyPath);
EXPECT_EQ(state->image_size,
OmahaHashCalculator::RawHashOfFile(state->a_img,
state->image_size,
&install_plan.rootfs_hash));
EXPECT_TRUE(OmahaHashCalculator::RawHashOfData(state->old_kernel_data,
&install_plan.kernel_hash));
EXPECT_EQ(0, (*performer)->Open(state->a_img.c_str(), 0, 0));
EXPECT_TRUE((*performer)->OpenKernel(state->old_kernel.c_str()));
ErrorCode expected_error, actual_error;
bool continue_writing;
switch(op_hash_test) {
case kInvalidOperationData: {
// Muck with some random offset post the metadata size so that
// some operation hash will result in a mismatch.
int some_offset = state->metadata_size + 300;
LOG(INFO) << "Tampered value at offset: " << some_offset;
state->delta[some_offset]++;
expected_error = kErrorCodeDownloadOperationHashMismatch;
continue_writing = false;
break;
}
case kValidOperationData:
default:
// no change.
expected_error = kErrorCodeSuccess;
continue_writing = true;
break;
}
// Write at some number of bytes per operation. Arbitrarily chose 5.
const size_t kBytesPerWrite = 5;
for (size_t i = 0; i < state->delta.size(); i += kBytesPerWrite) {
size_t count = min(state->delta.size() - i, kBytesPerWrite);
bool write_succeeded = ((*performer)->Write(&state->delta[i],
count,
&actual_error));
// Normally write_succeeded should be true every time and
// actual_error should be kErrorCodeSuccess. If so, continue the loop.
// But if we seeded an operation hash error above, then write_succeeded
// will be false. The failure may happen at any operation n. So, all
// Writes until n-1 should succeed and the nth operation will fail with
// actual_error. In this case, we should bail out of the loop because
// we cannot proceed applying the delta.
if (!write_succeeded) {
LOG(INFO) << "Write failed. Checking if it failed with expected error";
EXPECT_EQ(expected_error, actual_error);
if (!continue_writing) {
LOG(INFO) << "Cannot continue writing. Bailing out.";
break;
}
}
EXPECT_EQ(kErrorCodeSuccess, actual_error);
}
// If we had continued all the way through, Close should succeed.
// Otherwise, it should fail. Check appropriately.
bool close_result = (*performer)->Close();
if (continue_writing)
EXPECT_EQ(0, close_result);
else
EXPECT_LE(0, close_result);
}
void VerifyPayloadResult(DeltaPerformer* performer,
DeltaState* state,
ErrorCode expected_result) {
if (!performer) {
EXPECT_TRUE(!"Skipping payload verification since performer is NULL.");
return;
}
int expected_times = (expected_result == kErrorCodeSuccess) ? 1 : 0;
EXPECT_CALL(*(state->fake_system_state.mock_payload_state()),
DownloadComplete()).Times(expected_times);
LOG(INFO) << "Verifying payload for expected result "
<< expected_result;
EXPECT_EQ(expected_result, performer->VerifyPayload(
OmahaHashCalculator::OmahaHashOfData(state->delta),
state->delta.size()));
LOG(INFO) << "Verified payload.";
if (expected_result != kErrorCodeSuccess) {
// no need to verify new partition if VerifyPayload failed.
return;
}
CompareFilesByBlock(state->old_kernel, state->new_kernel);
CompareFilesByBlock(state->a_img, state->b_img);
vector<char> updated_kernel_partition;
EXPECT_TRUE(utils::ReadFile(state->old_kernel, &updated_kernel_partition));
EXPECT_EQ(0, strncmp(updated_kernel_partition.data(), kNewDataString,
strlen(kNewDataString)));
uint64_t new_kernel_size;
vector<char> new_kernel_hash;
uint64_t new_rootfs_size;
vector<char> new_rootfs_hash;
EXPECT_TRUE(performer->GetNewPartitionInfo(&new_kernel_size,
&new_kernel_hash,
&new_rootfs_size,
&new_rootfs_hash));
EXPECT_EQ(kDefaultKernelSize, new_kernel_size);
vector<char> expected_new_kernel_hash;
EXPECT_TRUE(OmahaHashCalculator::RawHashOfData(state->new_kernel_data,
&expected_new_kernel_hash));
EXPECT_TRUE(expected_new_kernel_hash == new_kernel_hash);
EXPECT_EQ(state->image_size, new_rootfs_size);
vector<char> expected_new_rootfs_hash;
EXPECT_EQ(state->image_size,
OmahaHashCalculator::RawHashOfFile(state->b_img,
state->image_size,
&expected_new_rootfs_hash));
EXPECT_TRUE(expected_new_rootfs_hash == new_rootfs_hash);
}
void VerifyPayload(DeltaPerformer* performer,
DeltaState* state,
SignatureTest signature_test) {
ErrorCode expected_result = kErrorCodeSuccess;
switch (signature_test) {
case kSignatureNone:
expected_result = kErrorCodeSignedDeltaPayloadExpectedError;
break;
case kSignatureGeneratedShellBadKey:
expected_result = kErrorCodeDownloadPayloadPubKeyVerificationError;
break;
default: break; // appease gcc
}
VerifyPayloadResult(performer, state, expected_result);
}
void DoSmallImageTest(bool full_kernel, bool full_rootfs, bool noop,
off_t chunk_size,
SignatureTest signature_test,
bool hash_checks_mandatory) {
DeltaState state;
DeltaPerformer *performer;
GenerateDeltaFile(full_kernel, full_rootfs, noop, chunk_size,
signature_test, &state);
ScopedPathUnlinker a_img_unlinker(state.a_img);
ScopedPathUnlinker b_img_unlinker(state.b_img);
ScopedPathUnlinker delta_unlinker(state.delta_path);
ScopedPathUnlinker old_kernel_unlinker(state.old_kernel);
ScopedPathUnlinker new_kernel_unlinker(state.new_kernel);
ApplyDeltaFile(full_kernel, full_rootfs, noop, signature_test,
&state, hash_checks_mandatory, kValidOperationData,
&performer);
VerifyPayload(performer, &state, signature_test);
}
// Calls delta performer's Write method by pretending to pass in bytes from a
// delta file whose metadata size is actual_metadata_size and tests if all
// checks are correctly performed if the install plan contains
// expected_metadata_size and that the result of the parsing are as per
// hash_checks_mandatory flag.
void DoMetadataSizeTest(uint64_t expected_metadata_size,
uint64_t actual_metadata_size,
bool hash_checks_mandatory) {
PrefsMock prefs;
InstallPlan install_plan;
install_plan.hash_checks_mandatory = hash_checks_mandatory;
FakeSystemState fake_system_state;
DeltaPerformer performer(&prefs, &fake_system_state, &install_plan);
EXPECT_EQ(0, performer.Open("/dev/null", 0, 0));
EXPECT_TRUE(performer.OpenKernel("/dev/null"));
// Set a valid magic string and version number 1.
EXPECT_TRUE(performer.Write("CrAU", 4));
uint64_t version = htobe64(1);
EXPECT_TRUE(performer.Write(&version, 8));
install_plan.metadata_size = expected_metadata_size;
ErrorCode error_code;
// When filling in size in manifest, exclude the size of the 20-byte header.
uint64_t size_in_manifest = htobe64(actual_metadata_size - 20);
bool result = performer.Write(&size_in_manifest, 8, &error_code);
if (expected_metadata_size == actual_metadata_size ||
!hash_checks_mandatory) {
EXPECT_TRUE(result);
} else {
EXPECT_FALSE(result);
EXPECT_EQ(kErrorCodeDownloadInvalidMetadataSize, error_code);
}
EXPECT_LT(performer.Close(), 0);
}
// Generates a valid delta file but tests the delta performer by suppling
// different metadata signatures as per omaha_metadata_signature flag and
// sees if the result of the parsing are as per hash_checks_mandatory flag.
void DoMetadataSignatureTest(MetadataSignatureTest metadata_signature_test,
SignatureTest signature_test,
bool hash_checks_mandatory) {
DeltaState state;
// Using kSignatureNone since it doesn't affect the results of our test.
// If we've to use other signature options, then we'd have to get the
// metadata size again after adding the signing operation to the manifest.
GenerateDeltaFile(true, true, false, -1, signature_test, &state);
ScopedPathUnlinker a_img_unlinker(state.a_img);
ScopedPathUnlinker b_img_unlinker(state.b_img);
ScopedPathUnlinker delta_unlinker(state.delta_path);
ScopedPathUnlinker old_kernel_unlinker(state.old_kernel);
ScopedPathUnlinker new_kernel_unlinker(state.new_kernel);
// Loads the payload and parses the manifest.
vector<char> payload;
EXPECT_TRUE(utils::ReadFile(state.delta_path, &payload));
LOG(INFO) << "Payload size: " << payload.size();
InstallPlan install_plan;
install_plan.hash_checks_mandatory = hash_checks_mandatory;
install_plan.metadata_size = state.metadata_size;
DeltaPerformer::MetadataParseResult expected_result, actual_result;
ErrorCode expected_error, actual_error;
// Fill up the metadata signature in install plan according to the test.
switch (metadata_signature_test) {
case kEmptyMetadataSignature:
install_plan.metadata_signature.clear();
expected_result = DeltaPerformer::kMetadataParseError;
expected_error = kErrorCodeDownloadMetadataSignatureMissingError;
break;
case kInvalidMetadataSignature:
install_plan.metadata_signature = kBogusMetadataSignature1;
expected_result = DeltaPerformer::kMetadataParseError;
expected_error = kErrorCodeDownloadMetadataSignatureMismatch;
break;
case kValidMetadataSignature:
default:
// Set the install plan's metadata size to be the same as the one
// in the manifest so that we pass the metadata size checks. Only
// then we can get to manifest signature checks.
ASSERT_TRUE(PayloadSigner::GetMetadataSignature(
payload.data(),
state.metadata_size,
kUnittestPrivateKeyPath,
&install_plan.metadata_signature));
EXPECT_FALSE(install_plan.metadata_signature.empty());
expected_result = DeltaPerformer::kMetadataParseSuccess;
expected_error = kErrorCodeSuccess;
break;
}
// Ignore the expected result/error if hash checks are not mandatory.
if (!hash_checks_mandatory) {
expected_result = DeltaPerformer::kMetadataParseSuccess;
expected_error = kErrorCodeSuccess;
}
// Create the delta performer object.
PrefsMock prefs;
DeltaPerformer delta_performer(&prefs,
&state.fake_system_state,
&install_plan);
// Use the public key corresponding to the private key used above to
// sign the metadata.
EXPECT_TRUE(utils::FileExists(kUnittestPublicKeyPath));
delta_performer.set_public_key_path(kUnittestPublicKeyPath);
// Init actual_error with an invalid value so that we make sure
// ParsePayloadMetadata properly populates it in all cases.
actual_error = kErrorCodeUmaReportedMax;
actual_result = delta_performer.ParsePayloadMetadata(payload, &actual_error);
EXPECT_EQ(expected_result, actual_result);
EXPECT_EQ(expected_error, actual_error);
// Check that the parsed metadata size is what's expected. This test
// implicitly confirms that the metadata signature is valid, if required.
EXPECT_EQ(state.metadata_size, delta_performer.GetMetadataSize());
}
void DoOperationHashMismatchTest(OperationHashTest op_hash_test,
bool hash_checks_mandatory) {
DeltaState state;
GenerateDeltaFile(true, true, false, -1, kSignatureGenerated, &state);
ScopedPathUnlinker a_img_unlinker(state.a_img);
ScopedPathUnlinker b_img_unlinker(state.b_img);
ScopedPathUnlinker delta_unlinker(state.delta_path);
ScopedPathUnlinker old_kernel_unlinker(state.old_kernel);
ScopedPathUnlinker new_kernel_unlinker(state.new_kernel);
DeltaPerformer *performer;
ApplyDeltaFile(true, true, false, kSignatureGenerated,
&state, hash_checks_mandatory, op_hash_test, &performer);
}
class DeltaPerformerTest : public ::testing::Test {
public:
// Test helper placed where it can easily be friended from DeltaPerformer.
static void RunManifestValidation(DeltaArchiveManifest& manifest,
bool full_payload,
ErrorCode expected) {
PrefsMock prefs;
InstallPlan install_plan;
FakeSystemState fake_system_state;
DeltaPerformer performer(&prefs, &fake_system_state, &install_plan);
// The install plan is for Full or Delta.
install_plan.is_full_update = full_payload;
// The Manifest we are validating.
performer.manifest_.CopyFrom(manifest);
EXPECT_EQ(expected, performer.ValidateManifest());
}
};
TEST(DeltaPerformerTest, ExtentsToByteStringTest) {
uint64_t test[] = {1, 1, 4, 2, kSparseHole, 1, 0, 1};
COMPILE_ASSERT(arraysize(test) % 2 == 0, array_size_uneven);
const uint64_t block_size = 4096;
const uint64_t file_length = 5 * block_size - 13;
google::protobuf::RepeatedPtrField<Extent> extents;
for (size_t i = 0; i < arraysize(test); i += 2) {
Extent* extent = extents.Add();
extent->set_start_block(test[i]);
extent->set_num_blocks(test[i + 1]);
}
string expected_output = "4096:4096,16384:8192,-1:4096,0:4083";
string actual_output;
EXPECT_TRUE(DeltaPerformer::ExtentsToBsdiffPositionsString(extents,
block_size,
file_length,
&actual_output));
EXPECT_EQ(expected_output, actual_output);
}
TEST(DeltaPerformerTest, ValidateManifestFullGoodTest) {
// The Manifest we are validating.
DeltaArchiveManifest manifest;
manifest.mutable_new_kernel_info();
manifest.mutable_new_rootfs_info();
manifest.set_minor_version(DeltaPerformer::kFullPayloadMinorVersion);
DeltaPerformerTest::RunManifestValidation(manifest, true, kErrorCodeSuccess);
}
TEST(DeltaPerformerTest, ValidateManifestDeltaGoodTest) {
// The Manifest we are validating.
DeltaArchiveManifest manifest;
manifest.mutable_old_kernel_info();
manifest.mutable_old_rootfs_info();
manifest.mutable_new_kernel_info();
manifest.mutable_new_rootfs_info();
manifest.set_minor_version(DeltaPerformer::kSupportedMinorPayloadVersion);
DeltaPerformerTest::RunManifestValidation(manifest, false, kErrorCodeSuccess);
}
TEST(DeltaPerformerTest, ValidateManifestFullUnsetMinorVersion) {
// The Manifest we are validating.
DeltaArchiveManifest manifest;
DeltaPerformerTest::RunManifestValidation(manifest, true, kErrorCodeSuccess);
}
TEST(DeltaPerformerTest, ValidateManifestDeltaUnsetMinorVersion) {
// The Manifest we are validating.
DeltaArchiveManifest manifest;
DeltaPerformerTest::RunManifestValidation(
manifest, false,
kErrorCodeUnsupportedMinorPayloadVersion);
}
TEST(DeltaPerformerTest, ValidateManifestFullOldKernelTest) {
// The Manifest we are validating.
DeltaArchiveManifest manifest;
manifest.mutable_old_kernel_info();
manifest.mutable_new_kernel_info();
manifest.mutable_new_rootfs_info();
manifest.set_minor_version(DeltaPerformer::kSupportedMinorPayloadVersion);
DeltaPerformerTest::RunManifestValidation(
manifest, true,
kErrorCodePayloadMismatchedType);
}
TEST(DeltaPerformerTest, ValidateManifestFullOldRootfsTest) {
// The Manifest we are validating.
DeltaArchiveManifest manifest;
manifest.mutable_old_rootfs_info();
manifest.mutable_new_kernel_info();
manifest.mutable_new_rootfs_info();
manifest.set_minor_version(DeltaPerformer::kSupportedMinorPayloadVersion);
DeltaPerformerTest::RunManifestValidation(
manifest, true,
kErrorCodePayloadMismatchedType);
}
TEST(DeltaPerformerTest, ValidateManifestBadMinorVersion) {
// The Manifest we are validating.
DeltaArchiveManifest manifest;
// Generate a bad version number.
manifest.set_minor_version(DeltaPerformer::kSupportedMinorPayloadVersion +
10000);
DeltaPerformerTest::RunManifestValidation(
manifest, false,
kErrorCodeUnsupportedMinorPayloadVersion);
}
TEST(DeltaPerformerTest, RunAsRootSmallImageTest) {
DoSmallImageTest(false, false, false, -1, kSignatureGenerator,
false);
}
TEST(DeltaPerformerTest, RunAsRootSmallImageSignaturePlaceholderTest) {
DoSmallImageTest(false, false, false, -1, kSignatureGeneratedPlaceholder,
false);
}
TEST(DeltaPerformerTest, RunAsRootSmallImageSignaturePlaceholderMismatchTest) {
DeltaState state;
GenerateDeltaFile(false, false, false, -1,
kSignatureGeneratedPlaceholderMismatch, &state);
}
TEST(DeltaPerformerTest, RunAsRootSmallImageChunksTest) {
DoSmallImageTest(false, false, false, kBlockSize, kSignatureGenerator,
false);
}
TEST(DeltaPerformerTest, RunAsRootFullKernelSmallImageTest) {
DoSmallImageTest(true, false, false, -1, kSignatureGenerator,
false);
}
TEST(DeltaPerformerTest, RunAsRootFullSmallImageTest) {
DoSmallImageTest(true, true, false, -1, kSignatureGenerator,
true);
}
TEST(DeltaPerformerTest, RunAsRootNoopSmallImageTest) {
DoSmallImageTest(false, false, true, -1, kSignatureGenerator,
false);
}
TEST(DeltaPerformerTest, RunAsRootSmallImageSignNoneTest) {
DoSmallImageTest(false, false, false, -1, kSignatureNone,
false);
}
TEST(DeltaPerformerTest, RunAsRootSmallImageSignGeneratedTest) {
DoSmallImageTest(false, false, false, -1, kSignatureGenerated,
true);
}
TEST(DeltaPerformerTest, RunAsRootSmallImageSignGeneratedShellTest) {
DoSmallImageTest(false, false, false, -1, kSignatureGeneratedShell,
false);
}
TEST(DeltaPerformerTest, RunAsRootSmallImageSignGeneratedShellBadKeyTest) {
DoSmallImageTest(false, false, false, -1, kSignatureGeneratedShellBadKey,
false);
}
TEST(DeltaPerformerTest, RunAsRootSmallImageSignGeneratedShellRotateCl1Test) {
DoSmallImageTest(false, false, false, -1, kSignatureGeneratedShellRotateCl1,
false);
}
TEST(DeltaPerformerTest, RunAsRootSmallImageSignGeneratedShellRotateCl2Test) {
DoSmallImageTest(false, false, false, -1, kSignatureGeneratedShellRotateCl2,
false);
}
TEST(DeltaPerformerTest, BadDeltaMagicTest) {
PrefsMock prefs;
InstallPlan install_plan;
FakeSystemState fake_system_state;
DeltaPerformer performer(&prefs, &fake_system_state, &install_plan);
EXPECT_EQ(0, performer.Open("/dev/null", 0, 0));
EXPECT_TRUE(performer.OpenKernel("/dev/null"));
EXPECT_TRUE(performer.Write("junk", 4));
EXPECT_TRUE(performer.Write("morejunk", 8));
EXPECT_FALSE(performer.Write("morejunk", 8));
EXPECT_LT(performer.Close(), 0);
}
TEST(DeltaPerformerTest, IsIdempotentOperationTest) {
DeltaArchiveManifest_InstallOperation op;
EXPECT_TRUE(DeltaPerformer::IsIdempotentOperation(op));
*(op.add_dst_extents()) = ExtentForRange(0, 5);
EXPECT_TRUE(DeltaPerformer::IsIdempotentOperation(op));
*(op.add_src_extents()) = ExtentForRange(4, 1);
EXPECT_FALSE(DeltaPerformer::IsIdempotentOperation(op));
op.clear_src_extents();
*(op.add_src_extents()) = ExtentForRange(5, 3);
EXPECT_TRUE(DeltaPerformer::IsIdempotentOperation(op));
*(op.add_dst_extents()) = ExtentForRange(20, 6);
EXPECT_TRUE(DeltaPerformer::IsIdempotentOperation(op));
*(op.add_src_extents()) = ExtentForRange(19, 2);
EXPECT_FALSE(DeltaPerformer::IsIdempotentOperation(op));
}
TEST(DeltaPerformerTest, WriteUpdatesPayloadState) {
PrefsMock prefs;
InstallPlan install_plan;
FakeSystemState fake_system_state;
DeltaPerformer performer(&prefs, &fake_system_state, &install_plan);
EXPECT_EQ(0, performer.Open("/dev/null", 0, 0));
EXPECT_TRUE(performer.OpenKernel("/dev/null"));
EXPECT_CALL(*(fake_system_state.mock_payload_state()),
DownloadProgress(4)).Times(1);
EXPECT_CALL(*(fake_system_state.mock_payload_state()),
DownloadProgress(8)).Times(2);
EXPECT_TRUE(performer.Write("junk", 4));
EXPECT_TRUE(performer.Write("morejunk", 8));
EXPECT_FALSE(performer.Write("morejunk", 8));
EXPECT_LT(performer.Close(), 0);
}
TEST(DeltaPerformerTest, MissingMandatoryMetadataSizeTest) {
DoMetadataSizeTest(0, 75456, true);
}
TEST(DeltaPerformerTest, MissingNonMandatoryMetadataSizeTest) {
DoMetadataSizeTest(0, 123456, false);
}
TEST(DeltaPerformerTest, InvalidMandatoryMetadataSizeTest) {
DoMetadataSizeTest(13000, 140000, true);
}
TEST(DeltaPerformerTest, InvalidNonMandatoryMetadataSizeTest) {
DoMetadataSizeTest(40000, 50000, false);
}
TEST(DeltaPerformerTest, ValidMandatoryMetadataSizeTest) {
DoMetadataSizeTest(85376, 85376, true);
}
TEST(DeltaPerformerTest, RunAsRootMandatoryEmptyMetadataSignatureTest) {
DoMetadataSignatureTest(kEmptyMetadataSignature, kSignatureGenerated, true);
}
TEST(DeltaPerformerTest, RunAsRootNonMandatoryEmptyMetadataSignatureTest) {
DoMetadataSignatureTest(kEmptyMetadataSignature, kSignatureGenerated, false);
}
TEST(DeltaPerformerTest, RunAsRootMandatoryInvalidMetadataSignatureTest) {
DoMetadataSignatureTest(kInvalidMetadataSignature, kSignatureGenerated, true);
}
TEST(DeltaPerformerTest, RunAsRootNonMandatoryInvalidMetadataSignatureTest) {
DoMetadataSignatureTest(kInvalidMetadataSignature, kSignatureGenerated,
false);
}
TEST(DeltaPerformerTest, RunAsRootMandatoryValidMetadataSignature1Test) {
DoMetadataSignatureTest(kValidMetadataSignature, kSignatureNone, true);
}
TEST(DeltaPerformerTest, RunAsRootMandatoryValidMetadataSignature2Test) {
DoMetadataSignatureTest(kValidMetadataSignature, kSignatureGenerated, true);
}
TEST(DeltaPerformerTest, RunAsRootNonMandatoryValidMetadataSignatureTest) {
DoMetadataSignatureTest(kValidMetadataSignature, kSignatureGenerated, false);
}
TEST(DeltaPerformerTest, RunAsRootMandatoryOperationHashMismatchTest) {
DoOperationHashMismatchTest(kInvalidOperationData, true);
}
TEST(DeltaPerformerTest, UsePublicKeyFromResponse) {
PrefsMock prefs;
FakeSystemState fake_system_state;
InstallPlan install_plan;
base::FilePath key_path;
// The result of the GetPublicKeyResponse() method is based on three things
//
// 1. Whether it's an official build; and
// 2. Whether the Public RSA key to be used is in the root filesystem; and
// 3. Whether the reponse has a public key
//
// We test all eight combinations to ensure that we only use the
// public key in the response if
//
// a. it's not an official build; and
// b. there is no key in the root filesystem.
DeltaPerformer *performer = new DeltaPerformer(&prefs,
&fake_system_state,
&install_plan);
FakeHardware* fake_hardware = fake_system_state.fake_hardware();
string temp_dir;
EXPECT_TRUE(utils::MakeTempDirectory("PublicKeyFromResponseTests.XXXXXX",
&temp_dir));
string non_existing_file = temp_dir + "/non-existing";
string existing_file = temp_dir + "/existing";
EXPECT_EQ(0, System(base::StringPrintf("touch %s", existing_file.c_str())));
// Non-official build, non-existing public-key, key in response -> true
fake_hardware->SetIsOfficialBuild(false);
performer->public_key_path_ = non_existing_file;
install_plan.public_key_rsa = "VGVzdAo="; // result of 'echo "Test" | base64'
EXPECT_TRUE(performer->GetPublicKeyFromResponse(&key_path));
EXPECT_FALSE(key_path.empty());
EXPECT_EQ(unlink(key_path.value().c_str()), 0);
// Same with official build -> false
fake_hardware->SetIsOfficialBuild(true);
EXPECT_FALSE(performer->GetPublicKeyFromResponse(&key_path));
// Non-official build, existing public-key, key in response -> false
fake_hardware->SetIsOfficialBuild(false);
performer->public_key_path_ = existing_file;
install_plan.public_key_rsa = "VGVzdAo="; // result of 'echo "Test" | base64'
EXPECT_FALSE(performer->GetPublicKeyFromResponse(&key_path));
// Same with official build -> false
fake_hardware->SetIsOfficialBuild(true);
EXPECT_FALSE(performer->GetPublicKeyFromResponse(&key_path));
// Non-official build, non-existing public-key, no key in response -> false
fake_hardware->SetIsOfficialBuild(false);
performer->public_key_path_ = non_existing_file;
install_plan.public_key_rsa = "";
EXPECT_FALSE(performer->GetPublicKeyFromResponse(&key_path));
// Same with official build -> false
fake_hardware->SetIsOfficialBuild(true);
EXPECT_FALSE(performer->GetPublicKeyFromResponse(&key_path));
// Non-official build, existing public-key, no key in response -> false
fake_hardware->SetIsOfficialBuild(false);
performer->public_key_path_ = existing_file;
install_plan.public_key_rsa = "";
EXPECT_FALSE(performer->GetPublicKeyFromResponse(&key_path));
// Same with official build -> false
fake_hardware->SetIsOfficialBuild(true);
EXPECT_FALSE(performer->GetPublicKeyFromResponse(&key_path));
// Non-official build, non-existing public-key, key in response
// but invalid base64 -> false
fake_hardware->SetIsOfficialBuild(false);
performer->public_key_path_ = non_existing_file;
install_plan.public_key_rsa = "not-valid-base64";
EXPECT_FALSE(performer->GetPublicKeyFromResponse(&key_path));
delete performer;
EXPECT_TRUE(utils::RecursiveUnlinkDir(temp_dir));
}
} // namespace chromeos_update_engine